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The effects on the speed of sound in neutron stars due to the presence of hyperons and a phase transition
to deconfined quark matter is investigated. For this purpose a composite description within the covariant
field theory is used; it consists of different models for the hadronic and for the unbound quark
configurations. A phase transition with continuous and monotonous variation of the equation of state
is assumed. The predictions obtained are contrasted with recent observational data on isolated neutron stars
as well as on binary systems. Only one candidate is finally obtained from six different descriptions.
According to the present calculations, the onset of the hyperons causes the equilibrium speed of sound to
exceed the conformal limit. Based on recent works on the propagation of g-modes in neutron stars, different
definitions of the speed of sound are considered.
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I. INTRODUCTION

The study of the structure and dynamics of compact stars
offers the possibility to test a unified theoretical description
covering the many facets of the strong interaction in
combination with gravitation. Therefore, it has been a
subject of permanent interest, but in recent years it has
concentrated multiplied efforts since an important amount
of observational data has been acquired and analyzed.
The possibility to use different experimental techniques

to focus on the same event or the same class of objects has
created great expectations in the specialized community.
This is particularly valid for the study of compact stars,
as new and previous information have created a sketch of
different aspects, such as the mass-radius relation, the
cooling process, the emission of gravitational waves from
binary mergers, etc. From the theoretical point of view it is
expected that all this input will help to shed light on some
longstanding puzzles and to improve the models and
procedures used.
The evidence of very massive neutron stars with inertial

masses above 2 M⊙ [1–3] has introduced some tension
with certain predictions of the relativistic field theory of
hadrons. Calculations made in this framework, using a
mean field approximation, have shown that the emergence
of the hyperon population at densities well above the
normal nuclear density produces an energetically favorable
state. The persistence of the hyperons extends to extremely
large densities and affects significatively the composition
of the core of the star. However, most of these results do not
admit a neutron star with mass as high as M=M⊙ ≃ 2. This
situation is known in the literature as the hyperon puzzle. A
similar picture is obtained when a deconfinement transition
is considered. For this purpose a composite model is

usually employed, corresponding to the hadronic phase
and the deconfined quark-gluon plasma. A first-order
transition, or even a coexistence of phases, lowers the
energy of the system but also excludes the minimum upper
bound for the star mass in most cases.
Closely related to the determination of the star masses is

the mutual deformation of binary systems, due to gravita-
tion as the mass distribution of the binary components
becomes relevant at advanced stages of the inspiral process.
In particular, the quotient of the quadrupole deformation to
the perturbing tidal field is the only quantity characterizing
its influence on the gravitational wave phase emitted in the
early steps [4]. A partial answer to this problem was given
by the first detection of a gravitational wave generated by the
collapse of a binary system of neutron stars [5], from which
the chirp mass of the system was determined with high
precision to beM=M⊙ ≃ 1.19. To obtain information about
the masses of each component, two different regimes for the
spin of the rotating stars are considered in [5]. Taking
the adimensional parameter j ¼ cJ=GM2, where J is the
total angular momentum, they find for j < 0.89 that 1.36 <
m1=M⊙ < 2.26 and 0.86 < m2=M⊙ < 1.36. Whilst
for j < 0.05 the results are 1.36 < m1=M⊙ < 1.60 and
1.16 < m2=M⊙ < 1.37. In addition the tidal deformability
for a neutron star with mass 1.4 M⊙ was bounded byΛ1.4 ≤
800 ð970Þ for the case j < 0.89 ð0.05Þ. Further refinements
[6] obtained the preferable values 1.36 < m1=M⊙ < 1.62,
1.15 < m2=M⊙ < 1.36, and Λ1.4 ¼ 190þ390

:120 .
The description of the neutron stars based on micro-

scopic models of the strong interaction still suffers from
important uncertainties. Intensive work has been devoted to
contrast the recently obtained observational data with the
predictions of a high variety of hadronic models [7–27].
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Many of these studies have assumed that matter is
composed of protons and neutrons as the only baryons.
Hence the crucial requisite to accommodate neutron stars
with mass at least of M ≃ 2 M⊙ is guaranteed [10].
However, in most cases, the mechanism which inhibits
the onset of the hyperons is not explicitly stated. A smaller
number of investigations include effects of the hyperons
[11–17,20,24]. The possibility of a deconfinement phase
transition including different types of realizations has been
the subject of the thorough study [14] and also of [13,23].
For instance, the outcomes in [17] about the composition of
the binaries in the GW170817 event depend on the amount
of a priori information deposited on the sampling of
equations of state. For the informed one the probability
for a free quark phase is 56% against 44% for a pure
hadronic phase. The less informed sample obtains a
reversed 36% against 64%, respectively. The analysis made
in [23], including data from GW170817 and GW190425
events, does not find evidence of a strong phase transition.
Transitions including discontinuities in the thermodynam-
ical potential have received special attention [8,20,21,24]
because they present more evident effects, and also, they
would be detectable by the postmerger gravitational
wave [20].
An important feature of the equation of state (EOS) is the

relativistic speed of sound vs defined by v2s ¼ c2dP=dE,
where P and E are the pressure and the energy density of
the system, respectively. The value vs=c ¼ 1=

ffiffiffi
3

p
has been

considered as an upper bound based on very general
arguments. The potential conflict between this assumption
and the existence of massive neutron stars was pointed out
in [28]. This observation has motivated several investiga-
tions on the role of an hypothetical upper limit of the speed
of sound on the properties of neutron stars and binary
systems [29–35]. It must be noted that [32] found that some
equations of state, often considered as a paradigm, violates
causality when the baryonic density takes large enough
values. Much of these works go further with the approach
used in [36], where the EOS is separated into a low density
part described by a favorite model and a schematic high
density contribution, depending on the speed of sound. The
results obtained for the structure of neutron stars are then
contrasted with the observational evidence, mainly the

maximum mass and the tidal deformation of a pair of
interacting stars. The possibility that matter is partially
composed of hyperons at intermediate densities has not
been considered in most of these references. However, [37]
has paid special attention to this issue. Recently, these
investigations have been extended by considering a non-
trivial structure for the speed of sound in dense matter [38],
including the effects of hyperons as well as different types
of phase transitions. An interesting consequence of a
deconfinement transition in the scenario of the inspiraling
process of a binary system has been analyzed in [39]. If the
principal mode of the nonradial gravitational oscillations
(g-mode) and the tidal force are resonant, then this could
affect the phase of the gravitational waveform. The fre-
quency of these oscillations depends on the difference of
the squared equilibrium and adiabatic speeds of sound. If
the thermodynamical potentials are continuous through the
transition, but the derivative dP=dE shows a finite dis-
continuity, then the same type of behavior is expected in the
frequency of the g-mode. Thus, the speed of sound plays an
important role in the description of an isolated neutron star
as well as for a binary system. It is a direct measure of the
stiffness of the EOS; it explicitly enters in the definition of
the linearized metric perturbation, which is used in the
evaluation of the second Love number, and determines the
behavior of the frequency of the g-mode. For these reasons
the aim of the present work is to analyze the speed(s) of
sound under several circumstances.
This work is organized as follows: in the next section the

general theoretical description is presented. Section III is
devoted to describe the evaluation of some properties of a
neutron star. Specific results are shown and discussed in
Sec. IV, and finally, the conclusions are drawn in Sec. V.
For the sake of completeness, some calculations on the
quark effective masses are shown in the Appendix.

II. THEORETICAL DESCRIPTION

To describe the neutron star, several versions of the
covariant field theory of hadrons are used. In these models
the baryons couple linearly to mesons, and the latter exhibit
different types of self-interactions. Thus the Lagrangian
density can be written as

LH ¼
X
b

ψ̄bði∂ −Mb þ gσbσ þ gξbξþ gδbτ · δ − gωb=ω − gϕb=ϕ − gρbτ · =ρÞψb

þ 1

2
ð∂μσ∂μσ −m2

σσ
2Þ − A

3
σ3 −

B
4
σ4 þ 1

2
ð∂μδ · ∂μδ −m2

δδ
2Þ þ Gσδσ

2δ2

þ 1

2
ð∂μξ∂μξ −m2

ξξ
2Þ − 1

4
WμνWμν þ

1

2
m2

ωω
2 þ C

4
ω4 −

1

4
Rμν · Rμν

þ 1

2
m2

rρ
2 þGωρρ

2ω2 −
1

4
FμνFμν þ

1

2
m2

ϕϕ
2; ð1Þ
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where the sum runs over the octet of baryons. In addition to
the commonly used σ, ω, ρ mesons, here the scalar
isovector field δa, with a ¼ 1 – 3, as well as the hidden
strangeness ξ;ϕ mesons, are also included. The δ and ξ
particles can be identified with the a0 (980) and f0ð980Þ
states, respectively. The ξ;ϕ are assumed as mainly
composed by a ss̄ pair, and therefore, they couple only
to the hyperons. The coupling constants gmb;m ¼
σ; ξ; δ;ω; ρ;ϕ and A;B;C;Gσδ; Gσδ vary from one model
to another and are fixed to reproduce different sets of
empirical data. The equations of motion corresponding to
this Lagrangian are solved in the mean field approximation
for uniform dense matter, in a reference frame where the
mean value of the spatial component of the baryon currents
are zero. Furthermore, all the degrees of freedom are
considered as stable states of the strong interaction. Under
such conditions the equations are greatly simplified since
the meson mean values do not vary spatially, and only the
third component of the isomultiplets are nonzero,

ði∂ −M�
b − gωbω0 − gϕbϕ0 − gρbIbρ0Þψb ¼ 0;

ðm2
σ − 2Gσδδ

2Þσ þ Aσ2 þ Bσ3 ¼
X
b

gσbnsb;

ðm2
δ − 2Gσδσ

2Þδ ¼
X
b

gδbnsb;

m2
ξξ ¼

X
b

gξbnsb;

ðm2
ω þ Cω2

0 þ 2Gωρρ
2
0Þω0 ¼

X
b

gωbnb;

ðm2
ρ þ 2Gωρω

2
0Þρ0 ¼

X
b

gρbIbnb;

m2
ϕϕ0 ¼

X
b

gϕbnb;

where Ib is the 3 isospin component, M�
b ¼ Mb − gσbσ −

gξbξ − gδbIbδ is the effective mass of the baryon b, and the
source of the meson equations are the baryon densities

nb ¼
p3
b

3π2
; nsb ¼

M�
b

2π2

�
pbEb −M�2

b ln

�
pb þ Eb

M�
b

��
:

The left side equation introduces the Fermi momentum, and

Eb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
b þM�2

b

q
is used. Within the approach, the energy

density of the system is given by

EH ¼ 1

4

X
b

ðnsbM�
b þ 3nbEbÞ

þ 1

2
ðm2

σσ
2 þm2

δδ
2 þm2

ξξ
2 þm2

ωω
2
0 þm2

rρ
2
0 þm2

ϕϕ
2Þ

þA
3
σ3 þB

4
σ4 −Gσδσ

2δ2 þ 3

4
ω2
0ðCω2

0 þ 4Gωρρ
2Þ:

The pressure is obtained by the canonical relation

P ¼
X
b

μbnb − EH;

and the chemical potentials are given by
μb ¼ Eb þ gωbω0 þ gϕbϕ0 þ gρbIbρ0.
Three specific versions of the general expression (1) are

used in this work. The first one is based on the GM1 model
of [40], which takes as reference values n0 ¼ 0.153 fm−3

for the normal nuclear density, and Ebind ¼ −16.3 MeV,
Esym ¼ 32.5 MeV,M�

N=MN ¼ 0.7, and K ¼ 300 MeV for
the binding energy, the symmetry energy, the effective
nucleon mass, and the nuclear compressibility in normal
conditions. These constraints determine the constants
gσN; gωN; gρN; A, and B which can be consulted in [40].
The model has been updated in [41] by introducing the
couplings between hyperon and vector mesons according to
the SU(6) symmetry of the quark model

gωΛ ¼ gωΣ ¼ 2gωΞ ¼ 2

3
gωN ; gρΛ ¼ 0;

1

2
gρΣ ¼ gρΞ ¼ gρN ;

gϕΛ ¼ gϕΣ ¼ 1

2
gϕΣ ¼ −

ffiffiffi
2

p

3
gϕN:

The scalar mesons ξ, δ are discarded in this scheme, and all
the constants C;Gσδ; Gωρ are taken as zero. The remaining
three parameters gσb; b ¼ Λ;Σ;Ξ are determined by adjust-
ing the energy Ub ¼ gωbω − gσbσ (subtracting the vacuum
rest mass) of an isolated hyperon at rest, immersed in
isospin symmetric nuclear matter at the normal density.
Although their empirical values are not well known, they
are usually taken as

UΛ ¼ −30 MeV; UΣ ¼ 30 MeV; UΞ ¼ −18 MeV:

ð2Þ

Motivated by the uncertainty just mentioned, Ref. [41]
analyzed the effect of the variation of Ub; b ¼ Σ;Ξ on the
maximum mass Mmax of an isolated neutron star. It was
found that keeping UΞ fixed and varying −40 <
UΣ½MeV� < 40 produce small changes and always
Mmax < 2 M⊙. Inversely, if UΣ is kept fixed, it is found
that the maximum mass increases monotonously with UΞ,
reaching Mmax ¼ 2.04 M⊙ for UΞ ¼ 40 MeV. Therefore,
the more optimistic case with UΞ ¼ 40 MeV is adopted in
this work, obtaining the following values gσΛ=gσN ¼ 0.617,
gσΣ=gσN ¼ 0.404, and gσΞ=gσN ¼ 0.113. The parametriza-
tion thus obtained will be labeled as GM1e. The second
model is based on the NL3 parametrization [42], which
was adjusted to describe with acceptable accuracy the
properties of several atomic nuclei. It gives the following
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results for uniform isospin symmetric nuclear matter
n0¼0.148 fm−3, Ebind ¼ −16.3 MeV, Esym ¼ 37.4 MeV,
M�

N=MN ¼ 0.6, and K ¼ 271.7 MeV. The original version
was taken further in [43], introducing hyperons in inter-
action through the scalar and vector mesons ξ and ϕ,
respectively. As in the previous case the hyperon-vector
meson couplings are related to gωN; gρN by assuming SU(6)
symmetry, and the scalar sector is adjusted to satisfy the
constraints (2). It must be noted that gξb does not participate
in these relations since they are defined at zero hyperon
density, hence there is some freedom for choosing these
couplings. We adopt here the set labeled as “weak YY” in
[43], so the numerical values of the parameters are taken
from this reference. To complete the comparison with
Eq. (1) it must be said that the δ meson is not considered,
hence Gσδ ¼ 0 and also C ¼ Gωρ ¼ 0. This prescription
will be denoted as NL3e in the following.
Finally, the third model (Mσδ) has recently been pro-

posed [44] with the aim of study on how the properties of
the neutron stars are affected by mixing interactions
between the σ − δ scalar mesons. The prescription of
[45] is adopted to choose the model parameters. Thus
the reference empirical values n0 ¼ 0.16 fm−3, Ebind ¼
−16 MeV, Esym ¼ 32 MeV, M�

N=MN ¼ 0.65, and K ¼
230 MeV are taken, and the slope parameter of the
symmetry energy L ¼ 50 MeV is reproduced in addition.
In the present work this formulation is complemented with
the inclusion of hyperons and the ϕ vector meson. In order
to simplify the scheme, the scalar meson ξ is not considered
here, and the coupling of the δ meson to the hyperons
is taken as zero. Eventually, the last items will be the
subject of future work. The hyperon-vector mesons are
fixed according the SU(6) symmetry scheme, and the
hyperon-scalar meson couplings follow from (2), obtaining
in this way gσΛ ¼ 5.616, gσΣ ¼ 3.989, and gσΞ ¼ 2.920.
The hypothesis of homogeneous matter, which lead to

the equations of motion shown above, is appropriate for a
range of densities above several tenths of the normal
nuclear value n0. The electromagnetic interaction, not
included in (1), gives rise to nonhomogeneous structures.
For this reason the equation of state evaluated in [46] is
adopted for the low density regime and assembled to the
results of the interaction (1) by imposing continuity at the
joining point. At the other extreme, for very dense matter it
is expected that hadrons are no longer the most stable
configuration of bound quarks and a transition to decon-
fined quarks happens. To take account of a state of
homogeneous quark matter, two different descriptions
are examined in this work, the Nambu Jona-Lasinio
(NJL) and the bag (BM) models. In the schematic BM
the noninteracting quarks have a current mass and a change
of scale due to nonperturbative effects are represented by
the bag constant B added to the thermodynamical potential.
The NJL, instead, presents interacting quarks which gen-
erate their own constituent masses. This effective mass

depends on the properties of the medium and are expected
to decrease with increasing baryonic density. The energy
density for both models are as follows:

EBM
Q ¼ Nc

π2
X
q

Z
pq

0

dpp2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q

q
þ B;

ENJL
Q ¼ Nc

π2
X
q

�Z
pq

Λ
dpp2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q

q
þ 2Gnsq

�

− 4Knsu nsd nss þ E0; ð3Þ

where q ¼ u, d, s, pq is the Fermi momentum, which is
related to the baryonic number density by nq ¼ p3

q=3π2,
and mq is the current quark mass. The total baryon number
density is represented by nQ ¼ P

q nq. In particular, the
NJL model uses a cutoff Λ for the momentum integration,
G and K are the couplings for four and six quark
interactions, E0 is a constant introduced to obtain zero
vacuum energy, and the effective masses are given by

Mi ¼ mi − 4Gnsi þ 2Knsjnsk; j ≠ i ≠ k:

The quark condensates nsq can be expressed as

nsq ¼
Nc

π2
Mq

Z
pq

Λ

dpp2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q

q :

The chemical potential for each flavor is simply μq ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
q þm2

q

q
within the BM, or μq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
q þM2

q

q
in the NJL.

The transition between the hadronic and deconfined
phases has been described in different dynamical schemes.
In this work the picture of a continuous and monotonous
equation of state, with an intermediate state of coexisting
phases is adopted. It is commonly denominated as the
Gibbs construction. If χ is the spatial fraction occupied
by the deconfined phase, then the total energy and the
baryonic number densities of the system are given by

E ¼ χEQ þ ð1 − χÞEH; ð4Þ

n ¼ χnQ þ ð1 − χÞnH: ð5Þ

Furthermore, for thermodynamical equilibrium of the
coexisting phases the partial pressures of each phase must
coincide,

PB ¼
X
b

μb nb − EH ¼
X
q

μq nq − EQ: ð6Þ

To describe neutron star matter the complementary
requirement of electrical neutrality is imposed. To reach
this condition a fluid of noninteracting leptons (electrons
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and muons) is considered, which freely distributes among
the hadron and quark phases so that the condition

0 ¼ 3χ
X
q

Cqnq þ ð1 − χÞ
X
b

Cbnb −
X
l

nl ð7Þ

is satisfied. In this expression Ck stands for the electric
charge in units of the positron charge. These leptons also
contribute to the total energy by

EL ¼ 1

π2
X
l

Z
pl

0

dpp2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

l

q
;

where nl ¼ p3
l =3π

2; their chemical potentials can be

written as μl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
l þm2

l

q
, and the partial lepton contri-

bution to the pressure is PL ¼ P
l μlnl − EL. Hence, the

complete expressions for the energy and the pressure in the
mixed phase are

E ¼ χEQ þ ð1 − χÞEH þ EL; ð8Þ

P ¼ μBn − E ¼ PB þ PL: ð9Þ

The coefficient χ is obtained by using the conditions of
conservation of the baryonic number, the electric charge,
and thermodynamical equilibrium, Eqs. (5), (7), and (6),
respectively. Thus, it is uniquely determined for each
density of neutral matter in equilibrium at zero temperature,
and it is a dynamical property of the combination of
models used.
There are two conserved charges which characterize the

global state of the system, the baryonic number and the
electric charge with associated chemical potentials μB and
μC, respectively. It must be noted that the last one does not
enter in the intermediate expression of Eq. (9) because the
total electric charge is zero. Both chemical potentials can be
combined to give the chemical potentials of all baryons,
quarks, and leptons circumstantially present. Therefore,
they are linearly dependent through the relations of
equilibrium against beta decay.

III. PROPERTIES OF THE NEUTRON STAR

The EOS is the main input to determine the structure of a
neutron star. In our approach the relation between P and E
is monotonous and continuous. However, its first deriva-
tive, i.e., the speed of sound, presents finite discontinuities
at the threshold of the phase transition. Due to the
bijectivity of the relation PðEÞ one can write

c2s ¼
dP
dE

¼ dP=dn
dE=dn

:

Using Eqs. (5), (6), and (8) it can be shown that in the
mixed phase is dE=dn ¼ μB, so that dP=dn ¼ ndμB=dn,
and finally

c2s ¼
n
μB

dμB
dn

: ð10Þ

Although the expression (10) is quite simple, the evaluation
could be difficult due to the large number of degrees of
freedom and the constraints imposed. For pure hadronic
matter, the derivative in Eq. (10) depends on the number N
of baryonic species present in the Fermi sea,

dμB
dn

¼ detU
detV

: ð11Þ

Here U, V are square matrices of N þ 1 columns with
elements

UiNþ1 ¼ δi;Nþ1; ViNþ1 ¼ 1 − δi;Nþ1;

UNþ1j ¼ VNþ1j ¼ ðpj=πÞ2; 1 ≤ j ≤ N;

Uij ¼ −Vij ¼ Hij; 1 ≤ i; j ≤ N;

where

Hij ¼
�
pj

π

�
2
�
−
M�

i

Ei

M�
j

Ej

1

Δ
ðα1gσigσj þ α2gνigνj − βgσigνj − βgσjgνiÞ

þ 1

ΔV
½ðm2

ρ þ 2Gωρω
2
0Þgωigωj þ ðm2

ω þ 3Cω2
0 þ 2Gωρρ

2
0Þgρigρj − 4Gωρωρðgωigρj þ gωjgρiÞ�

þ gϕigϕj
m2

ϕ

þ π2CiCjP
lμlpl

�
þ pj

Ej
δi;j;
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α1 ¼ m2
σ − 2Gσδδ

2 þ 2Aσ þ 3Bσ2 þ
X
b

g2σbλb; α2 ¼ m2
ν − 2Gσδσ

2 þ
X
b

g2νbλb;

β ¼ 1

π2
X
b

gσbgνbλb − 4Gσδσδ; λb ¼
1

π2

Z
pb

0

dpp4

ðp2 þM�2
b Þ3=2 ;

ΔV ¼ ðm2
ω þ 2Gωρρ

2
0 þ 3Cω2

0Þðm2
ρ þ 2Gωρω

2
0Þ − ð4Gωρω0ρ0Þ2;

and Δ ¼ α1α2 − β2. The scalar sector of the last expressions must be adapted to the model used; for the GM1e and NL3e
cases one must take ν ¼ ξ, and ν ¼ δ for the Mσδ one.
The structure of Eq. (11) also holds in the coexistence phase, but in this case is

UiNþ1 ¼ Sδi;Nþ1; 1 ≤ 1 ≤ N þ 1;

VNþ1Nþ1 ¼
1

S

�
χNc

X
q

�
Sþ 3CqðnH − nQÞ

3π

�
2

þ
�
nH − nQ

π

�
2X

l

μlpl

�
;

ViNþ1 ¼ Ci
nQ − nH

S
− 1; 1 ≤ i ≤ N;

UNþ1j ¼ VNþ1j ¼ ð1 − χÞ½Sþ CjðnH − nQÞ�
�
pj

π

�
2

; 1 ≤ j ≤ N;

Uij ¼ Vij ¼ Hij −
CiCjp2

jP
lμlpl

; 1 ≤ i; j ≤ N;

where S ¼ P
q nqCq −

P
b nbCb has been used.

Finally, in pure quark matter it is found

dμ0B
dn

¼ 3π2
3
P

qμqpqC2
q þ

P
lμlpl

Ncμuμdpuðpd þ psÞ þ
P

qμqpq
P

lμlpl

within the BM. Whereas in the NJL the more intricate expression

dμB
dn

¼ dμ0B
dn

þM0
u
Mu

μu
þ 2M0

d
Md

μd
þ 3

μuμd

×
psðMdM0

d −MsM0
sÞ
P

qpqμqCq þ ð2puμu þ
P

lplμlÞðM0
u
Mu
μu

þ 2M0
d
Md
μd
ÞPlplμl

Ncμuμdpuðpd þ psÞ þ
P

qμqpq
P

lμlpl

is obtained due to the variation of the constituent quark masses. Explicit formulas for these quantities are given in the
Appendix.
The adiabatic speed of sound νa ¼ ∂μB=∂n enters in the evaluation of the frequency of nonradial oscillations in compact

stars [39]. It is obtained by imposing the condition that the relative population of each fermion species remains constant,
even if β equilibrium is not verified. All the physical constraints are imposed after evaluation of the derivatives.
In pure hadronic matter the following result holds:

vHa ¼ 1

nμB

�X
b

p2
b

3

nb
Eb

þ
X
l

p2
l

3

nl
μl

−
1

Δ
ðα1X2

σ þ α2X2
ν − 2νXνXσÞ þm2

ϕX
2
ϕ

þ 1

ΔV
½ðm2

ρ þ 2Gωρω
2
0ÞX2

ω þ ðm2
ω þ 3Cω2

0 þ 2Gωρρ
2
0ÞX2

ρ − 8GωρXωXρ�
�
;

where

Xα ¼
X
b

gαb nb
M�

b

Eb
for α ¼ σ; δ; ξ; Xα ¼

X
b

gαbnb for α ¼ ω; ρ;ϕ:
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The treatment of pure quark matter gives, instead,

vQa ¼ 1

3nμB

�X
q

p2
q
nq
μq

þ
X
l

p2
l
nl
μl

�

within the BM, and

vQa ¼ 1

3nμB

�X
q

p2
q
nq
μq

þ
X
l

p2
l
nl
μl

�
þ 1

μB

X
q

nqM0
q
Mq

μq

for the NJL. In the domain of coexistence of phases one can
write va ¼ χvQa þ ð1 − χÞvHa .
The structure of an isolated neutron star can be solved

using the Tolman-Oppenheimer-Volkov equations for the
spherically symmetric case

dP
dr

¼ −ðG=c2Þ ½EðrÞ þ PðrÞ�½mðrÞ þ 4πr3PðrÞ=c2�
r2½1 − 2ðG=c2ÞmðrÞ=r� ;

MðrÞ ¼
Z

r

0

4πr02½Eðr0Þ=c2�dr0:

Starting from given values of the central pressure and
energy, these equations are integrated outward until a radius
R is reached for which PðRÞ ¼ 0, and the total mass is
defined as M ¼ MðRÞ. Once the mass MðrÞ and pressure
PðrÞ distributions inside the star have been determined one
can evaluate the second Love number k2. For this purpose
the radial function yðrÞ, related to the tidal field, must be
found by solving the differential equation

y0ðrÞ þ y2ðrÞ þ fðrÞyðrÞ þ qðrÞr2 ¼ 0;

subject to the condition yð0Þ ¼ 2. The following definitions
have been used:

fðrÞ ¼ 1þ 4πr2ðP − EÞ
1 − 2M=r

;

qðrÞ ¼
�
4π

�
5E þ 9Pþ Pþ E

v2s

�
−

6

r2
−

4

r4
ðMþ 4πr3PÞ2
1 − 2M=r

�
=ð1 − 2M=rÞ:

Then, the Love number is given by

k2 ¼
8

5
x5ð1 − 2xÞ2½2 − yR þ 2xðyr − 1Þ�=f6x½2 − yR þ xð5yR − 8Þ� þ 4x3½13 − 11yR þ xð3yR − 2Þ

þ 2x2ð1þ yRÞ� þ 3ð1 − 2xÞ2½2 − yR þ 2xðyR − 1Þ� lnð1 − 2xÞg;

where x ¼ M=GR and yR ¼ yðRÞ. The tidal deformability
is obtained in this approach as Λ ¼ 2k2=3x5.

IV. RESULTS AND DISCUSSION

In this section a comparative analysis of the results
provided by the different models is made. In first place I
focus on the evidence that can be found in the speed of
sound propagating in a neutron star, about the emergence
of exotic degrees of freedom. Furthermore, an analysis
is presented on the ability of the proposed framework
to accommodate the observational evidence about com-
pact stars.
Numerical evaluation of the hadronic properties has

been done by using the parameter sets discussed in
Sec. II. For the quark sector I use either the BM with
parameters B ¼ 200 MeV=fm3, mu ¼ md ¼ 5 MeV, and
ms ¼ 150 MeV or the NJL model with the SU(3) para-
metrization given in [47].

Since there are many works that disregard the role of the
hyperons in high density matter and with the purpose of
contrast with this standard approach, for each of the
hadronic models previously described I consider the case
with hyperons artificially suppressed (NH).
The EOS obtained in different schemes is shown in

Fig. 1. In each panel a low energy regime can be
distinguished where all the curves coalesce. It is composed
by pure nuclear matter and leptons. In the high energy
extreme, instead, two different curves indicate the emer-
gence of the pure quark phase as described by the BM or
the NJL models. In general, the BM reaches this instance
with lower pressures but steeper slope, i.e., with higher
speed of sound. Between these extremes and as the energy
increases, the emergence of the Λ hyperon and of decon-
fined quarks takes place, in the mentioned order. For the
NL3e and Mσδ the heavier Ξ− is also present, but in every
case no new hyperon species appear during the coexistence.
On the contrary, in the Mσδ description the preexistent Ξ−
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population extinguishes before the phase transition is
completed. It is evident that for all the hadronic models
the combination with the BM produces an EOS softer than
that corresponding to the NJL. The only exception is found
for pure quark matter at extremely high energies, corre-
sponding to densities above 2.5 × 1015 g=cm3. Comparing
results with or without hyperons, a common pattern is
found; for lower values of E the pressure is slightly higher
for the NH case, but beyond a particular value the relation is
inverted. The point where this change happens is located in
the coexistence phase. The enhancement of the pressure for
relatively high energy, in the case of matter containing
hyperons, is particularly noticeable when the NJL model is
used. This feature deserves special emphasis because it
corresponds to a regime accessible to the core of massive
neutron stars. A contrast of the different models shows that
in the NL3e the deconfinement starts at a lower pressure
and has a stronger softening effect on the EOS.
Furthermore, the coexistence region is wider for the BM

than for the NJL model, thus pure quark matter appears
earlier in the last case. Using this model I have verified that
the threshold for the transition increases with the value
chosen for the parameter B of the bag model. Thus in order
to obtain stable pure hadronic matter for densities below
5 × 1014 g=cm3 (around twice normal nuclear density) the
bound B ≥ 200 MeV=fm3 must be satisfied. To give a
uniform treatment, the same value B ¼ 200 MeV=fm3 is
used in combination with all the hadronic descriptions. In
regard to the remaining models, the critical pressure is
lower for the GM1e than for the Mσδ, and the slope of the
EOS is higher in the last case. Therefore, it is expected
that the transition to the outer crust of the neutron star
develops more rapidly in the Mσδ model. The pressure at
the density n=n0 ¼ 2 has been estimated in [6] as P ¼
3.5þ2.7

−1.7 dyn=cm2 in order to be consistent with the obser-
vational data obtained in the GW170817 event. In addition
several constraints have been imposed to the EOS as, for
instance, causality, thermodynamic stability of the star,
same EOS for both components of the binary system, and
consistency with a maximum mass Mmax=M⊙ ¼ 1.97. For
the calculations in this work the pressure in the NL3e
model exceeds the upper limit by a small 3% when
hyperons are present and by more than 7% in the NH
case. The remaining models do not present hyperons at
such density, and the pressure is greater than the reference
value 3.5 dyn=cm2, by 20% in the Mσδ and by 40% in the
GM1e case. Notwithstanding, the predicted values are
consistent with the experimental bounds.
The different sets of equations of state are used in the

following to study the structure of a nonrotating neutron
star, for a reasonable range of central pressures. The
relation MðRÞ is shown in Fig. 2 for all the models
considered here. An immediate conclusion is that the use
of the BM always gives smaller masses, and the predicted
maximum mass is far from the empirical bound
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FIG. 1. The equation of state for the hadronic models GM1e (a),
NL3e (b), and Mσδ (c). The cases with or without hyperons (NH)
have been distinguished according to the line convention shown.
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FIG. 2. The mass-radius relation for an isolated neutron for the
hadronic models GM1e (a), NL3e (b), and Mσδ (c). The cases
with or without hyperons (NH) have been distinguished accord-
ing to the line convention shown.
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M=M⊙ ≃ 2. The combination with the NJL, instead,
produces admissible results. In such case the NH approach
systematically obtains greater maximum mass corre-
sponding to a greater star radius. In Table I the numerical
outcomes are summarized. In the following, only the
models predicting Mmax=M⊙ ≥ 1.98 are considered. For
all the approaches shown in this table the neutron star with
the standard M=M⊙ ≃ 1.4 mass is totally composed of
nucleons. The only exception corresponds to the predic-
tion of the Mσδ model which finds a tiny 3% of Λ
hyperons in the core of the star. In contrast, the central
region of the star with maximum mass is in the coexist-
ence phase. There are strange degrees of freedom present
in the form of hyperons or as deconfined quarks.
Regarding the star with M=M⊙ ¼ 1.4, the results for its
radius can be compared with the estimates provided by
[27]. Both, GM1e and NL3e predictions are well above
the upper bound established in that work. The Mσδ,
instead, gives R ¼ 12.6 km that is compatible with the
ranges 12.33þ0.76

−0.81 km and 12.18þ0.56
−0.79 km obtained by

different approaches in [27]. For further comparison
one can take the Bayesian analysis presented in [48] for
the massive pulsar PSR J0740þ 6620, which obtains the
radius R ¼ 12.39þ1.30

−0.98 for the star with M=M⊙ ¼
2.072þ0.067

−0.066 . Focusing on the Mσδ model, it gives a star
with maximum mass M=M⊙ ¼ 2.003 with a radius
R ¼ 12.097 km, while the NH case indicates that for a
star with M=M⊙ ¼ 2.07 corresponds a radius R ¼
12.67 km. Although the mass of the first result is slightly
below the interval given by [48], the radius of both
instances are well in agreement with the range expected
by that work. The reliability of the values obtained with
the Mσδ is also confirmed by contrasting with [49]. In that
work the information on PSR J0740þ 6620 is extended
by including additional empirical data to estimate the

range R ¼ 12.45� 0.65 km for M=M⊙ ¼ 1.4 and R ¼
12.35� 0.75 km for the PSR J0740þ 6620.
In Fig. 3 the rich structure of the speed of sound for the

five models selected is shown in terms of the baryonic
density. The panel (a), corresponding to the GM1e NH in
combination with the NJL, makes evident some common
features; va is continuous but vs presents finite disconti-
nuities at the borders of the coexistence domain, as it has
already been noted in [39]. Furthermore, both definitions
are almost coincident for low densities and seems to
converge to a common value for extremely large densities.
In the regime of pure quark matter the variation of vs is
around 6% of the speed of light for the range of densities
shown in that figure. In the center of the maximum mass
star, corresponding to n=n0 ≃ 4.9, a change ΔE ≃ 1 fm−4

causes a drop in vs of around 8% the speed of light. The
panels (b) and (c) additionally incorporate the effect of
hyperons. In such case the general trend of va is not highly

TABLE I. The threshold density for the deconfinement tran-
sition, the isolated neutron star properties maximum mass, and its
corresponding radius for all the models considered. In the two last
columns the radius and the tidal deformability of a star with the
canonical mass M=M⊙ ¼ 1.4 for selected cases.

Model nd=n0 Mmax=M⊙ R (km) R1.4 (km) Λ1.4

GM1e NH Bag 2.36 1.79 12.8 � � � � � �
GM1e Bag 2.40 1.76 12.7 � � � � � �
GM1e NH NJL 2.55 1.98 13.0 13.9 910.03
GM1e NJL 2.85 1.92 12.7 13.9 � � �
NL3e NH Bag 1.98 1.91 14.1 � � � � � �
NL3e Bag 2.04 1.88 14.0 � � � � � �
NL3e NH NJL 1.98 2.08 14.3 14.8 1284.20
NL3e NJL 3.44 2.02 13.9 14.8 1284.20
Mσδ NH Bag 2.66 1.90 12.5 � � � � � �
Mσδ Bag 3.29 1.86 12.2 � � � � � �
Mσδ NH NJL 3.04 2.10 12.5 12.6 527.08
Mσδ NJL 4.02 2.00 12.1 12.6 527.20
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FIG. 3. The speed of sound as a function of the baryonic density
for the hadronic models GM1e (a), NL3e (b), and Mσδ (c). The
different definitions, equilibrium vs and adiabatic va, correspond-
ing to the cases with or without hyperons (NH) have been
distinguished according to the line convention shown. The
conformal limit is represented by a horizontal dotted line.
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modified, but vs reflects markedly the onset of the hyperons
that happens before the deconfinement transition. The Λ
baryon appears at n=n0 ¼ 1.9ð2.3Þ, while the heavier Ξ−

starts at n=n0 ¼ 2.2ð2.8Þ in the NL3e (Mσδ) model. The
corresponding curve shows a peak followed by a pro-
nounced drop associated with the jumping-off point of each
hyperon. The same kind of structure has been observed in
[37] at the rise of the hyperon population, using a model of
composite baryons, which does not take account of the
deconfinement process. Significatively, the peak values are
almost coincident, vmax=c ¼ 0.63, 0.61 and 0.65 in [37],
for the NL3e and Mσδ models, respectively. Beyond these
characteristic configurations, the speed of sound increases
until the beginning of the phase transition, where a new
drop takes place through a discontinuous jump. The sudden
decrease after these peaks induces a noticeable splitting
of va and vs. A comparison with the conformal limit,
vlim ¼ c=

ffiffiffi
3

p
, shows that it is exceeded at the onset of the

coexistence of phases in the models GM1e NH and Mσδ
case. In the latter case the difference becomes noticeable in
the NH approach, where the increment Δvs ≃ vlim=3 is
reached at the threshold density nt. When hyperons are
included in the same framework, nt is shifted to higher
values, and the relative difference is considerably reduced.
However, additional points appear where vs > vlim, corre-
sponding to the onset of the Λ and Ξ− hyperons. In the first
case the excess is as important as in the deconfinement
point. The maximum values of vs obtained in our calcu-
lations and discussed in the preceding paragraph must be
completed with the cases GM1e NH, NL3e NH, and Mσδ
NH giving vmax=c ¼ 0.62, 0.64, 0.78, respectively. It must
be pointed out that both instances of the Mσδ calculations
verify vmax=c ≥ 0.63, a value that has been proposed as a
minimum upper bound for the speed of sound [50]. These
observations seem to corroborate the relation between the
magnitude of the speed of sound and the number N of
effective degrees of freedom. In agreement with the general
belief, an increase of N with the density is locally reflected
by a sudden drop in vs, which is realized through a finite
discontinuity in the case of the phase transition. The growth
of vs observed between these particular points is consistent
with the monotonously increasing trend found in [29],
where a variety of nuclear matter equations of state are
analyzed. The difference τ ¼ 1=c2s − 1=c2a directly affects
the frequency of the nonradial oscillations of a compact star
known as gravity modes [39]. For this reason Fig. 4 is
devoted to show τ as a function of the baryonic density for
the Mσδmodel including, or not, the hyperons. In the upper
panel a detail of the numerator c2a − c2s is presented, where
the case NH is suitable for comparison with Fig. 6 of [39].
The monotonous decrease in the coexistence zone and the
higher values corresponding to the low density threshold in
the present calculations contrast with the results shown in
that figure. The inclusion of hyperons has the notorious
effect of a sudden rise preceding the discontinuity at nt.

In the lower panel the full factor τ is presented. The
discontinuities, and a preceding staircase structure in the
full hyperon treatment, stand out for medium densities.
They are diminished by the strong drop experienced at the
end of the coexistence region. However, this regime would
not be reached since according to the present calculations
the pure quark phase state is not realized even for the most
massive neutron star.
As a final item, I analyze the predictions for the tidal

deformability on the members of a binary system. Taking as
a reference a neutron star with M=M⊙ ¼ 1.4, the results
obtained for the tidal deformability are shown in the last
column of Table I. Both GM1e and NL3e results are far
beyond the bound, Λ1.4 ¼ 190þ390

−120 , suggested in [6]. The
results of both instances of the Mσδ, instead, are admissible
according to the same criterium but are close to the upper
limit. For all the cases considered the central density nc of
the reference star is relatively small, 1.9 ≤ n=n0 ≤ 2.5, and
the conventional degrees of freedom of nuclear physics
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FIG. 4. The combinations of the different definitions of the
speed of sound v2a − v2s (upper panel) and τ ¼ 1=v2s − 1=v2a
(lower panel) as functions of the baryonic density. The cases
with or without hyperons (NH) have been distinguished accord-
ing to the line convention shown.

R. M. AGUIRRE PHYS. REV. D 105, 116023 (2022)

116023-10



are the main ingredients of this low mass star. Therefore,
the result for Λ1.4 is intrinsic to the parametrization of the
models since the rangeof densities are reasonably close to the
reference point n=n0 ¼ 1. It is surprising that the model
inspired in the NL3 parametrization, which accurately
describes the structure of several atomic nuclei, has the
worst disagreementwith the empirical expectations. Another
parameter of interest is the combined tidal deformability

Λ̃ ¼ 16

13

Λ1ðM1 þ 12M2ÞM4
1 þ Λ2ðM2 þ 12M1ÞM4

2

ðM1 þM2Þ5
;

whereMi, Λi are the mass and the tidal deformability of the
individual components. On the other hand the chirp mass,
given by the relation

M5 ¼ M3
1M

3
2

M1 þM2

;

has been determined with accuracy [6] for the event
GW170817, while the possible values for M1 are expected
to range within 1.3 < M1=M⊙ < 1.6, assuming M2 < M1.
Under this constraint I have evaluated Λ̃ in terms of M1 for

the combined Mσδ and NJL models. The result, as shown in
Fig. 5, lies between 566 < Λ̃ < 608, which is compatible
with the expectations for the low spin prior Λ̃ ∈ ð70; 800Þ as
well for the high spin prior Λ̃ ∈ ð0; 630Þ [51]. In the present
calculations a coexisting phase of confined and unbound
quarks is assumed, which can be interpreted as a conse-
quence of a vanishing interface tension σT . At the opposite
extreme, for very large σT , a discontinuous transition takes
place according to the Maxwell construction. For intermedi-
ate values a nonhomogeneous phase is expected, which can
affect the neutron star properties. These effects have been
analyzed in [52] within a specific model, concluding that all
of them, the maximum mass, the radius, and the combined
tidal deformability monotonously increase with σT . An
estimation of the maximum variation due to finite tension
is given there as ΔMmax=M⊙ ¼ 0.02;ΔR ¼ 0.6 km, and
ΔΛ̃=Λ̃ ¼ 0.5 [52]. Thus a scarce increase in the maximum
mass canbeobtained at the cost of a small growthof the radius
and a considerable increment of the tidal deformability.
The present calculations indicate that the properties of

the standard M=M⊙ ¼ 1.4 star are determined exclusively
by the hadronic EOS, while the deconfined quark EOS
could affect the structure of the more massive stars.
Therefore, the effect of new configurations in the decon-
fined phase, such as superconductivity, are of interest for
determining the upper limit of the neutron star masses.
A large number of studies have focused the effects of
superconducting quark matter on the properties of compact
stars [53–57]. For instance, in [53] an effective nuclear
model is used in combination with a BM, including a
color-flavor locked superconducting phase. For the latter
model the parameters are taken as B ¼ 137 MeV=fm3,
ms ¼ 200 MeV, and Δ ¼ 100 MeV for the energy gap.
The mass-radius relation for the neutron star shows the
significant fact that a sharp quark-hadron phase transition
leads to an unstable star structure. In contrast, the continu-
ous phase transition allows the existence of stable configu-
rations with unbound quarks. In any case the maximum
mass is slightly reduced as compared with the unpaired
case. This behavior is qualitatively confirmed in [54], where
the dynamics of the deconfined quarks are determined by
the NJL within two different parametrizations. Since the
quark-quark interaction is unknown, the authors assume the
same coupling constant as in the four fields quark-antiquark
interaction GD ¼ G. They only consider a sharp hadron-
quark phase transition and also include the possibility of a
light quark superconducting phase (2SC), with unpaired
strange flavor, in addition to the just mentioned color-flavor
locked arrangement. In this case, the presence of the
intermediate two-flavor pairing introduces a narrow window
of stability before the color-flavor locked phase becomes
preferable. These types of instabilities have been related to
the lack of confinement of the NJL model [58] and
attributed to the value of the constant E0, see Eq. (3), used
to render zero the energy density at zero baryonic density.
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FIG. 5. The combined tidal deformability as a function of the
mass of the heavier component of a binary system for the Mσδ
model.
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This argument has been examined in [56], where a different
procedure to fix the additive constant has been proposed.
With this modified constant E�

0, an intermediate stable 2SC
phase was found, as in [54]. A further increase of the pairing
coupling constant to GD ¼ 1.2G, in combination with E�

0,
extends the range of stability to embrace the color-flavor
locked phase. At the same time the allowed maximum mass
for neutron stars is reduced [56]. Based on these results one
can conclude that the inclusion of a superconducting quark
phase, if stable, will lead to a decrease of Mmax.

V. SUMMARY AND CONCLUSIONS

This work is devoted to the study of dense matter at zero
temperature, as can be found in the interior of neutron stars.
To describe the low and medium densities regime, three
models of the field theory of hadrons are used. They have
different motivations, while GM1 and the recent Mσδ focus
on bulk properties of homogeneous matter, the NL3 was
calibrated to study atomic nuclei. In all the cases the
formulation has been extended to include hyperons. For
high densities a scheme of deconfined quarks are consid-
ered using either the bag or the NJL models. In the first case
the quarks do not interact, and vacuum effects are explicitly
included through the bag constant B, while in the well-
known NJL there is a strong interaction between quarks,
which give them their constituent masses. In between a
coexistence of phases is assumed, which allows a continu-
ous variation of the thermodynamic potential. As an
alternative the situation (NH) with hyperons artificially
suppressed is also taken into account. In this context the
equation of state has been analyzed and the speed of sound,
in particular. The effects on the structure of a neutron star
have been emphasized, and the contrast with recent
observational data has been done. For all the cases
considered the hyperons emerge near n=n0 ¼ 2, and the
deconfinement transition starts at a higher density nd,
which depends on the model used (see Table I). The
well-known fact that the NH approach gives the harder
EOS has been corroborated for each model. Furthermore,
the combination with the BM systematically gives a softer
EOS as compared with the NJL case. The adiabatic speed
of sound va shows a continuous behavior, while the
equilibrium velocity vs presents finite discontinuities at
the extreme points of the coexistence region [39]. I have
found that the onset of the hyperons also has noticeable
effects, giving place to characteristic breaks of the monoto-
nous variation of vs. The quantity 1=v2s − 1=v2a, which
enters in the construction of the frequency of g-mode
oscillations of a star, also has distinctive behaviors accord-
ing to the presence, or not, of the hyperons. The relation
mass radius of an isolated neutron star has been examined
and I find that the combinations with the BM are not able to

satisfy the requisite Mmax=M⊙ > 1.95, hence these
instances are discarded. Focusing on a star with the
canonical mass M=M⊙ ¼ 1.4, it is found that its central
density is small enough such that only nucleons and leptons
are present in its composition. The exception is the Mσδ,
which predicts a scarce amount of Λ hyperons. When
considered as a part of a binary system, its tidal deform-
ability is expected to be bounded by Λ1=4 < 580 [6],
however, only the prediction of the Mσδ model,
Λ1=4 ¼ 527, adjust this condition. Furthermore, when the
experimental value for the chirp mass M=M⊙ ¼ 1.186 is
taken into account, the composed tidal deformability has
been found to satisfy 566 < Λ̃ < 608, which is compatible
with the observational evidence [51]. One can conclude that
the formulation of a hadronic model, which includes the
hyperons and the realization of a coexistence phase with
deconfined quarks, is absolutely compatible with the recent
experimental data on compact stars. In the case analyzed in
this work, the model denoted as Mσδ [44,45], achieves
this purpose with simplicity by introducing only one
additional term to those commonly used in the field theory
of hadrons. This term consists of a nonlinear meson vertex
with a constant coupling and continues the long-standing
strategy of representing high density effects by this type of
interaction [59]. There are still several open questions about
this model which deserve investigation, as for instance, the
combination of the δ and the hidden strangeness f0ð980Þ
mesons as mediators of the hyperon interaction, or the
compatibility with the phenomenology of atomic nuclei.
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APPENDIX: MASS DERIVATIVES
IN THE NJL MODEL

The derivatives of the constituent quark masses in the
NJL are given by

M0
i¼−4Gn0siþ2KðnsjnskÞ0; where i≠ j; i≠k; j≠k:

In turn the derivatives of the quark condensates are the
solutions of a linear set of algebraic equations,

X
j

Aijn0sj ¼
pi

D
Mi

μi
N i; i ¼ u; d; s;

where D¼auðpdþpsÞ−ðadþasÞpu, N u¼−ðadþasÞπ2;
N d¼N s¼auπ2,
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au ¼
1

μu
þ 2pu

μe
P

lpl
; ad ¼ −

1

μd
−

pd

μe
P

lpl
; as ¼ −

ps

μe
P

lpl
;

and

Aij ¼
�
π2

3
− 4GFi

�
δij þ 2KFinsmð1 − δijÞ þ 2

pi

D
Mi

μi

�
2GPij

Mj

μj
− K

X
k≠j

nslPik
Mk

μk

�
;

where j ≠ m ≠ i and k ≠ l ≠ i, and

P ¼

0
B@

−pd − ps pd ps

pu −pu þ ðaups − aspuÞμd ðaups − aspuÞμd
pu −pu þ ðaupd − adpuÞμd ðadpu − aupdÞμd
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