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The solution of the Dirac equation in the presence of an arbitrary plane wave, corresponding to the
so-called Volkov states, has provided an enormous insight in strong-field QED. In [Phys. Rev. A 103, 076011
(2021)], a new “fully quasiclassical” representation of the Volkov states has been found, which is equivalent
to the one known in the literature but which more transparently shows the quasiclassical nature of the
quantum dynamics of an electron in a plane-wave field. Here, we derive the corresponding expression
of the propagator by constructing it using the fully quasiclassical form of the Volkov states. The found
expression allows one, together with the fully quasiclassical expression of the Volkov states, to compute
probabilities in strong-field QED in an intense plane wave by manipulating only 2-by-2 rather than 4-by-4
Dirac matrices as in the usual approach. Moreover, apart from the exponential functions featuring the classical
action of an electron in a plane wave, the fully quasiclassical Volkov propagator depends only on the electron
kinetic four-momentum in the plane wave, which is a gauge-invariant quantity. Finally, we also compute
the one-loop tadpole diagram in a plane wave starting from the Volkov propagator and we find that after

renormalization it identically vanishes.
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I. INTRODUCTION

The investigation of quantum electrodynamical processes
occurring in the presence of intense laser fields has signifi-
cantly improved our theoretical understanding of the strong-
field regime of QED [1-9]. Strong-field QED signatures in
the emission spectra of ultrarelativistic electrons colliding
with an intense laser beam have also been observed in recent
experiments [10,11]. In the strong-field regime of QED, the
leptons involved in the processes experience in their rest
frames field amplitudes of the order of or larger than the
critical field of QED F. = m?/|e|, where m and e < 0
are the electron mass and charge, respectively (units with
h = c = ¢y = 1 are used throughout). Moreover, the back-
ground field is so strong that it has to be taken into account
exactly in the calculations by using the Furry picture [12,13].
In the case of a background plane wave of electric-field
amplitude F,, and central angular frequency w,, the latter
condition corresponds to the so-called classical nonlinearity
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parameter &, = |e|F,/mw, being of the order of or larger
than unity [1-5].

Analytical calculations within the Furry picture are
feasible for background fields of sufficiently symmetric
structure that the corresponding Dirac equation can be
solved analytically [12,13]. This is the case for a back-
ground plane-wave field, which is clearly relevant for
processes occurring in the presence of background laser
fields. The corresponding solutions of the Dirac equation
are known as Volkov states [13,14] and have allowed for an
enormous insight into strong-field QED in general and, in
particular, into processes occurring in strong laser fields
(see Refs. [15-42] for the basic processes of nonlinear
Compton scattering and nonlinear Breit-Wheeler pair
production, Refs. [43-56] for higher-order processes,
and Refs. [57-70] for radiative corrections).

It has been noticed that the Volkov states, although being
an exact solution of the Dirac equation, have a quasiclass-
ical form in the sense that they feature the exponential of
the classical action of an electron in a plane wave [2].
Moreover, the spinoral structure of the Volkov states is such
that the average spin four-vector satisfies the “classical”
Bargmann-Michel-Telegdi equation in a plane wave.
However, the spinorial structure of the Volkov states itself
is not manifestly quasiclassical; i.e., it is not the same
as that of spinors within the Wentzel-Kramers-Brillouin
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(WKB) approximation [71-73]. In Ref. [74], one of us has
found an alternative representation of the Volkov states,
which is equivalent to the conventional one, but it is “fully
quasiclassical” in the sense that its spinorial structure is also
identical to that of WKB wave functions.

In the present paper, we continue this analysis, present
an alternative derivation of the fully quasiclassical Volkov
states, simpler than that in Ref. [74], and compute the
corresponding expression of the Volkov propagator, i.e., of
the exact electron propagator in an arbitrary plane wave.
Analogously to the fully quasiclassical Volkov states, the
fully quasiclassical Volkov propagator is expressed as four
blocks of 2-by-2 matrices, which involve the unity matrix
and the Pauli matrices. This is reminiscent of the so-called
“spinor helicity formalism,” which is widely used in QCD
in vacuum [75], as it simplifies some computations, and
more recently in external plane waves [76,77]. Moreover,
the found expression of the Volkov propagator explicitly
depends only on the dressed kinetic four-momentum of the
electron in a plane wave, apart from exponential functions
of the classical action, which transparently shows the
transformation properties of the propagator under a generic
gauge transformation of the background plane wave. Apart
from its intrinsic interest, the fully quasiclassical Volkov
propagator allows one, together with the fully quasiclass-
ical Volkov states, to perform strong-field QED calcula-
tions only manipulating two-dimensional matrices and
spinors rather than four-dimensional ones as conventionally
done and to directly obtain manifestly gauge-invariant
results. An alternative and particularly simple representa-
tion of the Volkov propagator has been found in Ref. [78] in
the case of a monochromatic circularly polarized plane
wave by using a special gauge in which the plane-wave
four-vector potential is orthogonal to the four-momentum
entering the propagator.

Finally, in relation to the Volkov propagator, we inves-
tigate the tadpole diagram in a plane wave. This diagram in
a constant background field has recently received attention
[79-81] since it was shown that the Euler-Heisenberg
effective Lagrangian entails a two-loop one-particle reduc-
ible contribution [82]. It was found in Ref. [83] by using the
worldline formalism that the contribution of the tadpole is
linear in the external plane wave, and that for this reason, it
can be renormalized out. Below, we show that for the plane-
wave case, the computation of the tadpole is significantly
simplified by starting from the general definition of the
vacuum four-current and from its relation with the Volkov
propagator. In this way, we explicitly prove that the tadpole
itself as well as its contribution to an arbitrary physical
process are linear in the plane-wave field amplitude and
that, after renormalization, it vanishes identically.

The paper is organized as follows. In Sec. II, an
alternative derivation of the fully quasiclassical Volkov
states is obtained. In Sec. II, the fully quasiclassical form
of the Volkov propagator is obtained starting from the

corresponding expression in terms of the fully quasiclass-
ical Volkov states. In Sec. IV, the tadpole diagram in a plane
wave is investigated. In Sec. V, the main conclusions of the
paper are presented. Finally, the appendix contains tech-
nical details of a result presented in the main text.

Throughout this paper, the Minkowski metric tensor
is assumed to have the following signature #5** =
diag(+1,—1,—1,—1) such that the Dirac gamma matrices
y# satisfy the anticommutation relation {y*,y"} = 2n* (the
matrix y° is defined as y° = iy’y'y?y®). In addition, the
prime ’ denotes the derivative with respect to the light-cone
time ¢ = (nx), where n* = (1,n) and n*> = 0. Finally, the
hat notation on a four-vector stands for the contraction of
the four-vector with the gamma matrices.

II. DERIVATION OF THE FULLY
QUASICLASSICAL FORM OF THE
VOLKOV STATES

The Volkov states are solutions of the Dirac equation in
the presence of a plane-wave background field. For the sake
of definiteness, we assume that the plane wave propagates
along the r direction such that it can be described by a four-
vector potential A#(¢), which depends only on the quantity
¢ introduced above. By working in the Lorenz gauge
0,A*(¢) = 0, with the additional conditions A°(¢)) = 0 and
lim_, .o, A*(¢p) = 0, the four-vector A#(¢) has the form
A*(¢) = (0,A(¢)), with n - A(¢) = 0.

We first recall that, since the vacuum is stable in a plane
wave [84], in- and out-states in a plane wave are physically
equivalent. By limiting then to the in-states, the positive-
energy Volkov states are conventionally written in the
form [13],

~

Upale) = e {1 e f;@] wpe (1)
where
4 e / 62 2( 4/
Sp(x) = ~(px) - / ‘;M{ <Pﬁf¢>>_ /2‘,,(_"”} o)

is the classical action of an electron in the plane wave, p* =

(¢,.p) = (\/m* +p*.p) is the asymptotic electron four-
momentum for ¢ - —oo (p_ = (np)), and

VeEp +méy,
pe_ ¢

is the positive-energy free spinor characterized also by the
spin quantum number ¢ = 1 (we also assume a unity
quantization volume). Here, the two-dimensional matrices &
are the Pauli matrices, whereas the two-dimensional spinor
¢po describes the spin state of the electron, and it is

Upo =

(3)

normalized as f;,ﬁfpﬁ/ = 04y [13].
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In order to derive the fully quasiclassical form of the
Volkov state U, ,(x), we seek a solution ¥, ;(x) of the
Dirac equation,

{r'lio, — eA,(¢)] = m}¥ ) ,(x) = 0. (4)
in the plane-wave field A#(¢) of the form,
‘Pp,(r(x) = eiS,,(x)@p,U(d))‘ (5)
Hence, the spinor ©, ,(¢) has to satisfy the equation,
0, o(¢) + 2 ()~ m]©,,(4) =0. ()

() = (64 (). 7wy () = =05, (x) — eAH(¢)
e(pAW@) , _EAD)

= pt — eA*(¢p) +
() +——" T

(7)

is the kinetic four-momentum of the electron in the plane
wave with initial four-momentum p* at ¢ - —oo. Note that
Eq. (6) allows one to choose the spinor ©,, ;(¢) to be only a
function of ¢.

By recalling the general technique for solving the Dirac
equation in an external field by passing to the “quadratic”
Dirac equation [13], we make the ansatz,

©,0(0) = 525 (D)0, (9) + P, () + i), ()]
)

where @, ,(¢) must satisfy the following equation:
2p_®), ,(§) — enA' ()@, ,(¢) = 0. )

Since @/, ,(¢) has to be proportional to 7, we can conclude
from Eq. (8) that

®p,a<¢> = —mq)p,a(¢)‘ (10)

Now, by recalling the quasiclassical approach [71-73], we
look for a solution, which also satisfies the “vacuumlike”
equation [13],

2 (¢) = m]®, ,(¢) = 0, (11)

which, together with Eq. (10), implies that ®, ,(¢)=
0, ,(¢). From the solution of the Dirac equation in vacuum,
it then follows that the spinor ®, ,(¢) has the form [see
Eq. 3)],

e (¢) + mrio(9)
Orel®) = ox) () (@)
Ipo

O yam
2(¢) + m <r<;,2,<¢>>
e(@)+m ™ O

where, as we will see, the two-dimensional spinor
rE,e,Z;(qﬁ) is related to the two-dimensional spinor &, , in
Eq. (3). One could think at this point that, since
25 () —m]®,,(¢) =0, then Eq. (6) implies that
0, ,(¢) does not depend on ¢. However, Eq. (6) is a
spinorial equation, and one can see from Eq. (9) that the
spinor 710, ,(¢) indeed does not depend on ¢ [recall
that ®,,,(¢) = ©,,,()].

Now, in order to determine the two-dimensional

spinor rgf,Z;((j)), it is convenient to introduce the electro-
magnetic field tensor F¥(¢) = 0*A*(¢p) — 0"A*(¢) =
n*A"(¢p) — n*A*(¢p) of the plane wave by noticing
that A (¢) = —(i/2)0,, F** (), where o* = (i/2)[r*. 7*].
By indicating as E(¢) and B(¢) the electric and
magnetic field of the plane wave, respectively, we find
that

0" ($) = 2ia - E(¢) — 2Z - B(¢). (13)

where @ =y’ and X are the four-dimensional Pauli

matrices; i.e.,
= .

In this way, Eq. (9) becomes

2p-®),4(9) —ela-E(p) +iX-B()|P,,(h) =0, (15)

and it is satisfied by the ansatz in Eq. (12) if the two-
dimensional spinor r;e),(rﬁ) satisfies the equation (see

Ref. [74]),

(e) ie

(e)
e [ m@) <E@)
- 2p {B

().
e 2@ as)

In the Appendix, we prove explicitly that the solution
of this differential equation with the initial condition

limy_, rgff,(qﬁ) = &, is given by

(e)
() = [t +’”{1 _

€, +m 2p_

- [n—e(];ff’z%]amm}m

g, +m e
@ e
ey (¢) +m P

Gl
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Note that the prefactor 1/, /&, + m is chosen in order for the
()

normalization condition of the spinorto be ry 4 () rgy, (p)=

.ﬂ,,,,é,,,(,/:émg. In this respect, the expression (17) of the

spinor rf,f?;(rj)) can be written in a form that transparently

shows the conservation of the normalization of the spinor
and that is also manifestly gauge invariant. To do this, we
observe that

eA(p) =p —ny) () —nle, — &) ()]
<e)

= nlely) (¢) +m) -z (¢) —n(e, +m) +p

2

— e @)+ - )(
) (18)

(
€p
p
g, +m

— (g, +m) <

In this way, we have that

() (e) (e) 2

rif%(qs): SPS(Q?jn_m{l_gp (2¢)+m |:I’l— (gl’ (¢) :|

’ - L) em

£p+m 75 () p
- ;p_ 6'[ _eﬁf)(fﬁ)er}G‘(n_Sﬁm) }5’“’
:¢<ep+m>[s§f><¢>+m]a[n_ 7 (¢) |
2p- e (@)+m

-<n—£ +m>§p0 (19)

The conservation of the normalization is apparent because

o (n-——2 2: n——> 2: 2P~ , (20)
g,+m g,+m g,+m

—

e (@) +m

Finally, one can easily check that, as it should be, by
substituting Eq. (17) in Eq. (12) and the resulting expres-
sion in Eq. (5), one identically obtains that ¥, ,(x) =
U, (x) and then that

e (¢) + mrisu(9)

()
ox, () (e
——L———rp (¢
L ()

U,.(x)= eiSr(x) (22)

Hence, apart from the action in the exponential,l the Volkov
state U, ,(x) can effectively be expressed only in terms of
the initial four-momentum p* and of the electron (kinetic)

four-momentum in the plane wave ﬂﬁf)" ().
From the fact that the Volkov state U, ,(x) satisfies the

equation [frﬁf)((b)—m}Upﬁ(x) =0 [see Eq. (11)], one
could conclude that it can be written as the free state
u, . [see Eq. (3)] with the electron four-momentum being
replaced by the electron kinetic four-momentum in the
plane wave [85]. However, this substitution rule does
not apply to the two-dimensional spinors &, , in the free

state in Eq. (3) and rﬁf};((/)) in the Volkov state U, ,(x) in
Eq. (22). The former two-dimensional spinor is arbitrary

in the free state, whereas the two-dimensional spinor

rﬁfi(qs) has a determined, nontrivial time evolution [see

Eq. (17)] as it has to satisfy Eq. (16) (see also the
Appendix), and only its initial condition is arbitrary.
One can gain a more clear insight on the above argument
by observing that

{1 +e%}f9 = #9(¢) [1 te iﬁﬂ. (24)

This identity allows one to write [see Eq. (3)]

o[ 22 5
7 () +m [H_enA(qb)} (gpﬁ)

Ve, tm 2 0
@) +m [[1=50-n0-A(P)IE)
e, tm —6-AB)eps |

(25)

'Note that in the chosen gauge with A°(¢) =0 and then
n-A($) =0, the action S, (x) can be written as

m? —|—pi
2p_ ¢
— /¢ dd)/ |:_ ep AL(¢I) + QZA%_(QS/)
0 p- 2p_
m? + 7S¢

=-p_x; ﬂu'xi—/ d¢f —— ——+C. (23)
0 2p_

S,(x)=-p_x,+p-x; —

|+c

where x, = (t+n-x)/2,x, =x—(n-x)n [§nalogous defini-
tions hold for p,, A, (¢) =A(¢p), and 't b (#)], and C =
— [0, dg'[2e(pA(¢')) — eA%(¢')]/2p_ is a “physically irrel-
evant constant. However, this does not imply that Volkov states
are, even apart from the constant C, gauge invariant (which would
be incorrect; see, e.g., [13]) because the above expression of the
action is valid only in the chosen gauge.
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This equation shows that the spinor to which the matrix 7,

(¢) + m is applied does not apparently feature a vanishing

lower two-dimensional spinor as in Eq. (12). However, the equivalence with Eq. (12) is obtained by noticing that

)+m

A0 (#) +m (rm)) _w(p) +m ([1——6 ne - A() + 1% #E)

e (¢)+m > O Vet

& @+m] (1

,/Ep—i—m

and that the second spinor belongs, to the null space of the

matrix fzﬁf)

(¢) + m, which is the nontrivial point here.
It is known that the average four-momentum Pif)” (p) =
mU , ,(x)7*U , ;(x)/ U, ,(x)U,, 5(x) (for a generic spinor

w, it is @ =y'y?) and the average spin four-vector

S5 (#) = =Upo () 7"Upo(6)/Up o (1)U (x) of an
electron in a plane wave are given by (see, e.g., Ref. [2])
P(")H — (e)u 27
p (@) =m" (), (27)
(e)u u Sp.o— n#
Spo (§) = spo — eA(P) +e(sp0A(P)) —
P- P-
- 2 (g) Lo (23)
D=

where s/, = —ii pyaySy”u pol Uy sl s s the initial average
spin four-vector. It is already clear from their definitions

that the four-vectors PY*(¢) and S%(#) only depend
on ¢ [also one sees that, as expected, the average

- %O’ ‘no - A(¢)]§p,o‘
_ﬁa ' A(¢>§p.a

0

e om) (p)oA@)
- ) (@)+m PO (26)

ﬁ(i : A((b)é:p,o-

four-momentum Pf,f)” (¢) does not depend on the spin
quantum number].
Now, from the structure of the state U, ,(x), we can

conclude that the four-vector S\ () must have the form
(see Ref. [13] for the corresponding equation in vacuum),

ng,(r# ((r/’) = — ’

Syro(®) -7 (4)
S(e) p.c.0 4 (e) , 29
p,5,0(¢) + m[egf) (¢) T m] ”P (¢) ( )

where § pgo(¢) = N ()or\h(¢) corresponds to the
three-dimensional spin vector in the instantaneous rest frame
of the electron in the plane wave [where n'f,f)(qﬁ) =0].
The vector SE, Z, o(¢) can be calculated explicitly by using

Eq. (19), and the result is

e e £,+m
$3%00) =sho + L (-

) __ b
ep—l—m> s”'”*()(n €p+m>

p-

L (et m)ley (@) + )

e (@) +m [ =
€p

el

ep (¢) +m

p*

(e)

where s,7 =

__ b a0
<n 8,,+m) Sp.o0

Pl

J,’; o6&y = 08,, With s, = f; +6§p+ (this is equivalent to choosing the spinor &,, such that

6-5,6,,=0&,,). Note that the quantity SpaO( ¢) can also be obtained from the expression of Sﬁfz,” (¢) =

(SR (B). k() as SY) o(4) = SKh(¢) = Sy R (D) ()] €5 () + m].
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The case of negative-energy states V, ,(x) can be worked
out analogously. One starts with the same ansatz as in Eq. (5)
but with the action S, (x) being replaced by S_,(x). Then,
one chooses the solution in such a way that it resembles the
free negative-energy spinor,

(p)
W) o |Ep ()+m e

: [n —%} c-A() })(P.a

po e,+m { e p
—r X =] 1- O'-A(gb)a-(n——)})( o
Up,o‘ = a (31) £§;p)(¢)—|—m 2P_ Ep—l—m P

\Ep + ny p.o ,

where the two-dimensional spinor y, , can be chosen as

(34)

Also, it can be shown that the fully quasiclassical spinor in
Eq. (33) can be written in the conventional form as [13]

Xpo = —10,&, ; and itis then normalized as ;(;.6;(1,_5/ = 04y
[13]. '.I‘hls 1s< e;chleved by requiring that V, ;(x) satisfies the V)= et [1e AA(P) . 33)
equation [z, (¢) + m]V , ,(x) = 0, where po 2 |

2PH(9) = () (). 7)) () = 0S_, (x) + eA¥(¢)
_epAW@) ,_SA(g)

Finally, by using the identity,

eA(9) = (ep-+m) (=)

= pH+eAH(¢p n* (32
)= 2 (32
(») 7 (¢)
is the classical kinetic four-momentum of a positron in the — ey (¢) +m]|n— ») . (36)
ep (@) +m

plane wave with initial four-momentum p# at ¢p - —oo.
By following the same steps as in the positive-energy
case, we obtain

we can write the two-dimensional spinor rE,’? 2,(4;) in the
manifestly gauge-invariant form as

el _p) Ve tm)el (@) +m
o (P) (Y — r
Vp_(;(x) — eiS,p(x) 85;”)(¢)+m ’ ’ (33) rl’]?l’(qb) - z 2p_ c
(p) (p) (p)
ep (@) +mrps(h) _ [n— ZPp (&) }o_. (n— )4 >)(p’6. (37)
ep (§)+m eptm
where |
Analogously as in the positive-energy case, it is clear that
Do VsV, 0(x) )
PP @) = mge S = A ) (38)
PPV po®) _ (Shaol®) -7 (@) Syuo@) 7 (9)
SPm gy — VooV, _ [Pre G p.o. (P) ’ 39
P (¢) VPG(X>VP.5(X) m p6,0(¢) + m[eg,p)(qﬁ) +m] T (¢) ( )
where
&, +m p p
R e e A (e
e (¢) +m [ _ @) } ) [ _ @) ]
P- e (@) +ml T D ()4 m
(ep + m)ley (@) + m] ( _»p ) ()
2 p.0,0
p g, +m
(p) (p)
x[n—4(7)rpp(¢) ]x{[n——(ﬂpp(¢) ]X(n— L >} (40)
e () +m e () +m &t m
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Here, we have introduced the pseudovector s; io =
X p.GG)( po — —O

$poand y, ., itis y, . =&, and y, _

os, (note that with the above choice of

= _‘fp.+)'

III. FULLY QUASICLASSICAL FORM OF THE
VOLKOV PROPAGATOR

In this section, we derive the Volkov propagator
G(x;,x,) in the fully quasiclassical form, i.e., the
Volkov propagator directly constructed from the fully
quasiclassical Volkov states.

We recall that the propagator G(x;, x,) is defined via the
equation,

iG(xy. x;) = (O] T{P(x))¥(x2) }0). (41)

where 7 is the time-ordering operator, ¥(x) is the electron-
positron field quantized within the Furry picture, and where
|0) indicates the vacuum state. The standard representation
of the Volkov propagator reads [2] (see also Ref. [86] for an
expression of the propagator in terms of special functions
where the integral over the four-momentum is taken
explicitly)

d'p . AA
Glx).x,) = / (2;)’4 o115, ()-8, () [1 +e%}
p* —m? +i0 2p_

. d3 1 eilSp(x1)=S,(x:)]
iG(xy,x,) = e(xl_x2>/(2n.)3 2¢

P
§ ([sﬁf)wl) +mlEy (p1)EY

c ”p (¢1) (4’1)
1 e[sfp< )_Sfp(XZ)]

3
_e(xg—x(l))/(;lﬂp)3£
x( o ”p (471) (4’1)

[p (¢1)+m] (¢1)

e,,—f—m

e,,+m

where we have introduced the 2-by-2 matrices,

q(C)o-. . ﬂ'gf)((ﬁ) ..
SR

with the upper index c taking the values e and p and with
g'¥ = e and ¢\P) = —e (recall that in our notation, the
quantity e is negative).

(¢2)[8P (¢2) + m]
(472)[817 (¢2) + m]

(¢2)0' )/ (¢z)
Moo -7 ()

Now, we recall that within the Furry picture, the
electron-positron field can be expanded in terms of the
Volkov states as

dp 1
T A [Cp,aUp,a(x) + d;,ﬂvp,a(x)]’

(43)

where ¢, , (d}:,,,) are the annihilation (creation) operators
of electrons (positrons). By substituting this expression in
Eq. (41) and by recalling the standard anticommutation
rules between the electron and positron creation and
annihilation operators, we have that

iG(xl ’x2) =

Now, we substitute the fully semiclassical form of the
Volkov states in this equation and, after performing the
sums over o, we obtain

—[e) (1) + mlEY (1)€Y

(o) - np <¢2>>
—o -7 (91)EY) () EY

"(go)o - ) ()

-0 ”p <¢1) (¢1)
_['917 (¢1)+m] (¢1)

(¢2)[€p (¢2) + m] ) 45)
(452)[5;7 (¢2) +m]

Exactly as in vacuum, we would like to transform
the three-dimensional momentum integrals in four-
dimensional ones by using the identity,

f(g ) —ie, (x9—x9 f(—£ ) ie —X
0(x) — x9) ﬁe P1=2) 1 9(x9 — x9) 25: eten(xi=13)
dp 0 (x0—x0 f(°)
_ —ip?()=x)) SN ) 47
l/27r 2p2—m2—|—i0’ (47)
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where f(p") is an analytic function, which does not vanish
at p¥ = +e, and which is such that the corresponding
integrals over the infinite semicircles with Im(p°) =0
vanish. However, Eq. (45) is not written in the most
convenient form for this aim because of the terms
€, +m, which would give rise to an additional apparent
pole at p® = —m [we know from the traditional form of the
Volkov propagator in Eq. (42) that the only poles to be
|

Ve () = -

E,+m
p 6.["_

circumvented are at p° = +e,]. This can be avoided by
using the identity [see also Egs. (19) and (37)],

(g)= gplf_’”a.[n_(’;L%]a.(n_pl’ )

ep (§)+ €p T m
(48)
which implies that
() (c)
(:;'-P (¢1) :|O" |:n_ (:;P (¢2) :| (49)
ep (1) +m ep () +m

This equation allows one to write the propagator in the more convenient form,

d3p 1 ei[S,,(xl)—S,;(xz)]
iG(x1,%) = O(x — x) / 2
iG(xy,x,) (x] —x3) (27)32e, 2p_

&Bp 1 elS-plx)=5,(x)]
—0(x°
(2= xl)/ (27)'2e,  2p-

where

0y (4) = [£9(p) £ m [ .

1, (¢ -1, (42)

~6 1) (¢1)5ne -1, () 6 1) ()6 11, ()
oI (¢p))e - I ()

~- 1), (¢1)5 no -

) (¢)
W (p) £ m

o H+p(¢1)°' ne -1 (¢2)
(

%) (¢))o - ne -1 ()

H(_’fz,(q’;z) -6 H(f (¢1)o - H+p(¢2)
(50)

] =2 0) - (@) £ i (51)

The matrix structure of the above expression of the propagator can be further simplified by using the properties of the

Pauli matrices,
(o V10' V2
6'V]O"V20"V3
for arbitrary vectors Vi, V,, and V3. Then, we obtain

= Hglf,)p(qﬁl) ‘Hif,)p((f)z) +ic - I
7 (1) — %) ()2

c: H(ic,)p(qﬁl)o' ) Hgf,)p(qbz)

= +pley

() £ iz () — [e

2
+io- <nx{[

==iVy- (Vi xV3)+06-[(V2-V3)V,

V1 V2 + ic - (Vl X Vz), (52)

—(Vi-V3)Vo + (V- V,)V3], (53)

O (1) x I ()

(1) + el (¢) = 2m]

S () £ mlay) (¢2)} + 75 (1) x 7 ($2)). (54)
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6 1Y, (p1)o o T, () = —in - [ () x TS, ()]

t+o - {fn -1, (@) (1) — ML, (1) - T, (o)l + - T, (1) ML) (1)}
= —in- [ (1) x 75 (¢2)] + 0 - (Emlaly) (1) = 75 ()] = p-[2 (1) + 73 ()]

+{(p- F m)ley (1) £ m] + (p_ £ m)[ef) (o) F m] + () (b1)7) (¢2)) = p_lel) (1) + &5 ()] + m>}m)
= —in [z (1) x 7 (9)] + 6 <im[n£f) () =7 (@2)] = p-lmy) () + 717 (9)

= () - n$><¢2>]2},,>.

+ {im[sﬁﬁ (42) — e (9] (55)

Now, it is easy to verify that Eq. (50) is suitable to introduce the additional integral in p® by also noticing that by changing

in the first “electron” matrix p# to —p*, one obtains the second “positron” matrix [note that 7 ,),” (¢) = —Jr(pp g (¢) and then
that Hf’)_ o(B) = —l'[(_’? ;) (¢)]. Thus, we conclude that the propagator can be written as
G(x1, %)) = / d*p eSrn)=5,(x) (GUL(¢17¢2) GUR(¢1a¢2>> (56)
1»4A2) — . )
(2m)* p*> —m* +i0 \ GpL($1,¢2) Gpr(b1. )
where
(71'1 —77.'2)2 &1 +€2 ic
GuL($r. o) = m + +5—{nx[m(m) —m) + eymy — &17y] + 7y X 73}, (57)
4p_ 2 2p_
i (o3 (ﬂ'] - ﬂ'2)2
GpL(¢1. #2) = " () x 73) +g‘ m(my —my) + p_(m) +my) + |m(e — &) e L (58)
i (3 (71'1 - 71'2)2
Gur(P1.¢2) = —5—n-(m X 7)) +5—-gm(m —m) — p_(7 +m) + |m(ey — &) —————|n,. (59)
2p_ 2p_ 2
(77,'1 — 77,'2)2 €1 + &) ic
Gpr(¢1, o) =m — - +5—{nx[m(x) —m) + &1my — eym)] — 7y X my }. (60)
4p_ 2 2p_
|
Here, we have introduced the off-shell four-vector, It is interesting to note that the matrices Gy (¢;, ¢,) and
Ggr(¢1, ¢,) can be obtained by changing m into —m in the
matrices —Gyg(¢y,¢P,) and —Gyp (¢, ¢,), respectively,
wp(p) = (&,(#). 7, () such that we only have to work with two independent
e(pA(¢)) e?A%(¢) 2-by-2 matrices.
= p' —eA¥ () + D nt — 2p n*, (61) As a first check, one can easily prove that the propagator
h - G(xy,x,) in Eq. (56) reduces to the free one in the case
A*(¢) = 0. Also, one can explicitly prove that Eq. (56) is
with p_=p’—n-p, and the short notation % =  equivalent to Eq. (42). By applying the identity in Eq. (24)
(64 my) = () = (e, (ba). 7, (@), With a =1,2. and its Dirac conjugated, we have that
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%} _ {1 _i_eﬁA(ébl)} 13‘;13 {1 _eﬁA((ﬁz)] +m{1 +eﬁ[ ((/712)—2‘(452)]}

Now, we use the identity eA[A(¢,) — A(¢,)] = =i (7, — #,)
and we obtain (see Refs. [76,87] for equivalent expressions of
the Volkov propagator, with the matrix integrand depending
only on the electron dressed kinetic four-momentum)

AA(p1)] . AA(¢>)
| 4220 | —e0NP2)
{ +e . (p+m) e 2
47 T —m)? Ar A A A A
= 12 2+< 14p_2) n+l(mr27zl—mﬂ2n)
(it — )
] ——=. 63
+m[ 2p- } (62)

Finally, by using the standard representation of the Dirac
matrices, one can show that the 4-by-4 matrix in Eq. (63)
|

can be written in blocks of 2-by-2 matrices and that it
coincides with that in Eq. (56). Observe that the above
checking procedure of the equivalence of the standard
form and the quasiclassical form of the Volkov propagator
can also be employed as an alternative derivation of
Eq. (56).

IV. THE ONE-LOOP TADPOLE CONTRIBUTION
IN AN ARBITRARY PLANE WAVE

The one-loop tadpole contribution to the Volkov state
U,.(x) is represented in Fig. 1, where all double lines
indicate either the Volkov state or the Volkov propagator.
By indicating the corresponding amplitude as U E,ll(x) and
by applying the usual Feynman rules, one obtains

SUGH(x) = / dtyd*ziG(x,y)(=iey") U, -(y)(=i) D, (y — 2) (=1)tr[(=iey*)iG(z. 2)]

= ie? / dyd 2G5, )7 U, o (9) Doy — UGz, 2)].

where D, (x — y) is the photon propagator in the Feynman
gauge,

~i(k(x-))

4 JU
D (x—y) = / AL (65)

Qo)+ i0°

Following Schwinger [84], we recall that the quantity
G(x, x) has to be meant as

t,—tf T —r T (66)

1
G(x,x)zi[hmG(t x,t x)+11mG(t xX,1,.%)|,

i.e., the first (second) limit has to be taken with 7, > 1,
(t, <t,). Now, starting from the general definition in
Eq. (44), we have that

(64)

[

Gv) =33 = e Ure 90000
*2 Z/ 2;;328

We recall that the trace ietr[y*G(x, x)], which corresponds
to the tadpole part of the diagram in Fig. 1, coincides with
the vacuum four-current density J% (x) [84]:

pa()V po(X). (67)

Jh(x) = ietr[y”G(x x)}

22
d* 1 -
Z/ Z_VP’G

This equation transparently relates the vacuum four-current
density with the electron and positron four-current densities

1 -
5550 UrelrUyo()

)"V, 0(x).  (68)
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p, o -

The one-loop tadpole contribution to the Volkov state

P ®

FIG. 1.
Up,o"(x)'

proportional to U, ,(x)y*U,, ,(x) = 22%($) and to

Voo (0)7*V , 0(x) = 227 (), respectively (see also [13]).
By using these identities, we obtain that

3
Jix)=e / 90 1 om ) — a0 ()]

(2n)? €p
3
— 2¢2 —(jﬂ’;gi [A”((ﬁ) _(pAg) ’;(_"5)) . (69)

This expression, although divergent, is manifestly gauge
invariant because it is the difference between the electron
and the positron kinetic four-momenta in the plane wave.
Also, it shows that only linear terms in the plane wave
electromagnetic field contribute to the tadpole (see
also Ref. [83]).

The above expression of the vacuum four-current can
also be obtained directly by starting from the expression of
the propagator G(x;,x,) in Eq. (42). Indeed, we have that

d'p nA(¢)
i) = i an
Jh(x) le/(zﬂ)4tr{y [ +e TS
» p+m l_eﬁA(cﬁ)
p* —m? +i0 2p_
,/d“p 1
=ie
() p> —m? + i0

4 LA P T

where we used the fact that the trace of an odd number of
gamma matrices vanishes and Eq. (24). By exploiting the
symmetry properties of the integrand, we have

- 2A9),.]

(71)

d*p 1
(27)* p? —m? +i0

Jh(x) = —4iez/

and then the above presented expression of the vacuum
four-current is obtained by performing the integral over p°
via the residue method,

/ L A . (72)

2 (PP - +i0 2,

this result being independent on whether one closes the
path on the infinite semicircle with Im(p°) > 0 or the one
with Im(p°) < 0.

Since the vacuum four-current is linear in the external
field, it must be possible to obtain its expression starting
from the Feynman diagram in Fig. 2. It is useful to derive
the vacuum four-current via the perturbative approach
because it will give a hint on how to renormalize its
(divergent) expression, which is what we are going to do
below (see Ref. [88] for a theory of renormalization of QED
in an external field, which would lead to the same result as
the one obtained below). By applying Feynman rules in
vacuum, we have that

i () =— / dytel—ier"iGo(x—y) (~ie)A(d,)iGo(y—2)].

(73)

where

d*p p+m
GO(x_y)_/(Zﬂ)4p2—m2+iOe

—ilp(=y)) | (74)

is the free electron propagator. By writing the plane-wave
four-vector potential as

A () = / 9D i () — / ‘;—:e—f<kx>/iﬂ(w>, (75)

2

where k* = wn”, we obtain

p, 0 P

FIG. 2. The perturbative representation of the one-loop tadpole
contribution to the Volkov state U, ,(x). The vertex with the
cross corresponds to the external plane wave.

=
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r) e [ [0
(27)* ] 27 p?> —m® +i0

(P +
(p

A(@)(p — k+ m)]
2

)
—k)?=m?+i0

i d*p [dwe ) [ 1
= ~2ie? / (27:)4/ 2z (kp) |p*—m?*+i0 a
- A(w)(p* = m* = (kp))),
A(w))k + A (w) (kp)

x [(PA(w))(2p" = k)

1
(p—k)z—m2+i0}

Y 2/ d*p /da)e_i<k") —(p
= 2ie —
(2n)* ) 2z (kp) |

(PA(w))k - A"(w)(kp)]

p* —m? +i0 p? —m? +i0
o [ L, [ e i)~ o -
= —4ie
(2m)* ) 2z (kp) p?>—m?+i0 '

where, in the last two steps we have exploited the symmetry
properties of the integrand. At this point, the quantity @
simplifies in the preexponential function and, by using
Eq. (75), we again obtain Eq. (71).

Now, the perturbative expression of the vacuum four-
current J%(x) in Eq. (73) gives us a hint on how to
renormalize it. In fact, by using the standard definition
of the vacuum polarization operator

[ (x — y) = itr[—iey*iGo(x — y) (—ie)y"iGo(y—x)], (77)

we obtain

Fx) = / AT (x = y)A, ()

d4q uv —i(gx
_ / G @A ). (78)

or Ji(q) =1"(q)A,(q) [note that A¥(q) =
[ d*xe AR (@) = (27)35(q_)%(q.1)A*(q,), where g, =
(¢° +n-q)/2]. Lorentz- and gauge-invariance imply that
1" (q) has the form IT*(q) = (¢*n** — ¢*q")T1(q*) and the
standard renormalization of the polarization operator
amounts to replace the function I1(¢?) with the function
I1,(g%) = M(g?) — 11(0), such that IT,(g*) can be written as
1,(q%) = ¢*®,(¢?), with ®,(4?) being finite at g> = 0 [89].
In this way, we finally obtain that the renormalized vacuum
four-current — J5,(q) = IL(¢*)(¢’n" — q"q")A,(q) =
70, (¢*) (g1 — q"q")(27)*5(q-)5°(9.1)A(q+) = 0 (see
also Ref. [83]).

Finally, Eq. (64) indicates that in order to compute the

correction U f,,lz,(x), we need the quantity

B(x) = / dD (=) (y). (79)

which also has to be renormalized. This means to use the
renormalized vacuum four-current instead of J%(x) and

then, by passing to momentum space, we obtain for the
renormalized four-vector By (q):

B (q) = D"(q)J,.,.(q)
=,(¢*)(¢*n" — q4"¢*)(2n)*8(q_)5*(q1)A,(q.)
=0, (80)

where we have used the fact that if g_ =0 and ¢, =0,
then ¢* = g, n* and (¢A(q.)) = 0. Thus, we conclude that
the renormalized correction to the Volkov states as due to
the one-loop tadpole diagram identically vanishes in a
plane wave after renormalization.

The above situation is somewhat different than that in a
constant background electromagnetic field where, although
the vacuum four-current vanishes, the tadpole (which
includes the photon propagator) does not except for the
special case of a constant-crossed field, corresponding to a
plane wave with zero frequency [79-83]. More specifically,
although the contribution to the tadpole linear in the
background field is also renormalized out in the case of
a constant field like in the plane-wave case, higher-order
contributions proportional due to Furry theorem to odd
powers of the field do not vanish, which is related to the
fact that, unlike in a plane wave, the electromagnetic field
invariants do not vanish for a constant (noncrossed) field
[79-83]. As an final technical remark, we also observe that
the four-momentum flowing in the photon propagator
identically vanishes in a constant field and encountered
integrals like [ d*k5*(k)k*k”/k* can be shown to be finite
(and equal to ¥ /4) [79-83]. The situation is different here
because the four-momentum entering the polarization
operator does not vanish, it is lightlike and it is also
orthogonal to the external plane-wave four-vector potential.

V. CONCLUSIONS

In conclusion, we have first presented an alternative
derivation of the fully quasiclassical form of the Volkov
states, simpler than the original one in Ref. [74]. Then, we
have used these states to construct an alternative form of the
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Volkov propagator, which depends, apart from the actions in
the exponential functions, only on the dressed kinetic four-
momentum of an electron in a plane wave. This form
highlights the properties of the Volkov propagator under a
generic gauge transformation of the plane wave and is
expressed as four blocks of 2-by-2 matrices. Among these
matrices, only two are independent in the sense that the other
two can be obtained by a simple substitution rule.

Due to the easy multiplication rules of the Pauli matrices,
the obtained expression of the propagator is conveniently
used when performing calculations via the quasiclassical
form of the Volkov states. In this respect, the present results
complement those in Ref. [74] and provide the remaining
tool to compute strong-field QED probabilities in a strong
plane wave by manipulating preexponential functions
explicitly depending only on the leptons dressed kinetic
four-momenta. Already the relatively straightforward matrix
manipulations in the computation of the probabilities of
nonlinear Compton scattering and nonlinear Breit-Wheeler
pair production in Ref. [74], which are ultimately expressed
as traces of two-dimensional matrices, give an idea, although
the spin dynamics was ignored there, of the envisaged
simplifications in investigating higher-order processes and
radiative corrections by means of the quasiclassical Volkov
states (and propagator).

|

(o e(ey) +m)

(e)r

Finally, in relation to the electron propagator, we have
computed the vacuum four-current density in a plane wave.
The related one-loop tadpole contribution to an arbitrary
Feynman diagram has then been shown to identically
vanish after renormalization.
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APPENDIX: DERIVATION OF THE
QUASICLASSICAL SPINOR

In this appendix, we shall explicitly prove that the two-
dimensional spinor in Eq. (17) satisfies the differential
equation (16). To see this, we evaluate its derivative with
respect to ¢p. We have (for the sake of notational simplicity,
we omit the dependence on ¢ in some equations below)

(e)r

r

pa(P) = 2p_\/(€$) P {6- Lgf)

)

— . — . /

c (n ® )O‘ A }ém + B
&’ +m 2\/(e,,

(e)

Tp _ €p n.(e) c-A
(e) 2P
+m (e +m)
(e)r
€
= Tpo(®)
+m)(e, +m)

= a{ﬂ:ﬁf> -E[l LA <n—<e>L)o'-A}
2p_ g +m

(e)
_'_io- P
p

= a{—ﬂ'g;e) E{%

—ic- a2 — (e + m)n] x E}g,,,g,

<£Ef>E + ngf) x B — 7(re>
&y’ +m

where

a(¢) =

(e)
o (%—I—n)a-A}
e +m P-

E e e e
7:5))6 A-o0- [71:5,) - (85,) + m)n]a-E}ij,g

+26 (YE+ 7 xB)s-A

and where we have also used the identities,

(A1)

_ ¢ , (A2)
20\l (®) + m(e, +m)

= Sa)(¢)-E9). (A3)
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2 () == [ (DE(P) + 5 ($) x B($)],

(A4)

corresponding to the Lorentz four-force equation in the plane wave. In the last equality of Eq. (A2), we have also used the
fact that o - nﬁf”)(qﬁ)d-E(qﬁ) = n§f) (@) -E(¢) +io- [ﬂgf) (¢) x E(¢)] and that 6 - no - E(¢p) = ic - [n x E(¢)].
For the right-hand side of Eq. (16), which we denote here as R(¢), one finds that

(e)
R(¢) = iao - (e} + m)B - n§) x E] [1 TR ( - )”‘} £
2p- ey +m
= a{i(s&fﬁ +m)e-B—ic- (Y xE) +21—e[B a2 (7Y xE)e-A
p

(e) (e)
e E e e
L, [(nggmmw;ﬂ_gmg)_( ;,>XE>X,,]G.A}¢,,,,,. (AS)
2p- ey +m

Given that B(¢) = n X E(¢), the first two terms coincide with the last two terms of Eq. (A2). Also, note that
n- [n§f>(¢) x E(¢)] = ﬂ;,e)((f)) -[E(¢p) xn] = —ngf) (¢) - B(¢) such that the term in the first line proportional to 6 - A(¢)
vanishes. All that remains is to examine the terms in the second line of Eq. (AS5). Starting from the first two, we have that,

since [z () x E(¢)] x 75 () = E(@)[ely () — m?) — ) () [x (#) - E(¢)), then it is

el () + mlE(¢) +

(75 (#) x B@)) x 75 &) _ 7 9) E@) o

5 () + m

= 2¢p (P)E(9) 7y (). (A6)

5 () + m

By using the known identities for the double cross product, we obtain that n x [ngf) (¢) X E(¢)] = —E ((]5)[8;8)((/5) - p_]

and then that

R($) = a{i(e¥ + m)o-B —ic - (z\Y) x E) + %6 (eYE-Bxn)s-A

4 e
3,00 |

e T -E e
xB+E(ey) = p)+-2 nﬁﬂ]o-A}ép,a.

()

) (A7)
ey’ +m

Finally, since 7 (¢) x [n x E(¢)] = n[z\"(¢) - E($)] — E(¢)[eY () — p_], we conclude that the quantities R(¢) and

Y ($) indeed coincide.

[1] H. Mitter, Acta Phys. Aust. XIV, 397 (1975).

[2] V.IL Ritus, J. Sov. Laser Res. 6, 497 (1985).

[3] F. Ehlotzky, K. Krajewska, and J. Z. Kamifski, Rep. Prog.
Phys. 72, 046401 (2009).

[4] H.R. Reiss, Eur. Phys. J. D 55, 365 (2009).

[5]1 A. Di Piazza, C. Miiller, K.Z. Hatsagortsyan, and C.H.
Keitel, Rev. Mod. Phys. 84, 1177 (2012).

[6] S.P. Roshchupkin, A. A. Lebed’, E. A. Padusenko, and A. 1.
Voroshilo, Laser Phys. 22, 1113 (2012).

[7] B. King and T. Heinzl, High Power Laser Sci. Eng. 4, e5
(2016).

[8] T. G. Blackburn, Rev. Mod. Plasma Phys. 4, 5 (2020).

[9] A. Gonoskov, T.G. Blackburn, M. Marklund, and S.S.
Bulanov, arXiv:2107.02161.

[10] J.M. Cole et al., Phys. Rev. X 8, 011020 (2018).

[11] K. Poder et al., Phys. Rev. X 8, 031004 (2018).

[12] W. H. Furry, Phys. Rev. 81, 115 (1951).

[13] V.B. Berestetskii, E.M. Lifshitz, and L.P. Pitaevskii,
Quantum Electrodynamics (Elsevier Butterworth-Heinemann,
Oxford, 1982).

[14] D. M. Volkov, Z. Phys. 94, 250 (1935).

[15] H.R. Reiss, J. Math. Phys. (N.Y.) 3, 59 (1962).

[16] A.I Nikishov and V.I. Ritus, Sov. Phys. JETP 19, 529
(1964).

[17] I.1. Gol’dman, Phys. Lett. 8, 103 (1964).

[18] L.S. Brown and T. W.B. Kibble, Phys. Rev. 133, A705
(1964).

[19] M. Boca and V. Florescu, Phys. Rev. A 80, 053403 (2009).

[20] T. Heinzl, A. Ilderton, and M. Marklund, Phys. Lett. B 692,
250 (2010).

116019-14


https://doi.org/10.1007/978-3-7091-8424-0_7
https://doi.org/10.1007/BF01120220
https://doi.org/10.1088/0034-4885/72/4/046401
https://doi.org/10.1088/0034-4885/72/4/046401
https://doi.org/10.1140/epjd/e2009-00039-3
https://doi.org/10.1103/RevModPhys.84.1177
https://doi.org/10.1134/S1054660X12060084
https://doi.org/10.1017/hpl.2016.1
https://doi.org/10.1017/hpl.2016.1
https://doi.org/10.1007/s41614-020-0042-0
https://arXiv.org/abs/2107.02161
https://doi.org/10.1103/PhysRevX.8.011020
https://doi.org/10.1103/PhysRevX.8.031004
https://doi.org/10.1103/PhysRev.81.115
https://doi.org/10.1007/BF01331022
https://doi.org/10.1063/1.1703787
https://doi.org/10.1016/0031-9163(64)90728-0
https://doi.org/10.1103/PhysRev.133.A705
https://doi.org/10.1103/PhysRev.133.A705
https://doi.org/10.1103/PhysRevA.80.053403
https://doi.org/10.1016/j.physletb.2010.07.044
https://doi.org/10.1016/j.physletb.2010.07.044

QUASICLASSICAL REPRESENTATION OF THE VOLKOV ...

PHYS. REV. D 105, 116019 (2022)

[21] F. Mackenroth, A. Di Piazza, and C. H. Keitel, Phys. Rev.
Lett. 105, 063903 (2010).

[22] T.-O. Miiller and C. Miiller, Phys. Lett. B 696, 201 (2011).

[23] M. Boca and V. Florescu, Eur. Phys. J. D 61, 449 (2011).

[24] F. Mackenroth and A. Di Piazza, Phys. Rev. A 83, 032106
(2011).

[25] D. Seipt and B. Kdmpfer, Phys. Rev. A 83, 022101 (2011).

[26] D. Seipt and B. Kampfer, Phys. Rev. ST Accel. Beams 14,
040704 (2011).

[27] V. Dinu, T. Heinzl, and A. Ilderton, Phys. Rev. D 86, 085037
(2012).

[28] A.I Titov, H. Takabe, B. Kdmpfer, and A. Hosaka, Phys.
Rev. Lett. 108, 240406 (2012).

[29] V. Dinu, Phys. Rev. A 87, 052101 (2013).

[30] M.J. A. Jansen and C. Miiller, Phys. Rev. A 88, 052125
(2013).

[31] S. Augustin and C. Miiller, Phys. Lett. B 737, 114 (2014).

[32] K. Krajewska, M. Twardy, and J. Z. Kaminski, Phys. Rev. A
89, 032125 (2014).

[33] D. Seipt, V. Kharin, S. Rykovanov, A. Surzhykov, and S.
Fritzsche, J. Plasma Phys. 82, 655820203 (2016).

[34] A. Angioi, F. Mackenroth, and A. Di Piazza, Phys. Rev. A
93, 052102 (2016).

[35] C.N. Harvey, A. Gonoskov, M. Marklund, and E. Wallin,
Phys. Rev. A 93, 022112 (2016).

[36] A. Di Piazza, M. Tamburini, S. Meuren, and C. H. Keitel,
Phys. Rev. A 98, 012134 (2018).

[37] I. A. Aleksandrov, G. Plunien, and V.M. Shabaev, Phys.
Rev. D 99, 016020 (2019).

[38] A. Di Piazza, M. Tamburini, S. Meuren, and C. H. Keitel,
Phys. Rev. A 99, 022125 (2019).

[39] A.Ilderton, B. King, and D. Seipt, Phys. Rev. A 99, 042121
(2019).

[40] B. King, Phys. Rev. A 101, 042508 (2020).

[41] D. Seipt and B. King, Phys. Rev. A 102, 052805 (2020).

[42] B. King and S. Tang, Phys. Rev. A 102, 022809 (2020).

[43] E. Lotstedt and U.D. Jentschura, Phys. Rev. Lett. 103,
110404 (2009).

[44] H. Hu, C. Miiller, and C. H. Keitel, Phys. Rev. Lett. 105,
080401 (2010).

[45] A. Ilderton, Phys. Rev. Lett. 106, 020404 (2011).

[46] D. Seipt and B. Kidmpfer, Phys. Rev. D 85, 101701(R)
(2012).

[47] F. Mackenroth and A. Di Piazza, Phys. Rev. Lett. 110,
070402 (2013).

[48] B. King, N. Elkina, and H. Ruhl, Phys. Rev. A 87, 042117
(2013).

[49] B. King, Phys. Rev. A 91, 033415 (2015).

[50] V. Dinu and G. Torgrimsson, Phys. Rev. D 97, 036021
(2018).

[51] F. Mackenroth and A. Di Piazza, Phys. Rev. D 98, 116002
(2018).

[52] V. Dinu and G. Torgrimsson, Phys. Rev. D 99, 096018 (2019).

[53] V. Dinu and G. Torgrimsson, Phys. Rev. D 101, 056017
(2020).

[54] G. Torgrimsson, Phys. Rev. D 102, 096008 (2020).

[55] S. Bragin and A. Di Piazza, Phys. Rev. D 102, 116012
(2020).

[56] G. Torgrimsson, Phys. Rev. Lett. 127, 111602 (2021).

[57] V.1 Ritus, Sov. Phys. JETP 30, 1181 (1970).

[58] W. Becker and H. Mitter, J. Phys. A 8, 1638 (1975).

[59] V.N. Baier, V.M. Katkov, A.I. Milstein, and V.M.
Strakhovenko, Sov. Phys. JETP 42, 400 (1976).

[60] V.N. Baier, A.I. Milstein, and V. M. Strakhovenko, Sov.
Phys. JETP 42, 961 (1976).

[61] N.B. Narozhny, Phys. Rev. D 20, 1313 (1979).

[62] N.B. Narozhny, Phys. Rev. D 21, 1176 (1980).

[63] D. A. Morozov, N. B. Narozhny, and V. I. Ritus, Sov. Phys.
JETP 53, 1103 (1981).

[64] S. Meuren, C. H. Keitel, and A. Di Piazza, Phys. Rev. D 88,
013007 (2013).

[65] A.M. Fedotov, J. Phys. Conf. Ser. 826, 012027 (2017).

[66] T. Podszus and A. Di Piazza, Phys. Rev. D 99, 076004
(2019).

[67] A. Ilderton, Phys. Rev. D 99, 085002 (2019).

[68] A.A.Mironov, S. Meuren, and A. M. Fedotov, Phys. Rev. D
102, 053005 (2020).

[69] A. Di Piazza and M. A. Lopez-Lopez, Phys. Rev. D 102,
076018 (2020).

[70] A. Di Piazza and T. Patuleanu, Phys. Rev. D 104, 076003
(2021).

[71] W. Pauli, Helv. Phys. Acta 5, 179 (1932).

[72] S.I. Rubinow and J.B. Keller, Phys. Rev. 131, 2789
(1963).

[73] A. Di Piazza, Phys. Rev. Lett. 113, 040402 (2014).

[74] A. Di Piazza, Phys. Rev. D 103, 076011 (2021).

[75] L.J. Dixon, arXiv:1310.5353.

[76] T. Adamo and A. Ilderton, J. High Energy Phys. 06 (2019)
15.

[77] T. Adamo and A. Ilderton, J. High Energy Phys. 09 (2020)
200.

[78] M. Lavelle and D. McMullan, Phys. Rev. D 103, 036015
(2021).

[79] F. Karbstein, J. High Energy Phys. 10 (2017) 075.

[80] J.P. Edwards and C. Schubert, Nucl. Phys. B923, 229
(2017).

[81] N. Ahmadiniaz, F. Bastianelli, O. Corradini, J. P. Edwards,
and C. Schubert, Nucl. Phys. B924, 337 (2017).

[82] H. Gies and F. Karbstein, J. High Energy Phys. 03 (2017)
108.

[83] N. Ahmadiniaz, J. P. Edwards, and A. Ilderton, J. High
Energy Phys. 05 (2019) 38.

[84] J. Schwinger, Phys. Rev. 82, 664 (1951).

[85] A.Ilderton, B. King, and S. Tang, Phys. Rev. D 102, 076013
(2020).

[86] A. Di Piazza, Phys. Rev. D 97, 056028 (2018).

[87] A. Hartin, Phys. Rev. D 94, 073002 (2016).

[88] C. Brouder, Eur. Phys. J. direct 4, 1 (2002).

[89] M. Peskin and D. Schroeder, An Introduction to Quantum
Field Theory (Westview Press, Chicago, 1995).

116019-15


https://doi.org/10.1103/PhysRevLett.105.063903
https://doi.org/10.1103/PhysRevLett.105.063903
https://doi.org/10.1016/j.physletb.2010.12.023
https://doi.org/10.1140/epjd/e2010-10429-y
https://doi.org/10.1103/PhysRevA.83.032106
https://doi.org/10.1103/PhysRevA.83.032106
https://doi.org/10.1103/PhysRevA.83.022101
https://doi.org/10.1103/PhysRevSTAB.14.040704
https://doi.org/10.1103/PhysRevSTAB.14.040704
https://doi.org/10.1103/PhysRevD.86.085037
https://doi.org/10.1103/PhysRevD.86.085037
https://doi.org/10.1103/PhysRevLett.108.240406
https://doi.org/10.1103/PhysRevLett.108.240406
https://doi.org/10.1103/PhysRevA.87.052101
https://doi.org/10.1103/PhysRevA.88.052125
https://doi.org/10.1103/PhysRevA.88.052125
https://doi.org/10.1016/j.physletb.2014.08.042
https://doi.org/10.1103/PhysRevA.89.032125
https://doi.org/10.1103/PhysRevA.89.032125
https://doi.org/10.1017/S002237781600026X
https://doi.org/10.1103/PhysRevA.93.052102
https://doi.org/10.1103/PhysRevA.93.052102
https://doi.org/10.1103/PhysRevA.93.022112
https://doi.org/10.1103/PhysRevA.98.012134
https://doi.org/10.1103/PhysRevD.99.016020
https://doi.org/10.1103/PhysRevD.99.016020
https://doi.org/10.1103/PhysRevA.99.022125
https://doi.org/10.1103/PhysRevA.99.042121
https://doi.org/10.1103/PhysRevA.99.042121
https://doi.org/10.1103/PhysRevA.101.042508
https://doi.org/10.1103/PhysRevA.102.052805
https://doi.org/10.1103/PhysRevA.102.022809
https://doi.org/10.1103/PhysRevLett.103.110404
https://doi.org/10.1103/PhysRevLett.103.110404
https://doi.org/10.1103/PhysRevLett.105.080401
https://doi.org/10.1103/PhysRevLett.105.080401
https://doi.org/10.1103/PhysRevLett.106.020404
https://doi.org/10.1103/PhysRevD.85.101701
https://doi.org/10.1103/PhysRevD.85.101701
https://doi.org/10.1103/PhysRevLett.110.070402
https://doi.org/10.1103/PhysRevLett.110.070402
https://doi.org/10.1103/PhysRevA.87.042117
https://doi.org/10.1103/PhysRevA.87.042117
https://doi.org/10.1103/PhysRevA.91.033415
https://doi.org/10.1103/PhysRevD.97.036021
https://doi.org/10.1103/PhysRevD.97.036021
https://doi.org/10.1103/PhysRevD.98.116002
https://doi.org/10.1103/PhysRevD.98.116002
https://doi.org/10.1103/PhysRevD.99.096018
https://doi.org/10.1103/PhysRevD.101.056017
https://doi.org/10.1103/PhysRevD.101.056017
https://doi.org/10.1103/PhysRevD.102.096008
https://doi.org/10.1103/PhysRevD.102.116012
https://doi.org/10.1103/PhysRevD.102.116012
https://doi.org/10.1103/PhysRevLett.127.111602
https://doi.org/10.1088/0305-4470/8/10/017
https://doi.org/10.1103/PhysRevD.20.1313
https://doi.org/10.1103/PhysRevD.21.1176
https://doi.org/10.1103/PhysRevD.88.013007
https://doi.org/10.1103/PhysRevD.88.013007
https://doi.org/10.1088/1742-6596/826/1/012027
https://doi.org/10.1103/PhysRevD.99.076004
https://doi.org/10.1103/PhysRevD.99.076004
https://doi.org/10.1103/PhysRevD.99.085002
https://doi.org/10.1103/PhysRevD.102.053005
https://doi.org/10.1103/PhysRevD.102.053005
https://doi.org/10.1103/PhysRevD.102.076018
https://doi.org/10.1103/PhysRevD.102.076018
https://doi.org/10.1103/PhysRevD.104.076003
https://doi.org/10.1103/PhysRevD.104.076003
https://doi.org/10.1103/PhysRev.131.2789
https://doi.org/10.1103/PhysRev.131.2789
https://doi.org/10.1103/PhysRevLett.113.040402
https://doi.org/10.1103/PhysRevD.103.076011
https://arXiv.org/abs/1310.5353
https://doi.org/10.1007/JHEP06(2019)015
https://doi.org/10.1007/JHEP06(2019)015
https://doi.org/10.1007/JHEP09(2020)200
https://doi.org/10.1007/JHEP09(2020)200
https://doi.org/10.1103/PhysRevD.103.036015
https://doi.org/10.1103/PhysRevD.103.036015
https://doi.org/10.1007/JHEP10(2017)075
https://doi.org/10.1016/j.nuclphysb.2017.08.002
https://doi.org/10.1016/j.nuclphysb.2017.08.002
https://doi.org/10.1016/j.nuclphysb.2017.09.012
https://doi.org/10.1007/JHEP03(2017)108
https://doi.org/10.1007/JHEP03(2017)108
https://doi.org/10.1007/JHEP05(2019)038
https://doi.org/10.1007/JHEP05(2019)038
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1103/PhysRevD.102.076013
https://doi.org/10.1103/PhysRevD.102.076013
https://doi.org/10.1103/PhysRevD.97.056028
https://doi.org/10.1103/PhysRevD.94.073002
https://doi.org/10.1007/s1010502c0003

