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Nonleptonic two-body weak decays of baryons are an important tool to probe the combined charge
conjugation–parity symmetry (CP) violation. We explain why the decays of strange baryons provide
complementary information to the decays of kaons. Amodel-independent parametrization of the nonleptonic
decays of theΛ andΞ baryons is reviewed, and the amplitudes are updated according to the latest experimental
input. We demonstrate the potential of performing precision tests in strange baryon decays at the next-
generation electron-positron J=ψ factorieswith luminosity of 1035 cm−2 s−1. The copious production of spin-
entangled hyperon-antihyperon pairs via the J=ψ resonance allows for a direct comparison of the baryon and
antibaryon decay properties. Using analytic approximations and numerical calculations, we study the
quantitative impact of spin correlations and polarization in such CP tests. We show that by using a
longitudinally polarized electron beam the statistical precision of the CP tests can be significantly improved
compared to the experiments without polarized beams. Furthermore, we map out further directions for
possible improvements, like analysis of incompletely reconstructed events or a combination of the isospin
related processes. Altogether, these methods are promising for the observation of a statistically significant
CP-violation signal with a strength corresponding to the standard model predictions. Our conclusions should
encourage more detailed feasibility studies, including optimization of the measurement methods and studies
of systematic effects. Finally, our results call for an update of the theory predictions with increased precision.
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I. INTRODUCTION

Although the standard model (SM) of elementary par-
ticle physics can describe the subatomic world accurately,
there are several theoretical and experimental indications
that it needs to be completed. In general, precision tests of
symmetries and their violation patterns provide guidelines
toward a deeper understanding of elementary particles and
their interactions. Here, we focus on charge-conjugation
parity (CP) violation as a means of teasing out new physics.
It is well known that the CP-violating mechanism in the
SM is not sufficient to explain the observed imbalance
between matter and antimatter in our Universe as a dynamic
effect [1]. On the other hand, the processes included in the
SM are strong enough to wash out any initial imbalance

before the electroweak phase transition [2,3]. Thus, a CP
violation beyond the SM is required. In the quark sector, the
existence of CP violation in the kaon and beauty meson
systems is well established [4–6], and so far, most
observations are consistent with the SM expectations.
There are tensions like the B → πK decay puzzle which
require further exploration [7]. The first CP-violating
signal for charmed mesons, reported by the LHCb experi-
ment [8], is at the upper edge of the SM prediction. As
CP-violating effects are subtle, a detailed understanding
requires a systematical mapping of various hadronic
systems studied with complementary approaches.
In the strange-quark sector, one of the most sensitive

probes of non-SM contributions is direct CP violation. The
experimental result is given by the value Reðϵ0=ϵÞ ¼
ð16.6� 2.3Þ × 10−4 [9–11] determined from the decay
amplitude ratios of KL and KS mesons into pion pairs,

AðKL → πþπ−Þ
AðKS → πþπ−Þ≕ ϵþ ϵ0 and

AðKL → π0π0Þ
AðKS → π0π0Þ≕ ϵ − 2ϵ0: ð1Þ
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This direct CP-violating effect arises in the weak part of the
transition amplitudes to pions due to the interference
between isospin I ¼ 0 and I ¼ 2 final states (jΔIj ¼ 1=2
and jΔIj ¼ 3=2 transitions, respectively). The CP-violation
mechanism in the SM requires loop diagrams where all
three quark families are involved, the so-called penguin
diagrams, like those shown in Fig. 1. Predictions for the
kaon decays have been a challenge for many years since
there are partially canceling contributions from subleading
types of the penguin diagrams, where the gluon line is
replaced by γ; Z0; see, e.g., Ref. [12] and references therein.
Recently, a satisfactory understanding was reached
using Lattice [13,14] and effective field theory [15,16]
approaches to QCD. This progress ensures that the kaon
decays continue to be an important precision test of the SM.
The subject of our paper is a complementary approach to

studyCP violation (CPV) in two-body nonleptonicΔS ¼ 1
transitions of hyperons [17–22]. For such weak two-body
decays, one also needs an interference pattern: this time
between parity-even and parity-odd decay amplitudes.
These emerge from the spin degrees of freedom of the
initial and final baryons. Since we will consider decays of a
spin-1=2 baryon B to a spin-1=2 baryon b and a pion, the
parity-even amplitude leads to a p-wave final state, while
the parity-odd amplitude leads to an s-wave final state. The
two amplitudes are denoted P and S, respectively. In the
following, we will often write the decay generically as
DðB → bπÞ. When we need to be more specific, we use
indices Λ and Ξ to denote Λ → pπ− and Ξ− → Λπ−,
respectively. The decay amplitude is

A ∼ Sσ0 þ Pσ · n̂; ð2Þ

where σ0 is the 2 × 2 unit matrix, σ ≔ ðσ1; σ2; σ3Þ are the
Pauli matrices, and n̂ ¼ q=jqj is the direction of the
b-baryon momentum q in the B-baryon rest frame. It is
important to note that these amplitudes depend on the initial
(weak) decay, which produces the two final particles, but
depend also on the (strong) final-state interaction. These S
and P amplitudes are Lorentz scalars, which can depend
only on the invariant mass of the two-body system. Yet, this
quantity is fixed for a two-body decay: if we disregard the
unmeasurable overall phase, the two complex amplitudes

S and P can be fully specified by the overall normalization
jSj2 þ jPj2 and the size and relative phase of the interfer-
ence term S�P. These are directly related to the partial
decay width and the following two parameters [23]:

αD ≔
2ReðS�PÞ
jSj2 þ jPj2 and βD ≔

2ImðS�PÞ
jSj2 þ jPj2 : ð3Þ

The relation of the parameters to the shape of the angular
distribution, including the polarization, of the baryon b will
be shown in Sec. II. In the CP-conserving limit, the
amplitudes S̄ and P̄ for the charge-conjugated (c.c.) decay
mode of the antibaryon D̄ðB̄ → b̄þ π̄Þ are S̄ ¼ −S and
P̄ ¼ P. Therefore, the decay parameters have the opposite
values: ᾱD ¼ −αD and β̄D ¼ −βD.
Two independent experimental CPV tests can be defined

using these parameters,

AD
CP ≔

αD þ ᾱD
αD − ᾱD

and BD
CP ≔

βD þ β̄D
αD − ᾱD

; ð4Þ

where AD
CPðBD

CPÞ ≠ 0 indicates CP violation in theD decay.
The AD

CP test requires measurement of the angular bðb̄Þ
distribution from polarized BðB̄Þ-baryon decay. The BD

CP
test probes time-reversal-odd transitions and can be poten-
tially much more sensitive, but it requires in addition a
measurement of the bðb̄Þ-baryon polarization. In the SM,
CPV effects in the hyperon decays are dominated by the
QCD-penguin contribution, Fig. 1(a).
In the 1960s, hyperon decays were a tool for discrete

symmetry tests on equal footing with the kaons. The last
dedicated program to observe CP violation in hyperons was
performed by the Fermilab experiments E756 [24] and
HyperCP [25] at the dawn of this century. In these experi-
ments, the sum of theACP observables forΞ− → Λπ− ð½Ξ−�Þ
and Λ → pπ− ð½Λp�Þ, A½Ξ−�

CP þ A½Λp�
CP , was studied. Here, the

SM prediction amounts to −0.5 × 10−4 ≤ A½Ξ−�
CP þ A½Λp�

CP ≤
0.5 × 10−4 [26]. The published result A½Ξ−�

CP þ A½Λp�
CP ¼

0ð7Þ × 10−4 [27] is currently considered to be the most
precise test of CP symmetry in the hyperon sector.

FIG. 1. Quark diagrams relevant for kaon and hyperon decays. Direct CP-violation effects in kaon and hyperon decays in the SM are
given by the (a) QCD-penguin operators and (b) electroweak penguin operators. This figure was created using a modified script from
Ref. [15].
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The prospect of significantly improving the CPV tests in
hyperons is due to a novel method where hyperon-anti-
hyperon pairs are produced in electron-positron collisions
at the c.m. energy corresponding to the J=ψ resonance. The
J=ψ decays into a hyperon-antihyperon pair have relatively
large branching fractions of Oð10−3Þ [28]. The produced
hyperon-antihyperon pair has a well-defined spin-
entangled state based on the two possible partial waves
(parity symmetry in this strong decay allows for an s and a
d wave) [29,30]. The charge-conjugated decay modes of
the hyperon and antihyperon can be measured simulta-
neously, and their properties can be compared directly. The
uncertainties obtained in the proof-of-concept experiment

[31,32] based on 1.3 × 109 J=ψ for the A½Λp�
CP , A½Ξ−�

CP , and

B½Ξ−�
CP observables are given in the first row of Table I. With

the already available dataset of 1010 J=ψ collected at
BESIII [33], a significantly improved statistical precision
is expected, as shown in the second row of the table.
However, the uncertainty is still predicted to be 2 orders of
magnitude larger compared to the SM CPV signal.
Crucial improvements are expected at the next-generation

electron-positron colliders, the super-charm-tau or super-
tau-charm factories (SCTFs) being under consideration in
China [34] and in Russia [35]. Their design luminosity is 2
orders of magnitude larger than the BEPCII collider [36,37],
allowing for data samples of more than 1012 J=ψ events.
The projections for the improved statistical uncertainties of
the CPV tests, due to the increased data samples, are shown
in Table I. This will still not be sufficient to observe an effect
if it has a magnitude consistent with the SM predictions.
Therefore, besides the increased luminosity, two additional
improvements are being discussed to further increase the
precision: (1) a c.m. energy spread ΔE compensation and
(2) an electron beam polarization. For the first option, a
collision scheme is proposed where electrons (positrons)
with higher momenta are matchedwith positrons (electrons)
with lowermomenta. This promises aΔE reduction to better
match the natural width of J=ψ meson of Γ ¼ 0.09 MeV,
thus up to an order of magnitude increase of the number of
J=ψ events for a given integrated luminosity [38–40].
For the second option, an electron beam polarization of

80%–90% at J=ψ energies can be obtained with the same
beam current [41].
Since the benefits of the first improvement are obvious,

we focus on the impact of the use of a polarized electron
beam and show that the precision of theCP tests in eþe− →
J=ψ → ΛΛ̄ and eþe− → J=ψ → ΞΞ̄ can be significantly
improved. The initial findings for eþe− → J=ψ → ΛΛ̄
have already been reported at the SCTF workshop [42]
and independently in Ref. [43]. Here, we give a detailed
explanation of this result and extend it to sequential
hyperon weak decays. In Sec. II, we review the phenom-
enology and the current experimental status of CP tests in
two-body weak decays of hyperons. In Sec. III, we use the
formalism based on Jacob-Wick’s [44] helicity amplitudes
[45] to derive the hyperon-antihyperon production spin-
correlation matrix for electron-positron collisions with
longitudinal polarization of the electron beam. The asymp-
totic maximum log-likelihood method from Ref. [46] used
for the analysis of uncertainties for the CPVobservables is
introduced in Sec. III C. The single-step decays are dis-
cussed in Sec. IV, and the two-step decays are discussed in
Sec. V. Further experimental considerations are presented
in Sec. VI, and Sec. VII contains an outlook.

II. CP TESTS IN HYPERON DECAYS

A. General considerations

There are three independent observables that provide a
complete description of a weak decay DðB → bþ πÞ with
the amplitude given in Eq. (2). The first is the partial decay
width given by

Γ ¼ jqj
4πMB

ðEb þMbÞjAj2; ð5Þ

where jAj2 ¼ jSj2 þ jPj2 and Eb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqj2 þM2

b

q
. The MB

andMb are the masses of the mother and daughter baryons,
respectively. The first of the two parameters defined in
Eq. (3), −1 < αD < 1, can be determined from the angular
distribution of the daughter baryon when the mother baryon

TABLE I. Illustration of the expected statistical uncertainty for the CPV observables A½Λp�
CP , A½Ξ−�

CP , and B½Ξ−�
CP at

BESIII and the proposed SCTF electron-positron collider. The results of the published BESIII measurements are
given in the first row [31,32]. The uncertainties given in the two remaining rows are straightforward rescaling based

on the expected number of events. The SM prediction for A½Λp�
CP is ∼ð1–5Þ × 10−5, while for B½Ξ−�

CP , it amounts to
Oð10−4Þ [26].

σðA½Λp�
CP Þ σðA½Ξ−�

CP Þ σðB½Ξ−�
CP Þ Comment

BESIII 1.0 × 10−2
a

1.3 × 10−2 3.5 × 10−2 1.3 × 109 J=ψ [31,32]
BESIII 3.6 × 10−3 4.8 × 10−3 1.3 × 10−2 1.0 × 1010 J=ψ (projection)
SCTF 2.0 × 10−4 2.6 × 10−4 6.8 × 10−4 3.4 × 1012 J=ψ (projection)

aThis result is a combination of the two BESIII measurements.
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is polarized. For example, the proton angular distribution
from the ΛðΛ → pπ−Þ decay in the Λ rest frame is given as

1

Γ
dΓ
dΩ

¼ 1

4π
ð1þ αΛPΛ · n̂Þ; ð6Þ

where PΛ is the Λ polarization vector. The second inde-
pendent decay parameter can be chosen as the angle ϕD,
−π < ϕD < π, which gives the rotation of the spin vector
between the B and b baryons. To measure ϕD, the
polarization of both the mother and daughter baryons must
be determined. For the decay ΞðΞ− → Λπ−Þ, where the
cascade is polarized, the ϕD parameter can be determined
from the subsequent Λ → pπ− decay, which acts as a
polarimeter. The relation between the initial Ξ− polarization
PΞ and the daughter Λ polarization PΛ is given by the Lee-
Yang formula [23],

PΛ ¼
ðαΞþPΞ · n̂Þn̂þβΞPΞ× n̂þ γΞn̂× ðPΞ× n̂Þ

1þαΞPΞ · n̂
; ð7Þ

where the β- and γ-type decay parameters are expressed as

βD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2D

q
sinϕD;

γD ≔
jSj2 − jPj2
jSj2 þ jPj2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2D

q
cosϕD; ð8Þ

implying that α2D þ β2D þ γ2D ¼ 1. In Table II, the branching
fractions (B) and the values of the αD and ϕD parameters for
decays of the ground-state octet baryons are listed. When
available, we report the hyperon-antihyperon average
values, defined as

hαDi ¼
αD − ᾱD

2
; hϕDi ¼

ϕD − ϕ̄D

2
: ð9Þ

Inmost cases, the parameters of the antihyperon decays have
not been determined yet. The αD parameter is much easier to
measure than ϕD, since only the polarization of the initial or
final baryon has to be determined. Before 2018, the con-
sensus was that the αD parameters were known accurately.
The BESIII measurement [31,32] has shown that values for
Λ → pπ− and Ξ− → Λπ− were wrong by 17%.
The use of αD and βD parameters provides a symmetric

description of the real and imaginary parts of the S and P
amplitudes. On the other hand, the preferred choice of the
αD and ϕD parameters by the Particle Data Group (PDG) is
motivated experimentally, as the ϕD and αD uncertainties
are approximately uncorrelated. However, the ϕD para-
meter is not directly related to the relative phase between
the S and P amplitudes, since it can be written as

ϕD ¼ arg fðSþ PÞðS� − P�Þg: ð10Þ

In general, we do not need to know the exact values of
the decay parameters to predict the uncertainties of the CPV
observables given in Eq. (4). Many of our results can be
described using approximate analytic formulas where the
dependence on parameters is given explicitly. Furthermore,
in the proposed measurements, the values of the decay
parameters are determined directly together with the CPV
observables and are uncorrelated with each other. For
specific purposes, such as the estimate of the size of the
decay amplitudes in Appendix A, we need the most precise
values of the decay parameters and branching ratios or

TABLE II. Properties of two-body hadronic decays of the ground-state octet hyperons. Branching fractions B are rounded to �0.5%
accuracy. In bold are the values assumed in this report. The motivation for the selection of the specific values is given in the main text.

D B hαDi hϕDi (rad) ACP Comment

Λ → pπ− ½Λp� 64% 0.755ð03Þa −0.113ð61Þb −0.005ð10Þa
0.754(3)(2) � � � −0.006ð12Þð7Þ BESIII [31]
0.721ð6Þð5Þ* � � � � � � CLAS [47]
0.760(6)(3) � � � −0.004ð12Þð9Þ BESIII [32]

Λ → nπ0 ½Λn� 36% 0.692ð17Þc � � � � � � BESIII [31]
Σþ → pπ0 ½Σp� 52% −0.994ð04Þd 0.63ð59Þg −0.004ð37Þd
Σþ → nπþ ½Σn� 48% 0.068ð13Þ* 2.91ð35Þ* � � � PDG [28]
Σ− → nπ− ½Σ−� 100% −0.068ð08Þ* 0.17ð26Þ* � � � PDG [28]
Ξ0 → Λπ0 ½Ξ0� 100% −0.345ð08Þe 0.36ð21Þ* � � � AVG [48,49]
Ξ− → Λπ− ½Ξ−� 100% −0.379ð04Þf −0.042ð16Þ* � � � AVG [28,50]

−0.373ð5Þð2Þ 0.016(14)(7) 0.006ð13Þð6Þ BESIII [32]
*Solely based on the result for hyperons (not antihyperons).
aWeighted average of the results from Refs. [31,32].
bWeighted average of ϕ½Λp� from Refs. [51–53], the same as in PDG [28].
cThe −ᾱ½Λn� value from Ref. [31].
dValue from Ref. [54].
eFrom α½Ξ0�α½Λp� ¼ −0.261ð6Þ [28] divided by αa½Λp�.
fCombination of hα½Ξ−�i [32] and α½Ξ−�α½Λp� ¼ −0.294ð5Þ [28] divided by αa½Λp�.gWeighted average of ϕ½Σp� from Refs. [55,56].

NORA SALONE et al. PHYS. REV. D 105, 116022 (2022)

116022-4



lifetimes. We have made a critical evaluation of the
available data, and the preferred values which we have
selected are given in bold in Table II. Here, we provide a
detailed explanation how some values were determined:

(i) The hα½Λp�i value is the average of the two BESIII
measurements [31,32]. We do not include the result
from CLAS experiment [47] since it does not report
the measurement of hα½Λp�i and would indicate
significant violation of the CP symmetry due to
the statistically inconsistent value with the BESIII
measurement of the antihyperon ᾱ½Λp�. The BESIII
results for αD and ᾱD are correlated and have large
uncertainty separately.

(ii) Since the hϕ½Ξ−�i measured at BESIII [32] differs by
2.6 standard deviations from ϕ½Ξ−� measured by
HyperCP [50], we do not provide the average value
for hϕ½Ξ−�i.

In addition, we will use other results which do not fit to the

format of the table, such as B½Ξ−�
CP , A½Ξ−�

CP þ A½Λp�
CP , or life

times of the cascades. They are introduced and referred to
when we need to use them. For example, for the determi-
nation of the contribution of the ΔI ¼ 3=2 amplitudes, we
use more precise values of the branching fractions from
Ref. [28]: BðΛ → pπ−Þ ¼ 0.639ð5Þ and BðΛ → nπ0Þ ¼
0.358ð5Þ.

B. CP-violation phenomenology

Isospin is not conserved in weak transitions, meaning
that both the isospin vector length and the third component
I3 change in the decay process. In our hyperon decays of
interest, there is effectively a transition from a strange to a
down quark: thus, I3 changes by −1=2. For the total
isospin, the situation is more involved. It is convenient
to classify the weak transition by the isospin ΔI of the
transition operator. Starting with the initial isospin Iini of
the decaying hyperon, the isospin I of the final state can
take values between jIini − ΔIj and Iini þ ΔI. As a result of
these considerations, it is practical to characterize the weak
process by the isospin of the final state I and by the change
of isospinΔI. To explain this distinction, let us consider the
process Ξ− → Λπ− where the initial and final isospins are
1=2 and 1, respectively. This final state can be reached by a
transition with ΔI ¼ 1=2, where the isospins are aligned,
and a transition with ΔI ¼ 3=2, where the isospins are
antialigned. Therefore, the transition amplitudes of the
decomposition should be labeled by both I and ΔI, and we
adopt the notation S2ΔI;2I and P2ΔI;2I .
The transition amplitudes L ¼ S, P can be decomposed

as [22]

L ¼
X
j

Lj exp fiðξLj þ δLj Þg; ð11Þ

where j represents a possible f2ΔI; 2Ig combination, while
ξLj and δLj denote the weak CP-odd phase and the phase of

the combined strong and electromagnetic (EM) final-state
interaction, respectively, and the explicit expressions in the
Λ and Ξ cases are written down in Eqs. (A6) and (A7).
Appendixes B and C provide a justification for the
decomposition in Eq. (11), where the Sj and Pj amplitudes
are real numbers. The final-state interaction phase is
dominated by the phase shifts of the strong elastic rescat-
tering. The isospin-breaking effects in the rescattering due
to hadron mass differences for different charge states are a
few percent. Further contributions can be due to md −mu
terms in the amplitudes and EM interactions of the hadrons,
such as radiative corrections or Coulomb interactions. The
δLj phase can be written as δLj ¼ δL2I þ ΔδLj , where the
correction term ΔδLj includes the isospin-breaking effects
due to EM interactions in the final state. Here, we will
neglect this term, but for future precision studies, it should
be considered similar to how it was for the kaon to two-pion
decays [57].
For the N–π final states, the phases shifts δL2I are well

known. We summarize in Table III the values from
Ref. [58] which are relevant for the Λ and Σ decays.
The Λ − π scattering phase shifts, on the other hand, are
less precisely determined from experiment. In particular,
for Ξ → Λπ, they can be found via the relation
tanðδP2 − δS2Þ ¼ sinϕΞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2Ξ

p
=αΞ, neglecting the weak-

phase difference, where αΞ and ϕΞ are obtainable directly
from the sequential decays. In doing so, we note that the
current ϕΞ data are not all consistent with each other yet, as
pointed out in the preceding subsection. On the theoretical
side, various analyses have produced different results [59–
65], the latest one being δP2 − δS2 ¼ 8.8ð2Þ° [65], which is
compatible with one of the earlier predictions [63] and will

be used in updating the A½Ξ−�
CP prediction.

Now, we discuss signatures of CP violations in the
hyperon decays. They are based on the comparison of the
hyperon decay amplitudes, Eq. (11), with the ones corre-
sponding to the antihyperon c.c. decay,

S̄ ¼ −
X
j

Sj exp fið−ξSj þ δS2IÞg and

P̄ ¼
X
j

Pj exp fið−ξPj þ δP2IÞg; ð12Þ

where the real-number parameters Lj, ξLj and δL2I, (L ¼ S,
P), have the same values for the hyperon and antihyperon

TABLE III. Values of the N–π scattering phase shifts δL2I
relevant for Λ and Σ decays from [58].

jqj
(MeV=c) δS1 (°) δS3 (°) δP1 (°) δP3 (°)

Λ → Nπ 103 6.52(9) −4.60ð7Þ −0.79ð8Þ −0.75ð4Þ
Σ → Nπ 190 9.98(23) −10.70ð13Þ −0.04ð33Þ −3.27ð15Þ
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decays. The isospin-decomposition relations obtained in
Appendix A can be applied to the c.c. decays of anti-
hyperons. A priori, up to three independent observables can
be used to compare properties of a decay to the c.c. one.
The first observable is the difference between the partial
decay widths

ΔCP ≔
Γ − Γ̄
Γþ Γ̄

: ð13Þ

In theΔI ¼ 1=2 limit, theΔCP observable is exactly zero and
cannot be used to testCP symmetry. In addition, forΞ → Λπ,
the isospin of the final Λ–π state is I ¼ 1, and there is only
one strong phase for each of the S and P amplitudes. This
implies that the corresponding ΔCP is zero even if the weak
transition includes jΔIj ¼ 3=2 operators. However, the ΔCP
test is possible for Λ → Nπ, as the final state can have I ¼
1=2 or3=2. For the twoΛ-decaymodes, to lowest order in the
ΔI ¼ 3=2 amplitudes, starting from Eq. (A6), we have the

relation 2Δ½Λp�
CP ¼ −Δ½Λn�

CP ¼ 2
ffiffiffi
2

p
ΔCP with

ΔCP ¼
P1;1P3;3 sinðξP1;1 − ξP3;3Þ sinðδP1 − δP3 Þ þ S1;1S3;3 sinðξS1;1 − ξS3;3Þ sinðδS1 − δS3Þ

P2
1;1 þ S21;1

: ð14Þ

This requires two weak and two strong phases either in the S amplitude, as in the kaon decays, or in the P amplitude. The
precision of the test is suppressed by the small jΔIj ¼ 3=2 amplitudes and by the term containing the sinus of the small strong
phases. Therefore, such a test is not competitive, and we will not discuss it further.
The remaining two CP tests involve the AD

CP and B
D
CP observables defined in Eq. (4). If one works to leading order in the

weak phases, BD
CP can also be expressed as

BD
CP ¼ ΦD

CP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hαDi2

p
hαDi

coshϕDi − AD
CP

hαDiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hαDi2

p sinhϕDi; ð15Þ

where hαDi and hϕDi were defined in Eq. (9) and

ΦD
CP ≔

ϕD þ ϕ̄D

2
ð16Þ

is based on the spin-rotation decay parameter ϕD. In a large
acceptance experiment, the decay parameters α and ϕ are
uncorrelated, as are the CPV tests based on the AD

CP and
ΦD

CP variables.
Contrary to the CP violation in KL;S → ππ, where ΔI ¼

1=2 and ΔI ¼ 3=2 amplitudes are both consequential, the
dominant effect in hyperons can be studied using only the
ΔI ¼ 1=2 amplitudes. The corrections to the CPV effect
studied in this approximation will be a few percent, as given
by the size of the P3 and S3 amplitudes. This is sufficient
for the precision expected at SCTF. If a better precision is
required, one can construct isospin averages of the observ-
ables from different isospin modes to recover the results in
the ΔI ¼ 1=2 limit. Such averages are constructed from
the isospin decomposition of a given decay process
(channel)—for more details, we refer to Appendix A.
For Ξ, up to the linear terms in the ΔI ¼ 3=2 amplitudes,
they amount to

BΞ
CP ≔

2B½Ξ−�
CP þ B½Ξ0�

CP

3
¼ tanðξP1;2 − ξS1;2Þ; ð17Þ

AΞ
CP ≔

2A½Ξ−�
CP þ A½Ξ0�

CP

3
¼ − tanðξP1;2 − ξS1;2Þ tanðδP2 − δS2Þ;

ð18Þ

and for Λ,

BΛ
CP ≔

2B½Λp�
CP þ B½Λn�

CP

3
¼ tanðξP1;1 − ξS1;1Þ; ð19Þ

AΛ
CP ≔

2A½Λp�
CP þ A½Λn�

CP

3
¼ − tanðξP1;1 − ξS1;1Þ tanðδP1 − δS1Þ:

ð20Þ

The leading-order correction for the two isospin states of
the cascades is

B½Ξ−�
CP −B½Ξ0�

CP ¼−
3

2

�
P3;2

P1;2
sinðξP1;2−ξP3;2Þ−

S3;2
S1;2

sinðξS1;2−ξS3;2Þ
�
;

A½Ξ−�
CP −A½Ξ0�

CP ¼−ðB½Ξ−�
CP −B½Ξ0�

CP ÞtanðδP2 −δS2Þ; ð21Þ

which implies that, even if the LOΔI ¼ 3=2 corrections are
included, the A and B tests are still connected—giving the
same combination of the weak phases. For the Λ decays,
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such a relation is not valid, and the A- and B-type variables
provide independent information on the weak-phase com-
binations. We will not discuss this case, since the B-type
observables cannot be measured with the standard tech-
niques available at the electron-positron collider experi-
ments. A combination of the CP tests for the isospin related
channels allows for an increased statistical significance of
the tests. Such an approach is feasible at SCTF for the Ξ
and Λ decays, since all the decay parameters for (anti)
cascade and the α parameters for Λ can be measured.
A simpler approach is to treat each decay mode sepa-

rately when comparing decay parameters for the hyperon
and, from the c.c. decay, for the antihyperon. In the
ΔI ¼ 1=2 approximation, we can write

S ¼ jAj sin ζ expðiξS þ iδSÞ;
S̄ ¼ −jAj sin ζ expð−iξS þ iδSÞ;
P ¼ jAj cos ζ exp ðiξP þ iδPÞ;
P̄ ¼ jAj cos ζ expð−iξP þ iδPÞ; ð22Þ

where 0 ≤ ζ ≤ π, ξSðξPÞ is the weak CP-odd phase for the
ΔI ¼ 1=2 transition and δSðδPÞ is the strong sðpÞ-wave
baryon-pion phase shift at the c.m. energy corresponding to
the hyperon mass. The structure of Eq. (22) can be justified,
if one assumes that the complete decay process can be split
up into the decay itself where one does not resolve the
intrinsic structure and a final-state interaction that con-
serves P andC separately. If one does not resolve the space-
time structure of the initial decay, then one can use an
effective Hermitian Lagrangian to describe the decay, and
one just reads off the relations S̄ini ¼ −S�ini and P̄ini ¼ P�

ini.
More details are given in Appendix B. The final-state
interaction can be described by a 4 × 4 Omnès-function
matrix that is applied to the four initial amplitudes; see also
Appendix C. If P (and baryon number) is conserved, then
this matrix is diagonal. If C is conserved, then the entries
are pairwise the same for the particle and antiparticle.
Without inelasticities, Watson’s theorem [66] identifies the
phases with the scattering phase shifts. The decay para-
meters ðα; β; γÞ and ðᾱ; β̄; γ̄Þ1 are then given as

α ¼ sinð2ζÞ cosðξP − ξS þ δP − δSÞ;
ᾱ ¼ − sinð2ζÞ cosð−ξS þ ξP þ δS − δPÞ; ð23Þ

β ¼ sinð2ζÞ sinðξP − ξS þ δP − δSÞ;
β̄ ¼ − sinð2ζÞ sinð−ξP þ ξS þ δP − δSÞ; ð24Þ

γ ¼ − cosð2ζÞ; γ̄ ¼ − cosð2ζÞ: ð25Þ

Without final-state interactions, αþ ᾱ is always zero, and
ACP does not constitute an observable that can indicate CP
violation, while BCP ¼ tanðξP − ξSÞ does. One needs CP
violation and final-state interactions to make ACP different
from zero. In the presence of final-state interactions, β ≠ 0
does not necessarily indicate CP violation, but BCP still
does. The CPV tests based on the ACP and BCP (and ΦCP)
observables can be expressed using Eq. (22) as

ACP ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p

α
sinϕ tanðξP − ξSÞ ð26Þ

¼ − tanðδP − δSÞ tanðξP − ξSÞ; ð27Þ

BCP ¼ tanðξP − ξSÞ; ð28Þ

ΦCP ¼
αffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − α2
p cosϕ tanðξP − ξSÞ: ð29Þ

Therefore, the tests are not independent as they are related
to the same ξP − ξS combination of the CP-odd weak
phases. For single-step decays of the singly strange
baryons, measurement of the BCPðΦCPÞ would require a
dedicated detector to determine the daughter-nucleon
polarization. Therefore, for the Λ and Σ hyperon decays,
we consider only the ACP observable measurements. In this
case, the weak phases are determined by Eq. (27) using the
well-known values of the strong N–π phases. Since the
strong phases δP and δS, representing the final-state
interaction between the baryon and pion, are small, the
BCP observable provides much better determination of the
weak-phase difference than ACP. This statement assumes
that the uncertainties of the ACP and BCP (or ΦCP)
measurements are comparable. In Sec. VI, we will discuss
strategies for the simultaneous measurement of the two
observables in the cascade decays.

C. Status of the CPV predictions

In this subsection, we review the estimates of CPV
signals for the decay channels Λ → pπ− and Ξ− → Λπ−,
commonly considered to be the most sensitive modes. In
the experimental study of the latter, the former is used as the
subsequent process. The SM contributions to ξP − ξS for
the two decay modes are shown in the third column of
Table IV. These predictions are both Oð10−4Þ, taking into
account the substantial uncertainties which are related to
our present lack of ability to explain simultaneously the s
and p waves of hyperon nonleptonic decays [26]. The
second column of this table contains ξP − ξS divided by
ηλ5A2, which is a product of the Wolfenstein parameters for
the Cabibbo-Kobayashi-Maskawamatrix and has a value of
1.36ð7Þ × 10−4 according to the most recent PDG report
[28]. The SM entries in this table are updates of the
corresponding numbers found in Ref. [26] and are some-
what modified with respect to the latter, mainly because of

1In the remaining part of this section, we simplify the notation
by omitting subscript D for the decay parameters.
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our use of the (boldfaced) new α results for Λ → pπ− and
Ξ− → Λπ− quoted in Table II.
To compare the theoretical ACP with its most precise

measurements to date given in Table II requires multiplica-
tion of the calculated ξP − ξS by the strong-interaction
parameters, as indicated in Eqs. (26) and (27), an extra step
which increases the experimental uncertainty and/or
decreases the precision of the predictions. Nevertheless,
from Eq. (28), we expect that future measurements of BCP
can directly determine ξP − ξS with good precision. For
Λ → pπ−, the strong phases pertaining to Eq. (27) are δS1 ¼
0.11ð2Þ rad and δP1 ¼ −0.014ð1Þ rad from Table III. For
Ξ− → Λπ−, the strong-phase difference can be extracted
experimentally using the methods discussed in this paper.
However, since β½Ξ−� is not yet well measured, the α½Ξ−� data
cannot be used to obtain δP2 − δS2 with good precision via
β½Ξ−� ¼ α½Ξ−� tanðδP2 − δS2Þ. To update the prediction for

A½Ξ−�
CP , we adopt instead the theoretical value δP2 − δS2 ¼

8.8ð2Þ deg computed in Ref. [65]. Putting together theweak

and strong phases, we then arrive at the SM ranges −3×
10−5 ≤A½Λp�

CP ≤ 3×10−5 and 0.5 × 10−5 ≤ A½Ξ−�
CP ≤ 6 × 10−5,

which are below their respective experimental bounds
inferred from Table II by more than 2 orders of magnitude.
Measurements on hyperon CPVand its kaon counterpart

are complementary to each other because they do not probe
the underlying physics in the same way. As mentioned
above, in the context of the SM, the direct-CPV parameter
ϵ0 in the kaon decay K → ππ arises from both jΔIj ¼ 1=2
and jΔIj ¼ 3=2 transitions, where the CP-odd phases come
from the QCD, Fig. 1(a), and electroweak, Fig. 1(b),
penguin contributions, respectively, all of which are
induced by effective four-quark operators. There is a
delicate balance and cancellation between the two contri-
butions. In the hyperon case, the CPV signal of interest
here, such as measured by ACP or BCP, mainly comes from
jΔIj ¼ 1=2 transitions and is dominated by the QCD
penguins.
In the presence of physics beyond the SM (BSM), there

might be new ingredients causing other types of quark
operators to appear and generate effects that are enhanced

relative to the SM contributions. This possibility can be
realized, for instance, by the so-called chromomagnetic-
penguin operators, which contain a ds quark bilinear
coupled to gluon fields and could be influenced by sizeable
new physics in various models [67–72]. The parity-odd and
parity-even portions of the operators contribute to ϵ0 and the
CPV parameter ϵ in neutral-kaon mixing, respectively, and
both parts simultaneously affect ξP − ξS. Model independ-
ently, one can derive a general relation between the
contributions of these operators to the hyperon weak-phase
difference and kaon observables [67],

ðξP − ξSÞBSM ¼ C0
B

BG

�
ϵ0

ϵ

�
BSM

þ CB

κ
ϵBSM; ð30Þ

which further illustrates the complementarity of hyperon
and kaon processes. The values of CB and C0

B, updated
from their counterparts evaluated in Ref. [67], are given in
Table IV; BG parametrizes the hadronic uncertainty, and κ
quantifies the contribution of meson poles. The allowed
ranges of ðϵ0=ϵÞBSM and ϵBSM can be estimated by compar-
ing the experimental values of Reðϵ0=ϵÞ and jϵj with the
recent SM predictions [73–75]. Following Ref. [75], we
impose���� ϵ0ϵ

����
BSM

≤ 1 × 10−3; jϵjBSM ≤ 2 × 10−4: ð31Þ

Accordingly, using 0.5 < BG < 2 and 0.2 < jκj < 1 [71],

we find that the kaon data imply the limits jξP − ξSj½Λp�BSM ≤
5.4 × 10−3 and jξP − ξSj½Ξ−�BSM ≤ 3.7 × 10−3. Additionally,

we arrive at jA½Λp�
CP þ A½Ξ−�

CP jBSM ≤ 11 × 10−4, and therefore
the upper end of this range is already in tension with the
aforementioned HyperCP limit [27]. Clearly, hyperon CPV
measurements with much improved precision will provide
an independent constraint on the BSM contributions in the
strange quark sector. However, a lot also remains to be done
on the theory side, as the predictions presently suffer from
considerable uncertainties. It is hoped that lattice QCD
analyses [76] in the future could help solve this problem.

D. Experimental status of CPV tests

The dedicated CPV experiment HyperCP (E871) at
Fermilab [77], operating between 1996 and 1999, set the
world’s best upper limits on hyperonCP violation using the
Ξ− → Λπ → pπ−π− decay sequence. A secondary cascade
beam was produced by having 800 GeV=c primary protons
interacting with a copper target. The sum of the asymme-

tries A½Ξ−�
CP þ A½Λp�

CP ¼ 0ð5Þð4Þ × 10−4 [27] was determined
with a data sample of 117 × 106 Ξ− and 41 × 106 Ξ̄þ using

unpolarized cascades. A preliminary result A½Ξ−�
CP þ A½Λp�

CP ¼
−6ð2Þð2Þ × 10−4 based on the full data sample of 862 ×
106Ξ and 230 × 106Ξ̄ was presented at the BEACH2008

TABLE IV. Weak-phase differences in hyperon decays. (left)
Standard-model predictions and (right) parameters CB and C0

B
used in Eq. (30) to relate the weak-phase differences in hyperon
decays to the beyond SM (BSM) constraints from kaon CPV
observables. The SM and BSM entries are updates of the
corresponding numbers obtained in Refs. [26,67], respectively,
as explained in the main text.

ξP − ξS
CB C0

Bðηλ5A2Þ [10−4 rad]

SM BSM

Λ → pπ− −0.1� 1.5 −0.2� 2.2 0.9� 1.8 0.4� 0.9
Ξ− → Λπ− −1.5� 1.2 −2.1� 1.7 −0.5� 1.0 0.4� 0.7
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conference [78]. Since the final result was never published,
one can suspect that an inherent problem in understanding
the systematic effects at the level of 4 × 10−4 was found.
The HyperCP has also measured the most precise value of
ϕ½Ξ−�, see Table II, using 144 × 106 Ξ− events with average
polarization of ∼5% [50]. The drawback of the HyperCP
experimental method is the charge-conjugation-asymmetric
production mechanism and the need to use separate runs
with different settings for the baryon and antibaryon
measurements. Furthermore, the accuracy of the ϕ½Ξ−�
parameter determination was limited by the low value of
the Ξ−-beam polarization.
The most recent results, marked by bold font in Table II,

come from the proof-of-concept measurements [31,32,54]
at BESIII using a novel method [45,46,79]. These results
have been obtained using collisions of unpolarized electron
and positron beams at the c.m. energy corresponding to the
J=ψ resonance. The relevant properties of the J=ψ → BB̄
processes are given in Table V. Given the relatively large
branching fractions and low hadronic background, these
eþe− experiments are well suited for CPV tests. Two
different analysis methods can be used: exclusive meas-
urement [double tag (DT)], where the decay chains of the
baryon and antibaryon are fully reconstructed, and inclu-
sive measurement [single tag (ST)], where only the decay
chain of the baryon or antibaryon is reconstructed. For the
ST analysis, the two-body production process is uniquely
identifiable, and its kinematics is fully determined using
missing energy/mass technique. Of importance for all single-
step weak decays, e.g., Λ → pπ−, is that the Λ and Λ̄ are
producedwith a transverse polarization. Thepolarization and
the spin correlations allow for a simultaneous determination
of α and ᾱ, with the method proposed in Ref. [79]. The
currently available results for J=ψ → ΛΛ̄ [31], J=ψ →
ΣþΣ̄− [54], and J=ψ → Ξ−Ξ̄þ [32] use 1.3 × 109 J=ψ data
with 4.2 × 105 (background 400 events), 8.8 × 104 (back-
ground 4.4 × 103 events), and 7.3 × 104 (background 200
events) selected DT candidates, respectively. The final-state
charged particles aremeasured in themain drift chamber [and
the calorimeter for the photons from the Σþ → pπ0ð→γγÞ
decay], where a superconducting solenoid provides the
magnetic field for momentum determination of the pions
and (anti)protons with an accuracy of 0.5% at 1.0 GeV=c

[37]. The pions and protons have distinctly different momen-
tum ranges, making particle identification straightforward in
the DT-type measurements. The analyses of the already
collected 1010 J=ψ data by BESIII have not been finished
yet, but one can expect a threefold reduction of the statistical
uncertainties as shown in Table I.

III. FORMALISM

A. Production process

We start from a description of baryon-antibaryon pro-
duction in electron-positron annihilations with a polarized
electron beam. The production process eþe− → BB̄,
viewed in the c.m. frame, defines the z axis, which is
chosen along the positron momentum shown in Fig. 2. We
consider production of a spin-1=2 baryon-antibaryon pair
in electron-positron annihilation with a longitudinally
polarized electron beam. Neglecting the electron mass
and assuming the one-photon approximation, the helicities
of the electron (λ) and positron (λ̄) have to be opposite since
the photon only couples right-handed particles to left-
handed antiparticles and vice versa. The numbers of right-
handed (nR) and left-handed (nL) electrons in the beam
with longitudinal polarization Pe are

nR ¼ n− ·
1þ Pe

2
and nL ¼ n− ·

1 − Pe

2
; ð32Þ

where n− ¼ nR þ nL is the total number of electrons.
The two helicity configurations where the annihilation is
possible are λ ¼ þ1=2; λ̄ ¼ −1=2 (λz ¼ −1) and λ ¼
−1=2; λ̄ ¼ þ1=2 (λz ¼ 1). For the collisions with un-
polarized positrons, the relative weights of the two con-
figurations are ð1þ PeÞ=2 and ð1 − PeÞ=2, respectively.
Therefore, the spin density of the initial electron-positron
system can be written as

ρi;j1 ðθÞ≔ 1þPe

2
d1�−1;iðθÞd1−1;jðθÞþ

1−Pe

2
d1�1;iðθÞd11;jðθÞ;

ð33Þ
where the quantization axis is along the B momentum. The
density matrix for the production process is the sum of the

TABLE V. Properties of the eþe− → J=ψ → BB̄ decays to the
pairs of ground-state octet hyperons.

Final state Bð×10−4Þ αψ ΔΦ (rad) Comment

ΛΛ̄ 19.43(3) 0.461(9) 0.740(13) [31,80]
ΣþΣ̄− 15.0(24) −0.508ð7Þ −0.270ð15Þ [54,81]
Σ−Σ̄þ � � � � � � � � � —no data—
Σ0Σ̄0 11.64(4) −0.449ð20Þ � � � [80]
Ξ0Ξ̄0 11.65(43) 0.66(6) � � � [82]
Ξ−Ξ̄þ 9.7(8) 0.586(16) 1.213(48) [28,32]

FIG. 2. Orientation of the three coordinate systems used in the
analysis. The axes in the baryon B and antibaryon B̄ rest (helicity)
frames are ðx̂1; ŷ1; ẑ1Þ and ðx̂2; ŷ2; ẑ2Þ, respectively. They are
related as ðx̂2; ŷ2; ẑ2Þ ¼ ðx̂1;−ŷ1;−ẑ1Þ. In the overall c.m. frame,
the ẑ axis is along the positron momentum.
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contributions from the two helicities (see Eq. (14) in
Ref. [45])

ρ
λ1;λ2;λ01;λ

0
2

BB̄ ∝ Aλ1;λ2A
�
λ0
1
;λ0

2
ρ
λ1−λ2;λ01−λ

0
2

1 ðθÞ ð34Þ

with the reduced density matrix ρ1 given by

1

2

0
BBB@

1þcos2θ
2

−Pecosθ
ðPe−cosθÞsinθffiffi

2
p sin2θ

2

ðPe−cosθÞsinθffiffi
2

p sin2θ ðPeþcosθÞsinθffiffi
2

p

sin2θ
2

ðPeþcosθÞsinθffiffi
2

p 1þcos2θ
2

þPecosθ

1
CCCA: ð35Þ

The four a priori possible helicity amplitudes reduce to
only two, h1 ≔ A−1=2;−1=2 ¼ A1=2;1=2 and h2 ≔ A1=2;−1=2 ¼
A−1=2;1=2. If one focuses on the not normalized angular
distribution of the production process, the relevant infor-
mation contained in the two complex form factors h1 and
h2 can be expressed using only two real parameters. Hence,

disregarding the overall normalization, the magnitudes of
the two form factors can be represented as jh1j ¼ cos χ and
jh2j ¼

ffiffiffi
2

p
sin χ, where 0 ≤ χ ≤ π=2. In addition, the rel-

ative phase between the form factors can be defined as
ΔΦ ≔ argðh1=h2Þ. The general expression for the joint
density matrix of the BB̄ pair is

ρBB̄ ¼
X3
μ;ν¼0

Cμνσ
B
μ ⊗ σB̄ν ; ð36Þ

where a set of four Pauli matrices σBμ ðσB̄ν Þ in the BðB̄Þ rest
frame is used and Cμν is a 4 × 4 real matrix representing
polarizations and spin correlations of the baryons. The
orientation of the coordinate systems in the baryon rest
frames is defined in Fig. 2. The axes are denoted as
x̂1; ŷ1; ẑ1 and x̂2; ŷ2; ẑ2. The elements of the Cμν matrix
are functions of the production angle θ of the B baryon:

3

3þ αψ
·

0
BBBBB@

1þ αψ cos2 θ γψPe sin θ βψ sin θ cos θ ð1þ αψÞPe cos θ

γψPe sin θ sin2 θ 0 γψsin θ cos θ

−βψsin θ cos θ 0 αψ sin2 θ −βψPe sin θ

−ð1þ αψ ÞPe cos θ −γψsin θ cos θ −βψPe sin θ −αψ − cos2 θ

1
CCCCCA; ð37Þ

where the real parameters αψ , βψ , and γψ are expressed in terms of the previously defined χ and ΔΦ as

αψ ≔ − cosð2χÞ; βψ ≔ sinð2χÞ sinðΔΦÞ; γψ ≔ sinð2χÞ cosðΔΦÞ ð38Þ

and α2ψ þ β2ψ þ γ2ψ ¼ 1. The B-baryon angular distribution is

1

σ

dσ
dΩB

¼ 3

4π

1þ αψ cos2 θ

3þ αψ
: ð39Þ

This relation determines the normalization factor in Eq. (37). The B-baryon polarization vector PB defined in the rest frame
of baryon B, coordinates ðx̂1; ŷ1; ẑ1Þ, is

PB ≔
C10x̂1 þ C20ŷ1 þ C30ẑ1

C00

¼ γψPe sin θx̂1 − βψsin θ cos θŷ1 − ð1þ αψ ÞPe cos θẑ1
1þ αψ cos2 θ

: ð40Þ

In the chosen helicity frames, one has C01 ¼ C10,
C02¼−C20,C03¼−C30 andPB̄¼ðC01x̂2þC02ŷ2þC03ẑ2Þ=
C00. Therefore, the polarizationvectors of the baryon and the
antibaryon are equal and have the same direction, PB̄ ¼ PB.
In the limit of large c.m. energies (HE), where αψ ¼ 1 and
βψ ¼ γψ ¼ 0 [83], the baryon can only have the longitudinal
polarization component PBẑ1 ¼ 2Pe cos θ=ð1þ cos2 θÞ. In

the low energy (LE) limit (close to threshold), αψ ¼ 0 and
ΔΦ ¼ 0, implying βψ ¼ 0, γψ ¼ 1, and PB ¼ Peðsin θx̂1þ
cos θẑ1Þ. Therefore, the value of the baryon polarization is
equal to the initial electron beam polarization in this
case. Figure 3 shows the production-angle dependence of
the baryon-polarization magnitude in the eþe− → J=ψ →
ΛΛ̄, eþe− → J=ψ → Ξ−Ξ̄þ and eþe− → J=ψ → ΣþΣ̄−

NORA SALONE et al. PHYS. REV. D 105, 116022 (2022)

116022-10



processes for three different values of the electron-beam
polarization. The values of the αψ and ΔΦ parameters from
Table V are used.
For the determination of the uncertainties of the CPV

tests, the following tensor hC2iμν representing properties of
the production process will be needed:

hC2iμν ≔
1

4π

Z
C2
μν

C00

dΩB ¼ 1

2

Z
1

−1

C2
μν

C00

d cos θ: ð41Þ

The production tensor is symmetric and positively
defined. In addition, hC2i00 ¼ 1. For example, it can be
used to express the mean-squared polarization hP2

Bi of the
B-baryon defined as

hP2
Bi ¼

Z
P2
B

�
1

σ

dσ
dΩB

�
dΩB ¼

X3
i¼1

hC2
i0i: ð42Þ

This integral can be calculated exactly, and the result can be
expressed as a linear function of the electron polarization
squared P2

e,

hP2
Bi ¼ p0 þ p2P2

e; ð43Þ

where the expressions for coefficients p0 and p2 are given
in Appendix D. As we will show later, hP2

Bi determines the
uncertainty of the ACP and ΦCP measurement. The results
for

ffiffiffiffiffiffiffiffiffiffi
hP2

Bi
p

are shown in Fig. 4. We will use the following
notation for the polarization and spin-correlation contribu-
tions of the production-process tensor:

hP2
Bi ≔

X3
i¼1

ðhC2ii0 þ hC2i0iÞ ¼ 2hP2
Bi

hS2
BB̄i ¼

X3
i;j¼1

hC2iij: ð44Þ

The values of the hP2
Bi and hS2

BB̄i terms as function of Pe

are shown in Fig. 5 for some processes which are discussed
later. The dependence on the Pe is much stronger for the
polarization terms than for the spin-correlation terms.
As we will show in Secs. IV and V, the sizes of the

FIG. 3. Magnitudes of the hyperon polarization as a function of the production angle for (a) Λ, (b) Ξ−, and (c) Σþ for the electron beam
polarizations Pe ¼ 0, 0.8, 1 (solid, dashed, and dotted lines, respectively). The αψ and ΔΦ values are taken from Table V.

FIG. 4. Average polarization
ffiffiffiffiffiffiffiffiffiffi
hP2

Bi
p

for Λ (solid line), Ξ− (dashed line), Σþ (dot-dashed line), and high-energy limit (dotted line) as a
function of electron beam polarization is shown in panel (a). In panel (b), the quantity

ffiffiffiffiffiffiffiffiffiffi
hP2

Bi
p

− Pe is plotted to facilitate a more precise
comparison. The low-energy limit corresponds to PB ¼ Pe.
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contributions determine the precision of the CPV
observables.

B. Joint angular distributions

The complete joint angular distributions for a production
process eþe− → BB̄ followed by weak two-body decays of
the hyperon B and the antihyperon B̄ can be obtained using
the modular framework from Ref. [45]. For a single-step

decay DðB → bπÞ and the corresponding c.c. decay mode
D̄ðB̄ → b̄ π̄Þ, like eþe− → J=ψ → ΛΛ̄ with Λ → pπ− and
Λ̄ → p̄πþ, the joint angular distribution,

PDD̄ðξ;ωÞ ≔ 1

Γ
dΓ
dξ

; ð45Þ

is

PDD̄ðξ;ωÞ ¼ 1

ð4πÞ3
X3
μ;ν¼0

CμνðΩB;αψ ;ΔΦ; PeÞaDμ0ðΩb; αDÞaD̄ν0ðΩb̄; ᾱDÞ: ð46Þ

There are five global parameters to describe the complete
angular distribution, and they are represented by the vector
ω ≔ ðαψ ;ΔΦ; Pe; αD; ᾱDÞ. The vector ξ ≔ ðΩB;Ωb;Ωb̄Þ
represents a complete set of the kinematic variables
describing a single-event configuration in the six-
dimensional phase space.
We use helicity angles to parametrize the multidimen-

sional phase space. These are spherical coordinates in the
helicity reference frames of the baryons, defined as follows.
In the B baryon rest frame with the z axis defined by the
unit vector ẑB, the direction of the b baryon momentum is
denoted as p̂b. The b-baryon helicity system is the b rest
frame where the orientation of the Cartesian coordinate
system is given by the unit vectors:

x̂b¼
ẑB× p̂b

jẑB× p̂bj
× p̂b; ŷb ¼

ẑB× p̂b

jẑB× p̂bj
and ẑb¼ p̂b: ð47Þ

The production is described by the spin-correlationmatrix
CμνðΩB; αψ ;ΔΦ; PeÞ in Eq. (37) and the 4 × 4 decay

matrices aDμ0 ≔ aDμ0ðΩb; αDÞ and aD̄ν0 ≔ aD̄ν0ðΩb̄; ᾱDÞ. The
decay matrices aDμν represent the transformations of the spin
operators (Pauli matrices) σBμ and σbν defined in the B and b
baryon helicity frames, respectively [45]:

σBμ →
X3
ν¼0

aDμνσbν : ð48Þ

FIG. 5. Polarization hP2
Bi (solid lines) and spin-correlation terms hS2

BB̄i (dashed lines) of the eþe− → BB̄ processes: (a) J=ψ → ΛΛ̄,
(b) J=ψ → ΞΞ̄, (c) J=ψ → ΣΣ̄, (d) low-energy limit, and (e) high-energy limit.

NORA SALONE et al. PHYS. REV. D 105, 116022 (2022)

116022-12



The explicit form of the aDμνðΩ; αD; βD; γDÞ ↔ aDμνðfθ;φg; αD; βD; γDÞ matrix, representing the polarization vector trans-
formation from Eq. (7) in our framework, is

0
BBB@

1 0 0 αD

αD sin θ cosφ γD cos θ cosφ − βD sinφ −βD cos θ cosφ − γD sinφ sin θ cosφ

αD sin θ sinφ βD cosφþ γD cos θ sinφ γD cosφ − βD cos θ sinφ sin θ sinφ

αD cos θ −γD sin θ βD sin θ cos θ

1
CCCA: ð49Þ

For the single-step processes, only the first column aμ0ðΩ; αDÞ is used, and it depends only on the decay parameter αD.
For the processes with two-step decays like eþe− → ΞΞ̄ with Ξ → Λπ, Λ → pπ−þ c.c., the joint angular distribution

reads

PΞΞ̄ðξΞΞ̄;ωΞÞ ¼
1

ð4πÞ5
X3
μ;ν¼0

Cμν

�X3
μ0¼0

aΞμμ0a
Λ
μ00

��X3
ν0¼0

aΞ̄νν0a
Λ̄
ν00

�
; ð50Þ

where ξΞΞ̄ ≔ ðΩΞ;ΩΛ;ΩΛ̄;Ωp;Ωp̄Þ and ωΞ ≔ ðαψ ;ΔΦ;
Pe; αΞ; ᾱΞ;ϕΞ; ϕ̄Ξ; αΛ; ᾱΛÞ—the phase space has ten
dimensions, and there are nine global parameters.
The ST distributions are obtained by integrating out the

unmeasured variables. For example, the ST angular dis-
tribution of the B baryon measurement for single sequence
decays Eq. (46) is

PDðξb;ωÞ ¼
1

ð4πÞ2
X3
μ¼0

Cμ0 · aDμ0

¼ 1

ð4πÞ2 C00 · ð1þ αDPB · p̂bÞ; ð51Þ

where ξB ≔ ðΩB;ΩbÞ and PB is given by Eq. (40). For the
reference for comparing the ST uncertainties to the DT
measurements with N reconstructed events, we will use a
set of two independent ST experiments where the baryon
and antibaryon decays are analyzed with N reconstructed
events each.

C. Asymptotic maximum likelihood method

The importance of the individual parameters ωk in the
joint angular probability density functions (PDFs) of
Eqs. (46) and (50) and their correlations are studied using
an ideal asymptotic maximum likelihood method, dis-
cussed in Ref. [46]. The method allows one to reliably
estimate the statistical accuracy of the determined global
parameters in experiments with large acceptance detectors.
The asymptotic expression of the inverse covariance

matrix element kl between parameters ωk and ωl of the
parameter vector ω is given by the Fisher information
matrix [84],

Iðωk;ωlÞ ≔ N
Z

1

P
∂P
∂ωk

∂P
∂ωl

dξ; ð52Þ

where N is the number of events in the final selection.2 The
calculated values are used to construct the matrix, which is
inverted to obtain the covariance matrix V ¼ I−1 for the
parameters. Since asymptotically, in the case of negligible
background, the statistical uncertainties given by the
standard deviations (SDs), σðωkÞ, are inversely propor-
tional to the square root of the number of the reconstructed
signal events N, we will use the product

σCðωkÞ ≔ σðωkÞ ×
ffiffiffiffi
N

p
; ð53Þ

and call it SD coefficient or normalized statistical uncer-
tainty. It allows for a comparison of the precision of
different estimators for a given number of reconstructed
events. In most cases, the integral Eq. (52) has to be
calculated numerically. However, in this approach, the
explicit dependence on the production and decay param-
eters is hidden, and the calculations have to be repeated for
each parameter set. Therefore, we have constructed analytic
approximations, which are presented and discussed in the
two following sections.

IV. SINGLE-STEP DECAYS

We derive an approximate analytic solution for standard
deviation of the ACP measured in a single-step processes
described by the PDF in Eq. (46). The straightforward
method is to determine all elements of the 5 × 5 inverse
covariance matrix corresponding to the parameter vector
ω ¼ ðαψ ;ΔΦ; Pe; αD; ᾱDÞ, invert the matrix, and use error

2In Appendix E, we show how our results should be modified
when there is a significant fraction of background events.
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propagation to determine the variance VarðACPÞ. If the
parameter vector can be changed to include the ACP
observable and to have the remaining parameters uncorre-
lated, then the variance VarðACPÞ will be simply given as
the inverse of the corresponding information matrix
element

1

VarðACPÞ
¼ IðACPÞ ≔ N

Z
1

PDD̄

�
∂PDD̄

∂ACP

�2

dξ: ð54Þ

Such parametrization can be constructed using the hαDi and
ACP parameters and expressing αD ¼ hαDið1þ ACPÞ and
ᾱD ¼ −hαDið1 − ACPÞ. The new parameter set leads to the
expression for the partial derivative of PDD̄ with respect to
ACP (taken at ACP ¼ 0),

∂PDD̄

∂ACP
¼ hαDi

V

X3
μ;ν¼0

Cμν

�
∂aDμ0
∂αD

aD̄ν0 þ aDμ0
∂aD̄ν0
∂ᾱD

�
ð55Þ

¼ αD
V

C00ðPB · p̂b − PB̄ · p̂b̄Þ; ð56Þ

where V ≔
R
dξ ¼ R

dΩBdΩbdΩb̄ ¼ ð4πÞ3 and hαDi ¼ αD
in the ACP ¼ 0 limit. To calculate the information IðACPÞ,
we will use the representation for the P PDF,

Pðξ;ωÞ ≔ C00

1þ Gðξ;ωÞ
V

; ð57Þ

where
R
Gdξ ¼ 0 and G ≥ −1. In addition, all terms

included in the function G are multiplied by �αD, and
for small values of jαDj are suppressed. Therefore, it is not
unreasonable to use the expansion of 1=ð1þ GÞ to approxi-
mate 1=P:

1

P
¼ V

C00

1

1þ G
¼ V

C00

X∞
i¼0

ð−GÞi ð58Þ

and

Iðωk;ωlÞ ≔ I0ðωk;ωlÞ þ
X∞
i¼1

ð−1ÞiΔI iðωk;ωlÞ ð59Þ

with

I0ðωk;ωlÞ ≔ N
Z

V
C00

∂P
∂ωk

∂P
∂ωl

dξ; ð60Þ

ΔI iðωk;ωlÞ ≔ N
Z

V
C00

Gi ∂P
∂ωk

∂P
∂ωl

dξ: ð61Þ

We can always compare this analytic result using one or
more terms of the expansion with the full numerical
calculations. The hope is that the analytic approximation

reproduces main features of the exact solution. If it does, it
will facilitate understanding how the uncertainties depend
on the global parameters. We start by considering the 0th
term of the above expansion, V=C00, that leads to the
following information:

I0ðACPÞ ¼ N
Z

V
C00

�
∂PDD̄

∂ACP

�2

dΩBdΩbdΩb̄ ð62Þ

¼ N
α2D
V

Z
C00ðPB · p̂b − PB̄ · p̂b̄Þ2dΩBdΩbdΩb̄: ð63Þ

Integration overΩb andΩb̄ simplifies due to orthonormality:Z
ðPB · p̂b − PB̄ · p̂b̄Þ2

dΩb

4π

dΩb̄

4π

¼
Z

ðPB · p̂bÞ2
dΩb

4π
þ
Z

ðPB̄ · p̂b̄Þ2
dΩb̄

4π

¼ P2
B

3
þ P2

B̄

3
¼ 2

3
P2
B:

Inserting the result into Eq. (56) and Eq. (62), we have

I0ðACPÞ¼
N
4π

α2D
2

3

Z
P2
BC00dΩB

¼ 2N
3
α2D

Z
P2
B

�
1

σ

dσ
dΩB

�
dΩB ¼

2N
3
α2DhP2

Bi: ð64Þ

Therefore, in this approximation, the information is propor-
tional to the B-baryon average squared polarization, as
defined in Eq. (42). Since ACP is not correlated with other
variables, the 0th approximation for the uncertainty is

σðACPÞ
ffiffiffiffi
N

p
¼ σCðACPÞ ≈

ffiffiffi
3

2

r
1

αD
ffiffiffiffiffiffiffiffiffiffi
hP2

Bi
p : ð65Þ

Figure 6(a) shows the SD coefficients, σCðA½Λp�
CP Þ, multiplied

by the αΛ parameter value for the eþe− → J=ψ → ΛΛ̄
processes. The 0th-order result (hereafter, we will call it
also the analytic approximation) is close to the numerical full
result in Eq. (52), even if αΛ is relatively large (0.75). This
shows that the influence of the higher-order terms is low for

the A½Λp�
CP determination.

We also compare the approximate analytic formula to the
full numerical calculations for the eþe− → J=ψ → ΣþΣ̄−

process, where both αψ and ΔΦ have been measured by
BESIII [54]. The two Σþ decay modes ΣnðΣþ → nπþÞ and
ΣpðΣþ → pπ0Þ are interesting as the limiting cases for the
expansion since αΣn ¼ 0.068 ≈ 0 and αΣp ¼ −0.994 ≈ −1,
respectively. It is worth noting that in the ΔI ¼ 1=2 limit
jαΣpj < cosðδP1 − δS1Þ ≈ 0.980 [see Eq. (23) and the values
of the strong phase shifts in Table III]. We note that the
recent BESIII value hαΣpi ¼ −0.994ð4Þ (Table II) violates
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this bound. A proper interpretation of this result requires
that all isospin contributions to the Σþ decays are consid-
ered, but such discussion is beyond the scope of this report.
The 0th approximation for σCðAΣp

CPÞ · jαΣpj is given by the
dashed line in Fig. 6(b). The full numerical result (given by
the solid line) differs significantly. The difference comes
from the spin-correlation contributions, but the analytic
approximation is able to describe the overall trend. From
Eq. (65), it is clear that the approximation for σCðAΣn

CPÞαΣn
is also given by the same dashed line. As expected, the full
numerical result coincides with the 0th approximation in
this case. Comparing the trends for Λ and Σþ, the faster
decrease of the uncertainty for Σþ is mainly due to the low
value of the ΔΦ phase for this reaction. In principle, this
would make Σp an attractive decay mode for testing CP
symmetry with a polarized electron beam. However, we
will not discuss further the Σ-baryon decays in this report.
The reason is that the predicted CPV effects are signi-
ficantly smaller, AΣp

CP · αΣp ≈ 3.5 × 10−6 and AΣn
CP · αΣn ≈

2.7 × 10−5 [26], and the isospin structure of the amplitudes
is more complicated (since also ΔI ¼ 5=2 transitions
contribute).
The result for σCðAD

CPÞ in the DT and ST cases is the
same when the ST analysis is done under assumption that
the hαDi value is known and fixed. In a single-step decay,
an ST measurement only allows for a determination of the

products αD
ffiffiffiffiffiffiffiffiffiffi
hP2

Bi
p

and ᾱD
ffiffiffiffiffiffiffiffiffiffi
hP2

B̄i
q

. Therefore, a AD
CP

determination using a combination of baryon-antibaryon
ST measurements requires knowledge of the polarization
through some other means or using a production process
where hP2

Bi ¼ hP2
B̄i is assured. For an eþe− → BB̄ experi-

ment with an electron beam polarization Pe where the ST
data are collected simultaneously and with c.c. symmetric
detector acceptance, this condition is fulfilled automatically.
Related to this discussion is a proposal given in

Ref. [85], in which it is suggested that one could use a
triple vector product to determine ACP even if ΔΦ ¼ 0 and
Pe ¼ 0, i.e., the baryons are unpolarized. For a general

baryon-antibaryon state with polarization terms set to zero,
the angular distribution after single-step decays reads

PDD̄ ∝ C00 þ αDᾱD
X3
i;j¼1

Cij

�
aDi0
αD

��
aD̄j0
ᾱD

�

≕C00 þ αDᾱDF ðΩB;Ωb;Ωb̄Þ; ð66Þ

where F ð…Þ is a function of the kinematic variables only.
Therefore, the PDF is described by a single global
parameter αDD̄ ≔ αDᾱD ¼ −hαDi2ð1 − A2

CPÞ. The para-
meter is related to ACP and can in principle be used to test
CP symmetry, but the method has several drawbacks. The
information for αDD̄ measurement is I0ðαDD̄Þ ¼ N=9hS2i,
and the uncertainty of ACP from the error propagation is

σðACPÞ ¼
1

ACP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ðhαDiÞ þ

σ2ðαDD̄Þ
4hαDi2

s
;

which requires an independent determination of hαDi. A
meaningful CP test is possible only if σðACPÞ < 1. This
requires that the σðhαDiÞ precision is better than Oð10−5Þ,
since ACP ∼Oð10−5Þ in the SM. If σðhαDiÞ is not small
enough, the ACP ≠ 0 value can be interpreted as a ACP null
result but with the decay parameters αD and ᾱD reduced by
the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2

CP

p
.

V. TWO-STEP DECAYS

To study uncertainties of the CP asymmetries in
eþe− → Ξ−Ξ̄þ, we rewrite Eq. (50) as

PΞΞ̄ðξΞΞ̄;ωΞÞ ¼
1

V

X3
μ;ν¼0

CμνD
μ
ΞD̄

ν
Ξ ð67Þ

using the following notation:

FIG. 6. Standard deviation coefficients for ACP, σCðACPÞ, multiplied by the decay parameter value αD for DT measurements.
(a) eþe− → J=ψ → ΛΛ̄ with decay ΛðΛ → pπ−Þ. (b) eþe− → J=ψ → ΣþΣ̄− with decay ΣpðΣþ → pπ0Þ. Dashed lines are the
approximations using Eq. (65), and solid lines are the exact numerical results.
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Dμ
Ξ ≔ DμðΩΛ;Ωp; αΞ;ϕΞ; αΛÞ ≔

X3
μ0¼0

aΞμμ0a
Λ
μ00;

D̄μ
Ξ ≔ DμðΩΛ̄;Ωp̄; ᾱΞ; ϕ̄Ξ; ᾱΛÞ ≔

X3
μ0¼0

aΞ̄μμ0a
Λ̄
μ00;

V ≔
Z

dξΞΞ̄ ¼ ð4πÞ5:

We use a modified parameter set where αD and ᾱD are

expressed by AD
CP and hαDi. For A½Ξ−�

CP and A½Λp�
CP , we use a

simplified notation AΞ and AΛ, respectively. Similarly, we

use Φ½Ξ−�
CP (denoted as ΦCP) to represent ϕΞ ¼ ΦCP þ hϕΞi

and ϕ̄Ξ ¼ ΦCP − hϕΞi. The vector of the parameters related
to the Ξ and Λ decays is ω ≔ ðhαΞi; hϕΞi; hαΛi;

AΞ;ΦCP; AΛÞ. Therefore, the partial derivative, e.g., with
respect to ΦCP is

∂PΞΞ̄

∂ΦCP
¼ 1

V

X3
μ;ν¼0

Cμν

�
∂Dμ

Ξ
∂ϕΞ

D̄ν
Ξ þDμ

Ξ
∂D̄ν

Ξ

∂ϕ̄Ξ

�
:

Because of the orthonormality of the decay and production
functions, the information matrix elements related to the
decay parameters ωi and ωj can be written as

I0ðωi;ωjÞ ¼ N
X3
μ;ν¼0

hC2iμνhΔωi
Δωj

iμν: ð68Þ

We have checked these orthonormality relations in the
explicit calculations. The production tensor is defined in
Eq. (41). The decay tensor is

hΔωi
Δωj

iμν ≔ 1

ð4πÞ4
Z

∂ðDμ
ΞD̄

ν
ΞÞ

∂ωi

∂ðDμ
ΞD̄

ν
ΞÞ

∂ωj
dΩΛdΩpdΩΛ̄dΩp̄: ð69Þ

For example, I0ðΦCPÞ can be expressed as

I0ðΦCPÞ ¼ N
Z

V
C00

�
∂PΞΞ̄

∂ΦCP

�2

dξ

¼ N
X3
μ;ν¼0

�
1

4π

Z
C2
μν

C00

dΩΞ

��
1

ð4πÞ4
Z �

∂ðDμ
ΞD̄

ν
ΞÞ

∂ΦCP

�
2

dΩΛdΩpdΩΛ̄dΩp̄

�

≕N
X3
μ;ν¼0

hC2iμνhΔ2
ΦCP

iμν:

The information matrix elements for the decay parameters can be obtained as

I0ðωi;ωjÞ ¼ N½aij þ bijhP2
Ξi þ cijhS2

ΞΞ̄i�; ð70Þ

where hP2
Ξið¼ 2hP2

ΞiÞ and hS2
ΞΞ̄i are the sums of the hC2iμν-matrix polarization and spin-correlation elements, respectively,

defined in Eq. (44) [and shown for few production processes in Fig. 5(b) as the function of electron-beam polarization]. Such
representation is possible since the decay tensor elements have only three different values aij, bij, and cij. It turns out that the
only nonzero elements of the information matrix involving the CP-odd variables for the two-step process are

I0ðΦCPÞ ¼
2N
27

ð1 − α2ΞÞα2Λ
�
ð3þ α2Ξα

2
ΛÞhP2

Ξi þ
2

3
ðα2Ξð3 − 2α2ΛÞ þ 3α2ΛÞhS2

ΞΞ̄i
�
; ð71Þ

I0ðAΞÞ ¼
2N
3

α2Λα
2
Ξ

�
1þ 3ðα4Λ þ 3Þ − α2Ξð3 − α2ΛÞ2

18ð1 − α2ΞÞα2Λ
hP2

Ξi þ
α2Ξð2α2Λ − 3Þ þ 9

27ð1 − α2ΞÞ
hS2

ΞΞ̄i
�
; ð72Þ

I0ðAΛÞ ¼
2N
3

α2Λα
2
Ξ

�
1þ α4Ξ − 2α2Ξ þ 3

6α2Ξ
hP2

Ξi þ
1

9
ð3 − 2α2ΞÞhS2

ΞΞ̄i
�
; ð73Þ

I0ðAΛ; AΞÞ ¼
2N
3

α2Λα
2
Ξ

�
1 −

1

3
ðhP2

Ξi þ hS2
ΞΞ̄iÞ

�
: ð74Þ
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These information matrix elements allows one to determine
SDs and correlations between the CPV observables. The
uncertainty for ΦCP is σðΦCPÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðΦCPÞ

p
, since the

variable is uncorrelated with any other variable. The AΞ and
AΛ variables are only correlated with each other, and the
covariance matrix is obtained by inverting two-dimensional
information matrix

�
σ2ðAΞÞ CovðAΛ; AΞÞ

CovðAΛ; AΞÞ σ2ðAΛÞ

�

¼
�

IðAΞÞ IðAΛ; AΞÞ
IðAΛ; AΞÞ IðAΛÞ

�−1
: ð75Þ

The expressions in Eqs. (71)–(74) have some interesting
properties which are valid for any two-step process that can
be studied by allowing the αΛ and αΞ parameters to vary.
We discuss these properties using a generic notation, where
the first decay process is B → bπ and the baryon b decays
in the sequential weak two-body nonleptonic process:

(i) The ΦCP uncertainty is not correlated with any other
variable, and none of the information matrix ele-
ments depends on the hϕBi value. This is because ϕB
represents the shift in the φb azimuthal angle of the b
baryon, which is integrated out. A dependence on
hϕBi might appear in experiments where the accep-
tance in the φb variable is limited.

(ii) For αb ¼ 0 only, I0ðABÞ ¼ 1
3
α2BhP2

Bi is nonzero, and
the CPV test is the same as in a single-step decay.

(iii) For αB → 0, two terms are nonzero I0ðΦCPÞ ¼
2
27
α2b½3hP2

Bi þ 2α2bhS2
BB̄i� and I0ðAbÞ ¼ 1

3
α2bhP2

Bi.
Therefore, both ΦCP and Ab can be measured. In
particular, because of the nonzero c-type term for
I0ðΦCPÞ, the polarization of the B baryon is not
needed. This is an attractive scenario for CPV tests
for any baryon decaying into Λ.

(iv) The term I0ðABÞ is divergent for jαBj → 1, indicat-
ing that σðABÞ vanish in this limit. This is a
consequence of the

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2B

p
terms in the angular

distribution. The validity of such expressions re-
quires that the boundary jαBj ≤ 1 must be strictly
fulfilled and in the jαBj → 1 limit there is no linear
term in the expansion of the αB parameter (i.e., the
linear error is 0). To get a meaningful result, one
should use a parametrization which respects this
boundary, such asEq. (23) fromSec. II B. In principle,
one can directly investigate the uncertainty of the
weak phase difference ξP − ξS.However, as seen from
Eq. (26), this will introduce correlation with the ΦCP
observable (due to the term sinϕ). Instead, one can
present results for ΔζB ≔ αB=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2B

p
AB, which do

not introduce such correlation. The information ma-
trix elements are modified due to the Jacobian of the
variable transformation to

I0ðΔζBÞ ¼
ð1 − α2BÞ

α2B
I0ðABÞ;

I0ðAb;ΔζBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2B

p
αB

I0ðAb; ABÞ:

We first discuss uncertainties for the production ten-
sors corresponding to the simplest cases. Unpolarized
and uncorrelated sources of B and B̄ correspond to
hC2iμν ¼ diagð1; 0; 0; 0Þ. The only nonzero elements of
the information matrix are

I0ðABÞ ¼ I0ðAbÞ ¼ I0ðAb; ABÞ ¼ N
2

3
α2bα

2
B;

where we have assumed samples of N events each for the
cascade and anticascade decays. Since the information
matrix corresponding to the AΞ and AΛ is singular, the
asymmetries are fully correlated and cannot be determined
separately, but the sum AΞ þ AΛ can, and the uncertainty
is σCðAΞ þ AΛÞ ¼

ffiffiffiffiffiffiffiffi
3=2

p
=ðαΛαΞÞ.

As the next example, we consider two independent ST
experimentswithN events eachusing polarized cascades and
anticascades having the same average polarization hP2

Bi. In
the 0th approximation, the expressions for the uncertainties
depend on the production mechanism only via the average
hP2

Bi. For example, in the HyperCP-type experiments, where
the initial hyperon polarization is considered to be a fixed
vector that does not depend on the kinematic variables of the
production process, the average reduces to the square of
the vector

ffiffiffiffiffiffiffiffiffiffi
hP2

Bi
p

→ jPBj. The Fisher information matrix is
the sum of the matrices for the two ST experiments

I0ðωi;ωjÞ ¼ 2N½aij þ bijhP2
Bi�; ð76Þ

and the elements of the information matrix for the CP-test
observables read

I0ðΦCPÞ ¼N
4

27
ð1−α2BÞα2bð3þα2Bα

2
bÞhP2

Bi;

I0ðABÞ ¼N
4

3
α2bα

2
B

�
1þ 3ðα4bþ 3Þ−α2Bð3−α2bÞ2

18ð1−α2BÞα2b
hP2

Bi
�
;

I0ðAbÞ ¼N
4

3
α2bα

2
B

�
1þα4B − 2α2Bþ 3

6α2B
hP2

Bi
�
;

I0ðAb;ABÞ ¼N
4

3
α2bα

2
B

�
1−

1

3
hP2

Bi
�
: ð77Þ

For two HyperCP-type experiments with jPBj ¼ jPB̄j andN
events, each of the formulas are the same. The resulting
uncertainties σC ¼ σ

ffiffiffiffi
N

p
for the AΛ, AΞ and AΛ þ AΞ

observables measured using the Ξ−=Ξ̄þ decay chains are
shown inFig. 7(a), while forΦCP, they are shown inFig. 7(b).
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The uncertainty of the sumAΛ þ AΞ is nearly independent of
the average polarization. Because of the large correlation
term IðAΛ; AΞÞ in Eq. (77), the relation between the
information and uncertainties is not straightforward.
However, the 2 × 2 information matrix for AΛ and AΞ can
be diagonalized. The new uncorrelated variables A� are

A� ≔
1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

IðAΛÞ
IðAΞÞ

4

s
AΞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
IðAΞÞ
IðAΛÞ

4

s
AΛ

�
; ð78Þ

where we have chosen an orthonormal transformation. If the
polarization jPΞj is zero, Aþ ¼ ðAΛ þ AΞÞ=

ffiffiffi
2

p
is the only

CP-violating variable that can be measured. Since the
definition of the variables A� depends on the polarization
(and on detection efficiencies in an experiment), we will not
use or discuss them further. Since only two weak phases
ΔξΞ ≔ ðξP − ξSÞ½Ξ−� and ΔξΛ ≔ ðξP − ξSÞ½Λp� describe CP
violation in the ½Ξ−� and ½Λp� decays, we provide the
corresponding 2 × 2 Fisher information matrix, which is
based on Eq. (52) and does not require the analytic
approximation:

IðΔξΞÞ ¼ IðΦCPÞ
1 − hαΞi2
hαΞi2

cos2hϕΞi

þ IðAΞÞ
hαΞi2

1 − hαΞi2
sin2hϕΞi;

IðΔξΛÞ ¼ IðAΛÞ
hαΛi2

1 − hαΛi2
sin2hϕΛi;

IðΔξΛ;ΔξΞÞ ¼ hαΞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hαΞi2

p sinhϕΞi
hαΛiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − hαΛi2
p

× sinhϕΛiIðAΛ; AΞÞ: ð79Þ
However, since hϕΞi ≈ 0, the ΦCP measurement gives the
dominating contribution to the ΔξΞ uncertainty.
Our next case is the decay of a (pseudo)scalar meson like

ηc or χc0 into a BB̄ pair with the production tensor
hC2iμν ¼ diagð1; 1; 1; 1Þ. There are no polarization terms,

hP2
Bi ¼ 0, and hS2

BB̄i ¼ 3. The information matrix element
I0ðAb; ABÞ is zero, which means that all three CPV
observables are uncorrelated. The diagonal terms of the
information matrix are functions of αb and αB only:

I0ðΦCPÞ ¼ N
4

27
ð1 − α2BÞα2b½α2Bð3 − 2α2bÞ þ 3α2b�;

I0ðABÞ ¼ N
2

3
α2bα

2
B

�
1þ α2Bð2α2b − 3Þ þ 9

9ð1 − α2BÞ
�
;

I0ðAbÞ ¼ N
2

3
α2bα

2
B

�
1þ 1

3
ð3 − 2α2BÞ

�
:

Figure 8 shows the uncertainties σC for this case as a
function of αB and αb decay parameters. This case is

FIG. 7. Uncertainties, σC, for CP tests in HyperCP-type experiment using analytic approximation: (a) AΛ (solid line), AΞ (dotted line),
and AΛ þ AΞ (dashed line) and (b) ΦCP.

FIG. 8. Statistical uncertainties σC of (a) AB, (b) Ab, (c) ΔζB,
and (d) ΦCP measurement in a (pseudo)scalar meson decay to BB̄
as a function of αB and αb treated as free parameters. The white
regions in the bottom of the plots correspond to the uncertainties
σCð…Þ > 15.
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interesting since all production parameters are fixed and
CP-test uncertainties depend only on αb and αB.
To understand the relative importance of the polarization

and spin-correlation terms for the CP tests, one can
compare the two above extreme cases. For example, the
polarization in two ST experiments with N events that
would lead to the same uncertainty of theΦCP measurement
as in the DT approach with N events is

jPBj2 ¼
α2Bð3 − 2α2bÞ þ 3α2b

3þ α2Bα
2
b

:

For Ξ → Λπ, this gives jPBj ¼ 0.80.

Now, we will discuss the results specific for the eþe− →
J=ψ → ΞΞ̄ process. The relations for the ST experiment,
realized as two independent measurements with N events
each,3 are still valid. The only difference is that now the
results can be represented as a function of the electron-beam
polarizationPe, and the average cascade polarization jPΞj is
calculated using Eq. (43). The results in the analytic
approximation for the A-type observables corresponding
to the ones in Fig. 7(a) are shown in Fig. 9(a). Since even for

FIG. 9. Uncertainties, σC, for the eþe− → J=ψ → ΞΞ̄. (a) two ST and (b) DT experiments with N events each: AΛ (solid line),
AΞ (dotted line) and AΛ þ AΞ (dashed line).

FIG. 10. Numerical estimate of the uncertainty σ
ffiffiffiffi
N

p
of (a)–(c) average decay parameters and (d)–(f) CPV observables in

eþe− → J=ψ → Ξ−Ξ̄þ. The dotted lines and the solid lines are the results for ST and DT experiments, respectively. For the asymmetries
AΞ, ΦCP, and AΛ, also the analytic approximation is given: dashed-dotted lines and dashed lines are ST and DT results, respectively.

3Of course, this is not the way one does the experiment since
both the baryon and antibaryon decays can be measured
simultaneously.
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the Pe ¼ 0 the average polarization of the cascades is not
zero, all the three CP tests are possible. For the average
values of the decay parameters, we do not provide approxi-
mate analytic results since the corresponding information
matrix elements are correlated and in general multidimen-
sional matrices have to be inverted to obtain uncertainties.
Therefore, likely, such an analytic solution will not provide
better understanding of the interrelations between the
parameters. The numeric results for uncertainties of hαΞi,
hϕΞi, and hαΛi are shown in Figs. 10(a)–10(c) both for ST-
and DT-type experiments. For the ST experiments, the
uncertainty improves much more than for DT experiments.
This difference is understood by the fact that the uncertain-
ties in the DTexperiment have a contribution from the spin-
correlation term that depends weakly onPe (see Fig. 5). The

numerical results for the AΞ, ΦCP, and AΛ are given in
Figs. 10(d)–10(f) and compared to the analytic approxima-
tions, which represent well the results specially for the Ξ
decay CPV tests. As a cross-check of the calculations, we
provide in Table VI the full correlation matrix of all
parameters using the full numerical calculations for
Pe ¼ 0.8. Significant values of some of the correlation
terms, like ΔΦ–αψ or hαΛi–Pe, indicate that it might be
difficult to provide an intuitive picture of the relations
between all the parameters. However, the numerical results
confirm that the CP-violation variables are almost uncorre-
lated with the other variables and support our assumption
that they can be analyzed separately.
Finally, it is interesting to consider a general two-step

process B → bπ in the low- and high-energy limits

TABLE VI. Correlation matrix for the asymmetries and averages in the eþe− → J=ψ → ΞΞ̄ process with
Pe ¼ 0.8 for DT. Input parameters are hαΞi ¼ −0.373, hϕΞi ¼ 0.016, and hαΛi ¼ 0.760. The error is the last
significant digit unless specified explicitly, and only the results statistically different from zero are shown.

ΔΦ hαΞi hϕΞi hαΛi AΞ AΛ ΦCP Pe

αψ −0.128 � � � 0.011 −0.008 � � � −0.017ð2Þ � � � −0.031
ΔΦ 0.009 0.009 −0.071ð2Þ � � � � � � � � � 0.191(3)
hαΞi −0.021ð4Þ 0.078(3) � � � � � � � � � 0.037
hϕΞi −0.032 � � � � � � � � � −0.005
hαΛi � � � � � � � � � −0.455

FIG. 11. Statistical uncertainties σC of (a)–(d) ΦCP, (e)–(h) AB, and (i)–(l) Ab measurements in the eþe− → γ� → BB̄ process with
two-step B-baryon decays in the LE limit (αψ ¼ 0 and ΔΦ ¼ 0) and (HE) limit (αψ ¼ 1) as the function of αB and αb treated as free
parameters. The columns from left are (LE limit, Pe ¼ 0), (LE limit, Pe ¼ 1), (HE limit, Pe ¼ 0), and (HE limit, Pe ¼ 1). The same
color scale as in Fig. 8 is used. The white regions in the plots correspond to uncertainties σCð…Þ > 15.

NORA SALONE et al. PHYS. REV. D 105, 116022 (2022)

116022-20



(introduced in Sec. III) for a single photon eþe− → BB̄
annihilation process. These cases might be of interest for
close to threshold charm baryon studies or baryon-anti-
baryon production experiments at high energies. In the LE
limit (αψ ¼ 0, βψ ¼ 0, γψ ¼ 1), the terms hP2

Bi and hS2
BB̄i

are 2P2
e and 1, respectively. In the HE limit (αψ ¼ 1,

βψ ¼ 0, γψ ¼ 0), they are equal to 6ð1 − π=4ÞP2
e and

3ðπ=2 − 1Þ, respectively. In both cases, the spin-correlation
terms do not depend on the electron polarization, and the
hP2

Bi terms are proportional to P2
e. A comparison of the

uncertainties for Pe ¼ 0 and Pe ¼ 1 in the DT-experiment
setting is presented in Fig. 11. The conclusion is that the
polarization helps to reach better precision in both cases,
and the improvement is qualitatively similar.

VI. EXPERIMENTAL CONSIDERATIONS

The benefits of a large electron-beam polarization for
CP-violation studies should be clear by now. Here, we
discuss three additional aspects related to the detection
technique, which should be considered when planning such
an experiment:
(a) combination of the ST and DT datasets including

detection efficiency and background aspects,
(b) polar angle dependence of uncertainty and the detec-

tion efficiency,
(c) Implications of the discussed collision scheme with

large-crossing angle.

A. Combination of ST and DT measurements

In general, the best precision can be achieved by
combining three nonoverlapping event sets. The first set
includes the DT events where both the B and B̄ decay
chains are reconstructed. The remaining events can be
divided into two ST sets where BðB̄Þ decay is fully
reconstructed but not the corresponding B̄ðBÞ. The effi-
ciencies of the B, B̄, and BB̄ sets are denoted as ϵB, ϵB̄, and
ϵBB̄, respectively. The efficiencies can depend on the vector
ξ of the kinematic variables, but not on the global reaction
parameters given by the ω vector. Since we discuss
improvements with respect to the DT-type experiment,
ϵB is given by the ratio between the detection efficiencies of
the DT and ST cases. We also neglect any efficiency
dependence on the kinematic variables. We recollect that
the information in the DT experiment, based on N recon-
structed events, is given by Eq. (70):

IDT
0 ðωi;ωjÞ ¼ N½aij þ bijhP2

Bi þ cijhS2
BB̄i�:

For the two-step process aij, bij, and cij can be read from
Eqs. (71)–(74). For the single-step process, only AB can be
measured aAB

¼ cAB
¼ 0 and bAB

¼ 1=3:

I0ðABÞ ¼ N
1

3
hP2

Bi:

The information provided by the two additional ST
sets is

IST
0 ðωi;ωjÞ ¼ N

1 − ϵBB
ϵBB

½2aij þ bijhP2
Bi�; ð80Þ

where the branching fraction product of the decay sequence
is B and equal detection efficiencies ϵB ¼ ϵB̄ are assumed.
The interpretation of the above equation is that an addi-
tional 2N=ðϵBBÞ events are added from the two ST sets.
Therefore, the information of the combined ST and DT
experiment (ST&DT) is the sum of the two independent
measurements:

IST&DT
0 ðωi;ωjÞ¼N

�
2−ϵBB
ϵBB

aijþ
1

ϵBB
bijhP2

BiþcijhS2
BB̄i

�
:

ð81Þ

In the single-step decays, the σCðACPÞ dependence on the
electron-beam polarization for both ST and DT experi-
ments is approximately given by Eq. (65). The AΛ
uncertainties for ST, DT, and the combined eþe− →
J=ψ → ΛΛ̄ measurement are plotted in Fig. 12 as the
function of Pe. Two cases of the detection efficiencies
ϵB ¼ 1 and ϵB ¼ 0.5 are considered, and BðΛ → pπ−Þ ¼
0.64 is used. For the case with the reconstruction effi-
ciency of 0.5, a two-times improvement of σC is achieved
for the combination, compared to the DT measurement
only. Of course, a detailed feasibility study which includes
the detector response will be needed to determine the
efficiency which can be obtained for the combined DTand
ST measurement.

FIG. 12. Statistical uncertainties σCðAΛÞ for the eþe− →
J=ψ → ΛΛ̄ process as a function of the electron-beam polariza-
tion Pe. The solid-blue lines represent DT measurement. The
dotted-red lines represent contribution from ST events which do
not contribute to the DT event class (statistically independent ST
events). The orange-dashed lines represent the result from the
combination of the two event classes. The decay branching
fraction is B ¼ 0.64 [28]. The detection efficiency of the Λ decay
was assumed to be (a) ϵΛ ¼ ϵ̄Λ ¼ 1 and (b) ϵΛ ¼ ϵ̄Λ ¼ 0.5. The
results are normalized to the number of the DT events.
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An important background contribution which should be
considered for the ST analysis of the J=ψ → ΛΛ̄ events is
J=ψ → pK−Λ̄þ c:c: with B ¼ ð8.6� 1.1Þ × 10−4 [28] as
it will have a similar final-state topology as the signal
channel. Similar experimental considerations will also hold
for the J=ψ → ΣΣ̄ two-body decay channels.
The results for AΞ and ΦCP in the eþe− → J=ψ → ΞΞ̄

are shown in Fig. 13. For the two-step decays, the
increasing beam polarization improves the ST uncertainties
much faster compared to the corresponding DT uncertain-
ties. For the polarization of Pe ¼ 0.8, the uncertainty of the
ST experiment is better if we assume realistic efficiency of
50% deduced from a comparison of the BESIII ST [86] and
DT [32] analyses.
Furthermore, the nonreducible backgrounds for the ST

event samples are also expected to be low. The background
channels to be considered are J=ψ → γηcð→Ξ−Ξ̄þÞ,
J=ψ → Ξð1530Þ−Ξ̄þ → Ξ−π0Ξ̄þ, and J=ψ → Λπ−Λ̄πþ.
While the first two channels can be suppressed using event
kinematics variables, the third can be reduced by requiring
a nonzero decay length for the Ξ → Λπ decay candidates.
For the DT method, the background contribution is 0.25%,
and for ST, the background is at the percent level, while
roughly three times more ST events can be reconstructed
compared to DT.

B. Polar-angle efficiency dependence

Detectors at electron-positron colliders experiments have
approximate cylindrical symmetry with axis along the
beam directions (considerations for large-crossing angle
are discussed in a separate paragraph) and uniform detec-
tion efficiency in the azimuthal angle. However, the polar-
angle coverage is limited. For example, in the BESIII
experiment, j cos θj < 0.93 for tracks of charged particles.
The hyperons decay some centimeters away from the

interaction point, and the final-state particles with large
j cos θj values have low transverse momenta, which are
more difficult to reconstruct. These effects reduce the
reconstruction efficiency at large values of j cos θj.
The event yield is a product of the efficiency and the

differential cross section of the eþe− → BB̄ process
dΓ=dΩ ∝ ð1þ αψ cos2 θÞ as shown in Eq. (39). Since both
J=ψ → ΛΛ̄ and J=ψ → Ξ−Ξ̄þ have αψ > 0 (Table V), the
(anti)hyperons and the decay (anti)nucleons are more likely
emitted in the forward and backward directions. The
uncertainty as a function of the production angle cos θ
can be obtained by replacing the production tensor hC2iμν
by the normalized spin correlation matrix C2

μν=C2
00. The

numerical expressions for the functions P2
Bðcos θÞ and

S2
BB̄ðcos θÞ are given in Appendix D. The results are shown

in Fig. 14 for σCðAΛÞ in DTexperiments in eþe− → J=ψ →
ΛΛ̄ and eþe− → J=ψ → ΞΞ̄ for different values of the
electron beam polarization. Corresponding plots for
σCðΦCPÞ in the eþe− → J=ψ → ΞΞ̄ DT and combined
DT&ST measurements are shown in Fig. 15.

C. Large-angle collision scheme

The SCTF will use crab-waist collision scheme, meaning
larger crossing angle than at BEPCII (22 mrad). The
presently considered crossing angle is 60 mrad [34,35].
However, in Ref. [40], much larger crossing angles, up to
500 mrad, are considered in conjunction with a novel c.m.
energy monochromatization scheme. The monochromati-
zation could increase the number of the J=ψ events, and
therefore it is worthwhile to discuss some of the conse-
quences of such collision arrangement for the acceptance in
the hyperon CP-violation tests.
In such collision scheme, the detector reference frame is

significantly different from the electron-positron c.m.

FIG. 13. Statistical uncertainties, σC, for the CP-violation observables in the Ξ− → π−Λð→pπ−Þ þ c:c: decay sequences from the
eþe− → J=ψ → ΞΞ̄ process: (a) σCðAΞÞ, (b) σCðΦCPÞ, and (c) σCðAΛÞ as a function of electron beam polarization Pe. The solid-blue
lines represent DT measurement. The dotted-red lines represent contribution from ST events which do not contribute to the DT event
class (statistically independent ST events). The orange-dashed lines represent the result from the combination of the two event classes.
The detection efficiency of the Ξ-decay sequence was assumed ϵΞ ¼ ϵ̄Ξ ¼ 0.5 and branching fraction of the complete decay chain
B ¼ 0.64. The results are normalized to the number of the DT events.
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system. This has impact on both angular acceptance and the
detection efficiency as a function of the measured-particles
momenta, and it has to be considered in the detector design.
For example, the polar-angle, θLAB, distribution of Ξ− in the
detector rest frame is given in Fig. 16(a) for the 0.0, 0.3, and
0.5 rad crossing angles. If the decay particles are measured
only in the j cos θLABj < 0.93 range as in theBESIII detector,
the observed Ξ production-angle distribution in the
electron-positron c.m. system is as in Fig. 16(b). A large
beam-crossing angle will also significantly affect the azimu-
thal-angle distribution in the detector reference system, as

shown in Fig. 17(a). This will introduce acceptance effects
depending on the azimuthal angle that should be corrected for
in the analysis. However, the acceptance effects should be
easy to disentangled from the process angular distributions
since in the electron-positron collision rest frame the azimu-
thal distribution has to be flat. In addition, an improved
particle identification algorithm will be needed since the
momentum distributions of the final-state protons and pions
will overlapwith each other, as shown in Fig. 17(b), while for
the electron-positron rest frame collision scheme, a momen-
tum range separation was sufficient.

FIG. 14. Uncertainties σCðAΛÞ in the DT measurement in (a) eþe− → J=ψ → ΛΛ̄ and (b) eþe− → J=ψ → ΞΞ̄ processes as a function
of the production angle cos θ where the dashed line shows Pe ¼ 0, the solid line is for Pe ¼ 0.8, and the dotted line represents Pe ¼ 1.

FIG. 15. Uncertainties σCðΦCPÞ as a function of the production angle cos θ for (a) DT and (b) DT&STwith 50% efficiency experiment
where the dashed line (orange) shows Pe ¼ 0, the solid line (blue) is for Pe ¼ 0.8, and the dotted line (red) represents Pe ¼ 1.

FIG. 16. Production angle distribution for beam-crossing angles 0 rad (blue solid), 0.3 rad (orange dashed), and 0.5 rad (red dotted).
(a) The Ξ production angle in the detector frame. (b) The Ξ production angle in the electron-positron c.m. frame for the events where all
six charged tracks are accepted in the detector j cos θLABj < 0.93.
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VII. OUTLOOK

We have advocated the importance of CPV studies in
hyperon decays as a complementary tool to the studies in
kaon processes. Using recent experimental results, we have
revised and updated the amplitudes of the Λ and Ξ hadronic
two-body decays.
The main part of this report discusses the implications of

the polarized-electron beams for CPV tests in the non-
leptonic hyperon decays at SCTF, using entangled baryon-
antibaryon pairs from J=ψ decays with datasets of
1012 J=ψ events. The use of the polarization, together
with additional improvements of the analysis techniques,
shows the potential to reach a precision compatible with the
size of the predicted SM signal.
Using an analytical approximation for the Fisher infor-

mation matrices of the CPVobservables, we can understand
how the precision of such measurements depends on the
polarization and spin-correlation terms in the production
processes. Some of the obtained analytical results can be
directly extended to charm baryon CPV studies. At SCTF,
they can be studied in close-to-threshold eþe− → BB̄ proc-
esses. For such processes, the analytic results of Secs. IV
andV can be taken as a starting point. Themain difference in
the strategy for charmed baryons is due to the fact that the
branching fractions for two-body nonleptonic decays are
small, and the DT analysis likely will not be feasible.
In addition to the eþe− → BB̄ processes, the HyperCP-

type experiments can be an interesting option for CP tests
and decay parameter determination, provided that sources
of (anti)baryons with large initial polarization are available.
Possible candidate processes are semileptonic decays of
charmed baryons Ξ0

c → Ξ−lþνl or two-body hadronic
decays like Ξ0

c → Ξ−πþ with large value of the decay
parameter α ¼ 0.63ð3Þ [87] and relatively large branching
fraction 1.2% [28]. For such studies, unpolarized charmed
baryons that are abundantly produced at the LHC in pp
collisions can be used. Again, our analytic formulas can be
used to provide a first estimate of the statistical uncertain-
ties for such experiments.

We have left out a potentially interesting discussion of
the uncertainties of the decay parameters αD and ϕD. For
example the αD parameter is correlated at least with the
production parameters αψ , ΔΦ and Pe and the determi-
nation of the uncertainty requires inverting non-diagonal
4 × 4 information matrix. Therefore the results of the
analytic approximation will be not much easier to interpret
than the full numerical calculations. The same is valid for
the production parameters αψ and ΔΦ that are relevant for
the experiments where the goal is to study the properties of
the production process. Usually, such experiments have a
limited number of the collected events, and analysis is done
assuming the decay parameters are known.
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APPENDIX A: ISOSPIN DECOMPOSITION

Here, we evaluate the ΔI ¼ 1=2 and ΔI ¼ 3=2 compo-
nents of the Λ → Nπ and Ξ → Λπ amplitudes. As in the
main text, we assume isospin symmetry for the elementary
weak decay process but take into account the impact of
isospin-violating mass splittings in the kinematics. The
basic parameters in the Feynman matrix element
ūbðgS − γ5gPÞuB of the weak decay of a spin-1=2 baryon
B into another spin-1=2 baryon b and a pion are related to
the partial-wave amplitudes S and P via

FIG. 17. (a) Azimuthal distribution of ΞLAB and (b) momentum distributions for all final-state particles for beam scattering angles
0 rad (blue solid), 0.3 rad (orange dashed), and 0.5 rad (red dotted).
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gS ¼ S; gP ¼ P
EþM
jqj ; ðA1Þ

where jqj, E, and M stand for the momentum, energy, and
mass, respectively, of b in the rest frame of B. Further
consideration on gS;P is provided in Appendix B (see also
minireview 79.2., “Hyperon nonleptonic decays,” in
Ref. [28]). The isospin breaking mentioned above arises
from the p-wave kinematical factor jqj=ðEþMÞ as well as
the phase-space volume.
Suppose we have two decay modes, labeled I and II,

connected by isospin symmetry (e.g., Λ → pπ− and
Λ → nπ0). Our isospin-symmetry assumption for the basic
parameters is then expressible as

ðgSÞI ¼ ðgSÞII; ðgPÞI ¼ ðgPÞII: ðA2Þ

In view of Eqs. (A1) and (A2), the S and P amplitudes SI;II
and PI;II, respectively, for the two processes, including
corrections ΔI and ΔII due to different masses in the
kinematical factors, can be written as

SI¼SII; PIð1þΔIÞ≕PI
EIþMI

jqIj
jq̄j

ĒþM̄
¼PIIð1þΔIIÞ;

ðA3Þ

where jq̄j=ðĒþ M̄Þ contains only isospin-averaged
masses,4 which ensures that jΔI;IIj ≪ 1. For Λ → pπ−

ð½Λp�Þ, Λ → nπ0 ð½Λn�Þ, Ξ− → Λπ− ð½Ξ−�Þ, and Ξ0 →
Λπ0 ð½Ξ0�Þ, the Δs are calculated to be at most a couple of
percent in size, specifically

Δ½Λp� ¼ 0.007769ð3Þ; Δ½Λn� ¼ −0.023631ð6Þ; ðA4Þ

Δ½Ξ−� ¼ −0.0201ð9Þ; Δ½Ξ0� ¼ 0.011ð1Þ: ðA5Þ

The isospin decomposition, in notation similar to
Ref. [88], of the L ¼ S, P amplitudes for Λ → Nπ into
their ΔI ¼ 1=2; 3=2 components reads

L½Λp� ¼ −
ffiffiffi
2

3

r
L1;1 exp ðiξL1;1 þ iδL1 Þ

þ
ffiffiffi
1

3

r
L3;3 exp ðiξL3;3 þ iδL3 Þ;

L½Λn� ¼
ffiffiffi
1

3

r
L1;1 exp ðiξL1;1 þ iδL1 Þ

þ
ffiffiffi
2

3

r
L3;3 exp ðiξL3;3 þ iδL3 Þ; ðA6Þ

where in the L ¼ P case P½Λp� and P½Λn� on the left-hand
sides are to be replaced by ð1þ Δ½Λp�ÞP½Λp� and
ð1þ Δ½Λn�ÞP½Λn�, respectively, as per the discussion in
the previous paragraph. Analogously, for the Ξ → Λπ
channels, one has

L½Ξ−� ¼L1;2expðiξL1;2þ iδL2 Þþ
1

2
L3;2expðiξL3;2þ iδL2 Þ;

L½Ξ0� ¼
1ffiffiffi
2

p L1;2expðiξL1;2þ iδL2 Þ−
1ffiffiffi
2

p L3;2expðiξL3;2þ iδL2 Þ;

ðA7Þ

with P½Ξ−� → ð1þΔ½Ξ−�ÞP½Ξ−� and P½Ξ0� → ð1þ Δ½Ξ0�ÞP½Ξ0�.
Incorporating Eqs. (A6) and (A7) into Eqs. (3) and (5);
employing the experimental values of the pertinent α
parameters, partial rates, phase shifts, and masses; and
dropping the tiny weak phases ξLj , we can then extract
L2ΔI;2I for the Λ and Ξ modes.
In the Ξ case, due to the fact that only one phase-shift

difference, δP2 − δS2, is involved, it turns out to be possible to
derive L1;2 and L3;2 analytically in terms of empirically
known quantities, but we will not include the lengthy
expressions in this paper. To evaluate them numerically, we
adopt the boldfaced α½Ξ−� and α½Ξ0� numbers quoted in
Table II as well as the appropriate masses and partial rates
from Ref. [28]. As for the strong phases, after combining
the relation tanðδP2 − δS2Þ ¼ sinϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
=α with the mea-

sured α and ϕ parameters for the Ξ decays listed in Table II,
we find the average experimental value δP2 − δS2 ¼ 1ð4Þ°,
which is consistent with zero and perhaps suggestive of it
being considerably smaller than the pion-nucleon phase
shifts relevant to the Λ and Σ decays (given in Table III).5

Putting things together, we collect the resulting L1;2, L3;2,
and L3;2=L1;2 in Table VII, all the Ls written in units of the
Fermi constant GF times the charged pion’s squared mass.
Evidently, the size of S3;2 relative to S1;2 is 5%, while P3;2 is
consistent with zero (less than 3% of P1;2 within one
standard deviation).
Compared to their Ξ counterparts, the Λ decay ampli-

tudes are more complicated, having four different strong
phases, and consequently it does not seem feasible to arrive
at analytical formulas for L1;1 and L3;3. Nevertheless, one
can still determine them by means of numerical compu-
tation. Thus, with the boldfaced α½Λp� and α½Λn� entries in
Table II, the Λ → Nπ phases in Table III, and masses and
partial rates from Ref. [28], we obtain the numbers
displayed in the bottom row of Table VII. It shows that
the ΔI ¼ 3=2 components of S and P are 3% and 5% of the
corresponding ΔI ¼ 1=2 ones in size.

4Explicitly, these are M̄N¼ðMpþMnÞ=2, M̄Ξ¼ðMΞ−þMΞ0Þ=2,
and M̄π ¼ ð2Mπþ þMπ0Þ=3 for the isospin nonsinglets.

5By contrast, as remarked in Sec. II B, recent theoretical
studies have predicted that δP2 − δS2 might be significantly bigger
[63,65], as much as 9°.
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If one is interestedmerely in the relative size of the different amplitudes, it is possible to infer their ratios approximately from
the αs and squared amplitudes upon expanding them to linear order in theΔI ¼ 3=2 components or theΔD parameters, which
have effects of comparable size on the ΔI ¼ 1=2 contributions. This complementary procedure also helps cross-check
Table VII.
In this approximation, for the Ξ modes, we have the α combinations

α½Ξ� ≔
2α½Ξ−� þ α½Ξ0�

3
¼ 2Ŝ1P̂1 cosðδP2 − δS2Þ

�
1þ 1

3
ð1 − 2Ŝ21Þð2Δ½Ξ−� þ Δ½Ξ0�Þ

�

¼exp − 0.368ð4Þ; ðA8Þ

α½Ξ−� − α½Ξ0�
α½Ξ�

¼ ð1 − 2Ŝ21Þ
�
3

2

Ŝ3
Ŝ1

−
3

2

P̂3

P̂1

þ Δ½Ξ−� − Δ½Ξ0�

�

¼exp 0.092ð25Þ; ðA9Þ

where L̂k ¼ Lk;2=ðS21;2 þ P2
1;2Þ1=2 for L ¼ S, P and k ¼ 1, 3, implying that Ŝ21 þ P̂2

1 ¼ 1. We also have the squared
amplitudes

jA½Ξ−�j2 ¼ S21;2 þ ð1 − 2Δ½Ξ−�ÞP2
1;2 þ S1;2S3;2 þ P1;2P3;2;

jA½Ξ0�j2 ¼
1

2
S21;2 þ

1

2
ð1 − 2Δ½Ξ0�ÞP2

1;2 − S1;2S3;2 − P1;2P3;2; ðA10Þ

where the left-hand sides are connected via Eq. (5) to the observed rates ΓðΞ− → Λπ−Þ and ΓðΞ0 → Λπ0Þ, respectively,
leading to

1

2

ΓðΞ− → Λπ−Þ − 2ΓðΞ0 → Λπ0ÞrΞ
ΓðΞ− → Λπ−Þ þ ΓðΞ0 → Λπ0ÞrΞ

¼ Ŝ1Ŝ3 þ P̂1P̂3 −
2

3
ðΔ½Ξ−� − Δ½Ξ0�ÞP̂2

1

¼exp − 0.050ð11Þ; ðA11Þ

where rΞ ¼ 1.0270ð18Þ is the ratio of phase space volumes of the two modes. From Eq. (A8), we extract Ŝ1 ¼ −0.9827ð4Þ,
and hence P̂1 ¼ ð1 − Ŝ21Þ1=2 ¼ 0.185ð2Þ, with which we solve Eqs. (A9) and (A11) for Ŝ3 ¼ 0.05ð1Þ and P̂3 ¼ −0.001ð4Þ,
and so we get Ŝ3=Ŝ1 ¼ −0.05ð1Þ and P̂3=P̂1 ¼ −0.007ð20Þ. These results can be seen to be compatible with the Ξ → Λπ
entries in Table VII.
Similarly, in the Λ case, we have

α½Λ� ≔
2α½Λp� þ α½Λn�

3
¼ 2S̃1P̃1 cosðδP1 − δS1Þ

�
1þ 1

3
ð1 − 2S̃21Þð2Δ½Λp� þ Δ½Λn�Þ

�

¼exp 0.734ð6Þ; ðA12Þ

TABLE VII. Amplitudes, in dimensionless units of GFm2
πþ , for the ΔI ¼ 1=2 and ΔI ¼ 3=2 transitions, and the

corresponding ðΔI ¼ 3=2Þ=ðΔI ¼ 1=2Þ amplitude ratios, in the Λ- and Ξ-hyperon nonleptonic decays.

ΔI ¼ 1=2 ΔI ¼ 3=2 ðΔI ¼ 3=2Þ=ðΔI ¼ 1=2Þ
Decay mode S P S P S ratio P ratio

Ξ → Λπ −2.05ð1Þ 0.386(5) 0.11(2) −0.002ð8Þ −0.05ð1Þ −0.005ð21Þ
Λ → Nπ −1.718ð8Þ −0.759ð2Þ −0.050ð9Þ 0.036(9) 0.029(6) −0.05ð1Þ
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α½Λp� − α½Λn�
α½Λ�

¼ −3ffiffiffi
2

p
�
S̃3
S̃1

cosðδP1 − δS3Þ
cosðδP1 − δS1Þ

þ P̃3

P̃1

cosðδS1 − δP3 Þ
cosðδP1 − δS1Þ

�
þ 3

ffiffiffi
2

p
½S̃1S̃3 cosðδS1 − δS3Þ þ P̃1P̃3 cosðδP1 − δP3 Þ�

þ ð1 − 2S̃21ÞðΔ½Λp� − Δ½Λn�Þ
¼exp 0.086ð24Þ; ðA13Þ

ΓðΛ → pπ−Þ − 2ΓðΛ → nπ0ÞrΛ
ΓðΛ → pπ−Þ þ ΓðΛ → nπ0ÞrΛ

¼ −
ffiffiffi
8

p
½S̃1S̃3 cosðδS1 − δS3Þ þ P̃1P̃3 cosðδP1 − δP3 Þ� −

4

3
ðΔ½Λp� − Δ½Λn�ÞP̃2

1

¼exp − 0.053ð13Þ; ðA14Þ

where L̃k ¼ Lk;k=ðS21;1 þ P2
1;1Þ1=2 for L ¼ S, P and k ¼ 1, 3 and rΛ ¼ 0.965815ð8Þ is the ratio of Λ → Nπ phase-space

volumes. From Eq. (A12), we obtain S̃1 ¼ −0.915ð2Þ, and hence P̃1 ¼ −ð1 − S̃21Þ1=2 ¼ −0.404ð4Þ, with which we find
S̃3 ¼ −0.027ð5Þ and P̃3 ¼ 0.019ð6Þ from Eqs. (A13) and (A14) and consequently S̃3=S̃1 ¼ 0.029ð6Þ and
P̃3=P̃1 ¼ −0.05ð1Þ. As expected, these are in line with the Λ → Nπ numbers in Table VII.
Finally, we illustrate how the knowledge about the ΔI ¼ 1=2; 3=2 components could improve the accuracy of estimating

the β and ϕ parameters, which are linked to α by Eq. (8) and not all of which have been measured. Focusing on the Λ
channels, for the βs, we can write, to first order in the ΔI ¼ 3=2 amplitudes,

β½Λp�
α½Λp�

¼ tanðδP1 − δS1Þ þ
P̃3 sinðδP1 − δP3 Þffiffiffi
2

p
P̃1 cos2ðδP1 − δS1Þ

−
S̃3 sinðδS1 − δS3Þffiffiffi
2

p
S̃1 cos2ðδP1 − δS1Þ

;

β½Λn�
α½Λn�

¼ tanðδP1 − δS1Þ −
ffiffiffi
2

p
P̃3 sinðδP1 − δP3 Þ

P̃1 cos2ðδP1 − δS1Þ
þ

ffiffiffi
2

p
S̃3 sinðδS1 − δS3Þ

S̃1 cos2ðδP1 − δS1Þ
; ðA15Þ

as the contributions linear in the ΔD’s cancel in the ratios.
Upon applying these formulas and Eq. (8), with the
boldfaced α½Λp� and α½Λn� values in Table II, the Λ → Nπ

strong phases in Table III, and the above calculation of S̃1;3
and P̃1;3, we arrive at

β½Λp� ¼ −0.100ð2Þ; ϕ½Λp� ¼ −0.153ð3Þ; ðA16Þ

β½Λn� ¼ −0.083ð3Þ; ϕ½Λn� ¼ −0.115ð7Þ: ðA17Þ

If the ΔI ¼ 3=2 terms in Eq. (A15) were neglected, we
would instead get β½Λp� ¼ −0.097ð2Þ, ϕ½Λp� ¼ −0.148ð3Þ,
β½Λn� ¼ −0.089ð3Þ, and ϕ½Λn� ¼ −0.123ð6Þ, which differ
from their counterparts in Eqs. (A16) and (A17) by 3% and
7%, respectively. It is interesting to notice that the ϕ½Λp�
prediction in Eq. (A16) is 20 times more precise than the
direct measurement of −0.113ð61Þ quoted in Table II.

APPENDIX B: EFFECTIVE LAGRANGIAN AND
PARAMETRIZATION OF AMPLITUDES

A Hermitian effective Lagrangian for the initial decay
B → bπ where all baryons have spin 1=2 is given by

L ¼ gSib̄Bπ − g�SiB̄bπ̄ − gPb̄iγ5Bπ − g�PB̄iγ5bπ̄: ðB1Þ

The gS terms lead to s waves for the decay products, the gP
terms lead to p waves, and the gS terms break parity
symmetry, while the gP terms do not. If gS is real, then the
gS terms break P and C, but conserve CP symmetry. If gP is
real, then the gP terms conserve C symmetry and therefore
also CP. One can make gP real and positive by moving its
phase into a redefinition of the B-baryon field (and a
redefinition of the discrete transformations by an additional
phase). The CP symmetry is then conserved, if the
parameter gS is real.
Except for an irrelevant overall phase, one might write

the decay matrix elements as

MB→bπ ∼ ūbðgS − gPγ5ÞuB;
MB̄→b̄ π̄ ∼ v̄Bð−g�S − g�Pγ5Þvb: ðB2Þ

This fits to the conventions of the Particle Data Group.
Then, one reads off Sini ∼ gS, S̄ini ∼ −g�S, Pini ∼ gP, and
P̄ini ∼ g�P, where the p waves pick up an additional
phase-space factor that we have not displayed explicitly.
The relations between partial-wave amplitudes and param-
eters from the Lagrangian suggest writing for the initial
amplitudes
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Sini ¼ jSjeiξS ; Pini ¼ jPjeiξP ;
S̄ini ¼ −jSje−iξS ; P̄ini ¼ jPje−iξP : ðB3Þ

Strictly speaking, ξP is not needed. What matters is the
relative phase between S and P, which can be expressed via
ξS − ξP but equally well via ξS if one puts ξP ¼ 0. In
principle, phases can vary between 0 and 2π or −π and π.
However, an overall minus sign for all amplitudes would
not lead to an observable consequence. Therefore, it is
sufficient to consider ξS − ξP ∈ ½0; πÞ or ∈ ½−π=2;þπ=2Þ.
If (B3) were the complete amplitudes, then one would
always find ᾱ ¼ −α and β̄ ¼ β, irrespective ofCP violation
or conservation. For the case of CP symmetry, one would
find β ¼ 0.
This whole analysis leaves out final-state interactions.

Rescattering is a nonlocal phenomenon that cannot be
treated by a tree-level calculation using a local, Hermitian
Lagrangian. Instead, one can use explicit loop calculations
if one has a microscopic picture of the reaction, or one can
use an Omnès-function matrix that parametrizes the final-
state interactions. This is discussed in more detail in
Appendix C.

APPENDIX C: TREATMENT OF
FINAL-STATE INTERACTIONS

In the following, we discuss in some detail the treatment
of final-state interactions for the main decays of the Λ and
Λ̄ baryons. The case of Ξ0;− decays is just simpler.
Concerning the general treatment of final-state interactions,
see also Refs. [89–93]. The hyperon decays that we study in
the present work do not allow for many intermediate
inelastic channels since the decaying strange quark is
not very heavy. Decays of charm or bottom baryons would
provide much more phase space and correspondingly
contain many more open channels. Kinematically closed
channels might become important if they are strong (e.g.,
resonance enhanced) and if their threshold is close to the
studied invariant mass (e.g., this happens for the f0ð980Þ
and the kaon-antikaon threshold [94]). There are no non-
strange resonances close to the Λ mass and no single-
strange resonances close to the Ξ mass.
The relevant decay channels of Λ are ðpπ−ÞS, ðpπ−ÞP,

ðnπ0ÞS, and ðnπ0ÞP, where the subscript denotes the partial
wave. It is more convenient to build linear combinations
with respect to the isospin of the final states. Then, the four
decay channels are ðNπÞS;I¼1=2, ðNπÞS;I¼3=2, ðNπÞP;I¼1=2,
and ðNπÞP;I¼3=2. Following the conventions of the main
text, we denote the corresponding decay amplitudes by L1;1

for I ¼ 1=2 and by L3;3 for I ¼ 3=2; here, L ¼ S, P. The
initial decay amplitudes that emerge from the weak process
are denoted by Lini

…. For the corresponding antiparticle
decays, we use L̄…. We assume baryon number conserva-
tion. Then, there are no oscillations between Λ and its
antiparticle Λ̄. But the final-state interactions (FSIs)

might allow for transitions between the four final states
ðNπÞS;I¼1=2, ðNπÞS;I¼3=2, ðNπÞP;I¼1=2, and ðNπÞP;I¼3=2.
This defines a coupled-channel problem. We assume that
the weak process is of short-distance nature such that no
structure is resolved. Therefore, the discontinuity of a
decay amplitude is solely given by the FSIs. This defines
an Omnès problem [95]; for an analogous situation, see,
e.g., Ref. [94].
In general, one has a 4 × 4Omnès-function matrixΩ that

parametrizes the FSI. This matrix maps the “bare” ampli-
tudes of the initial decay onto the “full” amplitudes that
contain the FSI:

0
BBB@

S1;1
S3;3
P1;1

P3;3

1
CCCA ¼ Ω

0
BBBBB@

Sini1;1

Sini3;3

Pini
1;1

Pini
3;3

1
CCCCCA: ðC1Þ

The corresponding equation for the antiparticle sector reads

0
BBBBB@

S̄1;1

S̄3;3
P̄1;1

P̄3;3

1
CCCCCA ¼ Ω̄

0
BBBBB@

S̄ini1;1

S̄ini3;3

P̄ini
1;1

P̄ini
3;3

1
CCCCCA: ðC2Þ

Next, we assume that parity and charge conjugation are
both conserved by the FSI. This is true for strong and
electromagnetic FSI. In this case, the FSIs are the same in
the particle and antiparticle sector, i.e., Ω ¼ Ω̄, and there is
no cross-talk between the parity-even p waves and the
parity-odd s waves:

Ω ¼ Ω̄ ¼
�ΩS 0

0 ΩP

�
ðC3Þ

with 2 × 2 matrices ΩS and ΩP.
Finally, we assume isospin symmetry. Then, the 2 × 2

matrices become diagonal. Watson’s theorem [66] ensures
that the phase of the pertinent Omnès function agrees with
the scattering phase shift δL;2I of the corresponding N − π
scattering:

ΩL ¼ diagðjΩL;2I¼1jeiδL;1 ; jΩL;2I¼3jeiδL;3Þ ðC4Þ

with L ¼ S, P. Here, it is of advantage that we changed
from the particle basis (pπ− and nπ0) to the isospin basis
(I ¼ 1=2 and I ¼ 3=2). In the particle basis, the 2 × 2
Omnès matrices would not be diagonal.
Of course, if required by precision, the assumptions that

lead from more general 4 × 4 matrices in (C1) and (C2) to
(C3) and (C4) can be relaxed one by one.
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APPENDIX D: AVERAGE POLARIZATION AND SPIN-CORRELATION TERMS

Expression for average polarization squared

hP2
Bi ¼

Z
P2
B

�
1

σ

dσ
dΩB

�
dΩB ¼ 3

2

Z
P2
B

1þ αψ cos2 θ

3þ αψ
d cos θ; ðD1Þ

where PB is given by Eq. (40). The integral can be calculated exactly, and the result is expressed as

hP2
Bi ¼ p0 þ p2P2

e; ðD2Þ

where

p0 ¼
ð1 − α2ψ Þsin2ðΔΦÞ

α2ψð3þ αψÞ
f3þ 2αψ − 3ð1þ αψÞFðαψÞg; ðD3Þ

p2 ¼
3ð1þ αψÞ2
αψð3þ αψ Þ

�
1 −

1 − αψ
1þ αψ

cos2ðΔΦÞ − ð1 − ð1 − αψ Þcos2ðΔΦÞÞFðαψ Þ
	
: ðD4Þ

The function FðαÞ is

FðαÞ ≔
Z

1

0

dx
1þ αx2

¼

8>>><
>>>:

arctan
ffiffi
α

pffiffi
α

p 0 < α ≤ 1

1 α ¼ 0

arctanh
ffiffiffiffi
jαj

pffiffiffiffi
jαj

p −1 < α < 0

: ðD5Þ

Properties of the function Fð1Þ¼ π
4
and limα→−1 FðαÞ ¼ ∞.

The function is drawn in Fig. 18. For αψ ¼ 1, the
coefficients are

p0 ¼ 0 and p2 ¼
3ð4 − πÞ

4
≈ 0.6438; ðD6Þ

and for αψ ¼ 0,

p0 ¼
2

15
sin2ðΔΦÞ and p2 ¼

2þ cosð2ΔΦÞ
3

: ðD7Þ

One derives similar expressions for the sum of the squares
of the spin-correlation terms. The result can be expressed as

hS2
BB̄i ¼ s0 þ s2P2

e; ðD8Þ

where

s0 ¼
1

α2ψð3þ αψ Þ
fð1 − α2ψ Þð2αψ þ 3Þ cosð2ΔΦÞ − 7α3ψ − 2αψ − 3

−3ðαψ þ 1Þ2FðαψÞ½ð1 − αψÞ cosð2ΔΦÞ þ αψ − 2α2ψ − 1�g; ðD9Þ

s2 ¼
6ð1 − α2ψÞ sin2ðΔΦÞ

αψð3þ αψ Þ
fð1þ αψÞFðαψÞ − 1g: ðD10Þ

For the eþe− → BB̄ process specified by the parameters αψ , βψ , and γψ , the polarization and spin-correlation terms as a
function of the B-baryon production angle θ are

P2
Bðcos θÞ ¼ 2

ðαψ þ 1Þ2P2
e cos2 θ þ sin2 θðβ2ψ cos2 θ þ P2

eγ
2
ψÞ

ð1þ αψ cos2 θÞ2
; ðD11Þ

S2
BB̄ðcos θÞ ¼

ðα2ψ þ 1Þ sin4 θ þ ðαψ þ cos2 θÞ2 þ 2 sin2 θðγ2ψ cos2 θ þ P2
eβ

2
ψ Þ

ð1þ αψ cos2 θÞ2
: ðD12Þ
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APPENDIX E: MODIFICATION OF THE
FISHER INFORMATION MATRICES

TO INCLUDE BACKGROUND

Neglecting the resolution effect for the ξ variables, the
overall probability density function including background
term, PBðξÞ, and relative detection efficiency, ϵðξÞ, is

PTðξ;ωÞ ¼ pPðξ;ωÞϵðξÞ þ ð1 − pÞPBðξÞ: ðE1Þ

We impose the normalization
R
PBðξÞdξ ¼ 1 for the back-

ground and
R
Pðξ;ωÞϵðξÞdξ ¼ 1 for the signal. The last

condition implies that the relative efficiency ϵðξÞ must be
equal to one if it is constant. The coefficient p ¼ S=N
represents the ratio of the number of the signal events, S, to

the total number of the signal and background events N. It
is assumed that the ratio is fixed and has a known value.
The Fisher information matrix Eq. (52) now reads

Iðωk;ωlÞ ≔ N
Z

1

PT

∂PT

∂ωk

∂PT

∂ωl
dξ

¼ Np2

Z
1

PT

∂P
∂ωk

∂P
∂ωl

ϵ2ðξÞdξ: ðE2Þ

We rewrite the background distribution as

PBðξÞ≕ 1þ GBðξÞ
V

ðE3Þ

and use Eq. (57) representation for the signal with C00 ¼ 1.
The term 1=PT can be therefore written as

1

PT ¼ V
1þ pðϵ − 1Þ þ pGϵþ ð1 − pÞGB ðE4Þ

≈
V

1þ pG
; ðE5Þ

where the approximate form is obtained by setting ϵðξÞ ¼
const:≡ 1 and GB ¼ 0. Therefore, the analytical 0th order
approximations for experiments with background can be
obtained by replacing N → S2=N in our expressions.
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