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In hadron physics, molecular-like multihadron states can interact with compact multiquark states.
The latter are modeled as bare states in the Hilbert space of a potential model. In this work, we study several
potential models relevant to the bare state, and solve their inverse scattering problems. The first model,
called “cc,” is a separable potential model. We show that it can approximate (single-channel short-range)
S-wave near-threshold physics with an error of Oðβ3=M3

VÞ, where β sets the maximum momentum of the
near-threshold region andMV is the typical scale of the potential. The second model, called “bc,” serves as
the bare-state-dominance approximation, where interaction between continuum states is ignored. Under
this model, even though the bare state is always crucial for a bound state’s generation, a shallow bound state
naturally tends to have a small bare-state proportion. Therefore, we need other quantities to quantify the
importance of the bare state. The last model, called “bcc,” is a combination of the first two models. This
model not only serves as a correction to the bare-state-dominance approximation, but can also be used to
understand the interplay between quark and hadron degrees of freedom. This model naturally leads to the
presence of a Castillejo-Dalitz-Dyson (CDD) zero. We consider the energy decomposition of a bound state.
The potential ratio of the bare-continuum interaction to the continuum self-interaction is proposed to
understand how the bound state is generated. Model independently, an inequality for the potential ratio is
derived. Based on the model “bcc,” the CDD zero can be used to estimate the potential ratio. Finally, we
apply these studies to the deuteron, ρ meson, and D�

s0ð2317Þ, and analyze their properties.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is thewell-established
theory of the strong interaction. It describes not only how
quarks form hadrons, but also how hadrons interact with
each other. However, it is difficult to analytically understand
these processes within QCD because of its nonperturbative
nature. Therefore potential models are still a useful tool in
hadron physics.
On the quark level, there exists a confining potential

between quarks, and hadrons are bound states in the
system. With a suitably designed potential, the model
can have good predictive power. For example, the well-
known Godfrey-Isgur model [1] can well describe the mass
spectrum of mesons. On the hadron level, hadrons interact
with each other within a short-range potential. Unlike the
quark-level case where bound states can appear both below
and above the threshold and no scattering can happen, the
hadron-level case can only have bound states below the
threshold and scattering happens above the threshold.

Various potential models have been used to study the
binding and scattering between hadrons. Examples include
Hamiltonian effective field theory [2–13] where a potential
is parametrized respecting chiral effective field theory, the
HAL QCD method [14–16] where a potential is recon-
structed from the lattice simulated Nambu-Bethe-Salpeter
wave function, and many potential models for the nuclear
force, like those in Refs. [17–19].
The direct scattering problem starts with a potential, and

solves scattering equations to get scattering observables.
The inverse scattering problem tries to reconstruct the
potential from scattering observables. Most studies in this
field were done decades ago. We refer interested readers to
Ref. [20]. There are also inverse scattering problems
concerning the off-shell T matrix instead of the potential
(see, e.g., Ref. [21]), which is not the focus of the
current work.
Among those studies, however, little attention has been

paid to the bare state. In hadron physics, compact multiquark
states aremodeled as bare states, and interactwithmolecular-
like multihadron states. For example, in the quarkmodel, the
ρ meson is a stable bound state of a quark-antiquark pair,
while in the real world it can decay to two pions. In the
potential model, in addition to the two-pion basis states, one
can include the quark-antiquark pair as a bare state in the
Hilbert space, and also include the interaction between them.
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Other examples include the Λð1405Þ in the K̄N-ðudsÞ
system [4], and the D�

s0ð2317Þ in the DK − ðcs̄Þ system
[13]. References [22,23] also used the bare state to explain
the two-pole structure appearing in many systems. As there
aremany suchkinds of systems inhadron physics, the inverse
scattering problemwith a bare state is worth exploring, and it
is the main purpose of this work.
Past works on the inverse scattering problem mostly

focused on the reconstruction of the potential. Though in
principle one can get any quantity from the potential, it is
still interesting to consider using observables to directly
construct quantities that are not directly observed, e.g., the
wave function of the bound state. In addition, after
including the bare state, many new attractive quantities
appear, including the bare-state mass, the bare-state
proportion in the bound state, and the bare-state distribu-
tion in the eigenmodes of the full Hamiltonian. One of the
central topics in hadron physics is to understand the
structure of hadrons. For the examples introduced above,
we want to know if Λð1405Þ is mostly a K̄N molecular
state or a ðudsÞ compact baryon state, and if D�

s0ð2317Þ is
a DK molecular state or a ðcs̄Þ compact meson state.
These questions can be summarized in the potential model
as what is the probability of finding a bound state in a
bare state.
Although he did not start from the inverse scattering

problem, Weinberg [24] found approximate relations
between the compositeness of a shallow bound state with
the scattering length and effective range. Weinberg’s
relations and their extensions [25–51] have been widely
used to detect the structure of many hadrons (see Ref. [52]
for a review). One of the extensions [48] by us and our
collaborators makes use of techniques from the inverse
scattering problem.
Though potential models still prevail in current studies of

hadron physics, the inverse problem receives only a little
attention. Perhaps the main reason is that the potential can
hardly be uniquely determined by observables. However,
the success of Weinberg’s exploration mentioned before
shows an opportunity that one can still find inverse
scattering relations under certain approximations. In this
work, we take this opportunity by discussing how some
potential models can serve as approximations, and study
their inverse scattering problems.
In Sec. II we study the Fredholm determinant, which is

useful for discussions of inverse scattering problems. In
Sec. III several potential models are discussed. In Sec. IV
those models are applied to analyze real-world systems,
including the deuteron, ρ meson, and D�

s0ð2317Þ.

II. FREDHOLM DETERMINANT

In this paper, we focus on single-continuum-channel
systems with or without a single bare state. In the current
section, however, systems with an arbitrary number of bare
states are also included. For a partial-wave-projected

Hamiltonian H ¼ H0 þ V, the Fredholm determinant is
defined as

DðWÞ ≔ det

�
1 −

1

W −H0

V

�
¼ det

�
1

W −H0

ðW −HÞ
�
:

ð1Þ

In various cases, including the local potential [53,54], the
nonlocal potential [55,56], and the potential with bare states
generated from confined channels [57–60], when E is
above the threshold Eth, DðEþ iεÞ satisfies [61]

argDðEþ iεÞ ¼ −δðEÞ mod π; ð2Þ

where δ is the scattering phase shift. For further conven-
ience, we also list some useful alternatives to Eq. (2):

eiδðEÞ sin δðEÞ ¼ −
ImDðEþ iεÞ
DðEþ iεÞ ; ð3Þ

tan δðEÞ ¼ −
ImDðEþ iεÞ
ReDðEþ iεÞ : ð4Þ

From Eq. (1), it is easy to see that DðWÞ has zeros
residing on the bound states’ energies EBi

, poles on the bare
states’ energies mbi , and a branch cut starting from the
threshold Eth of the only continuum channel to positive
infinity. The zeros and singularities of DðWÞ prevent its
phase from being continuous, so, after introducing

CðWÞ ≔
QNB

i¼1

W−EBi
W−EthQNb

i¼1

W−mbi
W−Eth

ð5Þ

(whereNb andNB are the numbers of bare states and bound
states, respectively), DðWÞ=CðWÞ will then have a con-
tinuous phase, except for possibly at the threshold. To
completely specify the phase convention of DðWÞ=CðWÞ,
we set its phase at complex infinity to be zero:

arg
Dð∞Þ
Cð∞Þ ¼ 0: ð6Þ

Because ImDðEÞ=CðEÞ¼0 below threshold, argDðEÞ=
CðEÞ¼πn for some integer n for all E < Eth. Then,
argDðEÞ=CðEÞ ¼ argDð∞Þ=Cð∞Þ ¼ 0 for all E < Eth.
In this work, we also specify the phase convention of the

scattering phase shift as

δðEÞ ≔ − arg
DðEþ iεÞ
CðEþ iεÞ : ð7Þ

From Eq. (5) we know that DðWÞ=CðWÞ∼ðW−EthÞNB−Nb

around the threshold, and thus we have
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δð∞Þ−δðEthÞ¼−
�
arg

Dð∞Þ
Cð∞Þ− arg

DðEthþ ε0þ iεÞ
CðEthþ ε0þ iεÞ

�

¼−
�
arg

DðEth− ε0Þ
CðEth− ε0Þ

− arg
DðEthþ ε0þ iεÞ
CðEthþ ε0þ iεÞ

�

¼−ðNB−NbÞ½argð−ε0Þ− argðε0þ iεÞ�
¼−πðNB−NbÞ; ð8Þ

where we let ε ≪ ε0, although they are both infinitesimals.
The above relation between δðEthÞ and δð∞Þ is actually a part
of the generalized Levinson theorem derived in Ref. [59]
(Theorem III) for multichannel scattering with confining
potentials. In our convention, we also have δð∞Þ ¼ 0, so
δðEthÞ ¼ πðNB − NbÞ. Theoretically, the number of bound
states and the phase shift are observables, so the Levinson
theorem will tell us the number of bare states. In reality, the
phase shift at infinity can hardly be recognized as an
observable, but the Levinson theorem can still provide a
qualitative estimate of the number of bare states.
DðWÞ=CðWÞ is a real analytic function, allowing a

standard dispersive analysis that gives

ln
DðWÞ
CðWÞ ¼ −

1

π

Z
∞

Eth

dE
δðEÞ
E −W

; ð9Þ

where we have assumed

lim
jWj→∞

DðWÞ ¼ 1: ð10Þ

Then, the dispersive representation of DðWÞ reads

DðWÞ ¼ exp
�
−
1

π

Z
dE

δðEÞ
E −W

�
CðWÞ: ð11Þ

In addition, by noting that

lim
jWj→∞

W lnDðWÞ ¼ lim
jWj→∞

W ln det

�
1 −

1

W −H0

V

�

¼ lim
jWj→∞

tr ln

�
1 −

1

W −H0

V

�
W

¼ tr ln expð−VÞ ¼ −trV ð12Þ
and

lim
jWj→∞

W lnDðWÞ

¼ lim
jWj→∞

W ln
�
exp

�
−
1

π

Z
dE

δðEÞ
E−W

�
CðWÞ

�

¼ lim
jWj→∞

�
−
W
π

Z
dE

δðEÞ
E−W

þ lnCðWÞW
�

¼ 1

π

Z
dEδðEÞ−

XNB

i¼1

ðEBi
−EthÞþ

XNb

i¼1

ðmbi −EthÞ; ð13Þ

one gets a trace formula:

trV ¼
XNB

i¼1

ðEBi
− EthÞ −

XNb

i¼1

ðmbi − EthÞ −
1

π

Z
dEδðEÞ:

ð14Þ
III. SEVERAL POTENTIAL MODELS

In this section we study the inverse scattering problem
for several potential models. We label the first one as “cc,”
which has a single continuum channel and no bare states,
and it is also known as the separable potential model
elsewhere. Its Hamiltonian reads

H ¼ H0 þ V ¼
Z

p2dp
ð2πÞ3 hpjpihpj þ λcjfihfj; ð15Þ

where jpi are the noninteracting momentum-space con-
tinuum states normalized as

hpjki ¼ ð2πÞ3
p2

δðp − kÞ; ð16Þ

hp is the noninteracting energy, and

jfi ¼
Z

p2dp
ð2πÞ3 fðpÞjpi: ð17Þ

For the lth partial wave, we have fðpÞ → pl when p → 0.
Without loss of generality, fðpÞ is assumed to be real.
The second model, called “bc,” includes a continuum

channel and a bare state. It has the following Hamiltonian:

H ¼ H0 þ V

¼
�
mjbihbj þ

Z
p2dp
ð2πÞ3 hpjpihpj

�

þ λbðjbihfj þ jfihbjÞ: ð18Þ

This model ignores the interaction between the continuum
states. It is also known as the Friedrichs-Lee model [63,64].
The last model, called “bcc,” still has a continuum

channel and a bare state. It is a combination of the first
two models:

H ¼ H0 þ V

¼
�
mjbihbj þ

Z
p2dp
ð2πÞ3 hpjpihpj

�

þ ½λbðjbihfj þ jfihbjÞ þ λcjfihfj�: ð19Þ

A. Model “cc”

The model “cc,” or the separable potential model,
has been widely used mostly because it is easily soluble.
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Here we discuss how it can provide a good approximation
for the (single-channel short-range) S-wave near-threshold
physics. Let us assume a real-world system described by a
Hamiltonian with a specific potential VðrwÞðp⃗; k⃗Þ. We label
the typical momentum scale of VðrwÞðp; kÞ as MV . From
dimensional analysis, we should have VðrwÞðp; kÞ ¼
OðM−2

V Þ. For example, the well-known Yukawa potential
originating from one-boson exchange reads

Vðp⃗; k⃗Þ ∝ 1

ðp⃗ − k⃗Þ2 þM2
V

¼ OðM−2
V Þ; ð20Þ

which after S-wave projection should still be of OðM−2
V Þ.

Now wewant to study how the model “cc” can approximate
the near-threshold regime of this system where p, k are
smaller than a momentum β.
The potential VðrwÞðp⃗; k⃗Þ is a function of p⃗ and k⃗. The

rotational invariants built from them are p⃗2, k⃗2, and
p⃗ · k⃗ ¼ pk cos θ. Then, in the low-momentum region, the
potential can be expanded as a power series in terms of
these invariants:

VðrwÞðp⃗; k⃗Þ ¼ c0 þ c1ðp⃗2 þ k⃗2Þ þ c2p⃗ · k⃗þ � � � : ð21Þ

After partial-wave projection, the p⃗ · k⃗ term disappears in
the S wave. Then, in the low-momentum region, the
corresponding S-wave-projected potential VðrwÞðp; kÞ can
be expanded as

VðrwÞðp; kÞ ¼ v0 þ v1ðp2 þ k2Þ þ � � � : ð22Þ

In the meantime, we can also expand the “cc” potential as

λcfðpÞfðkÞ ¼ λcðf0 þ f1p2 þ � � �Þðf0 þ f1k2 þ � � �Þ
¼ λcf20 þ λcf0f1ðp2 þ k2Þ þ � � � : ð23Þ

So, by setting λcf20 ¼ v0 and λf0f1 ¼ v1, the “cc” potential
can reproduce any real-world potential up to the second
order of momenta. So the relative error of approximating
VðrwÞðp < β; k < βÞ is of a higher order: Oðβ4=M4

VÞ.
However, one cannot just conclude that the final error is
the same, because a VðrwÞðp; kÞ of higher momenta can also
couple to the low-momentum physics. For example, the
second term in the Born series,

Z
q2dq
ð2πÞ3

VðrwÞðp; qÞVðrwÞðq; kÞ
E − hq

; ð24Þ

can receive a contribution ofO½ 1
M2

V

μ
MV

� in the q ∼MV region

of integration (we assume μ > MV so that the nonrelativistic
approximation hMV

≈M2
V=2μ works), which is even larger

than the first term in the Born series:VðrwÞðp; kÞ ¼ OðM−2
V Þ.

In Appendix B we provide an error analysis, taking care of
the high-momentum region, where we show that the model
“cc” can typically approximate the near-threshold physics of
a system with a relative error of Oðβ3=M3

VÞ, providing the
absence of a deeply bound state.
Now we come to study the model “cc.” This model was

already studied decades ago in Refs. [65,66]. We review and
extend their discussions in our notations for completeness.
We first work out the Fredholm determinant:

DðWÞ ¼ 1 − λchfj
1

W −H0

jfi≡ 1 − λcFðWÞ: ð25Þ

Its imaginary part satisfies

ImDðhp þ iεÞ=λc ¼ πhfjδDðhp −H0Þjfi

¼ πp2

ð2πÞ3h0p
f2ðpÞ ≥ 0; ð26Þ

where δD is the Dirac delta function, and h0p ¼ d
dp hp. Using

Eqs. (25) and (26), one finds the following [note that
δð∞Þ ¼ 0 by convention]:
(1) λc > 0 (repulsive, no bound states): δ ∈ ½−π; 0�

and δðEthÞ ¼ 0.
(2) FðEthÞ−1 < λc < 0 (attractive, no bound states): δ ∈

½0; π� and δðEthÞ ¼ 0.
(3) λc < FðEthÞ−1 (attractive, one bound state): δ ∈

½0; π� and δðEthÞ ¼ π.
The Fredholm determinant has the dispersive represen-

tation (11) with

CðWÞ ¼
�
1; NB ¼ 0;
W−EB
W−Eth

; NB ¼ 1.
ð27Þ

Taking the imaginary part of Eq. (11) and comparing it with
Eq. (26), one gets

λcf2ðpÞ ¼
ð2πÞ3h0p
−πp2

exp

�
−
1

π
P
Z

dE
δðEÞ
E − hp

�

× sin δðhpÞCðhpÞ: ð28Þ

One can go further when there is a bound state:

jBi ¼ N
EB −H0

jfi; ð29Þ

with the normalization factor

N ¼ hfj 1

ðEB −H0Þ2
jfi−1=2: ð30Þ

This factor also shows up in the derivative of the Fredholm
determinant:
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d
dW

DðWÞ
���
W¼EB

¼ λchfj
1

ðEB−H0Þ2
jfi

¼ exp

�
−
1

π

Z
dE

δðEÞ
E−EB

�
1

EB−Eth
: ð31Þ

So, one ends up with

jhpjBij2 ¼ N2

ðEB−hpÞ2
f2ðpÞ

¼ EB −Eth

ðEB−hpÞ2
exp

�
1

π

Z
dE

δðEÞ
E−EB

�
λcf2ðpÞ

¼ −ðEB−EthÞ
ðhp −EthÞðhp −EBÞ

ð2πÞ3h0p
πp2

sinδðhpÞ

×exp

�
−
1

π
P
Z

dE

�
δðEÞ
E−hp

−
δðEÞ
E−EB

��
: ð32Þ

B. Model “bc”

A general Hamiltonian with a single bare state can have
the following form:

H¼H0þV

¼
�
mjbihbjþ

Z
p2dp
ð2πÞ3hpjpihpj

�

þ
�
λbðjbihfjþ jfihbjÞþ

Z
p2dp
ð2πÞ3

k2dk
ð2πÞ3Vðp;kÞjpihkj

�
:

ð33Þ

The model “bc” can serve as the bare-state-dominance
approximation. This approximation ignores the Vðp; kÞ
term in Eq. (33), and leads us to a Hamiltonian of the form
of the model “bc” [Eq. (18)]. The Bloch-Horowitz theory
[67,68] (which we review in Appendix A) allows one to
integrate out the bare state in Eq. (33); then, the bare-
continuum interaction can be effectively incorporated into
an energy-dependent potential:

Veffðp; k;EÞ ¼
λ2bfðpÞfðkÞ

E −m
þ Vðp; kÞ: ð34Þ

So the bare-state-dominance approximation should be good
around energies close to the bare mass.
Now we study the model “bc.” The Fredholm determi-

nant of this model is

DðWÞ ¼ 1 −
λ2b

W −m
FðWÞ; ð35Þ

and its imaginary part is

ImDðhp þ iεÞ ¼ λ2b
hp −m

πhfjδDðhp −H0Þjfi

¼ πp2

ð2πÞ3h0p
λ2bf

2ðpÞ
hp −m

: ð36Þ

Now the behavior of the phase shift is as follows:
(1) m − Eth > −λ2bFðEthÞ > 0 (no bound states): δ ∈

½−π; 0� and δðEthÞ ¼ −π.
(2) m − Eth < −λ2bFðEthÞ (one bound state): δ ∈ ½−π; 0�

and δðEthÞ ¼ 0.
The Fredholm determinant has the dispersive represen-

tation (11) with

CðWÞ ¼
�W−Eth

W−m ; NB ¼ 0;
W−EB
W−m ; NB ¼ 1.

ð37Þ

Using the trace formula (14) and noting that trV ¼ 0, the
bare mass is

m ¼
�
Eth − 1

π

R
dEδðEÞ; NB ¼ 0;

EB − 1
π

R
dEδðEÞ; NB ¼ 1.

ð38Þ

This formula can be understood in the extremely weak-
coupling limit λb → 0, where δðEÞ ¼ −πθðm − EÞ, where
θ is the Heaviside theta function. When m < Eth, we have
NB ¼ 1 and δðEÞ ¼ −πθðm − EÞ ¼ 0. When m > Eth, we
haveNB ¼ 0. Now by taking the imaginary part of Eq. (11)
and comparing it with Eq. (36), one gets

λ2bf
2ðpÞ ¼ ð2πÞ3h0p

πp2
exp

�
−
1

π
P
Z

dE
δðEÞ
E − hp

�
j sin δðhpÞj

×

�
hp − Eth; NB ¼ 0;

hp − EB; NB ¼ 1.
ð39Þ

The bare state is distributed in the energy eigenstates:

1 ¼ hbjbi ¼ Z þ
Z

p2dp
ð2πÞ3 jhbjp

þij2; ð40Þ

where jpþi are the scattering “in” states, and Z disappears
when no bound states are present. By solving the
Lippmann-Schwinger equation

jpþi ¼ jpi þ 1

hp −H0 þ iε
Vjpþi; ð41Þ

jpþi is found to be

jpþi ¼ jpi þ c1
hp −m

jbi þ c2
hp −H0

jfi; ð42Þ

where
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c1 ¼
λbfðpÞ

Dðhp þ iεÞ ; c2 ¼
c1 − λbfðpÞ
λbFðhp þ iεÞ : ð43Þ

Using Eqs. (3) and (36), one can get the distribution
amplitude,

hbjpþi ¼ eiδ sin δ
−πp2

ð2πÞ3h0p λbfðpÞ
; ð44Þ

and the inverse scattering representation of the distribution,

jhbjpþij2 ¼ ð2πÞ3h0p
πp2

exp
�
1

π
P
Z

dE
δðEÞ
E − hp

�
j sin δðhpÞj

×

�
1=ðhp − EthÞ; NB ¼ 0;

1=ðhp − EBÞ; NB ¼ 1.
ð45Þ

We note that Eq. (44) reveals that the bare-state distribution
amplitude is proportional to the T matrix (∝ eiδ sin δ).
Therefore, a resonance peak is expected in the distribution.
In fact, this is also true for a general potential, as discussed
in Ref. [8].
The possible bound state in this model is

jBi ¼
ffiffiffiffi
Z

p �
jbi þ λb

EB −H0

jfi
�
; ð46Þ

where

Z ¼ jhbjBij2 ¼ 1

1þ hfj λ2b
ðEB−H0Þ2 jfi

ð47Þ

represents the bare-state proportion of the bound state.
Z has a concise dispersive representation,

Z ¼ exp

�
1

π

Z
dE

δðEÞ
E − EB

�
; ð48Þ

which can be derived by noting that

hfj λ2b
ðEB−H0Þ2

jfi¼
�
−

∂

∂W

�
½λ2bFðWÞ�

����
W¼EB

¼
�
−

∂

∂W

�
½W−m−ðW−mÞDðWÞ�

����
W¼EB

¼
�
−

∂

∂W

��
W−m−ðW−EBÞ

×exp

�
−
1

π

Z
dE

δðEÞ
E−W

������
W¼EB

¼−1þexp

�
−
1

π

Z
dE

δðEÞ
E−EB

�
: ð49Þ

The wave function now becomes

jhpjBij2 ¼ 1

hp − EB

ð2πÞ3h0p
πp2

× exp

�
−
1

π
P
Z

dE

�
δðEÞ
E − hp

−
δðEÞ

E − EB

��

× j sin δðhpÞj: ð50Þ

We note that Eqs. (48) and (50) coincide with the
formulas derived in Ref. [48]. However, this should not
come as a surprise because the approximations employed
there are exact in the model “bc.” We also note that this
formula will be identical to Eq. (32) if one identifies δbc
with δcc − π. This is also reasonable because a “cc” model
can be recognized as a special case of the “bc” model when

m → �∞ with − λ2b
m fixed at λc, as reflected by Eq. (34).

This point was also discovered in Ref. [69].
Finally, we also consider the shallow bound state, i.e., a

state with EB close to Eth. Because of the absence of the
continuum self-interaction, the bare state is doubtless
crucial to the generation of the bound state. Hence, EB
should be sensitive to the bare mass m, making it easy to
implement the limit EB → Eth by tuning m with λbfbðpÞ
fixed. Then, the factor

hfj λ2b
ðEB −H0Þ2

jfi ¼ λ2b

Z
q2dq
ð2πÞ3

f2ðqÞ
ðEB − hqÞ2

ð51Þ

diverges in the infrared, and one should see Z → 0 from
Eq. (47). So naturally a shallow bound state tends to have a
small bare-state proportion, even though the bare state is
crucial for its generation.

C. Model “bcc”

In the model “bc,” we ignore the whole continuum self-
interaction. In the model “bcc,” however, we retain part of
it, and thus this model can serve as a correction to the bare-
state-dominance approximation. To be concrete, one can
choose a specific energy hp̄ around the bare mass, and
set λc as Vðp̄; p̄Þ=f2ðp̄Þ or, equivalently, hp̄jVbccjp̄i ¼
hp̄jVjp̄i. Then, their hp̄jTjp̄i are matched at the leading
order of the Born series.
The Fredholm determinant of this model is

DðWÞ ¼ 1 −
�

λ2b
W −m

þ λc

�
FðWÞ

¼ 1 −
EC −W
EC −m

λ2b
W −m

FðWÞ; ð52Þ

where

EC ≔ m −
λ2b
λc

ð53Þ
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is known as the Castillejo-Dalitz-Dyson (CDD) zero [70],
because it corresponds to a zero of the on-shell T-matrix
element hpjTðhp þ iεÞjpi. In this special model, it is even a
zero of the off-shell T-matrix element:

hpjTðWÞjki ¼ ð λ2b
W−m þ λcÞfðpÞfðkÞ

DðWÞ

¼
EC−W
EC−m

λ2b
W−m fðpÞfðkÞ
DðWÞ : ð54Þ

At EC, the system feels no interaction because the bare-
continuum interaction cancels the continuum self-interac-
tion. So the presence of a CDD zero may indicate an
interplay between the two interactions. In the context of
hadron physics, bare states typically represent compact
multiquark states, while continuum states are molecular-
like multihadron states. The presence of a CDD zero is
recognized as an interplay of quark and hadron degrees of
freedom [27,28,42,43,71].
To analyze the bound states of this model, we introduce

AðWÞ ≔ λ2b
EC −m

Ec −W
W −m

; ð55Þ

so that DðWÞ ¼ 1 − AðWÞFðWÞ. The analysis of bound
states only cares about real-valued E < Eth where we have
FðEÞ < 0 and F0ðEÞ < 0, and hence FðEÞ is both negative
and monotonically decreasing. If AðEÞ > 0, thenDðEÞ ≥ 1
and no bound states can appear because a bound state’s
energy satisfies DðEBÞ ¼ 0. If AðEÞ < 0, then by noting
that

A0ðEÞ ¼ −
λ2b

ðW −mÞ2 ≤ 0 ð56Þ

we have

D0ðEÞ ¼ −A0ðEÞFðEÞ − AðEÞF0ðEÞ ≤ 0; ð57Þ

which means thatDðEÞ is monotonically decreasing except
at E ¼ m. The remaining analysis should be split into six
cases depending on the ordering of EC, m, and Eth. The
results are listed in Table I, where we use ða; b; cÞ to denote

the case −∞ < a < b < c < þ∞. Taking the first case
ðEC;m; EthÞ as an example, it is easy to find that
DðE<ECÞ≥1, DðECÞ¼1, Dðm−Þ¼−∞, DðmþÞ ¼ þ∞,
and DðEthÞ ≥ 1, so only a single bound state appears and
lies in ½EC;m�.
From the table, it is easy to summarize that each of the

conditions m < Eth and DðEthÞ < 0 can produce a bound
state. The condition m < Eth indicates that a below-thresh-
old bare state will evolve into a physical bound state
directly. The condition DðEthÞ < 0 can be equivalently

expressed as λc −
λ2b

m−Eth
< FðEthÞ−1 < 0, i.e., a negative λc

and − λ2b
m−Eth

tend to form a bound state. A negative λc
corresponds to an attractive continuum self-interaction, and

a negative − λ2b
m−Eth

corresponds to the bare-continuum
interaction with an above-threshold bare state. So there
are three different ways of forming a bound state: directly
by a below-threshold bare state, by an attractive continuum
self-interaction, and by the bare-continuum interaction with
an above-threshold bare state. On the other hand, we can

rewrite Eq. (53) as λc ¼ λ2b
m−EC

, using which we can know if
the continuum self-interaction is attractive or repulsive by
looking at the sign of m − EC.
Now we look at the three cases satisfying m < Eth,

where at least a bound state is present, and the bare-
continuum interaction resists the generation of the other
bound state. The cases ðEC;m; EthÞ and ðm;Eth; ECÞ have
repulsive and weak-attractive continuum self-interactions,
respectively. Neither can form the second bound state. The
case ðm;EC; EthÞ has a strong-attractive continuum self-
interaction. Two bound states appear only if it is strong
enough. This is the only case where two bound states can be
formed. If we now turn off the bare-continuum interaction,
i.e., we set λb ¼ 0, we still have two bound states. One is
simply the below-threshold bare state, and the other is a
molecular-like state purely generated by the continuum
self-interaction. After we turn on the bare-continuum
interaction, the bare state and the molecular-like state are
mixed to form two new bound states.
Then, we look at the three cases satisfyingm > Eth. Now

the bare-continuum interaction behaves as an attractive
interaction in forming a bound state. The case ðEth; EC;mÞ
has a strong-repulsive continuum self-interaction, and no
bound states can be formed. The case ðEC; Eth; mÞ has a
weak-repulsive continuum self-interaction. If the bare-
continuum interaction is strong enough, a bound state
can be formed. The case ðEth; m; ECÞ has an attractive
continuum self-interaction. A bound state can be formed
only if the overall attraction of the two interactions is strong
enough. Which interaction dominates the generation of the
bound state depends on the relative strength of the two

interactions. The ratio λc=ð− λ2b
m−Eth

Þ ¼ m−Eth
EC−m

directly pro-
vides a way to quantify the generation mechanism of the

TABLE I. Bound states of model “bcc” in different cases,
where ða; b; cÞ represents −∞ < a < b < c < þ∞.

Case Bound states

ðEC;m; EthÞ One in ½EC;m�.
ðm;EC; EthÞ One in ð−∞; m�. One in ½EC; Eth� if DðEthÞ < 0.
ðEC; Eth; mÞ One in ½EC; Eth� if DðEthÞ < 0.
ðm;Eth; ECÞ One in ð−∞; m�.
ðEth; EC;mÞ No bound states.
ðEth; m; ECÞ One in ð−∞; Eth� if DðEthÞ < 0.
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bound state. However, there are several flaws. First, the
ratio does not have a direct physical meaning. Second, the
definition of the ratio relies on the model “bcc,” and cannot
be generalized. Last, the ratio does not depend on the bound
state itself, i.e., it reflects only the relative strength between
the two interactions, instead of their impact on the
bound state.
With the analysis of bound states, the Fredholm deter-

minant will have the dispersive representation (11) with

CðWÞ ¼

8>>><
>>>:

W−Eth
W−m ; NB ¼ 0;
W−EB
W−m ; NB ¼ 1;
ðW−EB1

ÞðW−EB2
Þ

ðW−EthÞðW−mÞ ; NB ¼ 2.

ð58Þ

When EC is above the threshold, the phase shift at EC is a
multiple of π. Recalling the definition (7) and
DðECÞ ¼ Dð∞Þ ¼ 1, we have

δðECÞ ¼ arg
CðEC þ iεÞ
Cð∞þ iεÞ ¼ − arg

EC þ iε −m
∞þ iε −m

¼
�
0; EC > m;

−π; EC < m;
ð59Þ

where the convention δð∞Þ ¼ 0 is used. So only the case
ðEth; EC;mÞ, which has no bound states, can have
δðECÞ ¼ −π ≠ 0. When EC is below the threshold, one
has to locate it as a zero of the T matrix using analytic
continuation. For other behaviors of the phase shift, the
discussion is much more complicated than in previous
models, so we will not analyze them here.
Now because trV ¼ λchfjfi ≠ 0, the trace formula (14)

does not provide a useful expression for the bare mass as in
Eq. (38). Instead, one should look at

DðEC� iεÞ¼ 1¼ sexp

�
−
1

π

Z
dE

δðEÞ
E−EC

�
CðECÞ; ð60Þ

where

s ¼
�−1; Eth < EC < m;

þ1; Others:
ð61Þ

Then, we get the bare mass

m ¼ EC − s exp

�
−
1

π

Z
dE

δðEÞ
E − EC

�
C1ðECÞ; ð62Þ

where C1 is defined as

C1ðWÞ ≔ ðW −mÞCðWÞ

¼
8<
:

W − Eth; NB ¼ 0;

W − EB; NB ¼ 1;

ðW − EB1
ÞðW − EB2

Þ=ðW − EthÞ; NB ¼ 2.

ð63Þ

Nowwe come back to the inverse problem.We first work
out the imaginary part of D:

ImDðhp þ iεÞ ¼ πp2

ð2πÞ3h0p
EC − hp
EC −m

λ2bf
2ðpÞ

hp −m
: ð64Þ

Then, comparing it with the imaginary part of the dis-
persive representation, we get

λ2bf
2ðpÞ ¼ ð2πÞ3h0p

πp2

EC −m
EC − hp

exp

�
−
1

π
P
Z

dE
δðEÞ
E − hp

�

× ½− sin δðhpÞ�C1ðhpÞ

¼ ð2πÞ3h0p
πp2

C1ðECÞ
EC − hp

s exp

�
−
1

π
P
Z

dE

�
δðEÞ
E − hp

−
δðEÞ

E − EC

��
½− sin δðhpÞ�C1ðhpÞ; ð65Þ

where in the second line we have used Eq. (62).
The bare state is distributed in the energy eigenstates:

1 ¼ hbjbi ¼
X
i

Zi þ
Z

p2dp
ð2πÞ3 jhbjp

þij2; ð66Þ

where jpþi is the scattering “in” state, and Zi ≔ jhbjBiij2 is
the bare-state proportion of the bound state jBii. By solving
the Lippmann-Schwinger equation (41), jpþi can be found
to be

jpþi ¼ jpi þ c1
hp −m

jbi þ c2
hp −H0

jfi; ð67Þ

where

c1 ¼
λbfðpÞ

Dðhp þ iεÞ ; c2 ¼
c1 − λbfðpÞ
λbFðhp þ iεÞ : ð68Þ

Note that, although Eqs. (67) and (68) have exactly the
same form as Eqs. (42) and (43), D and F are different
functions. Using Eqs. (3) and (64), one can first get the
distribution amplitude

hbjpþi ¼ eiδ sin δ
−πp2

ð2πÞ3h0p
EC−hp
EC−m

λbfðpÞ
; ð69Þ
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and then the inverse scattering representation of the
distribution,

jhbjpþij2 ¼ ð2πÞ3h0p
πp2

EC −m
EC − hp

exp

�
1

π
P
Z

dE

�
δðEÞ
E − hp

��

× ½− sin δðhpÞ�C1ðhpÞ

¼ ð2πÞ3h0p
πp2

C1ðECÞ
EC − hp

s exp

�
1

π
P
Z

dE

�
δðEÞ
E − hp

−
δðEÞ

E − EC

��
½− sin δðhpÞ�C1ðhpÞ: ð70Þ

From now on, we focus only on the single bound-state
case. The bound state can be solved to be

jBi ¼
ffiffiffiffi
Z

p �
jbi þ λB

EB −H0

jfi
�
; ð71Þ

where λB ≔ λb þ λc
λb
ðEB −mÞ and

Z ¼ jhbjBij2 ¼ 1

1þ hfj λ2B
ðEB−H0Þ2 jfi

: ð72Þ

By noting that

hfj λ2B
ðEB−H0Þ2

jfi

¼
�
−

∂

∂W

�
½λ2BFðWÞ�

����
W¼EB

¼ λ2B

�
−

∂

∂W

��
W−m− ðW−mÞDðWÞ

λ2bþλcðW−mÞ
�����

W¼EB

¼−1þλB
λb

exp

�
−
1

π

Z
dE

δðEÞ
E−EB

�
ð73Þ

and

λB
λb

¼ EC − EB

EC −m
¼ exp

�
1

π

Z
dE

δðEÞ
E − EC

�
; ð74Þ

one finds the dispersive representation of Z:

Z ¼ exp

�
1

π

Z
dE

�
δðEÞ

E − EB
−

δðEÞ
E − EC

��
: ð75Þ

It is now straightforward to get the wave function:

jhpjBij2 ¼ 1

hp − EB

ð2πÞ3h0p
πp2

ðEC − EBÞ3
ðEC −mÞ2ðEC − hpÞ

× exp

�
−
1

π
P
Z

dE

�
δðEÞ
E − hp

−
δðEÞ

E − EB

��

× ½− sin δðhpÞ�: ð76Þ

At the end of Sec. III B we showed that the bare-state
proportion Z cannot faithfully describe the generation of
the bound state. In the “bc” model, while the bound state is
doubtless generated by the bare state, it can still happen that
Z ∼ 0. Now, in the “bcc” model, both the bare-continuum
interaction and continuum self-interaction are included, so
it is natural to ask which interaction dominates the gen-
eration of the bound state. Using Eq. (53), we know that
EC < m (EC > m) indicates a repulsive (attractive) con-
tinuum self-interaction, and a larger separation between
them indicates a weaker continuum self-interaction or,
equivalently, a stronger bare-continuum interaction.
However, this not only does not provide a quantitative
criterion, but also has nothing to do with the bound state.
A way to quantify this is to consider the decomposition

of the Hamiltonian (19). The Hamiltonian can be split into
four parts,

H ¼ H0 þ V ¼ H0b þH0c þ Vbc þ Vcc; ð77Þ

and similarly for the bound-state energy EB ¼ hBjHjBi,
i.e., hBjH0bþH0cþVbcþVccjBi≡E0bþE0cþEbcþEcc.
To quantify the interplay between the two interactions
inside the bound state, we can introduce the potential ratio:

R ≔
Ecc

Ebc
: ð78Þ

The first three terms of the energy decomposition can be
model-independently expressed as follows:

E0b ¼ Zm;

E0c ¼ hBjH0PXjBi ¼ XEB − hBjVPXjBi
¼ XEB −Ebc=2−Ecc;

Ebc ¼ EB − ðE0b þE0c þEccÞ ¼ EB −Zm−XEB þEbc=2

¼ −2Zðm−EBÞ; ð79Þ

where PX is the projection operator for continuum states,
and X ¼ 1 − Z.
When the bare mass is located above the threshold, the

bound-state energy is of course smaller than the bare mass.
When thebaremass is locatedbelow the threshold, according
to Table I, theremust be a bound state present below the bare
mass. So for the single-bound-state case, the baremass has to
be located above the bound-state energy. Then, we always
have Ebc < 0, which means that the bare-continuum
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interaction always has an attractive effect in forming the
bound state. Then, by noting that

E0c ¼ hBjH0PXjBi ≥ XEth;

Ecc ≤ EB − ðE0b þ XEth þ EbcÞ
¼ −XðEth − EBÞ þ Zðm − EBÞ ≤ Zðm − EBÞ; ð80Þ

we can derive an inequality for the potential ratio:

R ¼ Ecc

Ebc
≥

Zðm − EBÞ
−2Zðm − EBÞ

¼ −
1

2
; ð81Þ

or Ecc ≤ −Ebc=2. This inequality puts a general upper limit
on the repulsive strength of the continuum self-interaction,
exceeding which a bound state is unable to be formed. We
emphasize that Eq. (81) holds model independently when-
ever the bound state appears below a bare state.
The last term of the energy decomposition should be

estimated using the solution (71):

Ecc ¼ Zλcλ2BF
2ðEBÞ ¼ −Z

ðm − EBÞ2
EC −m

; ð82Þ

where we have used

DðEBÞ ¼ 0 ⇒ FðEBÞ ¼
EB −m
λBλb

: ð83Þ

Then, the potential ratio becomes

R ¼ Ecc

Ebc
¼ 1

2

m − EB

EC −m
: ð84Þ

So by comparing twice the distance between EC andmwith
the distance between EB and m, one can determine which
dominates the generation of the bound state. In hadron
physics there are many states, likeD�

s0ð2317Þ and Xð3872Þ,
that have masses far away from the corresponding quark-
model predictions. For such a state, its observed mass is
simply EB, and we can treat the quark-model prediction as
the bare mass m. Then, locating the CDD zero can tell us
the generation mechanism of the state. In addition, the
potential ratio can also be defined for scattering states:

RðhpÞ ≔
hpþjVccjpþi
hpþjVbcjpþi ¼

1

2

m − hp
EC −m

: ð85Þ

IV. ANALYSIS OF REAL-WORLD SYSTEMS

A. Deuteron in proton-neutron system

The deuteron is a shallow bound state of the proton-
neutron system. Its properties have been widely studied in
hundreds of works (see Ref. [72] for a review). After
partial-wave projection, the relevant channels are 3S1

and 3D1. As the 3D1 channel is only expected to have
around a 5% contribution, it is reasonable to consider only
the 3S1 channel in the first approximation.
The low-energy 3S1 phase shift can be well described by

the effective range expansion [73]

p cot δERE ¼ 1

a
þ r
2
p2; ð86Þ

with

a ¼ −5.419ð7Þ fm; r ¼ 1.766ð8Þ fm: ð87Þ

As δEREð0Þ − δEREð∞Þ ¼ π, the Levinson theorem requires
the absence of bare states. Of course, the theorem relies on
the high-energy behavior of the phase shift, which is
inaccessible in reality. However, it is still reasonable to
expect that the possible bare state does not play a
significant role, even though we cannot completely rule
out the possibility of its existence. Therefore, we consider
using the model “cc” to analyze the deuteron.
As discussed in Appendix B, the model “cc” can

approximate any S-wave near-threshold physics with an
error ofOðβ3=M3

VÞ. For the deuteron case, we can take β to
be its binding momentum b ¼ 46 MeV, and we also take
MV ¼ mπ ¼ 138 MeV. Then, the error is Oð4%Þ.
On the other hand, Weinberg developed a method [24]

for quantitatively estimating the possible bare-state pro-
portion of the deuteron. The method predicts an unphysical
value Z ¼ −68% with an uncertainty of Oðb=mπ ¼ 33%Þ.
Recently, the method was improved in Ref. [48]. It predicts
Z ¼ 0% with an uncertainty of Oðb2=m2

π ¼ 11%Þ. The
authors of Ref. [48] also derived an expression for the
deuteron wave function, which happens to be exactly
the same as Eq. (32) if one identifies δB in that paper
with δ − π in Eq. (32). Therefore, for the deuteron wave
function, the model “cc” predicts exactly the same result as
that presented in Ref. [48], except that the uncertainty
changed from Oðb2=m2

π ¼ 11%Þ to Oðb3=m3
π ¼ 4%Þ.

However, we emphasize that such a change in the uncer-
tainty is not an improvement, because the absence of bare
states is assumed a priori in the model “cc.”

B. ρ meson in ππ − ðqq̄Þ system
The observed phase shift of the ρ meson can be well

described by a Breit-Wigner (BW) fit up to at least around
1.2 GeV [74,75] (although the KK̄ channel appears already
below 1.2 GeV, the resulting inelasticity is very small, and
thus we do not consider the KK̄ channel here):

δBWðEÞ ¼ arctan

�
g2

6π

p3

Eðm2
ρ − E2Þ

�
;

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2=4 −m2

π

q
; ð88Þ
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where we take the Particle Data Group (PDG) values [76]
mπ ¼ 140 MeV, mρ ¼ 775 MeV, and g ¼ 5.98. The cou-
pling g is related to the width Γρ ¼ 149 MeV via

Γρ ¼
g2

6π

p3
ρ

mρ
; pρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ=4 −m2
π

q
: ð89Þ

This phase shift satisfies δBWð0Þ − δBWð∞Þ ¼ −π. As there
are no bound states, the Levinson theorem requires the
existence of a single bare state. Therefore, it excludes the
applicability of our “cc” model.
Now we consider the “bc” model. Substituting δBW into

the bare mass formula (38) simply gives m ¼ ∞, because
δBWð∞Þ ≠ 0. However, this result should not be accepted
as true, because the high-energy behavior of the phase shift
is crucial in deriving it. As mentioned before, the BW fit
works at least up to 1.2 GeV. Thus, what Eq. (38) really
tells us is that

m ≥ Eth −
1

π

Z
1.2 GeV

Eth

dEδBWðEÞ ¼ 812 MeV; ð90Þ

where the inequality holds because δ ≤ 0 in the model “bc.”
On the other hand, the model “bc” can be understood as a
result of the bare-state-dominance approximation. We do
not expect such an approximation to work in the high-
energy region. So replacing the BW fit with the real-world
phase shift up to a higher energy is not a solution for
locating the bare mass. Instead, we choose to model the
high-energy behavior of the phase shift with the following
replacement:

g2 → g2ðpÞ ¼ g2
�
1þ p2

ρ

Λ2

1þ p2

Λ2

�2

; ð91Þ

where g2ðpρÞ ¼ g2 ensures that the near ρ-mass behavior of
the phase shift does not change too much. In fact, the main
difference between phase shifts with different Λ is the high-
energy behavior. We use three different values of Λ, and list
the corresponding bare masses in Table II. From the table,
the bare mass is expected to have an uncertainty of
Oð100 MeVÞ coming from the high-energy behavior of
the phase shift.
By using Eqs. (39) and (45) with these different values of

Λ, we calculate the corresponding bare-continuum cou-
pling form factor λ2bf

2ðpÞ and the bare-state distribution
p2

ð2πÞ3 jhbjpþij2 as shown in Fig. 1. While the variation of Λ
affects λ2bf

2ðpÞ a bit, the bare-state distribution is quite
stable.
Next, we consider the model “bcc.” The model requires

the existence of a CDD zero. To see how a possible CDD
zero may affect our previous predictions, we introduce both
Λ and a CDD zero into the BW fit with the following
replacement:

g2 → g2ðpÞ ¼ g2
�
1þ p2

ρ

Λ2

1þ p2

Λ2

�2
hp − EC

mρ − EC
: ð92Þ

The observed phase shift does not suggest that such a zero
is present close to the range from Eth to 1200 MeV. We
tentatively use EC ¼ mρ � 1000 MeV to study the effects
of EC. Using Eq. (62), we include the corresponding bare
mass in Table II. From the table, the possible CDD zero is
only expected to contribute an uncertainty of Oð10 MeVÞ
to the bare mass. This uncertainty is much smaller than that
under variation of Λ.
Then, we focus on the Λ ¼ 1200 MeV case. In Fig. 2 we

plot the corresponding λ2bf
2ðpÞ and p2

ð2πÞ3 jhbjpþij2 using

FIG. 1. Plots of λ2bf
2ðpÞ and PbðpÞ ≔ p2

ð2πÞ3 jhbjpþij2 with Λ ¼ 800 (red), 1200 (blue), and 1600 (orange) MeV. The grey vertical line
denotes hp ¼ mρ.

TABLE II. Bare mass in different cases.

Λ (MeV) 800 1200 1600

m (MeV) with EC ¼ ∞ (Model “bc”) 846 895 943
m (MeV) with EC ¼ mρ − 1000 MeV 846 898 950
m (MeV) with EC ¼ mρ þ 1000 MeV 846 891 932
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Eqs. (65) and (70). We see that while EC has a drastic effect
on λ2bf

2ðpÞ, the bare-state distribution is still very stable.
From the above discussions, we have some simple

conclusions. First, the bare mass is expected to be larger
than 812 MeV, and its precise location is more sensitive to
Λ than EC. The former is related to the bare-continuum
interaction, while the latter is related to the interplay
between the bare-continuum interaction and continuum
self-interaction. Second, the bare-continuum interaction is
sensitive to both Λ and EC. Thus, it can hardly be
determined model independently. Third, the bare-state
distribution is quite stable under variations of both Λ
and EC. Therefore, its extractions in Fig. 12 are reliable.

C. D�
s0ð2317Þ in DK − ðcs̄Þ system

D�
s0ð2317Þ can be viewed as a shallow bound state of the

DK − ðcs̄Þ system. There we have the PDG values [76]

Eth ¼ 2363 MeV; EB ¼ 2318 MeV: ð93Þ

For the bare ðcs̄Þ mass, the well-known Godfrey-Isgur
model [1] predicts m ¼ 2480 MeV. On the other hand, a
recently published work [13] followed the Godfrey-Isgur
model with updated data, and intentionally removed those
masses of near-threshold states as input. It predicted
m ¼ 2406 MeV.
The Z factor ofD�

s0ð2317Þ has been investigated in many
works [47,77–79] based on Weinberg’s relations, and tends
to have a small central value but with a large systematic
uncertainty. However, whatever the value of Z is, the
potential ratio which measures howD�

s0ð2317Þ is generated
is still worth studying. In the following, we will focus on
this ratio.
Before using the “bcc” model, we first study the system

model independently. Because the bare mass lies above the
bound-state energy, we have R ≥ − 1

2
from Eq. (81). Then,

we get R ≥ −1 or, equivalently, Ecc ≤ −Ebc, which means
that a repulsive continuum self-interaction cannot be
stronger than the bare-continuum interaction. For an

attractive continuum self-interaction, we consider the model
“bcc.” First, because in this case we have EC > m > Eth, a
CDD zero can be observed as a zero of the phase shift. Then,
from Eq. (84), R ≥ 1 gives

EC ≤ mþm − EB

2
: ð94Þ

Using m ¼ 2480 MeV, we get EC ≤ 2561 MeV. Using
m ¼ 2406 MeV, we get EC ≤ 2450 MeV. If future data
excludes the presence of a CDD zero below these energies,
the model “bcc” will support the conclusion that the
bare-continuum interaction is the stronger force inside
D�

s0ð2317Þ, and thus the bare ðcs̄Þ state is crucial for the
generation of D�

s0ð2317Þ. Of course, this criterion is model
dependent, and its uncertainty needs further exploration.We
also note that theDsη channel with threshold energyEDsη ¼
2516 MeV can also significantly contribute to the gener-
ation of D�

s0ð2317Þ. This also needs further exploration.

V. SUMMARY

In this work, we have studied several toy potential
models including their inverse scattering problems. We
have also discussed how they can be applied to analyze
real-world systems.
The model “cc” has the Hamiltonian (15). The potential

of this model takes a separable form, and hence is also
called the separable potential model. We first showed that
this model can typically approximate the S-wave near-
threshold physics of a system with a relative error of
Oðβ3=M3

VÞ, providing the absence of a deeply bound
state. Here β is the largest near-threshold momentum
and MV is the typical scale of the potential. Then, the
inverse scattering representations of some quantities were
derived, including the potential (28) and the possible bound
state’s wave function (32).
The model “bc” has the Hamiltonian (18). This model

considers a single bare state, and only includes the interaction
between the bare state and the continuum states. This model

FIG. 2. Plots of λ2bf
2ðpÞ and PbðpÞ ≔ p2

ð2πÞ3 jhbjpþij2 with Λ ¼ 1200 MeV and EC ¼ mρ − 1000 MeV (dashed), ∞ (solid),
and mρ þ 1000 MeV(dotted). The grey vertical line denotes hp ¼ mρ.
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can be used as an approximation that ignores the continuum
states’ self-interaction. The derived inverse scattering repre-
sentations include the bare mass (38), the potential (39), the
bare-state distribution (45), the bare-state proportion Z
[Eq. (48)], and the wave function (50) of the possible bound
state. In the end, we also showed that a shallow bound state
tends to have a small bare-state proportionZ, even though the
bare state plays a crucial role in this model.
Themodel “bcc” has theHamiltonian (19). Thismodel is a

combination of the first two models. It can be used to study
the correction of the model “bc.”A new feature compared to
themodel “bc” is the presence of a CDD zero, which is a zero
of the on-shell T-matrix element. The presence of the zero is
recognized as an interplay between the bare-continuum
interaction and continuum self-interaction. The derived
inverse scattering representations include those in model
“bc.”We also introduced the potential ratio (84) for a bound
state, which quantifies the relative strength of the continuum
self-interaction and the bare-continuum interaction when
forming the bound state.
These models were then applied to study several real-

world systems. The deuteron was analyzed using the model
“cc.” Though the prediction for the wave function of the
deuteron coincides with that in Ref. [48], the model “cc” is
expected to have an uncertainty of Oðb3=m3

π ¼ 4%Þ. The ρ
meson was analyzed using both the model “bc” and the
model “bcc.” The results have already been summarized in
the last paragraph of Sec. IV B. Finally, the potential ratio R
of D�

s0ð2317Þ in the DK − ðcs̄Þ system was analyzed. We
first showed thatmodel independently a repulsiveDK −DK
interaction cannot be stronger than theDK − ðcs̄Þ interaction
inside D�

s0ð2317Þ. Then, for the attractive DK −DK inter-
action, based on themodel “bcc,”weprovided a criterion that
the bare ðcs̄Þ state is crucial for the generationofD�

s0ð2317Þ if
future experiments exclude the presence of a CDD zero
below 2561 or 2450 MeV. The two energies come from two
different quark-model predictions for the bare ðcs̄Þ mass
from Ref. [1] and Ref. [13], respectively. We emphasize that
this criterion not only is model dependent, but also ignores
the effect of the Dsη channel.
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APPENDIX A: BLOCH-HOROWITZ THEORY

Consider the separation of the Hilbert space: 1 ¼ PþQ,
where P and Q are projection operators of two subspaces.
The Schrödinger equation Hjψi ¼ Ejψi becomes

HPPjψPi þHPQjψQi ¼ EjψPi; ðA1Þ

HQPjψPi þHQQjψQi ¼ EjψQi; ðA2Þ

where HIJ ≔ IHJ and jψ Ii ≔ Ijψi with I; J ¼ P, Q.
Equation (A2) gives

jψQi ¼
1

E −HQQ
HQPjψPi: ðA3Þ

Then, substituting it back into Eq. (A1) gives an effective
Schrödinger equation:

HeffðEÞjψPi ¼ EjψPi; ðA4Þ
where HeffðEÞ is the energy-dependent Bloch-Horowitz
effective Hamiltonian [67,68], defined as

HeffðEÞ ≔ HPP þHPQ
1

E −HQQ
HQP: ðA5Þ

If the original state is normalized as hψ jψi ¼ 1, its
P-space projection will be normalized according to [80]

1 ¼ hψPj
�
1þHPQ

1

ðE −HQQÞ2
HQP

�
jψPi

¼ hψPj
�
1 −

∂HeffðEÞ
∂E

�
jψPi: ðA6Þ

It is also convenient to formalize the above discussion
when the Hamiltonian can be separated as H ¼ H0 þ V.
Then, we have

HeffðEÞ ≔ H0;PP þ VPP þ VPQ
1

E −H0;QQ − VQQ
VQP

≡H0;PP þ VeffðEÞ: ðA7Þ

APPENDIX B: APPROXIMATING S-WAVE
NEAR-THRESHOLD PHYSICS WITH

A SEPARABLE POTENTIAL

We define the Q space in the Bloch-Horowitz theory
discussed in Appendix A to be all the states with momen-
tum q > Q. Then, for the real-world potential VðrwÞðp; kÞ,
one gets an effective potential in the remaining P space:

Veffðp; k;EÞ ¼ Vðp; kÞ þ hpjVQ 1

E −HQQ
QVjki

¼
�
Vðp; kÞ þ hpjVQ 1

E0 −HQQ
QVjki

�

þ hpjVQ −ðE − E0Þ
ðE −HQQÞðE0 −HQQÞ

QVjki

≡ ½Ve1ðp; kÞ þ Ve2ðp; kÞ� þ Vfðp; k;EÞ
≡ Veðp; kÞ þ Vfðp; k;EÞ; ðB1Þ
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where we omit the superscript “(rw)” to simplify the
notation, and E0 can be chosen as any fixed energy close
to Eth.
On the other hand, the same applies to the separable

potential

VðfÞðp; kÞ ¼ fðpÞfðkÞ; ðB2Þ

which gives

VðfÞ
e ðp; kÞ ¼ afðpÞfðkÞ;

VðfÞ
f ðp; k;EÞ ¼ bðEÞfðpÞfðkÞ; ðB3Þ

where

a ¼ 1þ hfQj
1

E0 −HðfÞ
QQ

jfQi;

bðEÞ ¼ hfQj
−ðE − E0Þ

ðE −HðfÞ
QQÞðE0 −HðfÞ

QQÞ
jfQi; ðB4Þ

and

jfQi ¼ Qjfi ¼
Z

∞

Q

q2dq
ð2πÞ3 fðqÞjqi: ðB5Þ

Here we want VðfÞ
e ðp; kÞ to approximate Veðp; kÞ up to

second order in momenta, and VðfÞ
e ðp; kÞ to approximate

Veðp; kÞ up to first order in momenta. Considering the
expansion fðpÞ ¼ f0 þ f2p2 þOðp4Þ, one gets

VðfÞ
e ðp;kÞ¼ af20þaf0f2ðp2þk2ÞþO½p4;k4;p2k2�;

VðfÞ
f ðp;k;EÞ¼ bðEÞf20þO½p2ðE−E0Þ;k2ðE−E0Þ�: ðB6Þ

Then, we need

af20 ¼ Veð0; 0Þ;

af0f2 ¼
∂

∂p2
Veðp; 0Þ

����
p¼0

;

bðEÞf20 ¼ Vfð0; 0; EÞ: ðB7Þ

The undetermined quantities include f0, f1, and all of the
f2ðq > QÞ. The first two determine the low-momentum
behavior of fðpÞ, while the last one determines the high-
momentum behavior, so they can be determined independ-
ently. The last one, f2ðq > QÞ, indicates that we have
infinite degrees of freedom. On the other hand, the last
equation above is E dependent, and can be viewed as
infinite equations. One can expand the equation as a power
series of ðE − E0Þ, and retaining a finite number of terms
can ensure the existence of a solution. Then, one should add

O½ðE − E0Þn� to VðfÞ
f ðp; k;EÞ in Eq. (B6), where n is the

cutoff of the power-series expansion of ðE − E0Þ, and is
assumed to be large enough so that the resulting uncertainty
can be ignored in the following error analysis.
Now we analyze the error from this approximation. We

label the highest momentum of the states that we want as β.
According to the effective Schrödinger equation (A4), all of
the momenta p, k in the P space will be coupled together,
and the energy E is set to be definite. Therefore, we require

Veffðp ≤ Q; k ≤ Q;E ≤ β2

2μÞ. We also label the typical
momentum scale of Vðp; kÞ to beMV . As discussed around
Eq. (20), we should have Vðp; kÞ ¼ OðM−2

V Þ. We will
consider the following ordering:

β < Q < MV < μ; ðB8Þ

where the last inequality ensures the nonrelativistic

approximation hMV
≈ M2

V
2μ .

HQQ is the Hamiltonian in the Q space. We first assume
that there are no bound states. Then, the eigenstates ofHQQ

can be chosen as scattering “in” states labeled as jqþQi with
eigenvalue hqQ , and qQ starts from Q. So we have

Ve2ðp;kÞ ¼
Z

∞

Q

q2QdqQ
ð2πÞ3

hpjVjqþQihqþQjVjki
E0 − hqQ

;

Vfðp;k;fÞ ¼ −ðE−E0Þ
Z

∞

Q

q2QdqQ
ð2πÞ3

hpjVjqþQihqþQjVjki
ðE− hqQÞðE0 − hqQÞ

:

ðB9Þ

Because the states jqþQi and the free states jq > Qi span the
same Hilbert space, and share the same normalization
convention, and recalling hpjVjki ¼ OðM−2

V Þ, we expect
also hpjVjqþQi ¼ OðM−2

V Þ. The effective potential now
scales as follows:

Ve1ðp; kÞ ¼ Vðp; kÞ ¼ O
�
1

m2
V

�
;

Ve2ðp; kÞ ¼ O
�
1

m2
V

�
μQ
M2

V
þ μ

MV

��
¼ O

�
1

m2
V

μ

MV

�
;

Vfðp; k;EÞ ¼ O
�
1

m2
V

�
μβ2

QM2
V
þ μβ2

M3
V

��
¼ O

�
1

m2
V

μβ2

QM2
V

�
:

ðB10Þ

Here, for Ve2 and Vf, we consider both qQ ∼Q and qQ ∼
MV regions in the Q-space integration. The qQ ∼MV

region dominates Ve2, while the qQ ∼Q region dominates
Vf. We also note that it is the qQ ∼MV region of Ve2 that
dominates the whole Veff . When HQQ forms a shallow
bound state, we expect that the above power counting still
holds. When it forms a deeply bound state, however,
the factor 1

E−HQQ
can ruin our power-counting analysis.
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The presence of a deeply bound state of HQQ indicates that
VQQ is a strong attractive interaction. Typically, we would
expect the attraction to get stronger for lower momentum,
as in the case of the one-boson-exchange potential.
Therefore, HQQ cannot form a deeply bound state if H
does not form one.
Considering that Ve has been approximated up to the

second order of momenta, and Vf only to the first order, the
relative error should then scale as

ΔVe þ ΔVf

Veff
¼ O

�
Q4

M4
V
þ Q2

M2
V

β2

QMV

�
: ðB11Þ

Recalling that Q is an artificial scale, we can set Q ∼ β
to get

ΔVeff

Veff
¼ O

�
β3

M3
V

�
; ðB12Þ

which holds for all Veffðp ≤ Q; k ≤ Q;E ≤ β2

2μÞ. We also

note that we cannot setQ ¼ β, because the factor 1
E−hhqQ

can

touch its singularity and ruin our power-counting analysis.
However, we can set Q a bit higher than β so that 1

E−hhqQ
is

still of order Oðμ=β2Þ.
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