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In hadron physics, molecular-like multihadron states can interact with compact multiquark states.
The latter are modeled as bare states in the Hilbert space of a potential model. In this work, we study several
potential models relevant to the bare state, and solve their inverse scattering problems. The first model,
called “cc,” is a separable potential model. We show that it can approximate (single-channel short-range)
S-wave near-threshold physics with an error of O(*/M3,), where f3 sets the maximum momentum of the
near-threshold region and My, is the typical scale of the potential. The second model, called “bc,” serves as
the bare-state-dominance approximation, where interaction between continuum states is ignored. Under
this model, even though the bare state is always crucial for a bound state’s generation, a shallow bound state
naturally tends to have a small bare-state proportion. Therefore, we need other quantities to quantify the
importance of the bare state. The last model, called “bec,” is a combination of the first two models. This
model not only serves as a correction to the bare-state-dominance approximation, but can also be used to
understand the interplay between quark and hadron degrees of freedom. This model naturally leads to the
presence of a Castillejo-Dalitz-Dyson (CDD) zero. We consider the energy decomposition of a bound state.
The potential ratio of the bare-continuum interaction to the continuum self-interaction is proposed to
understand how the bound state is generated. Model independently, an inequality for the potential ratio is
derived. Based on the model “bec,” the CDD zero can be used to estimate the potential ratio. Finally, we

apply these studies to the deuteron, p meson, and D?;(2317), and analyze their properties.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the well-established
theory of the strong interaction. It describes not only how
quarks form hadrons, but also how hadrons interact with
each other. However, it is difficult to analytically understand
these processes within QCD because of its nonperturbative
nature. Therefore potential models are still a useful tool in
hadron physics.

On the quark level, there exists a confining potential
between quarks, and hadrons are bound states in the
system. With a suitably designed potential, the model
can have good predictive power. For example, the well-
known Godfrey-Isgur model [1] can well describe the mass
spectrum of mesons. On the hadron level, hadrons interact
with each other within a short-range potential. Unlike the
quark-level case where bound states can appear both below
and above the threshold and no scattering can happen, the
hadron-level case can only have bound states below the
threshold and scattering happens above the threshold.
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Various potential models have been used to study the
binding and scattering between hadrons. Examples include
Hamiltonian effective field theory [2—13] where a potential
is parametrized respecting chiral effective field theory, the
HAL QCD method [14-16] where a potential is recon-
structed from the lattice simulated Nambu-Bethe-Salpeter
wave function, and many potential models for the nuclear
force, like those in Refs. [17-19].

The direct scattering problem starts with a potential, and
solves scattering equations to get scattering observables.
The inverse scattering problem tries to reconstruct the
potential from scattering observables. Most studies in this
field were done decades ago. We refer interested readers to
Ref. [20]. There are also inverse scattering problems
concerning the off-shell 7" matrix instead of the potential
(see, e.g., Ref. [21]), which is not the focus of the
current work.

Among those studies, however, little attention has been
paid to the bare state. In hadron physics, compact multiquark
states are modeled as bare states, and interact with molecular-
like multihadron states. For example, in the quark model, the
p meson is a stable bound state of a quark-antiquark pair,
while in the real world it can decay to two pions. In the
potential model, in addition to the two-pion basis states, one
can include the quark-antiquark pair as a bare state in the
Hilbert space, and also include the interaction between them.
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Other examples include the A(1405) in the KN-(uds)
system [4], and the D?,(2317) in the DK — (c5) system
[13]. References [22,23] also used the bare state to explain
the two-pole structure appearing in many systems. As there
are many such kinds of systems in hadron physics, the inverse
scattering problem with a bare state is worth exploring, and it
is the main purpose of this work.

Past works on the inverse scattering problem mostly
focused on the reconstruction of the potential. Though in
principle one can get any quantity from the potential, it is
still interesting to consider using observables to directly
construct quantities that are not directly observed, e.g., the
wave function of the bound state. In addition, after
including the bare state, many new attractive quantities
appear, including the bare-state mass, the bare-state
proportion in the bound state, and the bare-state distribu-
tion in the eigenmodes of the full Hamiltonian. One of the
central topics in hadron physics is to understand the
structure of hadrons. For the examples introduced above,
we want to know if A(1405) is mostly a KN molecular
state or a (uds) compact baryon state, and if D},(2317) is
a DK molecular state or a (¢5) compact meson state.
These questions can be summarized in the potential model
as what is the probability of finding a bound state in a
bare state.

Although he did not start from the inverse scattering
problem, Weinberg [24] found approximate relations
between the compositeness of a shallow bound state with
the scattering length and effective range. Weinberg’s
relations and their extensions [25-51] have been widely
used to detect the structure of many hadrons (see Ref. [52]
for a review). One of the extensions [48] by us and our
collaborators makes use of techniques from the inverse
scattering problem.

Though potential models still prevail in current studies of
hadron physics, the inverse problem receives only a little
attention. Perhaps the main reason is that the potential can
hardly be uniquely determined by observables. However,
the success of Weinberg’s exploration mentioned before
shows an opportunity that one can still find inverse
scattering relations under certain approximations. In this
work, we take this opportunity by discussing how some
potential models can serve as approximations, and study
their inverse scattering problems.

In Sec. II we study the Fredholm determinant, which is
useful for discussions of inverse scattering problems. In
Sec. III several potential models are discussed. In Sec. IV
those models are applied to analyze real-world systems,
including the deuteron, p meson, and D};(2317).

II. FREDHOLM DETERMINANT

In this paper, we focus on single-continuum-channel
systems with or without a single bare state. In the current
section, however, systems with an arbitrary number of bare
states are also included. For a partial-wave-projected

Hamiltonian H = H + V, the Fredholm determinant is
defined as

DWO:daO—WhZ%V>:®{WEHJW—Hﬂ

(1)

In various cases, including the local potential [53,54], the
nonlocal potential [55,56], and the potential with bare states
generated from confined channels [57-60], when E is
above the threshold Ey,, D(E + ie) satisfies [61]

arg D(E + ie) = —6(E) mod , (2)

where 6 is the scattering phase shift. For further conven-
ience, we also list some useful alternatives to Eq. (2):

wmmam:—%%%%?, 3)
tan 5(E) = —*E:gggi zi; . (4)

From Eq. (1), it is easy to see that D(W) has zeros
residing on the bound states’ energies E , poles on the bare
states’ energies m,, , and a branch cut starting from the
threshold Ej, of the only continuum channel to positive
infinity. The zeros and singularities of D(W) prevent its
phase from being continuous, so, after introducing

HNB W-Ej,

i=1 W-E,

C(W) = ——2—"n (5)
N, W—my.
121w,

(where N, and N are the numbers of bare states and bound
states, respectively), D(W)/C(W) will then have a con-
tinuous phase, except for possibly at the threshold. To
completely specify the phase convention of D(W)/C(W),
we set its phase at complex infinity to be zero:

D(o0)
C()

Because ImD(E)/C(E)=0 below threshold, argD(E)/
C(E)=zn for some integer n for all E < Ey. Then,
arg D(E)/C(E) = arg D(o0)/C(00) = 0 for all E < Ej,.

In this work, we also specify the phase convention of the
scattering phase shift as

arg =0. (6)

D(E + ie)

S(E) = —argm.

(7)

From Eq. (5) we know that D(W)/C(W)~(W —Eg,)Ns=Ne
around the threshold, and thus we have
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—ar
) C(Ey +ep+ie)

D(oo0
C(o
(En ) D(Ey, + &) + i)
[arg C(Eth - 80) ' C(En+eo+ ie)}
—(Ng—N,)larg(—eg) —arg(ey + ie)]
=-n(Ng—N,), (8)

500) — 6{Ey) = — [ ) D(Eth+80+ie)}

where we let € < g, although they are both infinitesimals.
The above relation between 6(Eyy,) and §(o0) is actually a part
of the generalized Levinson theorem derived in Ref. [59]
(Theorem III) for multichannel scattering with confining
potentials. In our convention, we also have §(co) = 0, so
S(Ey,) = n(Ng — N,). Theoretically, the number of bound
states and the phase shift are observables, so the Levinson
theorem will tell us the number of bare states. In reality, the
phase shift at infinity can hardly be recognized as an
observable, but the Levinson theorem can still provide a
qualitative estimate of the number of bare states.

D(W)/C(W) is a real analytic function, allowing a
standard dispersive analysis that gives

UL B
C(W) 7 JEg, E-WwW
where we have assumed
lim D(W) = 1. (10)

[W|—o0

Then, the dispersive representation of D(W) reads

D(W) = exp <—%/dEE5(_E‘)/V>C(W). (11)

In addition, by noting that

1
Iim WinD(W) = lim Windet| 1 - \%
[W|—o0 ( ) [W|—=o0 < W—HO )
1 w
= lim trln | 1 — %4
[W|—o0 W-—-H,
=trlnexp(-V) = —trV (12)

and

lim WinD(W)
|W|—o0

= V%l‘glmwm {exp( }T / dE%) C(W)]
= fim |7 [ @ mean]

1 Ng Ny
:—/dEé(E)—Z(EBi—E[h)JrZ(mb,.—Eth)» (13)

T

one gets a trace formula:

rV = Z Zb:(m,,i — Ey) —% / dES(E).

i=1

5, — En) —

(14)
III. SEVERAL POTENTIAL MODELS

In this section we study the inverse scattering problem
for several potential models. We label the first one as “cc,”
which has a single continuum channel and no bare states,
and it is also known as the separable potential model
elsewhere. Its Hamiltonian reads

d3 hplp)(pl+ A f) (I (15)

(27)

where |p) are the noninteracting momentum-space con-
tinuum states normalized as

(2z)°
p

H:H0+V:

(plk) =

5-0(p = k), (16)
h,, is the noninteracting energy, and

p*dp
(2
For the Ith partial wave, we have f(p) — p' when p — 0.
Without loss of generality, f(p) is assumed to be real.

The second model, called “bc,” includes a continuum
channel and a bare state. It has the following Hamiltonian:
H=Hy+V

—(m pdp
= (o) + [ 215101
+24(0B) {1+ 17) b)) (18

) = f(p)lp). (17)

This model ignores the interaction between the continuum
states. It is also known as the Friedrichs-Lee model [63,64].

The last model, called “bce,” still has a continuum
channel and a bare state. It is a combination of the first
two models:

H:H0+V

= (mieol+ [ £ <Rmlpyiol)
SR UIHING) + 2000 (19

A. Model “cc”

The model ‘“cc,” or the separable potential model,
has been widely used mostly because it is easily soluble.

’
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Here we discuss how it can provide a good approximation
for the (single-channel short-range) S-wave near-threshold
physics. Let us assume a real-world system described by a
Hamiltonian with a specific potential V™) (5, /2) We label
the typical momentum scale of V™) (p, k) as M. From
dimensional analysis, we should have y/(w) (p,k) =
O(M3?). For example, the well-known Yukawa potential
originating from one-boson exchange reads

- 1
V(. F) « ——=———— = OM7?),  (20)
(B — k)2 + M Y

which after S-wave projection should still be of O(M7?).
Now we want to study how the model “cc” can approximate
the near-threshold regime of this system where p, k are
smaller than a momentum . .

The potential V(™) (p, k) is a function of j and k. The
rotational invariants built from them are f)z, I? , and
p- k= pkcos@. Then, in the low-momentum region, the
potential can be expanded as a power series in terms of
these invariants:

VOI(Bk) = co+ e (PP +K) +eapk+---. (21)

After partial-wave projection, the p - k term disappears in
the S wave. Then, in the low-momentum region, the
corresponding S-wave-projected potential V(™) (p, k) can
be expanded as

VI (p k) =vg+ v (P2 + k) +--. (22

In the meantime, we can also expand the “cc” potential as

2ef(P)f(k) = Ac(fo+ f1p* + -+ ) (fo + f1k* + -2

So, by setting /L.f(z) = vg and Aff| = v, the “cc” potential
can reproduce any real-world potential up to the second
order of momenta. So the relative error of approximating
VW (p < Bk <) is of a higher order: O(p*/M?,).
However, one cannot just conclude that the final error is
the same, because a V(™) (p, k) of higher momenta can also
couple to the low-momentum physics. For example, the
second term in the Born series,

q*dg V™ (p. q)V™ (g, k)
(2x)3 E-h, '

(24)

can receive a contribution of O [M%V MLV} in the ¢ ~ My region
of integration (we assume ¢ > My, so that the nonrelativistic
approximation /1, ~ M?3,/2u works), which is even larger

than the first term in the Born series: V™ (p, k) = O(M7?).

In Appendix B we provide an error analysis, taking care of
the high-momentum region, where we show that the model
“cc” can typically approximate the near-threshold physics of
a system with a relative error of O(#*/M3,), providing the
absence of a deeply bound state.

Now we come to study the model “cc.” This model was
already studied decades ago in Refs. [65,66]. We review and
extend their discussions in our notations for completeness.

We first work out the Fredholm determinant:

1
W —H,

D(W) =1-2.(f] \f)=1-4FW). (25)

Its imaginary part satisfies
ImD(h, + ie)/A. = n{f|6p(h, = Ho)|f)

zp?
= (27[)3//1/ fz(p) >0, (26)

where &), is the Dirac delta function, and /), = di h,. Using
Egs. (25) and (26), one finds the following [note that
5(o0) = 0 by convention]:
(1) 4. > 0 (repulsive, no bound states): & € [—x,0]
and 6(Ey,) = 0.
(2) F(Eg)™' < A < 0 (attractive, no bound states): § €
[0, 7] and 6(Ey,) = 0.
(3) 4. < F(Eg)™! (attractive, one bound state): & €
[0, 7] and 6(Ey,) = .
The Fredholm determinant has the dispersive represen-
tation (11) with

1, NB - 0,
C(W) =\ W-Eg No—=1 (27)
W—Ey * B= "

Taking the imaginary part of Eq. (11) and comparing it with
Eq. (26), one gets

b 371,/
1S (p) = (2_73;2’" exp <—%P/dE%>
x sind(h,)C(h,). (28)

One can go further when there is a bound state:

N

|B) = mm, (29)

with the normalization factor

L e (30)

N =g, —wy)

This factor also shows up in the derivative of the Fredholm
determinant:
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d

1
wPwl S1F)

:lc<f| (EB_HO)
=exp <_%/dEE6EEE)B> EBiEth‘ (31)

So, one ends up with

2 _ N2 2
|(p|B)] —mf (p)
b
—(Eg—Ep)  (22)°h),

— sind(h
(hy = Ea)h,—Eg) ap? o)

X exp [—%P/dE(;(_E}z ‘Eﬁgg)]' (32)

p

B. Model “bc”

A general Hamiltonian with a single bare state can have
the following form:

H=Hy,+V

- [mb)<b| +/f22:£hplp><zﬂl}

+areinen [

%%wp,knpw .

(33)

The model “bc” can serve as the bare-state-dominance
approximation. This approximation ignores the V(p,k)
term in Eq. (33), and leads us to a Hamiltonian of the form
of the model “bc” [Eq. (18)]. The Bloch-Horowitz theory
[67,68] (which we review in Appendix A) allows one to
integrate out the bare state in Eq. (33); then, the bare-
continuum interaction can be effectively incorporated into
an energy-dependent potential:

23 f (p)f (k)

Veie(p, K E) = E—m

+ V(p, k). (34)

So the bare-state-dominance approximation should be good
around energies close to the bare mass.

Now we study the model “bc.” The Fredholm determi-
nant of this model is

o
W—m

D(W)=1- F(W), (35)

and its imaginary part is

2

ImD(h,, + ie) =7 fmn'

(f16p(hy — Ho)lf)

~mp* Bfp)
@2, h,—m’ (36)

Now the behavior of the phase shift is as follows:
(1) m—Eg > —-A2F(Eg) > 0 (no bound states): 5 €
[-7,0] and 6(Ey,) = —x.
(2) m— Eg < —A2F(Ey,) (one bound state): § € [—, 0]
and 6(Ey,) = 0.
The Fredholm determinant has the dispersive represen-
tation (11) with

W—E,
th , NB — 0’
cw) = { W (37)
L Np=1.

Using the trace formula (14) and noting that trV = 0, the
bare mass is

B {Em —1[dES(E), Ny =0,

Eg—L1[dES(E), Np=1. (38)
This formula can be understood in the extremely weak-
coupling limit 4, — 0, where §(E) = —z8(m — E), where
0 is the Heaviside theta function. When m < Ej;,, we have
Ny =1and §(E) = —76(m — E) = 0. When m > Ey, we
have N = 0. Now by taking the imaginary part of Eq. (11)
and comparing it with Eq. (36), one gets

A (p) = (2”)»2% exp< Lp / ag2E) >|sin5(hp)|

zp T E—h,
h,—E;,, Np=0,
x{ poTe 8 (39)
hp—EB, NB:1

The bare state is distributed in the energy eigenstates:

2

p~dp

L=l =2+ [ £RIwlP o)
(27)

where |pT) are the scattering “in” states, and Z disappears

when no bound states are present. By solving the

Lippmann-Schwinger equation

1

+) = E— Y 41

P =10 g P @)
|pT) is found to be

) = LA 2 42

P = 1)+ el @)

where
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W f(p)

o i ¢ = hf(p)
" D(h, +ie)’

= . (43

ﬂbF(h,p + l€) ( )
Using Eqgs. (3) and (36), one can get the distribution
amplitude,

e®sind
blp™) = — 57— (44)
mﬂbf(l’)

and the inverse scattering representation of the distribution,

e 2 )3h’ E)
0190 = C2 e (1 [ a2 5 sinatn,)|

1/( p_Eth)v NB:()y
Lz, womt )

We note that Eq. (44) reveals that the bare-state distribution
amplitude is proportional to the 7 matrix (cx e’ sin§).
Therefore, a resonance peak is expected in the distribution.
In fact, this is also true for a general potential, as discussed
in Ref. [8].

The possible bound state in this model is

B=VZ(Io+ 2 n). o

where

— (BB = 1 (47)

+ (fl g )

represents the bare-state proportion of the bound state.
Z has a concise dispersive representation,

Z = exp (% / dE E‘S(E23> (48)

which can be derived by noting that

gl = (- a)w ()

W=Ej

—(W=m)D(W)]

W=Ej

o2,
=—1+exp <—%/dE;£EE)B)- (49)

The wave function now becomes

1 (2n)w,
h,—Ep np*

X exp [—;P / dE <E5(_E}>1p N E(SEEE)B)]

x | sin(h,)|. (50)

{p|B)|> =

We note that Egs. (48) and (50) coincide with the
formulas derived in Ref. [48]. However, this should not
come as a surprise because the approximations employed
there are exact in the model “bc.” We also note that this
formula will be identical to Eq. (32) if one identifies J,
with 6., — z. This is also reasonable because a “cc” model
can be recognized as a special case of the “bc” model when

m — £oo with —% fixed at 4., as reflected by Eq. (34).
This point was also discovered in Ref. [69].

Finally, we also consider the shallow bound state, i.e., a
state with Ep close to Ey,. Because of the absence of the
continuum self-interaction, the bare state is doubtless
crucial to the generation of the bound state. Hence, Ejp
should be sensitive to the bare mass m, making it easy to
implement the limit Ez — Ey, by tuning m with 4,1, (p)
fixed. Then, the factor

{1

A /q dqg  f*(q)
(51)

Er= 2 = | G By — iy

diverges in the infrared, and one should see Z — 0 from
Eq. (47). So naturally a shallow bound state tends to have a
small bare-state proportion, even though the bare state is
crucial for its generation.

C. Model “bee”

In the model “be,” we ignore the whole continuum self-
interaction. In the model “bcc,” however, we retain part of
it, and thus this model can serve as a correction to the bare-
state-dominance approximation. To be concrete, one can
choose a specific energy hj around the bare mass, and
set 4. as V(p,p)/f*(p) or, equivalently, (p|Vye|p) =
(p|V|p). Then, their (p|T|p) are matched at the leading
order of the Born series.

The Fredholm determinant of this model is

/12
DW)=1- b F
W) =1 (G2 d
E~— 2
o _Ee=W Ay, (52)
Ec—mW-—-m
where
12
EC==m—I” (53)
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is known as the Castillejo-Dalitz-Dyson (CDD) zero [70],
because it corresponds to a zero of the on-shell 7T-matrix
element (p|T'(h, + ie)|p). In this special model, it is even a
zero of the off-shell 7-matrix element:

(s + 20) F(p) £ (K)
D(W)

LB f(p)f (k)
D)

{pIT(W)|k) =

(54)

At E, the system feels no interaction because the bare-
continuum interaction cancels the continuum self-interac-
tion. So the presence of a CDD zero may indicate an
interplay between the two interactions. In the context of
hadron physics, bare states typically represent compact
multiquark states, while continuum states are molecular-
like multihadron states. The presence of a CDD zero is
recognized as an interplay of quark and hadron degrees of
freedom [27,28,42,43,71].

To analyze the bound states of this model, we introduce

2 E.—-W

A(W) =t (55)
Ec—mW-—-m
so that D(W) =1— A(W)F(W). The analysis of bound
states only cares about real-valued E < E,; where we have
F(E) <0and F'(E) < 0, and hence F(E) is both negative
and monotonically decreasing. If A(E) > 0, then D(E) > 1
and no bound states can appear because a bound state’s
energy satisfies D(Eg) = 0. If A(E) < 0, then by noting
that
2
A(E)=—-—"2—-5<0 56

we have
D'(E) = -A'(E)F(E) — A(E)F'(E) <0, (57)

which means that D(E) is monotonically decreasing except
at £ = m. The remaining analysis should be split into six
cases depending on the ordering of E., m, and Ey,. The
results are listed in Table I, where we use (a, b, ¢) to denote

TABLE 1. Bound states of model “bcc” in different cases,
where (a, b, ¢) represents —oo < a < b < ¢ < +00.

Case Bound states

(Ec,m, Ey,) One in [Ec¢, m].

(m,Ec,Eq) One in (—oo,m]. One in [E¢, Ey] if D(Ey) < 0.
(Ec, Eth’ m) One in [Ec, Eth] if D(Eth) < 0.

(m,Eg, Ec) One in (—oo, m].

(Eq, Ec,m) No bound states.

(Eq.m, Ec) One in (—o0, Ey] if D(Ey) < 0.

the case —o0 < a < b < ¢ < +o0. Taking the first case
(Ec,m,Ey) as an example, it is easy to find that
D(E<E¢)>1, D(Ec)=1, D(m_)=—c0, D(m,) = 4o,
and D(Ey,) > 1, so only a single bound state appears and
lies in [E¢, m].

From the table, it is easy to summarize that each of the
conditions m < Ey, and D(Ey,) < 0 can produce a bound
state. The condition m < Ey, indicates that a below-thresh-
old bare state will evolve into a physical bound state
directly. The condition D(Ey) <0 can be equivalently
expressed as 4, — % < F(Eg)™! <0, i.e., a negative A,
and — mim
corresponds to an attractive continuum self-interaction, and

tend to form a bound state. A negative 4.

a negative — mﬁ’z’Em corresponds to the bare-continuum
interaction with an above-threshold bare state. So there
are three different ways of forming a bound state: directly
by a below-threshold bare state, by an attractive continuum
self-interaction, and by the bare-continuum interaction with

an above-threshold bare state. On the other hand, we can

rewrite Eq. (53) as 4, = mic,
the continuum self-interaction is attractive or repulsive by
looking at the sign of m — E.

Now we look at the three cases satisfying m < Ey,,
where at least a bound state is present, and the bare-
continuum interaction resists the generation of the other
bound state. The cases (E¢, m, Ey,) and (m, Ey,, E¢) have
repulsive and weak-attractive continuum self-interactions,
respectively. Neither can form the second bound state. The
case (m, Ec, Ey) has a strong-attractive continuum self-
interaction. Two bound states appear only if it is strong
enough. This is the only case where two bound states can be
formed. If we now turn off the bare-continuum interaction,
i.e., we set 4, = 0, we still have two bound states. One is
simply the below-threshold bare state, and the other is a
molecular-like state purely generated by the continuum
self-interaction. After we turn on the bare-continuum
interaction, the bare state and the molecular-like state are
mixed to form two new bound states.

Then, we look at the three cases satisfying m > E,. Now
the bare-continuum interaction behaves as an attractive
interaction in forming a bound state. The case (Ey,, Ec, m)
has a strong-repulsive continuum self-interaction, and no
bound states can be formed. The case (Ec, Ey,, m) has a
weak-repulsive continuum self-interaction. If the bare-
continuum interaction is strong enough, a bound state
can be formed. The case (Egy,m,E:) has an attractive
continuum self-interaction. A bound state can be formed
only if the overall attraction of the two interactions is strong
enough. Which interaction dominates the generation of the
bound state depends on the relative strength of the two

using which we can know if

. . . 2 “E, 1
interactions. The ratio A./(— m_bElh) = 'gc—f,‘r“l directly pro-

vides a way to quantify the generation mechanism of the
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bound state. However, there are several flaws. First, the
ratio does not have a direct physical meaning. Second, the
definition of the ratio relies on the model “bce,” and cannot
be generalized. Last, the ratio does not depend on the bound
state itself, i.e., it reflects only the relative strength between
the two interactions, instead of their impact on the
bound state.

With the analysis of bound states, the Fredholm deter-
minant will have the dispersive representation (11) with

T Np =0,

C(W) = { k. Np=1, (58)
(W—Eg, )(W—Eg, )
“WEmwm -+ V=2

When E is above the threshold, the phase shift at Eis a
multiple of z. Recalling the definition (7) and

D(E¢) = D(o0) = 1, we have
5(E)—a_1~ C(Ec+i€)__ar Ec+i8—m
@ gC(oo—i—is) B © +ie—m
_{0, Ec>m, (59)
-7, Ec<m,

where the convention §(c0) = 0 is used. So only the case
(Egq, Ec,m), which has no bound states, can have
S6(Ec) = —m #0. When E is below the threshold, one
has to locate it as a zero of the 7 matrix using analytic
continuation. For other behaviors of the phase shift, the
discussion is much more complicated than in previous
models, so we will not analyze them here.

Now because trV = A.(f|f) # 0, the trace formula (14)
does not provide a useful expression for the bare mass as in
Eq. (38). Instead, one should look at

S(E)
E-E.

D(Ec-+ie)=1=sexp (—}T/dE )C(EC), (60)

where

-1, E4 <E-<m,
s:{ th c (61)
+1, Others.

Then, we get the bare mass

m = Ec — sexp (—%/ dE S(E) )Cl (Ec), (62)

E—Ec

where C; is defined as

Ci(W) = (W —m)C(W)
W—E,, Ng =0,
— ! W-E,. Ny =1,
(W—Ep )(W—Eg,)/(W-Ey), Np=2.
(63)

Now we come back to the inverse problem. We first work
out the imaginary part of D:

zp* Ec—h,2;f*(p)
(2z)*W, Ec —m h, —m "

ImD(h, + ie) = (64)

Then, comparing it with the imaginary part of the dis-

persive representation, we get
S(E)
dE
poo(ar )

X [—siné(h, )}Cl(h )
b2,

(27r)3h’ C, (EC
)} [=sind(h,)|Cy(h,). (65)

27)*h), E
2 2 ( c—

ﬂ'pz EC

5(E)
" E-E.

where in the second line we have used Eq. (62).
The bare state is distributed in the energy eigenstates:

1= (b|b) = Zz+/

where |p*) is the scattering “in” state, and Z; := |(b|B;)|* is
the bare-state proportion of the bound state | B;). By solving
p ™) can be found

31(blp )

. (66)

to be
Cq Cy
P = 1)+ )+ 2l (67
where
_ A&f(p) o= Apf(p)
cl*D(h,,+ie)’ 2= pF(h, +ie) (68)

Note that, although Egs. (67) and (68) have exactly the
same form as Eqs. (42) and (43), D and F are different
functions. Using Egs. (3) and (64), one can first get the
distribution amplitude

e sin b

(blp*) =—7%
(27z)€h’ EcC —m bf( )

(69)
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and then the inverse scattering representation of the
distribution,

(bl = Z Be -

S fen { P/dE(
x [—siné(h, )]Cl(h )
7 re o [,
5(E)

(271') n, Cl(Ec
TEZ EC)] [=sin&(hy,)|C (hy). (70)

From now on, we focus only on the single bound-state
case. The bound state can be solved to be

R R ) Y

where Ag == A, + j—b (Eg —m) and

— [(BlB) = : . m

12
+ w2

By noting that

/12
<f|W|f>

:( aiv) (W) W=Ej
(P F e,

=1 +i—iexp<—%/dE;£—2}> (73)

and

ds_Ec—Ey
ﬂb Ec—m

— exp <71r / dEE(SEE;C)’ (74)

one finds the dispersive representation of Z:

Z =exp [711/ dE <E5£E];B _S(E) ﬂ (75)

E—-E;
It is now straightforward to get the wave function:

1 (2n)w, (Ec — Ep)?
B = By 2 (B — ) (Be—Tr)
S(E) 4(E)
X exp [_;P/dE<E n, E—EB>]
x [—sin&(h,)]. (76)

At the end of Sec. III B we showed that the bare-state
proportion Z cannot faithfully describe the generation of
the bound state. In the “bc” model, while the bound state is
doubtless generated by the bare state, it can still happen that
Z ~ 0. Now, in the “bcc” model, both the bare-continuum
interaction and continuum self-interaction are included, so
it is natural to ask which interaction dominates the gen-
eration of the bound state. Using Eq. (53), we know that
E- <m (Ec > m) indicates a repulsive (attractive) con-
tinuum self-interaction, and a larger separation between
them indicates a weaker continuum self-interaction or,
equivalently, a stronger bare-continuum interaction.
However, this not only does not provide a quantitative
criterion, but also has nothing to do with the bound state.

A way to quantify this is to consider the decomposition
of the Hamiltonian (19). The Hamiltonian can be split into
four parts,

H:H0+V:H0b +HOC+VbC+VCC’ (77)

and similarly for the bound-state energy Ep = (B|H|B),
i €., <B|H0b +H0C + Vbc + V(‘C|B> EEOb +E0L‘ +Ebc +ECC'
To quantify the interplay between the two interactions
inside the bound state, we can introduce the potential ratio:

ECC

R := .
Ebc

(78)

The first three terms of the energy decomposition can be
model-independently expressed as follows:

Eop =Zm,

Eo. = (B|HPx|B) = XEp — (B|VPx|B)
=XEp—Ey/2-E,,,

Ep. =Ep—(Eop + Eoc + Ec.) = Eg = Zm — XEg + Ep /2
=-27Z(m—-Ejg), (79)

where Py is the projection operator for continuum states,
and X =1-2Z2

When the bare mass is located above the threshold, the
bound-state energy is of course smaller than the bare mass.
When the bare mass is located below the threshold, according
to Table I, there must be a bound state present below the bare
mass. So for the single-bound-state case, the bare mass has to
be located above the bound-state energy. Then, we always
have E,. <0, which means that the bare-continuum
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interaction always has an attractive effect in forming the
bound state. Then, by noting that

Ey. = (B|HyPx|B) > XE,,
E. < Eg— (Eoy +XEy + Ep,.)
= —X(En— Eg) +Z(m—Eg) <Z(m—Eg), (80)

we can derive an inequality for the potential ratio:

Ecc> Z(m_EB) __1 (81)

R==%<> =—,
E,. = =2Z(m—Eg) 2

or E.. < —E,./2. This inequality puts a general upper limit
on the repulsive strength of the continuum self-interaction,
exceeding which a bound state is unable to be formed. We
emphasize that Eq. (81) holds model independently when-
ever the bound state appears below a bare state.

The last term of the energy decomposition should be
estimated using the solution (71):

o )2
E..=Z))AF*(Ep) = _Zu 2
cc ACAB ( B) EC —m ’ (8 )
where we have used
E.—
D(Ep) =0 = F(Ep) =—2—" (83)
Ay
Then, the potential ratio becomes
E 1lm-—-E
e _BTTB (84)
Ebc 2 EC —m

So by comparing twice the distance between E - and m with
the distance between Ey and m, one can determine which
dominates the generation of the bound state. In hadron
physics there are many states, like D?,(2317) and X(3872),
that have masses far away from the corresponding quark-
model predictions. For such a state, its observed mass is
simply Ep, and we can treat the quark-model prediction as
the bare mass m. Then, locating the CDD zero can tell us
the generation mechanism of the state. In addition, the
potential ratio can also be defined for scattering states:

R(h ) o <P+‘V“|P+> _lm - h[’
PP Vaelpt)  2Ec—m’
P 1 VbelP c

(85)

IV. ANALYSIS OF REAL-WORLD SYSTEMS

A. Deuteron in proton-neutron system

The deuteron is a shallow bound state of the proton-
neutron system. Its properties have been widely studied in
hundreds of works (see Ref. [72] for a review). After
partial-wave projection, the relevant channels are 35,

and 3D,. As the 3D, channel is only expected to have
around a 5% contribution, it is reasonable to consider only
the 3S, channel in the first approximation.

The low-energy S, phase shift can be well described by
the effective range expansion [73]

1 r
tOprg = — + = p°. 86
P COtOgRE a+2p (86)

with

a = -5.419(7) fm, r=1.766(8) fm. (87)
As Sgre(0) — Sgre(00) = 7, the Levinson theorem requires
the absence of bare states. Of course, the theorem relies on
the high-energy behavior of the phase shift, which is
inaccessible in reality. However, it is still reasonable to
expect that the possible bare state does not play a
significant role, even though we cannot completely rule
out the possibility of its existence. Therefore, we consider
using the model “cc” to analyze the deuteron.

As discussed in Appendix B, the model “cc” can
approximate any S-wave near-threshold physics with an
error of O(f3* /M3,). For the deuteron case, we can take 3 to
be its binding momentum b = 46 MeV, and we also take
My = m, = 138 MeV. Then, the error is O(4%).

On the other hand, Weinberg developed a method [24]
for quantitatively estimating the possible bare-state pro-
portion of the deuteron. The method predicts an unphysical
value Z = —68% with an uncertainty of O(b/m, = 33%).
Recently, the method was improved in Ref. [48]. It predicts
Z = 0% with an uncertainty of O(b*/m2 = 11%). The
authors of Ref. [48] also derived an expression for the
deuteron wave function, which happens to be exactly
the same as Eq. (32) if one identifies dp in that paper
with 6 — 7 in Eq. (32). Therefore, for the deuteron wave
function, the model “cc” predicts exactly the same result as
that presented in Ref. [48], except that the uncertainty
changed from O(b?>/m2=11%) to O(b*/m} = 4%).
However, we emphasize that such a change in the uncer-
tainty is not an improvement, because the absence of bare
states is assumed a priori in the model “cc.”

B. p meson in 7z - (qq) system

The observed phase shift of the p meson can be well
described by a Breit-Wigner (BW) fit up to at least around
1.2 GeV [74,75] (although the KK channel appears already
below 1.2 GeV, the resulting inelasticity is very small, and
thus we do not consider the KK channel here):

2 3

g 14
Spw(E) = arctan [@ m}

p=1/E*/4—m2, (88)
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TABLE II. Bare mass in different cases.

A (MeV) 800 1200 1600

m (MeV) with Ec = co (Model “bc”) 846 895 943
m (MeV) with Ec = m, — 1000 MeV 846 898 950
m (MeV) with Ec = m, + 1000 MeV 846 891 932

where we take the Particle Data Group (PDG) values [76]
m, = 140 MeV, m, = 775 MeV, and g = 5.98. The cou-
pling g is related to the width I') = 149 MeV via

Py, = g/m§/4—m,2,. (89)

This phase shift satisfies Sgw (0) — Sgw(o0) = —7z. As there
are no bound states, the Levinson theorem requires the
existence of a single bare state. Therefore, it excludes the
applicability of our “cc” model.

Now we consider the “bc” model. Substituting dgyw into
the bare mass formula (38) simply gives m = oo, because
Spw(00) # 0. However, this result should not be accepted
as true, because the high-energy behavior of the phase shift
is crucial in deriving it. As mentioned before, the BW fit
works at least up to 1.2 GeV. Thus, what Eq. (38) really
tells us is that

_on

F - ’
6z m,

P

1 1.2 GeV

where the inequality holds because 6 < 0 in the model “bc.”
On the other hand, the model “bc” can be understood as a
result of the bare-state-dominance approximation. We do
not expect such an approximation to work in the high-
energy region. So replacing the BW fit with the real-world
phase shift up to a higher energy is not a solution for
locating the bare mass. Instead, we choose to model the
high-energy behavior of the phase shift with the following
replacement:

hy/MeV
280 664 1232 1820
L 0.09)
< 0.06}
=
T
2 003}
0 300 600 900
p/MeV

1+25°
77 = (). o1)
1+2
where ¢*(p,) = ¢* ensures that the near p-mass behavior of
the phase shift does not change too much. In fact, the main
difference between phase shifts with different A is the high-
energy behavior. We use three different values of A, and list
the corresponding bare masses in Table II. From the table,
the bare mass is expected to have an uncertainty of
O(100 MeV) coming from the high-energy behavior of

the phase shift.

By using Eqgs. (39) and (45) with these different values of
A, we calculate the corresponding bare-continuum cou-
pling form factor A2f%(p) and the bare-state distribution

% |(b|p™)|* as shown in Fig. 1. While the variation of A

affects A2f%(p) a bit, the bare-state distribution is quite
stable.

Next, we consider the model “bcc.” The model requires
the existence of a CDD zero. To see how a possible CDD
zero may affect our previous predictions, we introduce both
A and a CDD zero into the BW fit with the following
replacement:

PN 2
1+ p> h, — Ec (02)

2 2(p) = 2 ]
g -9 =y (1+K§ m, — Ec
The observed phase shift does not suggest that such a zero
is present close to the range from Ey to 1200 MeV. We
tentatively use Ec = m, £+ 1000 MeV to study the effects
of Ec. Using Eq. (62), we include the corresponding bare
mass in Table II. From the table, the possible CDD zero is
only expected to contribute an uncertainty of O(10 MeV)
to the bare mass. This uncertainty is much smaller than that

under variation of A.
Then, we focus on the A = 1200 MeV case. In Fig. 2 we

2

o 2242 2 e
plot the corresponding A;f*(p) and (2’;>3 |{b|pT)|* using
hy/McV
280 664 1232 1820
0.009} ' ' '
T
% 0.006}
=
=~
S8
= 0.003}
0 300 600 900
p/MeV

FIG. 1. Plots of 22f%(p) and P,(p) = (zp”z)g [(b|pT)|> with A = 800 (red), 1200 (blue), and 1600 (orange) MeV. The grey vertical line

denotes h, = m,,.
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hy/MeV
280 664 1232 1820
021 .
=
= 0.14t
~
c /
007}
<
0 300 600 900
p/MeV

hy/MeV
280 664 1232 1820
0.000} ' ' '
T
% 0.006}
=
=
IS
= 0003}
0 300 600 900
p/MeV

FIG. 2. Plots of 22f%*(p) and P,(p ::1’—23 b|p™)|* with A = 1200 MeV and E. = m, — 1000 MeV (dashed), oo (solid),
b 2r) P

(

and m, + 1000 MeV(dotted). The grey vertical line denotes /1, = m

Egs. (65) and (70). We see that while E- has a drastic effect
on 22f2(p), the bare-state distribution is still very stable.

From the above discussions, we have some simple
conclusions. First, the bare mass is expected to be larger
than 812 MeV, and its precise location is more sensitive to
A than E.. The former is related to the bare-continuum
interaction, while the latter is related to the interplay
between the bare-continuum interaction and continuum
self-interaction. Second, the bare-continuum interaction is
sensitive to both A and E.. Thus, it can hardly be
determined model independently. Third, the bare-state
distribution is quite stable under variations of both A
and E. Therefore, its extractions in Fig. 12 are reliable.

C. D},(2317) in DK - (c5) system

D7,(2317) can be viewed as a shallow bound state of the

DK — (c5) system. There we have the PDG values [76]

Ey = 2363 MeV, Eg =2318 MeV.  (93)
For the bare (c¢5) mass, the well-known Godfrey-Isgur
model [1] predicts m = 2480 MeV. On the other hand, a
recently published work [13] followed the Godfrey-Isgur
model with updated data, and intentionally removed those
masses of near-threshold states as input. It predicted
m = 2406 MeV.

The Z factor of D?,(2317) has been investigated in many
works [47,77-79] based on Weinberg’s relations, and tends
to have a small central value but with a large systematic
uncertainty. However, whatever the value of Z is, the
potential ratio which measures how D?,(2317) is generated
is still worth studying. In the following, we will focus on
this ratio.

Before using the “bcc” model, we first study the system
model independently. Because the bare mass lies above the
bound-state energy, we have R > —% from Eq. (81). Then,
we get R > —1 or, equivalently, E.. < —FE,., which means
that a repulsive continuum self-interaction cannot be
stronger than the bare-continuum interaction. For an

’E

attractive continuum self-interaction, we consider the model
“bee.” First, because in this case we have E- > m > Ey,, a
CDD zero can be observed as a zero of the phase shift. Then,
from Eq. (84), R > 1 gives

_E
EC<m+m2 B (94)

Using m = 2480 MeV, we get E- <2561 MeV. Using
m = 2406 MeV, we get E- <2450 MeV. If future data
excludes the presence of a CDD zero below these energies,
the model “bcc” will support the conclusion that the
bare-continuum interaction is the stronger force inside
D?,(2317), and thus the bare (c3) state is crucial for the
generation of D},(2317). Of course, this criterion is model
dependent, and its uncertainty needs further exploration. We
also note that the D channel with threshold energy Ep , =
2516 MeV can also significantly contribute to the gener-
ation of D,(2317). This also needs further exploration.

V. SUMMARY

In this work, we have studied several toy potential
models including their inverse scattering problems. We
have also discussed how they can be applied to analyze
real-world systems.

The model “cc” has the Hamiltonian (15). The potential
of this model takes a separable form, and hence is also
called the separable potential model. We first showed that
this model can typically approximate the S-wave near-
threshold physics of a system with a relative error of
O(p*/M3), providing the absence of a deeply bound
state. Here S is the largest near-threshold momentum
and My is the typical scale of the potential. Then, the
inverse scattering representations of some quantities were
derived, including the potential (28) and the possible bound
state’s wave function (32).

The model “bc” has the Hamiltonian (18). This model
considers a single bare state, and only includes the interaction
between the bare state and the continuum states. This model
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can be used as an approximation that ignores the continuum
states’ self-interaction. The derived inverse scattering repre-
sentations include the bare mass (38), the potential (39), the
bare-state distribution (45), the bare-state proportion Z
[Eq. (48)], and the wave function (50) of the possible bound
state. In the end, we also showed that a shallow bound state
tends to have a small bare-state proportion Z, even though the
bare state plays a crucial role in this model.

The model “bce” has the Hamiltonian (19). This modelis a
combination of the first two models. It can be used to study
the correction of the model “bc.” A new feature compared to
the model “bc” is the presence of a CDD zero, which is a zero
of the on-shell 7-matrix element. The presence of the zero is
recognized as an interplay between the bare-continuum
interaction and continuum self-interaction. The derived
inverse scattering representations include those in model
“bc.” We also introduced the potential ratio (84) for a bound
state, which quantifies the relative strength of the continuum
self-interaction and the bare-continuum interaction when
forming the bound state.

These models were then applied to study several real-
world systems. The deuteron was analyzed using the model
“cc.” Though the prediction for the wave function of the
deuteron coincides with that in Ref. [48], the model “cc” is
expected to have an uncertainty of O(b*/m} = 4%). The p
meson was analyzed using both the model “bc” and the
model “bec.” The results have already been summarized in
the last paragraph of Sec. IV B. Finally, the potential ratio R
of D%,(2317) in the DK — (c5) system was analyzed. We
first showed that model independently a repulsive DK — DK
interaction cannot be stronger than the DK — (c¢5) interaction
inside D¥,(2317). Then, for the attractive DK — DK inter-
action, based on the model “bce,” we provided a criterion that
the bare (c5) state is crucial for the generation of D%, (2317) if
future experiments exclude the presence of a CDD zero
below 2561 or 2450 MeV. The two energies come from two
different quark-model predictions for the bare (c5) mass
from Ref. [1] and Ref. [13], respectively. We emphasize that
this criterion not only is model dependent, but also ignores
the effect of the D,# channel.
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APPENDIX A: BLOCH-HOROWITZ THEORY

Consider the separation of the Hilbert space: 1 = P + Q,
where P and Q are projection operators of two subspaces.
The Schrédinger equation H|w) = E|w) becomes

Hpplwp) + Hpolyo) = Elyp). (A1)

Hoplwe) + Hoolwo) = Elwg). (A2)
where H;;:=1HJ and |y;):=I|y) with I,J =P, Q.
Equation (A2) gives

(A3)

lwo) = Hoplyp).

E—-Hgpg

Then, substituting it back into Eq. (A1) gives an effective
Schrodinger equation:

Hi(E)|wp) = Elyp),

where H.(E) is the energy-dependent Bloch-Horowitz
effective Hamiltonian [67,68], defined as

1
H(E) = Hpp + Hpg E—iPIQQHQP'

(A4)

(AS)

If the original state is normalized as (w|y) =1, its
P-space projection will be normalized according to [80]

1
1= <WP|<1+HPQ )QHQP)|WP>

(E—-Hgg

(A6)

It is also convenient to formalize the above discussion
when the Hamiltonian can be separated as H = Hy + V.
Then, we have

1
He(E) = Hopp + Vep + Vpg E—Hogo— Voo Vor

= Hopp + Verr (E). (A7)

APPENDIX B: APPROXIMATING S-WAVE
NEAR-THRESHOLD PHYSICS WITH
A SEPARABLE POTENTIAL

We define the Q space in the Bloch-Horowitz theory
discussed in Appendix A to be all the states with momen-
tum g > Q. Then, for the real-world potential y/(w) (p, k),
one gets an effective potential in the remaining P space:

1
Ver(p. ki E) = V(p. k) + <p|VQE——HQQQV|k>
1
= |V(p.k) +(plVQ — g QV|k)
o —EZE) Gy

(E—Hgp)(Ey—Hgpp)
= [Ver(p.k) + Vea(p, k)] + V(p, ks E)

=V,(p.k) + Vi(p.kE). (B1)

116024-13



YAN LI and JIA-JUN WU

PHYS. REV. D 105, 116024 (2022)

where we omit the superscript “(rw)” to simplify the
notation, and E; can be chosen as any fixed energy close
to Eth-

On the other hand, the same applies to the separable
potential

VIO (p, k) = f(p)f (k) (B2)
which gives
VI (p.k) = af(p)f(k),
VP (p.k E) = b(E)f(p)f(K), (B3)
where
a=14+(f f
(fol ——= P 1fo),
_ —(E - Ey)
b(E)_<fQ|(E—Hg)Q)(EO—Hg)Q) |fQ>’ <B4)
and
0 A2
o) =eln = [" e (®5)

(f)

Here we want V¢’ (p, k) to approx1mate V.(p,k) up to

second order in momenta, and VY (p k) to approximate
V.(p,k) up to first order in momenta. Considering the

expansion f(p) = fo + f2p> + O(p*), one gets

VEf)(p?k) :af%+af0f2(p2+k2) +O[p4’k47p2k2]’

VP (p.k:E) = b(E) 3 + Olp*(E— Eo).K*(E— Ey)]. (B6)
Then, we need
afg =V.(0,0),
0
afof> = 0—172 Ve(P, 0) p:()’
b(E)f3 = V(0.0.E). (B7)

The undetermined quantities include f, f;, and all of the
f?(qg > Q). The first two determine the low-momentum
behavior of f(p), while the last one determines the high-
momentum behavior, so they can be determined independ-
ently. The last one, f?>(g > Q), indicates that we have
infinite degrees of freedom. On the other hand, the last
equation above is E dependent, and can be viewed as
infinite equations. One can expand the equation as a power
series of (E — E,), and retaining a finite number of terms
can ensure the existence of a solution. Then, one should add

O[(E - Ey)"] to Vj(ff)(p,k; E) in Eq. (B6), where n is the

cutoff of the power-series expansion of (E — Ej), and is
assumed to be large enough so that the resulting uncertainty
can be ignored in the following error analysis.

Now we analyze the error from this approximation. We
label the highest momentum of the states that we want as f.
According to the effective Schrodinger equation (A4), all of
the momenta p, k in the P space will be coupled together,
and the energy E is set to be definite. Therefore, we require

Ver(p < Q.k< Q:E <),
momentum scale of V(p, k) to be M. As discussed around
Eq. (20), we should have V(p,k) = O(M;?). We will
consider the following ordering:

We also label the typical

p<Q<My<p, (B8)

where the last inequality ensures the nonrelativistic
approximation /1y, ~ A;—;V

H ) is the Hamiltonian in the Q space. We first assume
that there are no bound states. Then, the eigenstates of H
can be chosen as scattering “in” states labeled as |q5> with

eigenvalue h, o and g, starts from Q. So we have
40

Ve2(p7k) _/Q
o g2d Vg g h|V]k
Vi) =t [0 PV GV

(B9)

© qpdag (pIVIgH)(ah|VIk)
(271')3 E() —h ’

Because the states |¢,) and the free states |¢ > Q) span the
same Hilbert space, and share the same normalization
convention, and recalling (p|V|k) = O(M7?), we expect
also (p|V]g) = O(M;?). The effective potential now
scales as follows:

Var(p.K) = Vip, k) = o[mi]

Valr ) =0 o (5300 ) | = Ol an )

Vi ki) = 0| (M0, ] o L ).

3 \OM; m3, QM3
(B10)
Here, for V,, and Vs, we consider both gy ~ Q and g, ~

My regions in the Q-space integration. The g, ~ My
region dominates V,,, while the gy ~ Q region dominates
V. We also note that it is the gy ~ My region of V,, that
dominates the whole V. When Hg, forms a shallow
bound state, we expect that the above power counting still
holds. When it forms a deeply bound state, however,
the factor E—i}qgg can ruin our power-counting analysis.
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The presence of a deeply bound state of H y indicates that
Vo is a strong attractive interaction. Typically, we would
expect the attraction to get stronger for lower momentum,
as in the case of the one-boson-exchange potential.
Therefore, Hy, cannot form a deeply bound state if H
does not form one.

Considering that V, has been approximated up to the
second order of momenta, and V; only to the first order, the
relative error should then scale as

AV, + AV, 4
#:O{Q (B11)

Q2 ﬂ2
Vg M—‘é M_%/QMV:|.

Recalling that Q is an artificial scale, we can set Q ~ f§

to get
AV 3
eff — (9<;B_3>7
Vet M5,

(B12)

which holds for all Vu(p < 0,k < Q;E < %) We also

note that we cannot set Q = f3, because the factor ﬁ can
90

touch its singularity and ruin our power-counting analysis.
However, we can set O a bit higher than 3 so that —— is
90

still of order O(u/p?).
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