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In this paper, we calculate the ratio of Cabibbo-Kobayashi-Maskawa matrix elements, jVubj=jVcbj,
based on the semileptonic decay B0

s → K−μþνμ. Its key component, the Bs → K transition form factor

fBs→K
þ ðq2Þ, is studied within the QCD light-cone sum rules approach by using a chiral correlator. The derived

fBs→K
þ ðq2Þ is dominated by the leading-twist part, and to improve its precision, we construct a newmodel for

the kaon leading-twist distribution amplitude ϕ2;Kðx; μÞ, whose parameters are fixed by using the least-
squares method with the help of the moments calculated by using the QCD sum rules within the background
field theory. The first four moments at the initial scale μ0 ¼ 1 GeV are hξ1i2;K ¼ −0.0438þ0.0053

−0.0075 ,

hξ2i2;K ¼ 0.262� 0.010, hξ3i2;K ¼ −0.0210þ0.0024
−0.0035 , and hξ4i2;K ¼ 0.132� 0.006, respectively. And the

correspondingGegenbauermoments area2;K1 ¼ −0.0731þ0.0089
−0.0124 ,a

2;K
2 ¼ 0.182þ0.029

−0.030 ,a
2;K
3 ¼ −0.0114þ0.0008

−0.0016 ,

and a2;K4 ¼ 0.041−0.003þ0.005, respectively. At the large recoil region, we obtain fBs→K
þ ð0Þ ¼ 0.270þ0.025

−0.020 .

By extrapolating fBs→K
þ ðq2Þ to all the physical allowable region, we obtain a jVubj-independent decay

width for the semileptonic decay B0
s → K−μþνμ, 5.626þ1.292

−0.864 × 10−12 GeV, which then leads to
jVubj=jVcbj ¼ 0.072� 0.005.

DOI: 10.1103/PhysRevD.105.116020

I. INTRODUCTION

The Cabibbo-Kobayashi-Maskawa (CKM) matrix
element jVubj modulates the coupling of the electroweak
interaction between u and b quarks. The research of jVubj
can be performed by the weak decays of hadrons containing
a b quark, which occurs via the quark level transition
b → uðW� → lνÞ, where l indicates a lepton and ν is for a
neutrino. Therefore, those decays provide a good platform
to test the standard model (SM) and probe the new physics
effects beyond the SM. There is a discrepancy between
the measurements of jVubj from exclusive decays and that
from inclusive decays. So far, the data from semileptonic
decay B → πlνl dominate the world average of the
exclusive jVubj measurements. Therefore, it is necessary
to study other exclusive processes occurring via b → ulν.

Especially, the LHCb Collaboration reported the measure-
ments of the branching fraction of the semileptonic decay
B0
s → K−μþνμ and of the ratio jVubj=jVcbj [1], which are

based on the data sample from pp collisions at a center-of-
mass energy of 8 TeV corresponding to the integrated
luminosity of 2fb−1 recorded by the LHCb detector in
2012. Thus, the semileptonic decay channel B0

s → K−μþνμ
is also an significant process in dealing with jVubj.
The key component of the B0

s → K−μþνμ decay ampli-
tude is the Bs → K transition form factor (TFF) fBs→K

þ ðq2Þ,
which can be calculated by various approaches. Based on
the light-cone sum rules (LCSRs) approach, the fBs→K

þ ðq2Þ
was studied in Ref. [2] by adopting the chiral correlation
function (correlator) for the first time. Lately, research
about this TFF have been performed with the traditional
correlator, which is arranged by the kaon’s increased twist
distribution amplitudes (DAs) [3–7]. Particularly, by inte-
grating directly in the complex plane, Duplancic [5] and
Melic [6] calculated the gluon radiative corrections to the
kaon twist-2 and twist-3 DA terms, respectively. The
LCSRs calculation can also been performed in the frame-
work of heavy quark effective field theory [4]. Meanwhile,
the semileptonic decay Bs → Klν̄l has also been studied
within the lattice QCD (LQCD) [8–12] and the perturbative
QCD (pQCD) factorization approach [13–15]. Generally,
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the pQCD factorization approach is reliable for describing
the form factors in the low q2 region, the LCSR estimations
for TFFs are reliable in low and intermediate q2 regions,
and the LQCD works well for the region near
q2max ¼ ðmBs

−mKÞ2 ∼ 23.75 GeV2. The predictions from
those three methods can be extended from their own
applicable region to all allowable q2 values via appropriate
extrapolations, such as the Bourrely-Caprini-Lellouch for-
mula [16], etc. Different methods are also complementary
to each other. Jin and Xiao presented the pQCD factori-
zation determinations of Bs → K TFFs in the low q2 region
first, then they improved their extrapolation by taking the
available LQCD results at q2max as additional inputs [15]. In
addition, there are several quark models (QMs) that have
been used to study the semileptonic decay Bs → Klν̄l.
For example, Albertus studied the TFF of the semileptonic
decay B̄s → Kþl−ν̄l within constituent quark model
(CQM) and nonrelativistic quark model, where a multiply
subtracted Omnès dispersion relation has been used to
extrapolate their predictions from its applicable region near
q2max [17,18]. By using the quasipotential approach,
Faustov and Galkin studied the Bs → K TFFs within the
framework of the QCD-motivated relativistic quark model
(RQM), and they obtained the momentum dependence of
TFFs in the whole q2 regions without any additional
extrapolations [19]. Furthermore, there is other QM
research on the TFF fB→Kþ ðq2Þ in the literature, such as
the light-front covariant quark model (LFQM) [20,21] and
the light-cone quark model (LCQM) within soft collinear
effective theory [22]. Otherwise, the TFF fB→Kþ ðq2Þ has
also been calculated in some research on the B=Bs two-
body decays [23–27]. There still exist discrepancies among
different theoretical groups.
Motivated by this, we will calculate the TFF fBs→K

þ ðq2Þ
within the LCSRs approach by using the chiral corrlator.
The chiral correlator was first introduced to deal with the
B → π TFF [28], where the contributions of the twist-3
DAs in fB→πþ ðq2Þ vanish automatically. Since then, the
chiral correlator has been widely used to study the TFFs of
Bu;d;s;c → various pseudoscalar, vector, and scalar meson
semileptonic decays [2,29–44]. By using the chiral corre-
lator, the Bs → K TFF fB→Kþ ðq2Þ is only expressed with the
kaon twist-2 and twist-4 DAs, and the contribution of the
twist-2 part is dominant, which also indicates that a more
precise ϕ2;Kðx; μÞ is helpful to improve the prediction of the
semileptonic decay Bs → Klν̄l. In view of this, the kaon
leading-twist DA ϕ2;Kðx; μÞwill be another research object
in this work. The meson’s light-cone DAs are universal
nonperturbative inputs, which enter into the exclusive
processes involving large momentum transfer Q2≫Λ2

QCD

and B=D meson two-body decays through factorization
assumption. Those processes can be decomposed into the
long-distance dynamics (i.e., DAs) and the perturbatively
calculable hard-scattering amplitudes [45,46]. The DAs are

main error sources in theoretical predictions, so their
precise behaviors are important [47]. Comparing with
the pionic leading-twist DA, the study of kaon leading-
twist DA ϕ2;Kðx; μÞ will encounter SUfð3Þ symmetry
breaking effect originating from the s-quark mass effect
[46]. The QCD sum rules and the LQCD approaches are the
most popular methods to study ϕ2;Kðx; μÞ, which usually
focus on the calculation of the first two moments of
ϕ2;Kðx; μÞ, and then the DA behavior is approximated with
the truncated form of the Gegenbauer polynomial expan-
sion series [48]. On the other hand, the SUfð3Þ breaking
effect in the kaon leading-twist DA can be realized by the
difference between the longitudinal momentum fractions of
the strange and nonstrange quarks, which is proportional to
the first Gegenbauer moments a2;K1 ðμÞ, and is also reflected
in the ratio of the pion and kaon second Gegenbauer
moments, i.e., a2;K2 ðμÞ=a2;π2 ðμÞ [46,49].
There are large differences in the predictions of the QCD

sum rules and the LQCD on the moments of the kaon
leading-twist DA in history. The earliest QCD sum rules
research on a2;K1 ðμÞ has been given by Chernyak and
Zhitnitsky (CZ), and they predicted a2;K1 ≈ 0.1 [50,51].
Ball and Boglione pointed out the sign error of the
contribution of the perturbation term in the CZ calcula-
tion and suggested a2;K1 ð1 GeVÞ ¼ −0.18� 0.09 and
a2;K2 ð1 GeVÞ ¼ 0.16� 0.10 [52]. The first moment has
lastly been recalculated as a2;K1 ð1 GeVÞ ¼ 0.050� 0.025
[53] and a2;K1 ð1 GeVÞ ¼ 0.06� 0.03 [54]. By adopting the
diagonal correlation function of local and nonlocal axial-
vector currents, Khodjamirian obtained a2;K1 ð1 GeVÞ ¼
0.05� 0.02 and a2;K2 ð1 GeVÞ ¼ 0.27þ0.37

−0.12 by using the
QCD sum rules [55]. After considering the constrains from
the exact operator identities, Braun obtained the QCD sum
rules prediction as a2;K1 ð1 GeVÞ ¼ 0.10� 0.12 [56], which
is consistent with the sum rules given in Ref. [46]. In
Ref. [46], the gluon radiative correction up to Oðα2sÞ is
calculated, where a2;K1 ð1 GeVÞ ¼ 0.10� 0.04. The results
of LQCD calculation are generally small, and the cen-
tral value of a2;K1 is about in 0.45–0.66 at μ ¼ 2 GeV
[45,48,57,58]. In addition, especially in recent years, the
kaon leading-twist DA has also been studied by other
methods as a whole, such as the LFQM [49,59], the light-
front constituent quark model (LFCQM) [60], the nonlocal
chiral-quark model (NLChQM) from the instanten vac-
uum [61], the Dyson-Schwinger equation (DSE) compu-
tation [62], the framework of the anti-de Sitter/quantum
chromodynamics (AdS/QCD) [47], by taking the infinite-
momentum limit for the quasidistribution amplitude within
NLChQM [63] and LQCD based on the large-momentum
effective theory [64,65]. In this paper, we will study the
kaon leading-twist DA ϕ2;Kðx; μÞ by combining the phe-
nomenological light-cone harmonic oscillator (LCHO)
model and the QCD sum rules in the framework of the
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background field theory (BFTSR). This method has been
suggested to study the pionic leading-twist DA ϕ2;πðx; μÞ in
Ref. [66]. Following the method, an improved LCHO
model was first introduced to achieve a better behavior
of ϕ2;Kðx; μÞ. New sum rules are derived to achieve the DA
moments, which are adopted to fix the parameters of the
LCHO model by using the least-squares method.
The rest of the paper are organized as follows. In Sec. II,

the branching ratio and the TFF of Bþ
s → Klþνl, the

LCHO model of K-meson twist-2 DA, and the moments of
ϕ2;Kðu; μÞ under the BFTSR are presented. In Sec. III,
we provide the numerical results and make a comparison
with the experimental and other theoretical predictions.
Section IV is reserved for a summary.

II. CALCULATION TECHNOLOGY

A. LCSR on semileptonic decay B0
s → K − μ+ νμ

To study the CKM matrix element jVubj from the
semileptonic decay process B0

s → K−μþνμ, we start from
the differential decay width over the squared momentum
transfer,

dΓ
dq2

ðB0
s → K−μþνμÞ

¼ G2
FjVubj2

192π3m3
B0
s

½ðm2
B0
s
þm2

K− − q2Þ2 − 4m2
B0
s
m2

K− �3=2

× jfBs→K
þ ðq2Þj2; ð1Þ

where GF ¼ 1.166 × 10−5 GeV−2 is the Fermi constant
and mB0

s
and mK− are B0

s- and K− meson masses, respec-
tively. Apart from the experimental measurement on the
decay width or branching fraction, the TFF fBs→K

þ ðq2Þ is
the key component in determining the CKMmatrix element
jVubj. To derive the LCSR of the TFF, one can start with the
following correlator,

Πμðp; qÞ ¼ i
Z

d4xeiq·xhKðpÞjTfjμVðxÞ; j†Bs
ð0Þgj0i

¼ Fðq2; ðpþ qÞ2Þpμ þ F̃ðq2; ðpþ qÞ2Þqμ; ð2Þ

where jμVðxÞ ¼ ūðxÞγμð1þ γ5ÞbðxÞ. For the Bs-meson

current j†Bs
ð0Þ, we choose the right-handed current

j†Bs
ð0Þ ¼ mbb̄ð0Þið1þ γ5Þsð0Þ, which highlights the con-

tribution of the kaon twist-2 DA ϕ2;Kðx; μÞ and removes the
less certain twist-3 DAs’ contributions. Thus, the accuracy
of the derived LCSR can be greatly improved in compari-
son to the case of using conventional correlator, in which
the twist-2 and twist-3 terms are of same importance
and the accuracy of the twist-3 contributions is always
diluted by the less known twist-3 DAs. As a subtle point,
the hadronic representation of the chiral correlator (2)

introduces extra terms, such as ūγμγ5b ×mbb̄ið1þ γ5Þs,
ūγμb × imbb̄s, into the conventional correlator. Those terms
can be absorbed into the hadron spectrum density represent-
ing the excited states and continuum states. This treatment
will bring extra error to the predicted results, which can be
estimated by examining the influence of the magnitude of
the continuum threshold on the TFF fBs→K

þ ðq2Þ. Numerical
analysis, as shall be shown the following section, indicates
that such error caused by different choices of the continuum
threshold is around the samemagnitude or even smaller than
the cases by using the conventional correlator. Thus,
comparing with its advantage and its improvement to the
final sum rules, the prices of using chiral correlator are
acceptable [43,44,67,68].
On the one hand, the Bs → K matrix elements are related

to the correlator via hadronic dispersion relation in the
channel of the current ðb̄γ5sÞ with the squared 4-momen-
tum ðpþ qÞ2 based on the LCSR approach. After inserting
the hadronic states between the two currents in the
correlator, one then isolates the ground state of Bs-meson
contributions in the dispersion relations, and the hadron
representation of the invariant amplitude Fðq2; ðpþ qÞ2Þ
can be read off

Fðq2; ðpþ qÞ2Þ ¼ 2m2
Bs
fBs

fBs→K
þ ðq2Þ

m2
Bs
− ðpþ qÞ2 þ � � � ; ð3Þ

where fBs
is the Bs-meson decay constant, the ellipses

indicate the contribution of heavier states, and we have
implicitly expressed the Bs → K transition matrix
element as

hKðpÞjūγμbjBsðpþ qÞi
¼ 2fBs→K

þ ðq2Þpμ þ ðfBs→K
þ ðq2Þ þ fBs→K

− ðq2ÞÞqμ: ð4Þ

In this paper, we shall focus on the semileptonic decay
B0
s → K−μþνμ, where only the TFF fBs→K

þ ðq2Þ contributes
due to negligible muon mass. Thus, the pμ terms in the
correlator (2) from the transitionmatrix element (4) aswell as
the TFF fBs→K

− ðq2Þ shall not be considered here. On the other
hand, in the region of q2 ≤ m2

b and ðpþ qÞ2 ≤ m2
b, which is

far from the b-flavor threshold, the b-quark propagating in
the correlator is highly virtual, and the distances near the
light-cone x2 ¼ 0 dominate. The light-cone expansion of the
b-quark propagator has the following form:

h0jbiαðxÞb̄jβð0Þj0i

¼−i
Z

d4k
ð2π4Þe

−ik·x
�
δij

=kþmb

m2
b−k2

þgs

Z
1

0

dvGμνaðvxÞ
�
λa

2

�
ij

×

�
=kþmb

2ðm2
b−k2Þ2σμνþ

1

m2
b−k2

vxμγν

��
αβ

: ð5Þ
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In calculation of the operator product expansion (OPE), the
OðαsÞ gluon radiative corrections to the dominant twist-2 of
correlator is considered. So, the OPE result for the invariant
amplitude Fðq2; ðpþ qÞ2Þ can be represented as

Fðq2; ðpþ qÞ2Þ ¼ F0ðq2; ðpþ qÞ2Þ

þ αsCF

4π
F1ðq2; ðpþ qÞ2Þ: ð6Þ

After substituting the OPE results of Fðq2; ðpþ qÞ2Þ
into Eq. (3), one can introduce an effective threshold
parameter sBs

0 such that all the continuum states and excited
states are separated, whose contributions could be

approximated by using the quark-hadron duality. By further
making the usual Borel transformation to suppress those
less certain contributions from continuum and excited
states, one then obtains the required LCSR for the TFF
fBs→K
þ ðq2Þ,

fBs→K
þ ðq2Þ ¼ em

2
Bs
=M2

m2
Bs
fBs

�
F0ðq2;M2; sBs

0 Þ

þ αsCF

4π
F1ðq2;M2; sBs

0 Þ
�
; ð7Þ

where CF ¼ 4=3. The leading-order contribution is

F0ðq2;M2; sBs
0 Þ ¼ mbðmb þmsÞfK

Z
1

u0

due−ðm
2
b−ūq

2þuūm2
KÞ=ðuM2Þ

�
ϕ2;KðuÞ

u
þ 1

m2
b − q2 þ u2m2

K

×
�
uψ4;KðuÞ þ

�
1 −

2u2m2
K

m2
b − q2 þ u2m2

K

�Z
u

0

dvψ4;KðvÞ −
um2

b

4ðm2
b − q2 þ u2m2

KÞ

×

�
d2

du2
−

6um2
K

m2
b − q2 þ u2m2

K

d
du

þ 12um4
K

ðm2
b − q2 þ u2m2

KÞ2
�
ϕ4;KðuÞ

−
�
d
du

−
2um2

K

m2
b − q2 þ u2m2

K

�Z
u

0

dα1

Z
1

u−α1
1−α1

dv
v
ð2Ψ4;KðαiÞ −Φ4;KðαiÞ þ 2Ψ̃4;KðαiÞ − Φ̃4;KðαiÞÞ

−
2um2

K

m2
b − q2 þ u2m2

K

�
u
d
du

þ
�
1 −

4u2m2
K

m2
b − q2 þ u2m2

K

��Z
u

0

dα1

×
Z

1

u−α1
1−α1

dv
v
ðΨ4;KðαiÞ þΦ4;KðαiÞ þ Ψ̃4;KðαiÞ þ Φ̃4;KðαiÞÞ þ 2um2

K

×
m2

b − q2 − u2m2
K

ðm2
b − q2 þ u2m2

KÞ2
�
d
du

−
6um2

K

m2
b − q2 þ u2m2

K

�Z
1

u
dw
Z

w

0

dα1

Z
1

u−α1
1−α1

dv
v

× ðΨ4;KðαiÞ þΦ4;KðαiÞ þ Ψ̃4;KðαiÞ þ Φ̃4;KðαiÞÞ
��

; ð8Þ

where mb is the b-quark mass, fK is the kaon decay
constant, ū ¼ 1 − u, and

u0 ¼
1

2m2
K

h
q2 − sBs

0 þm2
K

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2 − sBs

0 þm2
KÞ2 − 4m2

Kðq2 −m2
bÞ

q i
: ð9Þ

Since the contributions from the twist-4 terms are small, to
do the numerical calculation, we take the kaon twist-4 DAs,
i.e., ψ4;KðuÞ, ϕ4;KðuÞ, Ψ4;KðαiÞ, Φ4;KðαiÞ, Ψ̃4;KðαiÞ, and
Φ̃4;KðαiÞ as those of the corresponding ones of the pion [69]
due to small SUfð3Þ breaking effect. As for the three
particle twist-4 DAs, the momentum fractions α2 and α3
are α2 ¼ 1 − α1 − α3 and α3 ¼ ðu − α1Þ=v. The next-to-
leading-order (NLO) term of the twist-2 part can be
expressed in the form of the dispersion relation

F1ðq2;M2; sBs
0 Þ ¼ fK

π

Z
sBs
0

m2
b

dse−s=M
2

×
Z

1

0

duImT1ðq2; s; uÞϕ2;KðuÞ; ð10Þ

where the expression of T1ðq2;M2; sBs
0 Þ can be found in

Ref. [69].

B. Improved LCHO model of ϕ2;Kðx;μÞ
The main nonperturbative uncertainty to the above

LCSR (7) comes from the kaon twist-2 DA, which could
be derived from its twist-2 wave function (WF). The kaon
WF can be constructed via a way similar to that of a pion.
The pion WF has been constructed by using LCHO
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model [70–72]. More explicitly, the pion WF starts from
the SUð6Þ instant form in the rest frame,

ΨCMðq2Þ ¼ A exp

�
−

q2

2β2

�
1ffiffiffi
2

p ðχ↑1χ↓2 − χ↓1χ
↑
2 Þ; ð11Þ

where A is the normalization constant, the exponential
factor exp ½−q2=ð2β2Þ� is from a harmonic oscillator model
for the meson bound state within the valence quark model
[73], and the remaining part is the spin WF with the two-
component Pauli spinor χ↑;↓i . In Eq. (11), the momenta of
two quarks are indicated as qμ1¼ðq01;q1Þ and qμ2 ¼ ðq02;q2Þ,
respectively, where q1 ¼ −q2 ¼ q and q01 ¼ q02 ¼ q0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2 þ q

p
with the u- and/or d-constituent quark mass

m̂u ¼ m̂d ¼ m̂ in the rest frame. Based on the Brodsky-
Huang-Lepage (BHL) description [70], that is, there is a
connection between the equal-times WF in the rest frame
and the light-cone WF, i.e.,

ΨCMðq2Þ ↔ ΨLC

�
k2⊥ þ m̂2

4xð1 − xÞ − m̂2

�
; ð12Þ

the spatial part of LCHO model can be obtained, which is
proportional to

exp

�
−

k2⊥ þ m̂2

8β2xð1 − xÞ
�
: ð13Þ

By further using the Wigner-Melosh rotation [74–76], the
spin WF in the light-cone frame can be obtained from the
spin part in Eq. (11),1

a1a2 − k2

½ða21 þ k2Þða22 þ k2Þ�1=2 ; ð14Þ

where a1 ¼ xM̃ þ m̂ and a2 ¼ ð1 − xÞM̃ þ m̂ with M̃ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2⊥ þ m̂2Þ=½xð1 − xÞ�

p
. Then, combining Eqs. (13) and

(14), Ref. [72] suggests a LCHO model of the pionic
leading-twist WF, i.e.,

Ψðx;k2⊥Þ ¼ A
a1a2 −k2

½ða21 þk2Þða22 þk2Þ�1=2

× exp

�
−

1

8β2

�
k2⊥ þ m̂2

x
þk2⊥ þ m̂2

1− x

��
: ð15Þ

By returning m̂ in Eq. (15) back to m̂u and m̂d and replacing
one of them by the constituent s-quark mass m̂s, one then

obtains the LCHO model of the kaon leading-twist WF
[77]. In the present paper, we will build on the LCHO
model of Ref. [77] and suggest a way to improve it.
Let us introduce the follow-up work via the usual way.

Based on the BHL description [70], the LCHOmodel of the
kaon leading-twist WF Ψ2;Kðx;k⊥Þ can be written as

Ψ2;Kðx;k⊥Þ ¼ χ2;Kðx;k⊥ÞΨR
2;Kðx;k⊥Þ; ð16Þ

where k⊥ is the kaon transverse momentum. χ2;Kðx;k⊥Þ
stands for the total spin-space WF that comes from the
Wigner-Melosh rotation [74–76], and

χ2;Kðx;k⊥Þ ¼
X
λ1λ2

χλ1λ22;K ðx;k⊥Þ; ð17Þ

where χλ1λ22;K ðx;k⊥Þ is the spin-space WF, corresponding to
four different types of the helicities of the two constituent
quarks, i.e., λ1λ2 ¼ ð↑↑;↑ ↓;↓ ↑;↓↓Þ, respectively. Their
specific forms are listed in Table I and to [77]

χ2;Kðx;k⊥Þ ¼
m̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2⊥ þ m̃2
p ; ð18Þ

where m̃ ¼ m̂qxþ m̂sð1 − xÞ. q indicates the light quark,
q ¼ u is for K0, and q ¼ d is for Kþ. For the values of the
constituent quark masses m̂s and m̂q, several schemes have
been adopted in the literature. For example, m̂s ¼
370 MeV and m̂q ¼ 250 MeV [78,79] in the invariant
meson mass scheme (MS) [72,79–86], m̂s ¼ 450 MeV
and m̂q ¼ 330 MeV in the spin-averaged meson MS
[87–91], and m̂s ¼ 450 MeV and m̂q ¼ 300 MeV for
the simplest in Refs. [32,33,77,92,93]. We will analyze
the behavior of the kaon leading-twist DA under different
schemes in Sec. III and choose the resultant DA corre-
sponding MS to further study the semileptonic decay
B0
s → K−μþνμ. ΨR

2;Kðx;k⊥Þ in Eq. (16) stands for the
spatial WF and reads2

TABLE I. The specific forms of the four spin-space WFs
χλ1λ22;K ðx;k⊥Þ with different λ.

λ1λ2 ↑↑ ↑ ↓

χλ1λ22;K ðx;k⊥Þ − ða1þa2Þðkx−ikyÞ
½2ða2

1
þk2⊥Þða22þk2⊥Þ�1=2

a1a2−k2⊥
½2ða2

1
þk2⊥Þða22þk2⊥Þ�1=2

λ1λ2 ↓ ↑ ↓↓

χλ1λ22;K ðx;k⊥Þ − a1a2−k2⊥
½2ða2

1
þk2⊥Þða22þk2⊥Þ�1=2

− ða1þa2ÞðkxþikyÞ
½2ða2

1
þk2⊥Þða22þk2⊥Þ�1=2

1For the specific derivation details, one can refer to Eqs. (4.1)–
(4.12) in Ref. [72]. In addition, it should be noted that the spin
WF (14) includes not only the two ordinary helicity (λ1 þ λ2 ¼ 0)
components in Eq. (11) but also the two higher helicity
(λ1 þ λ2 ¼ �1) components, which arise from the Wigner-
Melosh rotation.

2In principle, the spatial part of kaon leading-twist WF should
contain a Jacobi factor [78]; However, numerical prediction in
Ref. [66] shows that the influence of such a factor on the pionic
leading-twist DA is small. Therefore, we also ignore the effect of
the Jacobi factor to the kaon WF/DA.
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ΨR
2;Kðx;k⊥Þ ¼ A2;Kφ2;KðxÞ

× exp

�
−

1

8β22;K

�
k2⊥ þ m̂2

s

x
þ k2⊥ þ m̂2

q

1 − x

��
;

ð19Þ

where A2;K is the normalization constant, β2;K is the
harmonious parameter that dominates the WF’s transverse
distribution, and φ2;KðxÞ dominates the WF’s longitudinal
distribution; we take its form as

φ2;KðxÞ ¼ ½xð1 − xÞ�α2;K
× ½1þ B̂2;K

1 C3=2
1 ð2x − 1Þ þ B̂2;K

2 C3=2
2 ð2x − 1Þ�;

ð20Þ

where C3=2
n ð2x − 1Þ is the Gegenbauer polynomial. The

φ2;KðxÞ is constructed by applying the idea of constructing
pionic longitudinal distribution function φIV

2;πðxÞ suggested
in Ref. [66] to the present case of the kaon. The factor
½xð1 − xÞ�α2;K regulates the behavior of Ψ2;Kðx;k⊥Þ and
ϕ2;Kðx; μÞ. Considering the SUfð3Þ breaking effect, we add
a term proportional to C3=2

1 ð2x − 1Þ. We set B̂2;K
1 ¼ 0.4B̂2;K

2

so as to make the undetermined model parameters as few as
possible; the factor 0.4 is from the ratio of the first and
second Gegenbauer moments, e.g., ja2;K1 =a2;K2 j. For the
values of the Gegenbauer moments a2;K1 and a2;K2 , one can
find in Sec. III. The rationality of the relationship between
B̂2;K
1 and B̂2;K

2 can be judged by the goodness of fit.
Substituting the WF formula (16) with Eqs. (18), (19),
and (20) into the relationship between the kaon leading-
twist DA and its WF, i.e.,

ϕ2;Kðx; μÞ ¼
2
ffiffiffi
6

p

fK

Z
jk⊥j2≤μ2

d2k⊥
16π3

Ψ2;Kðx;k⊥Þ; ð21Þ

and after integrating over the transverse momentum k⊥, the
kaon leading-twist DA, ϕ2;Kðx; μÞ, can be written as

ϕ2;Kðx; μÞ ¼
ffiffiffi
3

p
A2;Kβ2;Km̃

2π3=2fK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p

× φ2;KðxÞ
�
−
m̂2

qxþ m̂2
sð1 − xÞ − m̃2

8β22;Kxð1 − xÞ
�

×

(
Erf

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̃2 þ μ2

8β22;Kxð1 − xÞ

s !

− Erf

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̃2

8β22;Kxð1 − xÞ

s !)
: ð22Þ

We ignore the mass difference between u and d quarks, and
the WF Ψ2;Kðx;k⊥Þ and the DA ϕ2;Kðx; μÞ are the same for

K0 and Kþ. By replacing x with (1 − x) in Eqs. (16) and
(22), one can obtain the leading-twist WF and DA of K̄0

and K−.
The input parameters A2;K , β2;K , α2;K , and B̂2;K

2 satisfy
the following two constraints:

(i) the normalization condition of the kaon leading-
twist DA, Z

1

0

dxϕ2;Kðx; μÞ ¼ 1; ð23Þ

(ii) the probability of finding the leading Fock-state js̄qi
in the kaon Fock state expansion [71],

PK ¼
Z

1

0

dx
Z

d2k⊥
16π3

jΨ2;Kðx;k⊥Þj2: ð24Þ

The pionic leading-twist WF satisfies Pπ ≃ 0.2 [66]; we
then adopt PK ≃ 0.3 following the discussion of Ref. [71].
Using the constraints (23) and (24), there are two free
parameters left, which can be selected as α2;K and B̂2;K

2 .
They are determined by adopting the least-squares method
to fit the moments hξni2;Kjμ of ϕ2;Kðx; μÞ, defined as

hξni2;Kjμ ¼
Z

1

0

dxð2x − 1Þnϕ2;Kðx; μÞ; ð25Þ

whichwill be calculated in the next subsectionwith BFTSR.
In Sec. III, we will adopt the values of the first ten moments
to give a strong constraint on those parameters. In the
specific fitting, the undetermined model parameters α2;K
and B̂2;K

2 are regarded as the fitting parameters, i.e.,
θ ¼ ðα2;K; B̂2;K

2 Þ. The moments hξni2;Kjμ from Eqs. (20),
(22), and (25) are regarded as the mean function μðxi; θÞ
(xi → n), while those moments with their errors calculated
with BFTSR are regarded as the independent measurements
yi with the known variance σi. Obviously, our goal is to
obtain the best values of fitting parameters θ, which can be
achieved by minimizing the likelihood function

χ2ðθÞ ¼
X10
i¼1

ðyi − μðxi; θÞÞ2
σ2i

: ð26Þ

The goodness of fit is judged by the magnitude of the
probability

Pχ2 ¼
Z

∞

χ2
fðy; ndÞdy: ð27Þ

Here, fðy; ndÞ with the number of degrees of freedom nd is
the probability density function of χ2ðθÞ, and

fðy; ndÞ ¼
1

Γðnd
2
Þ2nd

2

y
nd
2
−1e−

y
2: ð28Þ
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C. Moments hξni2;Kjμ of ϕ2;Kðx; μÞ under the
BFTSR approach

To derive the sum rules for the kaon leading-twist DA
moments hξni2;K , we introduce the correlation function
(correlator)

Π2;Kðz; qÞ ¼ i
Z

d4xeiq·xh0jTfJnðxÞ; J†0ð0Þgj0i

¼ ðz · qÞnþ2I2;Kðq2Þ; ð29Þ

where n ¼ 0; 1; 2;… and z2 ¼ 0. The current JnðxÞ ¼
s̄ðxÞ=zγ5ðiz ·D

↔ÞnqðxÞ with the fundamental representation
of the gauge covariant derivative Dμ ¼ ∂μ − igsTAAA

μ ðxÞ
ðA ¼ 1;…; 8Þ, in which s and q indicate the s-quark and
u=d-quark fields, respectively.
In physical region, the correlator (29) can be treated by

inserting a complete set of intermediate hadronic states.
With h0jJnð0ÞjKðqÞi ¼ iðz · qÞnþ1fKhξni2;K , the hadronic
representation of correlator (29) reads

ImIhad2;KðsÞ ¼ πδðs −m2
KÞf2Khξni2;K þ πImIpert2;KðsÞθðs − sKÞ;

ð30Þ

where the quark-hadron duality has been adopted and mK ,
sK are the kaon mass and the continuum threshold,
respectively. On the other hand, in the deep Euclidean
region, we apply the OPE for the correlator (29) in the
framework of BFT. The basic idea of BFT is that the quark
and gluon fields are composed of background fields and
quantum fluctuations (quantum fields) around them. By
adopting the Feynman rule of BFT, that is, the quark and
gluon quantum fields are contracted into the corresponding
propagators, while the quark and gluon background fields
combine the vacuum operators to form the vacuum matrix
elements, the correlator (29) can be rewritten as

Π2;Kðz; qÞ ¼ i
Z

d4xeiq·xf−Trh0jSsFð0; xÞ

× =zγ5ðiz ·D
↔ÞnSqFðx; 0Þ=zγ5j0i

þ h0js̄ðxÞsð0Þ=zγ5ðiz ·D
↔ÞnSqFðx; 0Þ=zγ5j0i

þ h0jSsFð0; xÞ=zγ5ðiz ·D
↔Þnq̄ð0ÞqðxÞ=zγ5j0ig

þ � � � ; ð31Þ
where Tr indicates trace of the γ matrix and color matrix,
SsFð0; xÞ is the s-quark propagator from x to 0, SqFðx; 0Þ
stands for the u=d-quark propagator from 0 to x, and

=zγ5ðiz ·D
↔Þn and =zγ5 are the vertex operators from currents

JnðxÞ and J†0ð0Þ, respectively. The Feynman diagrams for
Eq. (31) are shown in Fig. 1, in which the left big dot and

the right big dot stand for the vertex operators =zγ5ðiz ·D
↔Þn

and =zγ5, respectively. The cross symbol attached to the
quark line indicates the local s- or u=d-quark background
field. Figures 1(a), 1(b), and 1(c) correspond to the first,
second, and third terms in Eq. (31), respectively. The
expressions up to dimension 6 of the quark propagator and

operator ðiz ·D↔Þn have been derived in Refs. [94,95]. By

substituting the formulas of SsðqÞF ð0; xÞ and ðiz ·D↔Þn into
Eq. (31), while expanding s̄ðxÞ and qðxÞ near 0, the long-
and short-distance quark-gluon interactions can be sepa-
rated with the help of the vacuum matrix element formulae
[94,96]. Finally, we obtain

L̂MI
QCD
2;K ¼ 1

π

1

M2

Z
∞

m2
s

dse−s=M
2

ImIpert2;KðsÞ þ
mshs̄si þ ð−1Þnmqhq̄qi

ðM2Þ2 þ hαsG2i
ðM2Þ2 ½1þ ð−1Þn�

×
1

24π

1þ nθðn − 2Þ
nþ 1

−
8nþ 1

18

mshgss̄σTGsi þ ð−1Þnmqhgsq̄σTGqi
ðM2Þ3 þ 2ð2nþ 1Þ

81

×
hgss̄si2 þ ð−1Þnhgsq̄qi2

ðM2Þ3 þ hg3sfG3i
ðM2Þ3 ½1þ ð−1Þn�−nθðn − 2Þ

96π2
þ hg2s q̄qi2

ðM2Þ3 ½1þ ð−1Þn�

×
2þ κ2

972π2

�
−2ð51nþ 25Þ

�
− ln

M2

μ2

�
þ 3ð17nþ 35Þ þ θðn − 2Þ

�
2n

�
− ln

M2

μ2

�

− 25ð2nþ 1Þψ̃ðnÞ þ 1

n
ð49n2 þ 100nþ 56Þ

��
þOðm2

sÞ; ð32Þ

FIG. 1. The Feynman diagrams for Eq. (31). The left big dot

and the right big dot stand for the vertex operators =zγ5ðiz ·D
↔Þn

and =zγ5 from the currents JnðxÞ and J†0ð0Þ, respectively. The cross
symbol attached to the quark line indicates the local s- or u=d-
quark background field.
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where L̂M indicates the Borel transformation operator with the Borel parameter M, and we have taken
g2s
P

ψ¼u;d;shgsψ̄ψi2 ¼ ð2þ κ2Þhg2s q̄qi2 with hs̄si=hq̄qi ¼ κ. In Eq. (32),

ImIpert2;KðsÞ ¼
3

8πðnþ 1Þðnþ 3Þ
��

2ðnþ 1Þm
2
s

s

�
1 −

m2
s

s

�
þ 1

��
1 −

2m2
s

s

�
nþ1

þ ð−1Þn
�
; ð33Þ

Oðm2
sÞ ¼

hαsG2i
M6

m2
s

24nπ

�
2n

�
−2n

�
− ln

M2

μ2

�
þnþ 2

�
þ θðn− 1Þ½ð−1Þnðn ˜̃ψðnÞ− 2Þ�

þ θðn− 2Þ½3nþð−1Þnðnþ 2−nð2nþ 1Þ ˜̃ψðnÞÞ�
�

þhg3sfG3i
M8

m2
s

576π2

��
8nð3n− 1Þ

�
− ln

M2

μ2

�
− 21n2 − 53nþ 6− 10δn0

�

þ θðn− 1Þ
�
4nð2n− 1Þ

�
− ln

M2

μ2

�
− 4ðn2þ 3n− 1Þ

�
þ θðn− 2Þ½2n½6nþ 3ð−1Þn −1� þ 4ð−1Þnð1−n ˜̃ψðnÞÞ�

þ θðn− 3Þ½−19n2 − ð3þ 16ð−1ÞnÞn6ð−1Þnþ 2ð−1Þnnð8n−1Þ ˜̃ψðnÞ�
�

þhg2s q̄qi2
ðM2Þ4 m2

s
2þ κ2

7776π2

�
72δn0− 768δn1þ 8½6nð1þ 17ð−1ÞnÞ− 108n2− ð−1Þn − 1�

�
− ln

M2

μ2

�
− 12½−63n2þð−193þ 34ð−1ÞnÞnþ 106ð−1Þn − 56�

þ θðn− 1Þ
�
−16nð2nþð−1Þn − 1Þ

�
− ln

M2

μ2

�
þ 8

n
ð−6n3þð6þ 4ð−1ÞnÞn2þ 2ð−1þð−1ÞnÞn− 23ð1þð−1ÞnÞÞ

�

þ θðn− 2Þ
�
−

8

nðn−1Þ ð4n
4þð−3þ 53ð−1ÞnÞn3þð146− 74ð−1ÞnÞn2− 3ð49þ 9ð−1ÞnÞnþ 24ð1þð−1ÞnÞÞ

− 8nð−50þ 21ð−1ÞnÞ ˜̃ψðnÞþ 92ð1þð−1ÞnÞψ̃ðnÞ
�

þ θðn− 3Þ
�

4

n− 1
ð139n3þ 16ð−10þ 7ð−1ÞnÞn2þð69−106ð−1ÞnÞn− 54ð−1ÞnÞ

− 8ð56n2ð−1Þn −25nð−1Þnþ 12ð1þð−1ÞnÞÞ ˜̃ψðnÞ
��

þ 2nþ 1

3

m2
s

M2

mshs̄si
ðM2Þ2 − ð−1Þn×m2

s

M2

mqhq̄qi
ðM2Þ2

þð−1Þn 8n− 3

18

m2
s

M2

mqhgsq̄σTGqi
ðM2Þ3 − ð−1Þn 2ð2nþ 1Þ

81

m2
s

M2

hgsq̄qi2
ðM2Þ3 ; ð34Þ

where ψ̃ðnÞ ¼ ψðnþ1
2
Þ − ψðn

2
Þ þ ln 4 and ˜̃ψðnÞ ¼ ψðnþ1

2
Þ − ψðn

2
Þ þ ð−1Þn ln 4. In specific calculation OPE, m2

q ∼ 0 have
been adopted for very small u=d current quark mass, while the s-quark mass corrections proportional to m2

s for the double-
gluon condensate hαsG2i, triple-gluon condensate hg3sfG3i, double-quark condensate hs̄si and hq̄qi, quark-gluon mixed
condensate hgsq̄σTGqi, and four-quark condensate hgsq̄qi2, i.e., Oðm2

sÞ shown in Eq. (34), are calculated due to
ms ∼ 0.1 GeV. In addition, the full s-quark mass effect in the perterbative part is preserved [see Eq. (33)].
Substituting the hadronic representation (30) and OPE (32) of the correlator (29) into the dispersion relation,

1

π

1

M2

Z
dse−s=M

2

ImIhad2;KðsÞ ¼ L̂MI
QCD
2;K ðq2Þ; ð35Þ

the sum rules of the moments of the kaon leading-twist DA reads
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hξni2;Khξ0i2;Kf2K
M2em

2
K=M

2 ¼ 1

π

1

M2

Z
sK

m2
s

dse−s=M
2

ImIpert2;KðsÞ þ
mshs̄si þ ð−1Þnmqhq̄qi

ðM2Þ2 þ hαsG2i
ðM2Þ2 ½1þ ð−1Þn�

×
1

24π

1þ nθðn − 2Þ
nþ 1

−
8nþ 1

18

mshgss̄σTGsi þ ð−1Þnmqhgsq̄σTGqi
ðM2Þ3 þ 2ð2nþ 1Þ

81

×
hgss̄si2 þ ð−1Þnhgsq̄qi2

ðM2Þ3 þ hg3sfG3i
ðM2Þ3 ½1þ ð−1Þn�−nθðn − 2Þ

96π2
þ hg2s q̄qi2

ðM2Þ3 ½1þ ð−1Þn�

×
2þ κ2

972π2

�
−2ð51nþ 25Þ

�
− ln

M2

μ2

�
þ 3ð17nþ 35Þ þ θðn − 2Þ

�
2n

�
− ln

M2

μ2

�

− 25ð2nþ 1Þψ̃ðnÞ þ 1

n
ð49n2 þ 100nþ 56Þ

��
þOðm2

sÞ: ð36Þ

Obviously, by performing the replacement s → d, q → u, and K → π and taking m2
s ¼ 0, the sum rules (36) with even “n”

degenerates to the case of the pionic leading-twist DA, i.e., Eq. (7) in Ref. [66]. By taking n ¼ 0 in Eq. (36), one can get the
sum rule of the zeroth moment, which reads

hξ0i22;Kf2K
M2em

2
K=M

2 ¼
1

8π2M2

Z
sK

m2
s

dse−s=M
2

��
2m2

s

s

�
1 −

m2
s

s

�
þ 1

��
1 −

2m2
s

s

�
þ 1

�
þ
�
1þ m2

s

3M2

�
mshs̄si
ðM2Þ2

þ
�
1 −

m2
s

M2

�
mqhq̄qi
ðM2Þ2 þ 1

12π

�
1þ 2

m2
s

M2

� hαsG2i
ðM2Þ2 −

1

18

mshgss̄σTGsi
ðM2Þ3 −

1

18

�
1þ 3

m2
s

M2

�

×
mqhgsq̄σTGqi

ðM2Þ3 −
m2

s

144π2M2

hg3sfG3i
ðM2Þ3 þ 2

81

hgss̄si2
ðM2Þ3 þ 2

81

�
1 −

m2
s

M2

� hgsq̄qi2
ðM2Þ3 þ 2þ κ2

486π2

×
hg2s q̄qi2
ðM2Þ3

�
−
�
50þ m2

s

M2

��
− ln

M2

μ2

�
þ 105 − 3

m2
s

M2

�
: ð37Þ

Equation (37) indicates that the zeroth moment hξ0i2;K
in Eq. (36) cannot be normalized in the whole Borel
parameter region as the case of pionic leading-twist DA
(see Ref. [66]). Thus, as suggested in Ref. [66], we adopt
the following sum rules of the moments hξni2;K to do the
calculation, i.e.,

hξni2;K ¼ ðhξni2;Khξ0i2;KÞjFromEq: ð36Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hξ0i22;K

q
jFromEq: ð37Þ

: ð38Þ

Meanwhile, we also assume that the zeroth moment of kaon
leading-twist DA can be normalized in an appropriate Borel
window in order to ensure the QCD sum rule’s predictive
ability for the meson decay constant or determine the
continuum threshold sK with Eq. (37).

III. NUMERICAL ANALYSIS

A. Input parameters

To do the numerical calculation, we adopt the latest data
from Particle Data Group [97]:mK¼493.677�0.013MeV,
and the current quark masses for the u and s quarks are
adopted as mu ¼ 2.16þ0.49

−0.26 MeV and ms ¼ 93þ11
−5 MeV at

scale μ¼ 2 GeV, respectively. The kaon decay constant is

taken to be fK=fπ ¼ 1.1932� 0.0019 [98] with fπ ¼
130.2ð1.2Þ MeV [97]. The other inputs at scale μ ¼
2 GeV are exhibited as follows [66,94,99–101]:

hq̄qi ¼ ð−2.417þ0.227
−0.114Þ × 10−2 GeV3;

hs̄si ¼ κhq̄qi;
hgsq̄σTGqi ¼ ð−1.934þ0.188

−0.103Þ × 10−2 GeV5;

hgss̄σTGsi ¼ κhgsq̄σTGqi;
hgsq̄qi2 ¼ ð2.082þ0.734

−0.697Þ × 10−3 GeV6;

hgss̄si2 ¼ κ2hgsq̄qi2;
hg2s q̄qi2 ¼ ð7.420þ2.614

−2.483Þ × 10−3 GeV6;

hαsG2i ¼ 0.038� 0.011 GeV4;

hg3sfG3i ≃ 0.045 GeV6;

κ ¼ 0.74� 0.03: ð39Þ

In those inputs, the double-gluon condensate hαsG2i, triple-
gluon condensate hg3sfG3i, and four-quark condensate
hg2s q̄qi2 are scale independent, while the double-quark
condensates hq̄qi and hs̄si, quark-gluon mixed condensates
hgsq̄σTGqi and hgss̄σTGsi, four-quark condensates
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hgsq̄qi2 and hgss̄si2, current quark masses ms and mq, are
scale dependence, the corresponding scale evolution equa-
tions can find in Ref. [66]. By requiring that there is a
reasonable Borel window to normalize hξ0i2;K in Eq. (37),
we obtain the continuum threshold sK ≃ 2.5 GeV2.3

B. Moments of the kaon leading-twist DA

Using the above inputs, one can calculate the values of
the moments of the kaon leading-twist DA with the
improved sum rules formula (38). First, one need to find
out the suitable Borel windows for the sum rules. Usually,
the criteria are as follows:

(i) the contributions of the continuum state and the
dimension-6 condensates should be as small as
possible,

(ii) the moment values should be as stable as possible in
the correspondence Borel windows.

Specifically, we require the continuum state contribu-
tions to the even moments to be not more than 10%, 20%,
25%, 25%, 30% for n ¼ ð2; 4; 6; 8; 10Þ, respectively. The
dimension-6 term contributions are less than 5% for those
even moments. For the odd moments, the continuum state
contributions are required to be less than 15%, 30%, 40%,
40%, 45%, and the dimension-6 term contributions are less
than 2%, 5%, 10%, 15%, 20% for n ¼ ð1; 3; 5; 7; 9Þ,
respectively. Those criteria are shown in Fig. 2 for the
even moments n ¼ ð2; 4; 6; 8; 10Þ and in Fig. 3 for the odd
moments n ¼ ð1; 3; 5; 7; 9Þ. In those two figures, the upper
solid lines indicate the criteria of the continuum state
contributions, the lower solid lines indicate the criteria of
the dimension-6 term contributions, and the dashed and
dot-dashed lines stand indicated the criteria for the con-
tinuum contributions and the dimension-6 contributions,
respectively. Then, the corresponding Borel windows can
be obtained, which are shown with the shadow regions.
Figure 4 shows the first ten moments of kaon leading-

twist DA hξni2;K versus the Borel parameter M2, where all
input parameters are set to be their central values. The curve
segments in the shadows represent the values of hξni2;Kjμ in

the Borel windows. One can find that the moments
hξni2;Kjμ have good stabilities versus the Borel windows.
By taking all error sources into account, and with the
renormalization group equation of the moments shown in
Ref. [66], the values of hξni2;Kjμ can be obtained. At the
scale μ0 ¼ 1 GeV, we obtain

hξ1i2;Kj1 GeV ¼ −0.0438þ0.0053
−0.0075 ;

hξ3i2;Kj1 GeV ¼ −0.0210þ0.0024
−0.0035 ;

hξ5i2;Kj1 GeV ¼ −0.0134þ0.0014
−0.0021 ;

hξ7i2;Kj1 GeV ¼ −0.0087þ0.0009
−0.0014 ;

hξ9i2;Kj1 GeV ¼ −0.0058þ0.0007
−0.0010 ð40Þ

and

hξ2i2;Kj1 GeV ¼ 0.262þ0.010
−0.010 ;

hξ4i2;Kj1 GeV ¼ 0.132þ0.006
−0.006 ;

hξ6i2;Kj1 GeV ¼ 0.082þ0.005
−0.005 ;

hξ8i2;Kj1 GeV ¼ 0.058þ0.004
−0.004 ;

hξ10i2;Kj1 GeV ¼ 0.044þ0.004
−0.004 : ð41Þ

Further, the values of the corresponding Gegenbauer
moments can be obtained, the first four Gegenbauer
moments of which are

a2;K1 ð1 GeVÞ ¼ −0.0731þ0.0089
−0.0125 ;

a2;K2 ð1 GeVÞ ¼ þ0.182þ0.029
−0.030 ;

a2;K3 ð1 GeVÞ ¼ −0.0114þ0.0008
−0.0016 ;

a2;K4 ð1 GeVÞ ¼ þ0.041−0.003þ0.005: ð42Þ

As a comparison, we also exhibit our values for the
first four moments hξni2;K and the first two Gegenbauer
moments a2;K1 and a2;K2 at the scale μ ¼ 1; 2 GeV in
Table II. The values for those moments and Gegenbauer
moments by various methods such as QCD sum rules
(QCD SR) [46,52–56], LQCD [45,48,57,58,65], AdS/QCD
[47], and NLChQM [63] are listed. Then, we can further
give

hξ1i2;Kj1 GeV

hξ2i2;Kj1 GeV
≃ −0.167;

a2;K1 ð1 GeVÞ
a2;K2 ð1 GeVÞ ≃ −0.402; ð43Þ

where only the central values are adopted.

C. Behavior for the kaon leading-twist DA

Using the moments hξni2;K with n ¼ ð1;…; 10Þ exhib-
ited in Eqs. (40) and (41), we can determine the model
parameters of our LCHO model for the kaon leading-twist

3The continuum threshold parameter is often taken near the
square of the mass of the first excited state. The reason is that this
parameter comes from the beginning of the rest (sum of excited
states) after extracting the pole term (ground-state contribution)
when calculating the hadron representation of the correlator.
After taking the limit of the interval between two adjacent excited
states, the sum of excited states is transformed into the integral of
continuum states. Therefore, the continuum threshold parameter
is essentially an effective parameter to characterize the lower
threshold of all continuum states. In this sense, the value of this
parameter is not necessarily just around the square of the mass of
the first excited state but should be determined by other
constraints, such as the normalization of the zeroth moment,
meson mass or decay constant, etc. Therefore, to determine the
value of the continuum threshold parameter sK, we require that
there be a reasonable Borel window to normalize hξ0i2;K in
Eq. (37) and obtain sK ≃ 2.5 GeV2.
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(a) (b)

(c) (d)

(e)

FIG. 2. The continuum state’s contribution (dashed line) and dimension-6 term’s contribution (dot-dashed line) of the kaon leading-
twist DA even-order moments hξni2;K with n ¼ ð2; 4; 6; 8; 10Þ vs the Borel parameter M2, where all input parameters are set to be their
central values.
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(a) (b)

(c) (d)

(e)

FIG. 3. The continuum state’s contribution (dashed line) and dimension-6 term’s contribution (dot-dashed line) of the kaon leading-
twist DA odd-order moments hξni2;K jμ with n ¼ ð1; 3; 5; 7; 9Þ vs the Borel parameter M2, where all input parameters are set to be their
central values.
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DA ϕ2;Kðx; μÞ by the least-squares method as discussed in
Sec. II B. In calculation, the initial scale is taken to be
μ0 ¼ 1 GeV, which is consistent with the moments
hξni2;Kðn ¼ 1;…; 10Þ in Eqs. (40) and (41). Figure 5
shows the goodness of fit Pχ2 versus the fitting parameters

θ ¼ ðα2;K; B̂2;K
2 Þ, where Fig. 5(a) is for m̂q ¼ 250 MeV

and m̂s ¼ 370 MeV, Fig. 5(b) is for m̂q ¼ 330 MeV and
m̂s ¼ 450 MeV, and Fig. 5(c) is for m̂q ¼ 300 MeV and
m̂s ¼ 450 MeV. Simultaneously, we can obtain optimal
fitting model parameters for those three sets of constituent
quark MSs, which are exhibited in Table III. The corre-
sponding values of the likelihood function and goodness
of fit are χ2min=nd ¼ 2.04316=8 and Pχ2min

¼ 0.97966 for

m̂q ¼ 250 MeV and m̂s ¼ 370 MeV, χ2min=nd ¼ 2.2476=8
and Pχ2min

¼0.97246 for m̂q¼330MeV and m̂s¼450MeV,

and χ2min=nd ¼ 2.69377=8 and Pχ2min
¼ 0.952082 for m̂q ¼

300 MeV and m̂s ¼ 450 MeV. To analyze the uncertainty
of our kaon leading-twist DA, we take the upper and lower
limits of the uncertainty of ϕ2;Kðx; μ0Þ as the two curves
that lead to the maximum and minimum ϕ2;Kð0.5; μ0Þ,
respectively, in the parameter region Pχ2 ≥ 50%; the
corresponding model parameters are also exhibited in
Table III. These model parameters exhibited in Table III
are corresponding to initial scale μ0 ¼ 1 GeV, and their
values at any scale μ can be obtained via the renormaliza-
tion group equation [38,102],

(b)(a)

FIG. 4. The kaon leading-twist DAmoments hξni2;Kðn ¼ 1;…; 10Þ vs the Borel parameterM2, where all input parameters are set to be
their central values. The left plot is for the even moments, and the right plot is for the odd moments.

TABLE II. Our predictions for the first four moments hξni2;K (n ¼ 1, 2, 3, 4) and the first two Gegenbauer moments a2;K1 and a2;K2 of
the kaon leading-twist DA, compared to other theoretical predictions.

μ½GeV� hξ1i2;π jμ hξ2i2;π jμ hξ3i2;π jμ hξ4i2;π jμ a2;K1 ðμÞ a2;K2 ðμÞ
BFTSR (this work) 1 −0.0438þ0.0053

−0.0075 0.262þ0.010
−0.010 −0.0210þ0.0024

−0.0035 0.132þ0.006
−0.006 −0.0731þ0.0089

−0.0125 0.182þ0.029
−0.030

BFTSR (this work) 2 −0.0368þ0.0045
−0.0063 0.246þ0.007

−0.008 −0.0173þ0.0020
−0.0029 0.120þ0.005

−0.005 −0.0614þ0.0075
−0.0105 0.139þ0.022

−0.023
QCD SR [52] 1 −0.18ð9Þ 0.16(10)
QCD SR F[46] 1 −0.10ð4Þ
QCD SR [46] 2 −0.08ð4Þ
QCD SR [55] 1 −0.05ð2Þ 0.27þ0.37

−0.12
QCD SR [56] 1 −0.06ð7Þ −0.10ð12Þ
QCD SR [53] 1 −0.050ð25Þ
QCD SR [54] 1 −0.06ð3Þ
LQCD [57] 2 −0.0272ð5Þ 0.260(5) −0.0453ð9Þð29Þ 0.175(18)(47)
LQCD [45] 1 −0.040ð4Þ −0.066ð6Þ
LQCD [45] 2 −0.032ð3Þ −0.053ð5Þ
LQCD [65] 2 0.198(16)
LQCD [58] 2 −0.036ð1Þð2Þ 0.26(1)(1)
LQCD [48] 2 −0.0525þ0.031

−0.033 0.106þ0.015
−0.016

AdS/QCD [47] 1 0.21(2) 0.09(1)
NLChQM [63] 1 −0.0277 0.2043 −0.0122 0.0887
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(a) (b)

(c)

FIG. 5. The goodness of fit Pχ2 vs the fitting parameters θ ¼ ðα2;K; B̂2;K
2 Þ for three different constituent quark MSs,

respectively.

TABLE III. Several typical model parameters of kaon leading-twist DA ϕ2;Kðx; μ0Þwith three different constituent quark MSs at scale
μ0 ¼ 1 GeV.

ðm̂q; m̂sÞ ¼ ð250; 370Þ MeV A2;KðGeV−1Þ α2;K B̂2;K
2 β2;KðGeVÞ

Pχ2min
4.088231 −1.0675 −0.1134 0.681348

ϕmax :
2;K ð0.5; μ0Þ 4.775445 −0.9900 −0.1158 0.674196

ϕmin :
2;K ð0.5; μ0Þ 3.599708 −1.1240 −0.1104 0.692533

ðm̂q; m̂sÞ ¼ ð330; 450Þ MeV A2;KðGeV−1Þ α2;K B̂2;K
2

β2;KðGeVÞ
Pχ2min

2.043080 −1.5115 −0.13090 0.640731
ϕmax :
2;K ð0.5; μ0Þ 2.381850 −1.4405 −0.13335 0.632128

ϕmin :
2;K ð0.5; μ0Þ 1.794378 −1.5640 −0.12850 0.652403

ðm̂q; m̂sÞ ¼ ð300; 450Þ MeV A2;KðGeV−1Þ α2;K B̂2;K
2

β2;KðGeVÞ
Pχ2min

2.099306 −1.4915 −0.1342 0.647366
ϕmax :
2;K ð0.5; μ0Þ 2.435475 −1.4215 −0.1361 0.639261

ϕmin :
2;K ð0.5; μ0Þ 1.849371 −1.5445 −0.1323 0.658355
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x1x2μ2
∂ϕ̃2;Kðxi; μÞ

∂μ2

¼ CF
αsðμ2Þ
4π

�Z
1

0

½dy�Vðxi; yiÞϕ̃2;Kðyi; μÞ

− x1x2ϕ̃2;Kðxi; μÞ
�
; ð44Þ

where CF¼4=3, ½dy�¼dy1dy2δð1−y1−y2Þ, ϕ2;Kðxi; μÞ ¼
x1x2ϕ̃2;Kðxi; μÞ, Δϕ̃2;Kðyi; μÞ ¼ ϕ̃2;Kðyi; μÞ − ϕ̃2;Kðxi; μÞ,
and

Vðxi;yiÞ¼ 2

�
x1y2θðy1−x1Þ

�
δh1h̄2 þ

Δ
y1−x1

�
þð1↔ 2Þ

�
ð45Þ

with δh1h̄2 ¼ 1 when the u=d and s̄ have opposite helicities
and δh1h̄2 ¼ 0 for other cases.
The kaon DAs ϕ2;Kðx; μ0Þ with different constituent

quark MSs are shown in Fig. 6. One can find that these
cures are very close to each other. This is reasonable
because they are obtained by fitting same set of data, i.e.,
Eqs. (40) and (41), which in turn shows that the value of ten
moments hξni2;K with n ¼ ð1;…; 10Þ has a strong con-
straint on the behavior of kaon leading-twist DA. More
specifically, the curves corresponding to m̂q ¼ 330 MeV,
m̂s ¼ 450 MeV and m̂q ¼ 300 MeV, m̂s ¼ 450 MeV
almost overlap each other, and they are slightly different
from the one for m̂q ¼ 250 MeV and m̂s ¼ 370 MeV.
Obviously, this case is caused by the different constituent
quark masses. Considering the goodness of fit correspond-
ing to the optimal fitting model parameters, Pχ2min

, for m̂q ¼
250 MeV and m̂s ¼ 370 MeV is the best, we will adopt
this constituent quark MS for subsequent discussion and
calculation in this subsection.
To show the advantage of the fitting results more

intuitively, we substitute the model parameters of
rows 2, 3, and 4 in Table III into Eqs. (20), (22), and
(25) to calculate the values of the first ten moments,
which are

hξ1i2;Kjμ0 ¼ −0.0513þ0.0005
−0.0001 ;

hξ3i2;Kjμ0 ¼ −0.0238þ0.0005
−0.0002 ;

hξ5i2;Kjμ0 ¼ −0.0133þ0.0003
−0.0001 ;

hξ7i2;Kjμ0 ¼ −0.0081þ0.0001
−0.0000 ;

hξ9i2;Kjμ0 ¼ −0.0052þ0.0000
−0.0001 : ð46Þ

and

(b)(a)

FIG. 7. Comparison of the moments in Eqs. (40) and (41) from BFTSR and the moments in Eqs. (46) and (47) from our fitting LCHO
model, where the left plot is for even moments and the right plot is for odd moments.

FIG. 6. Comparison for the DA ϕ2;Kðx; μ ¼ 1 GeVÞ under
different mass schemes.
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hξ2i2;Kjμ0 ¼ 0.267þ0.012
−0.012 ;

hξ4i2;Kjμ0 ¼ 0.135þ0.010
−0.010 ;

hξ6i2;Kjμ0 ¼ 0.083þ0.008
−0.008 ;

hξ8i2;Kjμ0 ¼ 0.057þ0.006
−0.006 ;

hξ10i2;Kjμ0 ¼ 0.041þ0.005
−0.005 : ð47Þ

A comparison of the values of moments in Eqs. (40) and
(41) and in Eqs. (46) and (47) is shown in Fig. 7, and one
can find that our fitting is good. The curves of our
predictions are shown in Fig. 8. For comparison, results
from the AdS/QCD model [47], the DA obtained using
LQCD [48,65], NLChQM [63], LFQM [59], LFCQM [60],
DSE with the dynamical chiral symmetry breaking
improved kernel (DB) [62] are also shown in Fig. 8.
One can find that our DA is close to the LFQM and
LQCD ones. In addition, the curves of the LCHO model
for ϕ2;Kðx; μÞ under several typical choices of μ, e.g.,
μ ¼ 1; 2; 3; 10; 100 GeV are shown in Fig. 8. It shows that

with the increment of μ the behavior of the LCHO
model tends to be closer to the asymptotic form
ϕAsy:
2;K ðx; μ ¼ ∞Þ ¼ 6xð1 − xÞ.

D. Bs → K TFF and CKM matrix element jVubj
from the semileptonic decay processes Bs → Klν̄l
Normally, to study the Bs → K TFF, the optimal

renormalization scale for semileptonic decay B0
s →

K−μþνμ is necessary, which is taken as μIR ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Bs
−m2

b

q
∼

ffiffiffiffiffiffiffiffiffiffiffiffi
2mbΛ̄

p
≈ 3 GeV. The basic input param-

eters are mBs
¼ 5.366 GeV, and fBs

¼ 0.266� 0.019.
As mentioned in Sec. II, because the extra states have

been introduced by using the chiral correlator, which has
been attributed into the continuum contributions which can
be further suppressed by using the Borel transformation.
It is noted that the TFF fBs→K

þ ðq2Þ is not sensitive to the
choice of continuous threshold sBs

0 ; thus, the contribution
from the extra terms can be effectively suppressed. Figure 9

(a) (b)

(c)

FIG. 8. The kaon leading-twist DA curves in this work. In panels (a) and (b) we present the AdS/QCD model [47], the DAs obtained
using LQCD [48,65], NLChQM [63], LFQM [59], LFCQM [60], DSE (DB) [62] as a comparison. In panel (c) we show results for our
LCHO model at several typical energy scale, e.g., μ ¼ 1; 2; 3; 10; 100 GeV.
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shows the TFF fBs→K
þ ðq2Þ versus sBs

0 under several typical
choices ofq2. For the case ofq2 ¼ 0 GeV2, the error is about
10% for sBs

0 ∈ ½32 GeV2; 36 GeV2�, which will decrease
with the increment of q2. Thismagnitude is comparable to or
even smaller than the case of using the traditional correlator;
e.g., in Ref. [5], the authors calculated the TFFfBs→K

þ ðq2Þ by
using the traditional correlator, and their numerical analysis
shows that, even without considering the less-known kaon
twist-3 DAs’ contributions, the error of fBs→K

þ ð0Þ caused by
the normalization constant μK shall be larger than 10%. To
be more specific, by adopting the criteria of the LCSR,
we determine the Borel parameter and continuum threshold,
which areM2¼20.0�0.5GeV2 and sBs

0 ¼34.0�0.5GeV2,
respectively.
We present the TFF of Bs → K at large recoil point

fB→K
þ ð0Þ in Table IV, where the uncertainties from the error

sources such as fBs
, mb, M2, sBs

0 , and ϕ2;Kðx; μÞ with
different constituent quark MSs, etc., have been taken into
consideration. The results by LQCD [103], LCSR [5,7],
pQCD [13], RQM [19], and Padé approximants [104] are

also shown as comparison. Our results have agreement with
the perturbative QCD prediction within errors. We remind
the reader that LCSR approach for Bs → K TFF is valid
up to squared momentum transfers q2 ∼m2

b − 2mbΛ̄.
Meanwhile, to be on the safe side, we take the maximal
allowed q2 as 0 ≤ q2 ≤ 12GeV2. To obtained the TFF at
the whole physical region, e.g., 0 ≤ q2 ≤ ðm2

Bs
−m2

KÞ ¼
23.74 GeV2, we can use the simplified series expansion of
z parametrizations, which was discussed in our previous
work [95]. Then, the TFF with whole physical region is
shown in Fig. 10, which CQM [17], LCSR [2], NRQCD [8],
and LQCD results [9] also present. Our predictions have

FIG. 9. The TFF fBs→K
þ ðq2Þ vs the continuum parameter sBs

0 . FIG. 10. The TFF fBs→K
þ ðq2Þ in the whole physical region

within error. The CQM [17], LCSR [2], NRQCD [8], and LQCD
results [9] are also present as a comparison.

TABLE IV. The Bs → K transition form factor at large recoil
region, e.g., fBs→K

þ ð0Þ. Other results from references are also
listed as a comparison.

Methods fBs→K
þ ð0Þ

This work 0.270þ0.025
−0.020

LQCD [103] 0.135� 0.050
LCSR [5] 0.30þ0.04

−0.03
LCSR [7] 0.336� 0.023
pQCD [13] 0.26þ0.04

−0.03 � 0.02
RQM [19] 0.284� 0.014
Padé approximants [104] 0.211� 0.003

FIG. 11. The jVubj-independent differential decay width for
semileptonic B0

s → K−μþνμ. The CQM [17], pQCD [13], LCSR
[2], and LQCD [9] predictions are also present.
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agreement with the Lattice results within errors. With the
resultant Bs → K TFF, we can get the jVubj-independent
differential decay width of B0

s → K−μþνμ shown in Fig. 11,
in which the CQM [17], pQCD [13], LCSR [2], and LQCD
[9] predictions are also present.
After integrating the differential decay width with the

whole physical region, we can get the jVubj-independent
total decay width, which is listed in Table V. Other
theoretical results are also given. Our predictions have
agreement with the CQM, LCSR, RQM, and pQCD
results within errors. Furthermore, to determine the CKM
ratio jVubj=jVcbj, the absolute branching fraction of B0

s →
K−μþνμ is required. Here, we take the newmeasurements of
BðB0

s →K−μþνμÞ¼ ð1.06�0.05ðstatÞ�0.08ðsystÞÞ×10−4

from the LHCb Collaboration for the first time [1]. The
inputs are the exclusive value of jVcbj ¼ ð39.5� 0.9Þ ×
10−3 [97], the B0

s-meson lifetime τBs
¼ 1.515� 0.004 ps.

After taking the jVubj-independent decay width, the
obtained values are

jVubj=jVcbj ¼ 0.072� 0.005: ð48Þ

To clearly compare the results of different groups,
we depict jVubj=jVcbj in Fig. 12. Our results have agree-
ment with LQCD predicted by Detmold in 2015 within
errors [105]. The LHCb predictions are mainly coming
from the average value jVubj=jVcbjðlowÞ¼0.061ð4Þ and
jVubj=jVcbjðhighÞ¼0.095ð8Þ with the uncertainties com-
bined. The jVubj=jVcbj measurement obtained with the Λ0

b
baryon decays [106], forwhich a form factormodel based on
a LQCD calculation was used [105].

IV. SUMMARY

Based on the fact that the sum rules of the zeroth
moment hξ0i2;K of DA ϕ2;Kðx; μÞ cannot be normalized in
full Borel parameter M2 regions, a more reasonable sum
rules formula of the moments hξni2;K , i.e., Eq. (38), has
been adopted to do the calculation. Then, more accurate
values of first ten moments of DA ϕ2;Kðx; μÞ were
obtained, which are given in Eqs. (40) and (41). On the
other hand, we have suggested a new LCHO model for
kaon leading-twist DA based on the BHL prescription. By
fitting those resulting first ten moments with the least-
squares method, the behavior of ϕ2;Kðx; μÞ has been
obtained and is consistent with that is derived by
LFQM [59], LQCD [48], and DSE (DB) [62]. The
longitudinal distribution function φ2;KðxÞ introduced in
our LCHO model is based on mathematical considera-
tions, the rationality of our LCHO model is judged by its
goodness of fit to the moments. The results show that the
goodness of fit is very close to 1 for different constituent
quark MSs. In this paper, we have used the method of
fitting moments to determine the behavior of DA
ϕ2;Kðx; μÞ, rather than solving the constraints provided
by the Gegenbauer moments. The derived results show
that the goodness of fit is very close to 1 for different
constituent quark MSs. This method can further improve
the accuracy of resulting ϕ2;Kðx; μÞ by improving the
numerical accuracy of moments and adopting more
moments.
Second, the TFF for Bs → K has been calculated by using

the LCSR approach with chiral correlator up to NLO
accuracy. The value of our prediction is shown in
Table IV,which is in agreementwith pQCDpredictionwithin
error. After using the simplified series expansion of z para-
metrizations, the resultant TFF for the whole physical q2

region is given inFig. 10. Furthermore, the jVubj-independent
differential decay width for B0

s → K−μþνμ, accompanied
with references result is shown in Fig. 11. Meanwhile, the
values of jVubj-independent total decay width are given in
TableVandwellwithCQM,LCSR,RQM, and pQCD results
within errors. Finally, we have determined the ratio of CKM
matrix element jVubj=jVcbj ¼ 0.072� 0.005 by using the
new branching fraction from LHCb Collaboration and

TABLE V. jVubj2-independent B0
s → K−μþνμ decay width in

units of 10−12 GeV from our prediction and some different
methods.

Methods jVubj−2 × ΓðB0
s → K−μþνμÞ½10−12 GeV�

This work 5.626þ1.292
−0.864

CQM [17] 5.45þ0.83
−0.80

LCSR+B̄�-pole [2] 4.63þ0.97
−0.88

RQM [19] 4.50� 0.55
LFQM [20] 3.17� 0.24
pQCD [13] 4.2� 2.1

0.06 0.08 0.10 0.12 0.14

FIG. 12. The ratio of CKM matrix elements jVubj=jVcbj for our
predictions with errors. The LHCb [1], Lattice QCD [103,105],
and LCSR [7] are also present.
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exclusive jVcbj value, which are shown in Fig. 12. Our
prediction is in agreementwith theLatticeQCDresultswithin
errors, which is better than the previous LCSR calculation.
Yet, there still is discrepancy with the results of LHCb
Collaboration. We hope that this ratio will be investigated
by experiments and theories in the near future.

ACKNOWLEDGMENTS

We are grateful to Professor Tao Huang, Yu-Ming Wang,
and Xian-Wei Kang for helpful discussions and valuable
suggestions. This work was supported in part by the

National Natural Science Foundation of China under
Grants No. 11765007, No. 11947406, No. 12147102,
No. 11875122, and No. 12175025; the Guizhou provincial
Science and Technology projects under Grant No. ZK
[2021]024; the Project of Guizhou Provincial Department
of Education under Grants No. KY[2021]030 and No. KY
[2021]003; the Chongqing Graduate Research and
Innovation Foundation under Grant No. ydstd1912;
the Fundamental Research Funds for the Central
Universities under Grant No. 2020CQJQY-Z003; and the
Project of Guizhou Minzu University under Grant
No. GZMU[2019]YB19.

[1] R. Aaij et al. (LHCb Collaboration), First Observation of
the Decay B0

s→K−μþνμ and Measurement of jVubj=jVcbj,
Phys. Rev. Lett. 126, 081804 (2021).

[2] Z. H. Li, F. Y. Liang, X. Y. Wu, and T. Huang, The Bs → K
form-factor in the whole kinematically accessible range,
Phys. Rev. D 64, 057901 (2001).

[3] A. Khodjamirian, T. Mannel, and M. Melcher, Flavor
SUð3Þ symmetry in charmless B decays, Phys. Rev. D 68,
114007 (2003).

[4] Y. L. Wu, M. Zhong, and Y. B. Zuo, BðsÞ:DðsÞ →
π; K; η; ρ; K�;ω;ϕ transition form factors and decay rates
with extraction of the CKM parameters jVubj, jVcsj, jVcdj,
Int. J. Mod. Phys. A 21, 6125 (2006).

[5] G. Duplancic and B. Melic, B; Bs → K form factors: An
update of light-cone sum rule results, Phys. Rev. D 78,
054015 (2008).

[6] B. Melic, B → π and Bs → K form factors and Vub
determination, arXiv:0810.1144.

[7] A. Khodjamirian and A. V. Rusov, Bs → Klνl and BðsÞ →
πðKÞlþl− decays at large recoil and CKM matrix ele-
ments, J. High Energy Phys. 08 (2017) 112.

[8] C. M. Bouchard, G. P. Lepage, C. J. Monahan, H. Na, and
J. Shigemitsu, B and Bs semileptonic decay form factors
with NRQCD/HISQ quarks, Proc. Sci., LATTICE2013
(2014) 387 [arXiv:1310.3207].

[9] C. M. Bouchard, G. P. Lepage, C. Monahan, H. Na, and J.
Shigemitsu, Bs → Klν form factors from lattice QCD,
Phys. Rev. D 90, 054506 (2014).

[10] J. M. Flynn, T. Izubuchi, T. Kawanai, C. Lehner, A. Soni,
R. S. Van de Water, and O. Witzel, B → πlν and Bs →
Klν form factors and jVubj from 2þ 1-flavor lattice QCD
with domain-wall light quarks and relativistic heavy
quarks, Phys. Rev. D 91, 074510 (2015).

[11] F. Bahr, D. Banerjee, F. Bernardoni, A. Joseph, M. Koren,
H. Simma, and R. Sommer (ALPHA Collaboration),
Continuum limit of the leading-order HQET form factor
in Bs → Klν decays, Phys. Lett. B 757, 473 (2016).

[12] C. J. Monahan, C. M. Bouchard, G. P. Lepage, H. Na,
and J. Shigemitsu, Form factor ratios for Bs → Klν and
Bs → Dslν semileptonic decays and jVub=Vcbj, Phys.
Rev. D 98, 114509 (2018).

[13] W. F. Wang and Z. J. Xiao, The semileptonic decays
B=Bs → ðπ; KÞðlþl−;lν; νν̄Þ in the perturbative QCD
approach beyond the leading-order, Phys. Rev. D 86,
114025 (2012).

[14] U. G. Meißner and W. Wang, Bs → Kð�Þlν̄, angular
analysis, S-wave contributions and jVubj, J. High Energy
Phys. 01 (2014) 107.

[15] S. P. Jin, X. Q. Hu, and Z. J. Xiao, Study of Bs→Kð�Þlþl−

decays in the PQCD factorization approach with lattice
QCD input, Phys. Rev. D 102, 013001 (2020).

[16] C. Bourrely, I. Caprini, and L. Lellouch,Model-independent
description ofB → πlν decays and a determination of jVubj,
Phys. Rev. D 79, 013008 (2009); Erratum, Phys. Rev. D 82,
099902 (2010).

[17] C. Albertus, E. Hernández, C. Hidalgo-Duque, and J.
Nieves, B̄s → K semileptonic decay from an Omnès
improved constituent quark model, Phys. Lett. B 738,
144 (2014).

[18] C. Albertus, C. Hidalgo-Duque, J. Nieves, and E.
Hernández, B̄s → K semileptonic decay from an Omnès
improved nonrelativistic quark model, J. Phys. Conf. Ser.
556, 012026 (2014).

[19] R. N. Faustov and V. O. Galkin, Charmless weak Bs decays
in the relativistic quark model, Phys. Rev. D 87, 094028
(2013).

[20] R. C. Verma, Decay constants and form factors of s-wave
and p-wave mesons in the covariant light-front quark
model, J. Phys. G 39, 025005 (2012).

[21] X. W. Kang, T. Luo, Y. Zhang, L. Y. Dai, and C. Wang,
Semileptonic B and Bs decays involving scalar and axial-
vector mesons, Eur. Phys. J. C 78, 909 (2018).

[22] C. D. Lu, W. Wang, and Z. T. Wei, Heavy-to-light form
factors on the light cone, Phys. Rev. D 76, 014013 (2007).

[23] A. Ali, G. Kramer, Y. Li, C. D. Lu, Y. L. Shen, W. Wang,
and Y. M. Wang, Charmless non-leptonic Bs decays to PP,
PV and VV final states in the pQCD approach, Phys.
Rev. D 76, 074018 (2007).

[24] F. Su, Y. L. Wu, C. Zhuang, and Y. B. Yang, Charmless
Bs → PP;PV; VV Decays Based on the Six-Quark Effec-
tive Hamiltonian with Strong Phase Effects II, Eur. Phys.
J. C 72, 1914 (2012).

INVESTIGATING THE RATIO OF CKM MATRIX ELEMENTS … PHYS. REV. D 105, 116020 (2022)

116020-19

https://doi.org/10.1103/PhysRevLett.126.081804
https://doi.org/10.1103/PhysRevD.64.057901
https://doi.org/10.1103/PhysRevD.68.114007
https://doi.org/10.1103/PhysRevD.68.114007
https://doi.org/10.1142/S0217751X06033209
https://doi.org/10.1103/PhysRevD.78.054015
https://doi.org/10.1103/PhysRevD.78.054015
https://arXiv.org/abs/0810.1144
https://doi.org/10.1007/JHEP08(2017)112
https://arXiv.org/abs/1310.3207
https://doi.org/10.1103/PhysRevD.90.054506
https://doi.org/10.1103/PhysRevD.91.074510
https://doi.org/10.1016/j.physletb.2016.03.088
https://doi.org/10.1103/PhysRevD.98.114509
https://doi.org/10.1103/PhysRevD.98.114509
https://doi.org/10.1103/PhysRevD.86.114025
https://doi.org/10.1103/PhysRevD.86.114025
https://doi.org/10.1007/JHEP01(2014)107
https://doi.org/10.1007/JHEP01(2014)107
https://doi.org/10.1103/PhysRevD.102.013001
https://doi.org/10.1103/PhysRevD.79.013008
https://doi.org/10.1103/PhysRevD.82.099902
https://doi.org/10.1103/PhysRevD.82.099902
https://doi.org/10.1016/j.physletb.2014.09.037
https://doi.org/10.1016/j.physletb.2014.09.037
https://doi.org/10.1088/1742-6596/556/1/012026
https://doi.org/10.1088/1742-6596/556/1/012026
https://doi.org/10.1103/PhysRevD.87.094028
https://doi.org/10.1103/PhysRevD.87.094028
https://doi.org/10.1088/0954-3899/39/2/025005
https://doi.org/10.1140/epjc/s10052-018-6385-9
https://doi.org/10.1103/PhysRevD.76.014013
https://doi.org/10.1103/PhysRevD.76.074018
https://doi.org/10.1103/PhysRevD.76.074018
https://doi.org/10.1140/epjc/s10052-012-1914-4
https://doi.org/10.1140/epjc/s10052-012-1914-4


[25] D. C. Yan, P. Yang, X. Liu, and Z. J. Xiao, Anatomy of
Bs → PV decays and effects of next-to-leading order
contributions in the perturbative QCD factorization ap-
proach, Nucl. Phys. B931, 79 (2018).

[26] D. C. Yan, X. Liu, and Z. J. Xiao, Anatomy of Bs → PP
decays and effects of the next-to-leading order contribu-
tions in the perturbative QCD approach, Nucl. Phys. B946,
114705 (2019).

[27] Z. J. Xiao, D. C. Yan, and X. Liu, BðsÞ → ηcðP; VÞ decays
and effects of the next-to-leading order contributions in the
perturbative QCD approach, Nucl. Phys. B953, 114954
(2020).

[28] T. Huang, Z. H. Li, and X. Y. Wu, Improved approach to
the heavy to light form-factors in the light cone QCD sum
rules, Phys. Rev. D 63, 094001 (2001).

[29] T. Huang, Z. H. Li, and X. Y. Wu, The Heavy to light
transitions in the light cone QCD sum rules, arXiv:hep-ph/
0111105.

[30] F. Zuo, Z. H. Li, and T. Huang, Form factor for B → Dlν in
light-cone sum rules with chiral current correlator, Phys.
Lett. B 641, 177 (2006).

[31] T. Huang, Z. H. Li, X. G. Wu, and F. Zuo, Semileptonic
BðBs; BcÞ decays in the light-cone QCD sum rules, Int. J.
Mod. Phys. A 23, 3237 (2008).

[32] X. G. Wu, T. Huang, and Z. Y. Fang, SUfð3Þ-symmetry
breaking effects of the B → K transition form-factor in the
QCD light-cone sum rules, Phys. Rev. D 77, 074001
(2008).

[33] X. G. Wu and T. Huang, Radiative corrections on the
b → p form factors with chiral current in the light-cone
sum rules, Phys. Rev. D 79, 034013 (2009).

[34] T. Huang, Z. H. Li, and F. Zuo, Heavy-to-light transition
form factors and their relations in light-cone QCD sum
rules, Eur. Phys. J. C 60, 63 (2009).

[35] Y. J. Sun, Z. H. Li, and T. Huang, BðsÞ → S transitions in
the light cone sum rules with the chiral current, Phys. Rev.
D 83, 025024 (2011).

[36] Z. H. Li, N. Zhu, X. J. Fan, and T. Huang, Form factors
fB→πþ ð0Þ and fD→πþ ð0Þ in QCD and determination of jVubj
and jVcdj, J. High Energy Phys. 05 (2012) 160.

[37] T. Huang, X. G. Wu, and T. Zhong, Finding a way to
determine the pion distribution amplitude from the ex-
perimental data, Chin. Phys. Lett. 30, 041201 (2013).

[38] T. Huang, T. Zhong, and X. G. Wu, Determination of the
pion distribution amplitude, Phys. Rev. D 88, 034013
(2013).

[39] J. Gao, T. Huber, Y. Ji, C. Wang, Y. M. Wang, and Y. B.
Wei, B → Dlνl form factors beyond leading power and
extraction of jVcbj and RðDÞ, J. High Energy Phys. 05
(2022) 024.

[40] J. Gao, C. D. Lü, Y. L. Shen, Y. M. Wang, and Y. B. Wei,
Precision calculations of B → V form factors from soft-
collinear effective theory sum rules on the light-cone,
Phys. Rev. D 101, 074035 (2020).

[41] C. D. Lü, Y. L. Shen, Y. M. Wang, and Y. B. Wei, QCD
calculations of B → π; K form factors with higher-twist
corrections, J. High Energy Phys. 01 (2019) 024.

[42] Y. M. Wang, Y. B. Wei, Y. L. Shen, and C. D. Lü, Pertur-
bative corrections to B → D form factors in QCD, J. High
Energy Phys. 06 (2017) 062.

[43] Y. Zhang, T. Zhong, X. G. Wu, K. Li, H. B. Fu, and T.
Huang, Uncertainties of the B → D transition form factor
from the D-meson leading-twist distribution amplitude,
Eur. Phys. J. C 78, 76 (2018).

[44] T. Zhong, X. G. Wu, and T. Huang, Heavy pseudoscalar
leading-twist distribution amplitudes within QCD theory
in background fields, Eur. Phys. J. C 75, 45 (2015).

[45] P. A. Boyle, M. A. Donnellan, J. M. Flynn, A. Jüttner, J.
Noaki, C. T. Sachrajda, and R. J. Tweedie (UKQCD
Collaboration), A lattice computation of the first moment
of the kaon’s distribution amplitude, Phys. Lett. B 641, 67
(2006).

[46] K. G. Chetyrkin, A. Khodjamirian, and A. A. Pivovarov,
Towards NNLO accuracy in the QCD sum rule for the
kaon distribution amplitude, Phys. Lett. B 661, 250 (2008).

[47] S. Momeni and R. Khosravi, Form factors and differential
branching ratio of B → Kμþμ− in AdS/QCD, Phys. Rev. D
97, 056005 (2018).

[48] G. S. Bali, V. M. Braun, S. Bürger, M. Göckeler, M.
Gruber, F. Hutzler, P. Korcyl, A. Schäfer, A. Sternbeck,
and P. Wein (RQCD Collaboration), Light-cone distribu-
tion amplitudes of pseudoscalar mesons from lattice QCD,
J. High Energy Phys. 08 (2019) 065; 11 (2020) 037(A).

[49] H. M. Choi and C. R. Ji, Distribution amplitudes and decay
constants for (π, K, ρ, K�) mesons in light-front quark
model, Phys. Rev. D 75, 034019 (2007).

[50] V. L. Chernyak, A. R. Zhitnitsky, and I. R. Zhitnitsky,
Wave functions of the mesons containing s, c, b quarks,
Yad. Fiz. 38, 1277 (1983) [Sov. J. Nucl. Phys. 38, 775
(1983)].

[51] V. L. Chernyak and A. R. Zhitnitsky, Asymptotic behavior
of exclusive processes in QCD, Phys. Rep. 112, 173
(1984).

[52] P. Ball and M. Boglione, SUð3Þ breaking in K and K�
distribution amplitudes, Phys. Rev. D 68, 094006 (2003).

[53] P. Ball and R. Zwicky, SUð3Þ breaking of leading-twist K
and K� distribution amplitudes: A Reprise, Phys. Lett. B
633, 289 (2006).

[54] P. Ball and R. Zwicky, Operator relations for SUð3Þ
breaking contributions to K and K� distribution ampli-
tudes, J. High Energy Phys. 02 (2006) 034.

[55] A. Khodjamirian, T. Mannel, and M. Melcher, Kaon
distribution amplitude from QCD sum rules, Phys. Rev. D
70, 094002 (2004).

[56] V. M. Braun and A. Lenz, On the SUð3Þ symmetry-
breaking corrections to meson distribution amplitudes,
Phys. Rev. D 70, 074020 (2004).

[57] V. M. Braun et al., Moments of pseudoscalar meson
distribution amplitudes from the lattice, Phys. Rev. D
74, 074501 (2006).

[58] R. Arthur, P. A. Boyle, D. Brommel, M. A. Donnellan,
J. M. Flynn, A. Juttner, T. D. Rae, and C. T. C. Sachrajda,
Lattice results for low moments of light meson distribution
amplitudes, Phys. Rev. D 83, 074505 (2011).

[59] N. Dhiman, H. Dahiya, C. R. Ji, and H. M. Choi, Twist-
2 pseudoscalar and vector meson distribution amplitudes in
light-front quark model with exponential-type confining
potential, Phys. Rev. D 100, 014026 (2019).

[60] J. P. B. C. de Melo, I. Ahmed, and K. Tsushima, Parton
distribution in pseudoscalar mesons with a light-front

TAO ZHONG, HAI-BING FU, and XING-GANG WU PHYS. REV. D 105, 116020 (2022)

116020-20

https://doi.org/10.1016/j.nuclphysb.2018.04.007
https://doi.org/10.1016/j.nuclphysb.2019.114705
https://doi.org/10.1016/j.nuclphysb.2019.114705
https://doi.org/10.1016/j.nuclphysb.2020.114954
https://doi.org/10.1016/j.nuclphysb.2020.114954
https://doi.org/10.1103/PhysRevD.63.094001
https://arXiv.org/abs/hep-ph/0111105
https://arXiv.org/abs/hep-ph/0111105
https://doi.org/10.1016/j.physletb.2006.07.039
https://doi.org/10.1016/j.physletb.2006.07.039
https://doi.org/10.1142/S0217751X0804189X
https://doi.org/10.1142/S0217751X0804189X
https://doi.org/10.1103/PhysRevD.77.074001
https://doi.org/10.1103/PhysRevD.77.074001
https://doi.org/10.1103/PhysRevD.79.034013
https://doi.org/10.1140/epjc/s10052-008-0855-4
https://doi.org/10.1103/PhysRevD.83.025024
https://doi.org/10.1103/PhysRevD.83.025024
https://doi.org/10.1007/JHEP05(2012)160
https://doi.org/10.1088/0256-307X/30/4/041201
https://doi.org/10.1103/PhysRevD.88.034013
https://doi.org/10.1103/PhysRevD.88.034013
https://doi.org/10.1007/JHEP05(2022)024
https://doi.org/10.1007/JHEP05(2022)024
https://doi.org/10.1103/PhysRevD.101.074035
https://doi.org/10.1007/JHEP01(2019)024
https://doi.org/10.1007/JHEP06(2017)062
https://doi.org/10.1007/JHEP06(2017)062
https://doi.org/10.1140/epjc/s10052-018-5551-4
https://doi.org/10.1140/epjc/s10052-015-3271-6
https://doi.org/10.1016/j.physletb.2006.07.033
https://doi.org/10.1016/j.physletb.2006.07.033
https://doi.org/10.1016/j.physletb.2008.02.031
https://doi.org/10.1103/PhysRevD.97.056005
https://doi.org/10.1103/PhysRevD.97.056005
https://doi.org/10.1007/JHEP08(2019)065
https://doi.org/10.1007/JHEP11(2020)037
https://doi.org/10.1103/PhysRevD.75.034019
https://doi.org/10.1016/0370-1573(84)90126-1
https://doi.org/10.1016/0370-1573(84)90126-1
https://doi.org/10.1103/PhysRevD.68.094006
https://doi.org/10.1016/j.physletb.2005.11.068
https://doi.org/10.1016/j.physletb.2005.11.068
https://doi.org/10.1088/1126-6708/2006/02/034
https://doi.org/10.1103/PhysRevD.70.094002
https://doi.org/10.1103/PhysRevD.70.094002
https://doi.org/10.1103/PhysRevD.70.074020
https://doi.org/10.1103/PhysRevD.74.074501
https://doi.org/10.1103/PhysRevD.74.074501
https://doi.org/10.1103/PhysRevD.83.074505
https://doi.org/10.1103/PhysRevD.100.014026


constituent quark model, AIP Conf. Proc. 1735, 080012
(2016).

[61] S. i. Nam, H. C. Kim, A. Hosaka, and M.M. Musakhanov,
The leading-twist pion and kaon distribution amplitudes
from the QCD instanton vacuum, Phys. Rev. D 74, 014019
(2006).

[62] C. Shi, L. Chang, C. D. Roberts, S. M. Schmidt, P. C.
Tandy, and H. S. Zong, Flavour symmetry breaking in the
kaon parton distribution amplitude, Phys. Lett. B 738, 512
(2014).

[63] S. i. Nam, Quasi-distribution amplitudes for pion and kaon
via the nonlocal chiral-quark model, Mod. Phys. Lett. A
32, 1750218 (2017).

[64] R. Zhang, J.-W. Chen, L. Jin, H.-W. Lin, A. Schäfer, P.
Sun, Y.-B. Yang, J.-H. Zhang, and Y. Zhao (LP3 Collabo-
ration), Kaon distribution amplitude from lattice QCD and
the flavor SUð3Þ symmetry, Nucl. Phys. B939, 429 (2019).

[65] R. Zhang, C. Honkala, H.W. Lin, and J. W. Chen, Pion and
kaon distribution amplitudes in the continuum limit, Phys.
Rev. D 102, 094519 (2020).

[66] T. Zhong, Z. H. Zhu, H. B. Fu, X. G. Wu, and T. Huang,
Improved light-cone harmonic oscillator model for the
pionic leading-twist distribution amplitude, Phys. Rev. D
104, 016021 (2021).

[67] T. Zhong, Y. Zhang, X. G. Wu, H. B. Fu, and T. Huang,
The ratio RðDÞ and the D-meson distribution amplitude,
Eur. Phys. J. C 78, 937 (2018).

[68] T. Zhong, X. G. Wu, T. Huang, and H. B. Fu, Heavy
pseudoscalar twist-3 distribution amplitudes within QCD
theory in background fields, Eur. Phys. J. C 76, 509
(2016).

[69] G. Duplancic, A. Khodjamirian, T. Mannel, B. Melic, and
N. Offen, Light-cone sum rules for B → π form factors
revisited, J. High Energy Phys. 04 (2008) 014.

[70] S. J. Brodsky, T. Huang, and G. P. Lepage, in Particles and
Fields-2, Proceedings of the Banff Summer Institute, Ban8;
Alberta, 1981, edited by A. Z. Capri and A. N. Kamal
(Plenum, New York, 1983), p. 143; G. P. Lepage, S. J.
Brodsky, T. Huang, and P. B. Mackenize,ibid. p. 83; T.
Huang, in Proceedings of XXth International Conference
on High Energy Physics, Madison, Wisconsin, 1980,
edited by L. Durand and L. G Pondrom, AIP Conf. Proc.
No. 69 (AIP, New York, 1981), p. 1000.

[71] X. H. Guo and T. Huang, Hadronic wave functions in D
and B decays, Phys. Rev. D 43, 2931 (1991).

[72] T. Huang, B. Q. Ma, and Q. X. Shen, Analysis of the pion
wave function in light cone formalism, Phys. Rev. D 49,
1490 (1994).

[73] See, e.g., Elementary Particle Theory Group, Acta Phys.
Sin. 25, 415 (1976); N. Isgur, in The new aspects of
subnuclear physics, edited by A. Zichichi (Plenum,
New York, 1980), p. 107.

[74] E. P. Wigner, On unitary representations of the inhomo-
geneous lorentz group, Ann. Math. (N. Y.) 40, 149 (1939).

[75] H. J. Melosh, Quarks: Currents and constituents, Phys.
Rev. D 9, 1095 (1974).

[76] L. A. Kondratyuk and M. V. Terentev, The scattering
problem for relativistic systems with fixed number of
particles, Sov. J. Nucl. Phys. 31, 561 (1980).

[77] X. G. Wu and T. Huang, Kaon electromagnetic form-factor
within the kT factorization formalism and it’s light-cone
wave function, J. High Energy Phys. 04 (2008) 043.

[78] H. M. Choi and C. R. Ji, Mixing angles and electromag-
netic properties of ground state pseudoscalar and vector
meson nonets in the light cone quark model, Phys. Rev. D
59, 074015 (1999).

[79] W. Jaus, Relativistic constituent quark model of electro-
weak properties of light mesons, Phys. Rev. D 44, 2851
(1991).

[80] W. Jaus, Semileptonic decays of B and D Mesons in the
light front formalism, Phys. Rev. D 41, 3394 (1990).

[81] P. L. Chung, F. Coester, and W. N. Polyzou, Charge form-
factors of quark model pions, Phys. Lett. B 205, 545
(1988).

[82] H. M. Choi and C. R. Ji, Relations among the light cone
quark models with the invariant meson mass scheme and
the model prediction of η − η0 mixing angle, Phys. Rev. D
56, 6010 (1997).

[83] F. Schlumpf, Charge form-factors of pseudoscalar mesons,
Phys. Rev. D 50, 6895 (1994).

[84] F. Cardarelli, I. L. Grach, I. M. Narodetsky, G. Salme, and
S. Simula, Electromagnetic form-factors of the rho meson
in a light front constituent quark model, Phys. Lett. B 349,
393 (1995).

[85] F. Cardarelli, I. L. Grach, I. Narodetsky, G. Salme, and S.
Simula, Radiative πρ and πω transition form-factors in a
light front constituent quark model, Phys. Lett. B 359, 1
(1995).

[86] F. Cardarelli, I. L. Grach, I. M. Narodetsky, E. Pace, G.
Salme, and S. Simula, Hard constituent quarks and
electroweak properties of pseudoscalar mesons, Phys. Lett.
B 332, 1 (1994).

[87] Z. Dziembowski and L. Mankiewicz, Light Meson
Distribution Amplitude: A Simple Relativistic Model,
Phys. Rev. Lett. 58, 2175 (1987).

[88] Z. Dziembowski, Relativistic model of nucleon and pion
structure: Static properties and electromagnetic soft form-
factors, Phys. Rev. D 37, 778 (1988).

[89] C. R. Ji and S. R. Cotanch, Simple relativistic quark model
analysis of flavored pseudoscalar mesons, Phys. Rev. D 41,
2319 (1990).

[90] C. R. Ji, P. L. Chung, and S. R. Cotanch, Light cone quark
model axial vector meson wave function, Phys. Rev. D 45,
4214 (1992).

[91] H. M. Choi and C. R. Ji, Light cone quark model pre-
dictions for radiative meson decays, Nucl. Phys.A618, 291
(1997).

[92] X. G. Wu, T. Huang, and Z. Y. Fang, B → K transition
form-factor up to Oð1=m2

bÞ within the kT factorization
approach, Eur. Phys. J. C 52, 561 (2007).

[93] X. G. Wu and T. Huang, Constraints on the light pseudo-
scalar meson distribution amplitudes from their meson-
photon transition form factors, Phys. Rev. D 84, 074011
(2011).

[94] T. Zhong, X. G. Wu, Z. G. Wang, T. Huang, H. B. Fu, and
H. Y. Han, Revisiting the pion leading-twist distribution
amplitude within the QCD background field theory, Phys.
Rev. D 90, 016004 (2014).

INVESTIGATING THE RATIO OF CKM MATRIX ELEMENTS … PHYS. REV. D 105, 116020 (2022)

116020-21

https://doi.org/10.1063/1.4949465
https://doi.org/10.1063/1.4949465
https://doi.org/10.1103/PhysRevD.74.014019
https://doi.org/10.1103/PhysRevD.74.014019
https://doi.org/10.1016/j.physletb.2014.07.057
https://doi.org/10.1016/j.physletb.2014.07.057
https://doi.org/10.1142/S0217732317502182
https://doi.org/10.1142/S0217732317502182
https://doi.org/10.1016/j.nuclphysb.2018.12.020
https://doi.org/10.1103/PhysRevD.102.094519
https://doi.org/10.1103/PhysRevD.102.094519
https://doi.org/10.1103/PhysRevD.104.016021
https://doi.org/10.1103/PhysRevD.104.016021
https://doi.org/10.1140/epjc/s10052-018-6387-7
https://doi.org/10.1140/epjc/s10052-016-4350-z
https://doi.org/10.1140/epjc/s10052-016-4350-z
https://doi.org/10.1088/1126-6708/2008/04/014
https://doi.org/
https://doi.org/10.1103/PhysRevD.43.2931
https://doi.org/10.1103/PhysRevD.49.1490
https://doi.org/10.1103/PhysRevD.49.1490
https://doi.org/10.7498/aps.25.415
https://doi.org/10.7498/aps.25.415
https://doi.org/10.2307/1968551
https://doi.org/10.1103/PhysRevD.9.1095
https://doi.org/10.1103/PhysRevD.9.1095
https://doi.org/10.1088/1126-6708/2008/04/043
https://doi.org/10.1103/PhysRevD.59.074015
https://doi.org/10.1103/PhysRevD.59.074015
https://doi.org/10.1103/PhysRevD.44.2851
https://doi.org/10.1103/PhysRevD.44.2851
https://doi.org/10.1103/PhysRevD.41.3394
https://doi.org/10.1016/0370-2693(88)90995-1
https://doi.org/10.1016/0370-2693(88)90995-1
https://doi.org/10.1103/PhysRevD.56.6010
https://doi.org/10.1103/PhysRevD.56.6010
https://doi.org/10.1103/PhysRevD.50.6895
https://doi.org/10.1016/0370-2693(95)00230-I
https://doi.org/10.1016/0370-2693(95)00230-I
https://doi.org/10.1016/0370-2693(95)01058-X
https://doi.org/10.1016/0370-2693(95)01058-X
https://doi.org/10.1016/0370-2693(94)90849-4
https://doi.org/10.1016/0370-2693(94)90849-4
https://doi.org/10.1103/PhysRevLett.58.2175
https://doi.org/10.1103/PhysRevD.37.778
https://doi.org/10.1103/PhysRevD.41.2319
https://doi.org/10.1103/PhysRevD.41.2319
https://doi.org/10.1103/PhysRevD.45.4214
https://doi.org/10.1103/PhysRevD.45.4214
https://doi.org/10.1016/S0375-9474(97)00052-3
https://doi.org/10.1016/S0375-9474(97)00052-3
https://doi.org/10.1140/epjc/s10052-007-0421-5
https://doi.org/10.1103/PhysRevD.84.074011
https://doi.org/10.1103/PhysRevD.84.074011
https://doi.org/10.1103/PhysRevD.90.016004
https://doi.org/10.1103/PhysRevD.90.016004


[95] D. D. Hu, H. B. Fu, T. Zhong, L. Zeng,W. Cheng, and X. G.
Wu, ηð0Þ-meson twist-2 distribution amplitude within QCD
sum rule approach and its application to the semi-leptonic
decay Dþ

s → ηð0Þlþνl, Eur. Phys. J. C 82, 12 (2022).
[96] T. Zhong, X. G. Wu, H. Y. Han, Q. L. Liao, H. B. Fu, and

Z. Y. Fang, Revisiting the Twist-3 Distribution Amplitudes
of K Meson within the QCD Background Field Approach,
Commun. Theor. Phys. 58, 261 (2012).

[97] P. A. Zyla et al. (Particle Data Group), Review of particle
physics, Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

[98] S. Aoki et al. (Flavour Lattice Averaging Group), FLAG
review 2019: Flavour lattice averaging group (FLAG), Eur.
Phys. J. C 80, 113 (2020).

[99] S. Narison, Improved fD�
ðsÞ
; fB�

ðsÞ
and fBc

from
QCD Laplace sum rules, Int. J. Mod. Phys. A 30,
1550116 (2015).

[100] P. Colangelo and A. Khodjamirian, QCD sum rules, a
modern perspective, arXiv:hep-ph/0010175.

[101] S. Narison, Mini-review on QCD spectral sum rules, Nucl.
Part. Phys. Proc. 258–259, 189 (2015).

[102] G. P. Lepage and S. J. Brodsky, Exclusive processes in
perturbative quantum chromodynamics, Phys. Rev. D 22,
2157 (1980).

[103] A. Bazavov et al. (Fermilab Lattice and MILC Collabo-
rations), Bs → Klν decay from lattice QCD, Phys. Rev. D
100, 034501 (2019).
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