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In this paper we develop and compare different real-time methods to calculate spectral functions. These
include classical-statistical simulations, the Gaussian state approximation (GSA), and the functional
renormalization group (FRG) formulated on the Keldysh closed-time path. Our test-bed system is the quartic
anharmonic oscillator, a single self-interacting bosonic degree of freedom, coupled to an external heat bath
providing dissipation analogous to the Caldeira-Leggett model. As our benchmark we use the spectral
function from exact diagonalization with constant Ohmic damping. To extend the GSA for the open system,
we solve the corresponding Heisenberg-Langevin equations in the Gaussian approximation. For the real-
time FRG, we introduce a novel general prescription to construct causal regulators based on introducing
scale-dependent fictitious heat baths. Our results explicitly demonstrate how the discrete transition lines of
the quantum system gradually build up the broad continuous structures in the classical spectral function as
temperature increases. At sufficiently high temperatures, classical, GSA, and exact-diagonalization results
all coincide. The real-time FRG is able to reproduce the effective thermal mass, but it overestimates
broadening and only qualitatively describes higher excitations, at the present order of our combined vertex
and loop expansion. As temperature is lowered, the GSA follows the ensemble average of the exact solution
better than the classical spectral function. In the low-temperature strong-coupling regime, the qualitative
features of the exact result are best captured by our real-time FRG calculation, with quantitative
improvements to be expected at higher truncation orders.

DOI: 10.1103/PhysRevD.105.116017

I. INTRODUCTION

Nonperturbative studies in thermal field theory are most
commonly done within the imaginary time formalism [1],
where time is analytically continued to replace t → −iτwith
the Euclidean time variable τ ∈ ½0; β�, where β ¼ 1=T is the
inverse temperature of the equilibrium system. Along the
imaginary-time axis one introduces (anti)periodic boundary
conditions for the fields. This is the basis for the powerful
path-integral representation of the partition function (see
standard texts, e.g., [2,3]). If one is interested in real-time
quantities such as response functions or transport coeffi-
cients, however, this analytic continuation has to be undone.
Because the Euclidean time interval is compact at finite
temperature, the information is incomplete without further
input, and the underlying Wick rotation cannot simply be
inverted by back-substituting τ → it. But even at vanishing
temperature, this typically leads to ill-posed inverse numeri-
cal problems.

Methods working directly in real time have therefore
become increasingly popular over the last decades, despite
their generally higher computational requirements. They
avoid the analytic-continuation problem and allow one to
study off-equilibrium systems. The price is that standard
Monte Carlo simulations for ab initio studies as in
Euclidean spacetime are not possible since importance
sampling fails due to the sign problem. Other computational
methods are needed for real-time computations.
Here we are particularly interested in real-time methods

for spectral functions, which generally contain the complete
spectrum of quasiparticle, multiparticle, and collective
excitations of a system contributing to a given correlation
function, often including transport coefficients in particular
low-frequency limits as relevant e.g., for hydrodynamic
descriptions. Spectral functions can be formally defined as
expectation values of the unequal-time commutators of the
corresponding fields. After Fourier transformation, they
represent the density of states containing all possible
excitations in that channel. Under certain circumstances
functional equations for originally Euclidean correlation
functions such as Dyson-Schwinger [4–7] or FRG flow
equations [8–12] can be analytically continued back to the
real-frequency domain before they are being solved. For
phenomenological scattering theory and resolvent-based
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real-time approaches to calculate spectral functions, see e.g.,
Refs. [13–15]. The flexibility to include dissipative or
diffusive dynamics and the different dynamic critical
behavior have so far been beyond these approaches,
however.
In this work, we therefore focus on genuine real-time

methods as more general and versatile alternatives. In
particular, we employ three different nonperturbative real-
time methods for calculating spectral functions in a sim-
plified test system consisting of a single self-interacting
bosonic degree of freedom, the quartic anharmonic oscil-
lator, which can also be considered as the λϕ4 theory of self-
interacting real scalar fields in (0þ 1) dimensions, coupled
to an external heat bath which is modeled as an ensemble of
harmonic oscillators after Caldeira and Leggett [16–19].
This rather simple system has the advantage that its spectral
function can be calculated exactly using a standard discre-
tization of the Schrödinger equation, which allows us to
qualitatively discuss and quantitatively compare in detail the
different approaches and approximation schemes.
The different approaches we compare here are classical-

statistical simulations [20–24], which describe the purely
classical time evolution according to Langevin-type equa-
tions of motion; the Gaussian state approximation (GSA)
introduced in Refs. [25,26], where one additionally con-
siders the time evolution of two-point functions; and the
functional renormalization group (FRG) [27–35], which
we use here on the closed time path (CTP, also called the
Schwinger-Keldysh contour) [36–41], where we build on
the previous study of Ref. [36] and take a closer look at the
necessary causal structure of the regulators [40].
This paper is organized as follows. In Sec. II we start by

briefly summarizing the discretization scheme and for-
mulas needed for an exact calculation of the spectral
function. Sections III–V describe in detail the three real-
time calculation methods for the spectral function, i.e., the
classical-statistical simulations in Sec. III, the Gaussian
state approximation in Sec. IV, and the real-time FRG in
Sec. V. Our results from the different methods are
presented, compared, and discussed in detail in Sec. VI,
and our conclusions are given with a brief outlook on
possible further studies in Sec. VII. Several appendices are
added with further technical details and derivations,
especially for the Heisenberg-Langevin equations of
motion in the GSA, and our regulators and truncation
scheme for the real-time FRG flows.

II. QUARTIC ANHARMONIC OSCILLATOR

We consider a single quartic anharmonic oscillator of
unit mass, defined by the Hamiltonian

Ĥ ¼ p̂2

2
þ ω2

0

2
x̂2 þ λ

4!
x̂4; ð2:1Þ

in thermal contact with an external heat bath in equilibrium.
The heat bath is modeled as an ensemble of harmonic
oscillators, which is generally known as the Caldeira-
Leggett model in the literature [16–19] and which we will
explain in more detail in Sec. IV.
The anharmonic oscillator can be interpreted as a self-

interacting single-component real scalar field theory in
(0þ 1) dimensions. It serves here as a benchmark system
for comparing different methods for calculating spectral
functions since its spectrum can be numerically determined
with essentially arbitrary precision using a discretization
of the Schrödinger equation on a lattice. Therefore, we refer
to the Schrödinger discretization method as the exact-
diagonalization solution.
The spectral function is defined as the real distribution

given by the thermal expectation value of the commutator
of two Heisenberg (field) operators taken at unequal times
as follows [42,43],

ρðt − t0Þ ¼ ih½x̂ðtÞ; x̂ðt0Þ�iβ; ð2:2Þ

where the average is taken over the canonical ensemble

e−βĤ=Z at temperature T ¼ 1=β with the partition function

Z ¼ Tre−βĤ. To obtain a real distribution also in the
frequency domain from the real and odd ρð−tÞ ¼ −ρðtÞ,
a factor of 2πi is commonly absorbed in the definition of its
Fourier transform,

ρðωÞ≡ 1

2πi

Z
dtρðtÞeiωt; ð2:3Þ

which is then positive, ρðωÞ ≥ 0, for ω > 0, also odd
ρð−ωÞ ¼ −ρðωÞ, and normalized according toZ

∞

−∞
dωωρðωÞ ¼ 1: ð2:4Þ

Without dissipation, this spectral function may be expressed
as a sum over energy eigenstates (see, for example,
Chapter 6.2 of Ref. [2]),

ρðωÞ ¼ 1

Z

X
m;n

e−βEnðδðω − Em þ EnÞ

− δðωþ Em − EnÞÞjhnjx̂jmij2: ð2:5Þ

For the noninteracting theory (λ ¼ 0), i.e., the harmonic
oscillator with frequency ω0, this reduces to

ρ0ðωÞ ¼ sgnðωÞδðω2 − ω2
0Þ ¼

1

π
ImGR

0 ðωÞ: ð2:6Þ

When the free oscillator is coupled to an Ohmic heat bath,
one describes an open quantum system, the retarded
Green function GR

0 acquires an additional damping term
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with constant γ > 0, corresponding to GR
0;γ

−1 ¼
−ðω2 − ω2

0 þ iγωÞ, and the spectral function becomes

ρ0;γðωÞ ¼
1

π
ImGR

0;γðωÞ

¼ 1

π

γω

ðω2 − ω2
0Þ2 þ γ2ω2

¼
Z

∞

−∞
dω0ω0ρ0ðω0Þ 1

π

γω

ðω2 − ω02Þ2 þ γ2ω2
: ð2:7Þ

This of course describes the collisional broadening of the
free spectral function ρ0ðωÞ due to the Ohmic heat bath,
together with the frequency shift of the damped harmonic
oscillator from the poles in GR

0;γðωÞ at

ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 − γ2=4

q
− iγ=2: ð2:8Þ

The interaction with the environment in the open system
introduces the new parameter γ, which essentially quan-
tifies how strongly the single quartic oscillator (2.1)
couples to the degrees of freedom in the external heat
bath. The damping γ then causes the spectral function to be
broadened even in the harmonic case (with λ ¼ 0) because
the system particle can decay into heat-bath excitations,
corresponding to a finite lifetime ∼1=γ. Hence, the thermal
expectation value in (2.2) is understood over a reduced
density operator where interactions with the environment
have been traced out. In the limit γ → 0þ we recover the
usual ε-prescription of the retarded or advanced propa-
gators, and effectively consider a system in infinitesimal
contact with an external heat bath, described by the

canonical density operator ρ̂ ¼ e−βĤ=Z.
Applying the same collisional broadening to the spectral

function of the anharmonic oscillator in (2.5), one analo-
gously obtains

ργðωÞ ¼
1

Z

X
m;n

e−βEn jhnjx̂jmij22ΔEmn

×
1

π

γω

ðω2 − ΔE2
mnÞ2 þ γ2ω2

; ð2:9Þ

with ΔEmn ¼ Em − En. The only assumption here is that
the width γ is not affected by the anharmonicity, in
particular, that it does not acquire a frequency dependence
for λ ≠ 0.1 Otherwise this is an exact expression which we
will use for our benchmark calculations.

To compute the spectral function of the anharmonic
oscillator with this constant broadening, we discretize
the coordinate x on a sufficiently large interval and solve
the eigenvalue problem for the corresponding finite
Hamiltonian matrix, obtained from (2.1) in coordinate
space, by exact diagonalization. We then verify that the
interval is large enough to cover the support of all relevant
eigenfunctions at a given temperature and that the dis-
cretization is fine enough to obtain precise results suffi-
ciently high up in the spectrum. For the parameters λ, γ,
and T used in Sec. VI, typical interval sizes are x ∈
½−20; 20� (in units of 1=

ffiffiffiffiffiffi
ω0

p
) with ∼3000 grid points. An

example is shown in Fig. 1 where we plot the spectral
function of the quartic anharmonic oscillator at a rather
large coupling of λ=ω3

0 ¼ 4 for a temperature T=ω0 ¼ 1,
and with a comparatively small damping of γ=ω0 ¼ 0.03,
from Eq. (2.9). In particular, the small damping allows us
to resolve the individual transitions: (a) between adjacent
energy levels jni and jnþ 1i in the main peak, which are
split up because they are no longer equidistant when λ ≠ 0,
(b) transitions across three levels between jni and jnþ 3i
in the second sequence of peaks at higher frequencies,
which are also due to the sizable λ > 0, and (c) analogous
transitions across five levels jni and jnþ 5i, here for
frequencies above 8ω0. The finite temperature manifests
itself in the contributions from the individual transitions
with n ≥ 1 in each sequence, which vanish for T → 0,
where only the corresponding ground-state transitions
j0i ↔ j1i, j3i, j5i, …, survive. In the results section
below we implicitly assume all dimensionful quantities
are quoted in the appropriate units of ω0.

FIG. 1. Exemplary spectral function (in units of ω−2
0 ) from

exact diagonalization with damping according to Eq. (2.9), for
T=ω0 ¼ 1, λ=ω3

0 ¼ 4, and γ=ω0 ¼ 0.03. The dashed vertical lines
mark the discrete energy differences of the individual transitions
as obtained from the exact diagonalization.

1Although this is reasonable for small γ in the Ohmic bath, it
will not hold in more realistic situations with ultraviolet cutoff ωD
as in the Drude model for the bath, where memory effects will
necessarily occur on timescales shorter than ω−1

D , inducing a
frequency-dependent damping γðωÞ on scales ω ∼ ωD [19].
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III. CLASSICAL SPECTRAL FUNCTIONS

In the classical-statistical limit [20–24], the full
Heisenberg equations of motion are truncated by approxi-
mating all quantum-mechanical expectation values of prod-
ucts of operators by the corresponding products of their
expectation values, i.e., hÔ1…Ôni → hÔ1i…hÔni, which
can be formalized via the real-time path-integral formulation
for classical-statistical systems [17,44,45]. One then arrives
at the well-known Langevin equations of motion describing
the purely classical dissipative dynamics [17,18],

d
dt
X ¼ P; ð3:1Þ

d
dt
P ¼ −ω2

0X −
λ

6
X3 − γPþ ξðtÞ; ð3:2Þ

where XðtÞ and PðtÞ are the expectation values of x̂ðtÞ and
p̂ðtÞ in coherent states, and the stochastic fluctuating force ξ
is given by a Gaussian white noise with zero mean and
variance 2γT,

hξðtÞiβ ¼ 0; ð3:3Þ

hξðtÞξðt0Þiβ ¼ 2γTδðt − t0Þ: ð3:4Þ

Asmentioned in the previous section, the spectral function ρ
can be defined as the thermal expectation value of the
commutator of two operators, cf. (2.2) for our oscillator
here. It is related to the corresponding time-ordered Green’s
function GT via

GT ðt; t0Þ ¼ Fðt; t0Þ − i
2
ρðt; t0Þ½Θðt − t0Þ − Θðt0 − tÞ�; ð3:5Þ

where Fðt; t0Þ is the statistical two-point function defined as
the expectation value of the corresponding anticommutator
[42,43], i.e., here,

Fðt; t0Þ ¼ 1

2
hfx̂ðtÞ; x̂ðt0Þgiβ: ð3:6Þ

Since these equilibrium two-point functions all depend only
on the time difference t − t0, their Fourier transforms FðωÞ,
ρðωÞ depend on a single frequency ω, where for ρðωÞ we
use the definition in Eq. (2.3), but for the even function
Fð−ωÞ ¼ FðωÞ, we use the conventional form so that

Fðt − t0Þ ¼
Z

dω
2π

FðωÞe−iωðt−t0Þ: ð3:7Þ

Furthermore, in thermal equilibrium one applies the perio-
dicity or the Kubo-Martin-Schwinger (KMS) condition,

GT ðt; t0Þ ¼ GT ðt0; tþ iβÞ; ð3:8Þ

in the decomposition of Eq. (3.5), in order to derive the
fluctuation-dissipation relation (FDR) (e.g., see [46]),

FðωÞ ¼ ð2nBðωÞ þ 1ÞπρðωÞ

¼ coth

�
ω

2T

�
πρðωÞ; ð3:9Þ

where we have used the special convention for the definition
of ρðωÞ in (2.3), and nBðωÞ ¼ 1=ðeβω − 1Þ. In the classical
limit T ≫ ω we approximate cothðω=2TÞ ≈ 2T=ω. The
classical FDR from (3.9) then relates the corresponding
classical two-point functions,

FcðωÞ ¼
T
ω
2πρcðωÞ: ð3:10Þ

In the time domain, undoing the Fourier transform, this reads

ρcðt − t0Þ ¼ −
1

T
∂tFcðt − t0Þ: ð3:11Þ

Furthermore, because the statistical two-point function is, in
the classical limit, given by the purely thermal correlation
function

Fcðt − t0Þ ¼ hXðtÞXðt0Þiβ − hXðtÞiβhXðt0Þiβ; ð3:12Þ

the spectral function (3.11) can be written as [23]

ρcðt − t0Þ ¼ −
1

2T
hPðtÞXðt0Þ − XðtÞPðt0Þiβ; ð3:13Þ

where P ¼ _X is the conjugate momentum which has zero
mean in the thermal ensemble, hPðtÞiβ ¼ 0. Because of the
time-reversal invariance of the thermal expectation values, the
two terms in (3.13) are the same, and the explicit antisym-
metrization in this definition of ρcð−tÞ ¼ −ρcðtÞ can be
introduced without loss. Evaluating Eq. (3.13) provides a
straightforward way of calculating the spectral function in the
classical-statistical limit [20–24].

IV. GAUSSIAN STATE APPROXIMATION

A. Closed system

Before considering the coupling to an environment, we
first briefly discuss the GSA for a closed system. The GSA
is obtained by truncating the full Heisenberg equations of
motion

d
dt
Ô ¼ i½Ĥ; Ô� ð4:1Þ

for the canonically conjugate Heisenberg operators x̂ðtÞ
and p̂ðtÞ:
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d
dt
x̂ ¼ p̂; ð4:2aÞ

d
dt
p̂ ¼ −ω2

0x̂ −
λ

6
x̂3 ≡ −V 0ðx̂Þ: ð4:2bÞ

The equations of motion for the expectation values can
be obtained by averaging Eqs. (4.2a) and (4.2b) over some
density operator ρ̂ describing the mixed initial state of the
ensemble. These equations then contain expectation values
of the form hx̂2ðtÞi and hx̂3ðtÞi, whose evolution equations
in turn include expectation values of even higher-order
combinations of x̂ and p̂. This leads to an infinite hierarchy
of equations that cannot be solved analytically or numeri-
cally without further approximations. Moreover, to deal
with expectation values of products of x̂ and p̂, we follow
Ref. [26] and introduce the Wigner transform of the density
matrix in position eigenstates,

wðx; pÞ ¼
Z

dye−ipyhxþ y=2jρ̂jx − y=2i; ð4:3Þ

which allows us to express the expectation values of
symmetrized products of x̂ and p̂ in the form of classical
phase-space integrals, such as e.g.,

1

2
hx̂ p̂þp̂ x̂i ¼

Z
dxdp
2π

xpwðx; pÞ: ð4:4Þ

To truncate the infinite set of equations given by (4.2a) and
(4.2b), the density matrix is itself approximated by a
Gaussian and can therefore likewise be characterized by
a Gaussian Wigner function [25],

wðx; pÞ ¼ N exp

�
−
1

2

�
x − X

p − P

�T� σxx σxp

σxp σpp

�−1

×

�
x − X

p − P

��
: ð4:5Þ

Here, the parameters X ≡ hx̂i; P≡ hp̂i describe the center
of the Gaussian wave packet in coordinate and momentum
space. As such, here they are not necessarily the expect-
ation values in coherent states yet. The symmetrized
connected expectation values

σab ≡ ⟪â b̂⟫≡ hâ b̂þb̂ âi=2 − hâihb̂i

characterize the dispersions of the wave packet, and N is a
normalization factor.
Equations (4.2a) and (4.2b) are then averaged over the

Gaussian state with the Wigner function (4.5). Applying
Wick’s theorem as needed, one then obtains

d
dt
X ¼ P; ð4:6aÞ

d
dt
P ¼ −ω2

0X −
λ

6
ðX3 þ 3XσxxÞ: ð4:6bÞ

To evolve the dispersions σxx, σxp, and σpp, the
Heisenberg equations for the corresponding symmetrized
operator products are employed:

d
dt
x̂2 ¼ x̂ p̂þp̂ x̂; ð4:7aÞ

d
dt
x̂ p̂þp̂ x̂

2
¼ p̂2 − ω2

0x̂
2 −

λ

6
x̂4; ð4:7bÞ

d
dt
p̂2 ¼ −ω2

0ðp̂ x̂þx̂ p̂Þ − λ

6
ðp̂x̂3 þ x̂3p̂Þ: ð4:7cÞ

Averaging Eqs. (4.7a)–(4.7c) over the Gaussian state
with the Wigner function (4.5), applying Wick’s theorem,
and subtracting the disconnected contributions, the remain-
ing equations of motion are obtained as

d
dt
σxx ¼ 2σxp; ð4:8aÞ

d
dt
σxp ¼ σpp − ω2

0σxx −
λ

2
σxxðX2 þ σxxÞ

¼ σpp − σxxCðX; σxxÞ; ð4:8bÞ

d
dt
σpp ¼ −2ω2

0σxp − λσxpðX2 þ σxxÞ
¼ −2σxpCðX; σxxÞ; ð4:8cÞ

where we have introduced the curvature of the potential,

CðX; σxxÞ ¼ ω2
0 þ

λ

2
ðX2 þ σxxÞ: ð4:9Þ

The equations of motion (4.6a), (4.6b), and (4.8a)–(4.8c)
can be integrated numerically using a symplectic leapfrog
algorithm, as described in Appendix A 3, to obtain a
complete description of the Gaussian state at any time.
We conclude this section with some general remarks on

the formal structure of the GSA, which will be particularly
relevant for the systematic construction of a thermal
equilibrium state in Sec. IV B 2 below.

(i) In general, we call a (possibly mixed) state ρ̂
Gaussian if its Wigner transform (4.3) has the form
of a Gaussian probability distribution (4.5) for some
X;P; σxx; σxp; σpp, with obvious generalizations to
an arbitrary number of degrees of freedom, where
the σ’s are replaced by the covariance matrix Σ.

(ii) Note that a Gaussian state ρ̂G defined in this way is
not necessarily a pure state. This can be seen most
easily by calculating the von Neumann entropy [26].
One observes that the purity of a Gaussian state is
related to the determinant detΣ of the covariance
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matrix Σ. This determinant is a product of pairs of
symplectic eigenvalues fk, one per bosonic degree
of freedom (DOF). With Ndof of them, Heisenberg’s
uncertainty relation then implies that

detΣ ¼
YNdof

k

f2k ≥
�
1

4

�
Ndof

:

On the other hand, the von Neumann entropy
vanishes and the Gaussian state is pure, if and only
if fk ¼ 1=2 for all DOF’s. For a single degree of
freedom as above, for example, we have

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σxxσpp − σ2xp

q
;

and restricting to pure Gaussian states therefore
defines a nonlinear subset G ⊂ H ¼ L2ðRÞ of the
full Hilbert space (of square-integrable functions),
which can be parametrized by a four-dimensional
manifold with X;P ∈ ð−∞;∞Þ, σxx, σpp ∈ ð0;∞Þ
and constrained by σxxσpp ≥ 1=4. To ensure
that the von Neumann entropy vanishes, the off-
diagonal variance is then fixed up to a sign by
σxp ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σxxσpp − 1=4
p

.
(iii) To describe more general Gaussian states ρ̂G, we

again follow Ref. [26] and define the set of mixed
Gaussian states in terms of those density operators
that can be written as mixtures of the pure Gaussian
states in G,

ρ̂G ¼
XZ
ψ∈G

pðψÞjψihψ j; ð4:10Þ

with probabilities pðψÞ that are likewise Gaussian.

B. Caldeira-Leggett model

In order to study the dynamical properties of thermal
equilibrium states, we introduce a coupling between the
system, our anharmonic oscillator which we also refer to as
the particle, and the environment, consisting of an ensemble
of harmonic oscillators, which models a fixed-temperature
heat bath. Such a model in the canonical operator formal-
ism, as well as in the functional path-integral formulation
(after Feynman and Vernon), has been discussed frequently
in the literature; see, for example, Refs. [18,19,47–55]. Born
and Markov approximations are often employed, leading to
master equations which are easy to solve but generally not
accurate. Exact solutions also have been obtained analyti-
cally [55]. However, this is unfortunately not the case for the
anharmonic oscillator.
The total Hamiltonian under consideration then consists

of those of the system S and the heat bath B, together with
their interactions I, and reads [18,19]

Ĥ ¼ ĤS þ ĤB þ ĤI; ð4:11aÞ

ĤS ¼
p̂2

2
þ ω2

0

2
x̂2 þ λ

4!
x̂4; ð4:11bÞ

ĤB ¼
X
s

�
π̂2s
2
þ ω2

s

2
φ̂2
s

�
; ð4:11cÞ

ĤI ¼ −x̂
X
s

gsφ̂s þ x̂2
X
s

g2s
2ω2

s
; ð4:11dÞ

where φ̂s; π̂s denote the coordinate and the conjugate
momentum of the heat-bath oscillator with index s, ωs
is its eigenfrequency, and gs is the coupling constant of its
linear coupling to the coordinate x. The quadratic term in
ĤI serves to exactly compensate the bath-induced (neg-
ative) shift of the oscillator frequency squared,

Δω2
0 ¼

X
s

g2s
ω2
s
; ð4:12Þ

that would otherwise arise. This guarantees that ω2
0 is the

physically measured natural frequency of the noninteract-
ing system oscillator with damping. Completing the square,
we can then write the interaction-plus-bath part as

ĤB þ ĤI ¼
X
s

�
π̂2s
2
þ ω2

s

2

�
φ̂s −

gs
ω2
s
x̂

�
2
�
: ð4:13Þ

1. Heisenberg-Langevin equations of motion

Introducing a spectral function to describe the ensemble
of bath modes by

JðωÞ ¼ π
X
s

g2s
ωs

ðδðω − ωsÞ − δðωþ ωsÞÞ; ð4:14Þ

which corresponds to a positive-definite spectral density,
one can eliminate the heat bath from the full set of
Heisenberg equations to derive the quantum equations of
motion of the Caldeira-Leggett model for a general heat
bath described by JðωÞ (see e.g., Refs. [18,19]),

d
dt
x̂ðtÞ ¼ p̂ðtÞ; ð4:15aÞ

d
dt
p̂ðtÞ ¼ −

Z
t

0

dt0γðt− t0Þp̂ðt0Þ−V 0ðx̂ðtÞÞþ ξ̂ðtÞ; ð4:15bÞ

with an operator-valued fluctuating force
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ξ̂ðtÞ ¼
X
s

gs

��
φ̂sð0Þ −

gs
ω2
s
x̂ð0Þ

�
cosðωstÞ

þ π̂sð0Þ
ωs

sinðωstÞ
�

≡ η̂ðtÞ − γðtÞx̂ð0Þ: ð4:16Þ

Here η̂ðtÞ is defined such that it only acts in the bath’s
Hilbert space, and we have furthermore introduced the
damping kernel

γðtÞ ¼ 2

Z
∞

0

dω
2π

JðωÞ
ω

cosðωtÞ: ð4:17Þ

For the simplest case of an Ohmic bath with damping
constant γ and a sharp cutoff at ω ¼ Λ, we have

JΛðωÞ ¼ 2γωΘðΛ − jωjÞ; ð4:18Þ

and thus

γsharpðtÞ ¼
2γΛ
π

sinðΛtÞ
Λt

⟶
Λ→∞

2γδðtÞ: ð4:19Þ

Note that the “transient term” −γðtÞx̂ð0Þ in Eq. (4.16)
corresponds to a sudden initial shift in the thermal distri-
bution when the particle is connected to the bath [18] at
t ¼ 0. It can therefore safely be omitted in all calculations as
long as we are interested in times Λt ≫ 1, or analogously
for ωDt ≫ 1 with γðtÞ ¼ γωD expf−ωDtg in the Drude
model for the bath [19].
Equations (4.15a) and (4.15b) together are commonly

referred to as the Heisenberg-Langevin equations (HLEs)
in the literature [55,56]. They generalize the classical
Langevin equations (3.1) and (3.2) which describe the
dissipative dynamics of the expectation values of position
and momentum. The corresponding HLEs, on the other
hand, encode the full dynamics of the quantum-mechanical
operators in the Heisenberg picture [56]. A common
approximation is to replace the operators in the HLEs
by their expectation values and the quantum noise by a
classical colored-noise source, which results in the so-
called quasiclassical Langevin equations [18]. While these
can provide a reasonable description of nearly harmonic
systems [57,58], other important general features of the
HLEs such as the Heisenberg uncertainty principle for the
operators x̂ and p̂ are lost. Finally, the classical Langevin
equations are obtained in the Markovian limit in which all
memory effects are disregarded and the noise becomes
local in time (white noise limit).
As a first step towards a solution of the Heisenberg-

Langevin equations in the GSA, we assume that at the
initial time t ¼ 0 the bath is in equilibrium, while the
system particle is described by some density matrix ρ̂S with

a Gaussian Wigner function as defined in Eq. (4.5); i.e., we
assume that the initial state is given by

ρ̂0 ≡ ρ̂ðt0Þ ¼ ρ̂S ⊗ ρ̂B: ð4:20Þ

We defer the precise specification of the equilibrium
density matrix ρ̂B of the heat bath to Sec. IV B 2 where
we discuss some further subtleties associated with its GSA
description.
Our goal here is to formulate a Langevin-type equation

in the Gaussian state formalism, which preserves more of
the features of the HLE than the quasiclassical or classical
approach, thus having extended applicability. First of all,
we consider the most general Gaussian Wigner function W
that describes the entire system of the oscillator and heat
bath,

Wðζ⃗;tÞ¼N exp

�
−
1

2
ðζ⃗−Z⃗ðtÞÞTΣ−1ðtÞðζ⃗−Z⃗ðtÞÞ

�
; ð4:21Þ

where the vector ζ⃗ ¼ ðx; p;…;φs; πs;…Þ ∈ Γ denotes a
point in the full phase space Γ of the system, Z⃗ðtÞ ¼
ðXðtÞ; PðtÞ;…;ΦsðtÞ;ΠsðtÞ;…Þ are the expectation values
of the corresponding Heisenberg operators, and

Σ ¼

0
BBBBBBBBBBBB@

σxx σxp … σxφs
σxπs …

σxp σpp … σpφs
σpπs …

..

. ..
. . .

.

σφsx σφsp σφsφs
σφsπs

σπsx σπsp σφsπs σπsπs
..
. ..

. . .
.

1
CCCCCCCCCCCCA

ð4:22Þ

represents the corresponding covariance matrix. Note that Σ
will, in general, also contain cross-correlations such as σxφs

between the oscillator particle and the heat bath, which
encode quantum entanglement.
In order to translate (4.15a) and (4.15b) into correspond-

ing equations of motion within the GSA [25], in a
systematic and thermodynamically consistent way, we
adopt the following procedure:

(i) Average the Heisenberg equations of motion (4.15a)
and (4.15b) together with (4.16) using the general
Gaussian state (4.21) and write down the resulting
equations for all dynamic quantities contained in Z⃗
and Σ. Evaluate correlation functions using Wick’s
theorem.

(ii) Integrate out the heat-bath degrees of freedom by
solving the equations of motion obtained from step
(i) for the bath oscillator coordinates Φs, Πs and the
system-bath cross-correlations σxφs

; σpφs
; σxπs ; σpπs ,

under the assumption that the full solution
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XðtÞ; PðtÞ; σxxðtÞ; σxpðtÞ; σppðtÞ is already known.
Use initial conditions of the form

Σð0Þ¼

0
BBBBBBBBBBBB@

σxxð0Þ σxpð0Þ … 0 0 …

σxpð0Þ σppð0Þ … 0 0 …

..

. ..
. . .

.

0 0 σφsφs
ð0Þ 0

0 0 0 σπsπsð0Þ
..
. ..

. . .
.

1
CCCCCCCCCCCCA
;

ð4:23Þ

to obtain the two-point correlators, but leave the
initial phase-space variablesΦsð0Þ;Πsð0Þ of the heat
bath arbitrary. Insert these formal solutions into the
five remaining equations of motion for the Gaussian
particle.

(iii) Notice that the remaining five equations of motion
for the particle only depend on the initial conditions
of the bath, Φsð0Þ;Πsð0Þ;Σbathð0Þ, where Σbathð0Þ
[the lower right corner of Σð0Þ in (4.23)] describes
all the two-point correlators of the bath oscillators’
phase-space variables. Therefore, to introduce ther-
mal fluctuations, all we need to do is distribute the
initial expectation values of the bath oscillators
according to a thermal distribution (to be specified
below), e.g., via a fluctuating force term.

Since the quantum average over the Gaussian Wigner
function (4.21) in step (i) according to the prescription in
(4.4) is entirely different from the thermal average over the
initial conditions in step (iii), we denote the former by h� � �i
and the latter by h� � �iβ with an additional index β ¼ 1=T.
Before we can investigate the solution of the equations of

motion from steps (i) and (ii), we first have to take a closer
look at how to represent the “thermal initial state of the
bath” which enters in step (iii) in the Gaussian approxi-
mation, i.e., how Φsð0Þ, Πsð0Þ, and Σbathð0Þ are distributed
in a thermal-equilibrium state at a given temperature T.
This is surprisingly subtle, however, as discussed in the
next subsection.

2. Gaussian thermal equilibrium state

Since the bath is described as an ensemble of harmonic
oscillators in Gaussian mixed states, we still have to
specify what precisely we mean by a “thermal equilibrium
state” for a single bath oscillator in the harmonic case with
λ ¼ 0, where the Gaussian approximation becomes exact.
Constructing a thermal ensemble of Gaussian states that
models a quantum canonical state at temperature T, along
the lines described for mixed Gaussian states at the end of
Sec. IV, is not entirely trivial. We have to express the full

quantum-mechanical mixed thermal state of a harmonic
oscillator, described by the density operator (with spectral
representation in the energy eigenstates jni of the har-
monic oscillator),

ρ̂HO ¼ e−βĤ=Z ¼ Z−1
X
n

e−βω0ðnþ1=2Þjnihnj; ð4:24Þ

that acts on the full Hilbert spaceH, in terms of a ρ̂G acting
on G ⊂ H to describe a Gaussian mixed state, by a density
operator of the form (4.10). In general, a mixed thermal
state describing a canonical ensemble is not of this form, so
this involves an approximation. For the harmonic oscil-
lator, however, it can be easily verified from the definition
in (4.3) that the density operator ρ̂HO in Eq. (4.24) has a
Gaussian Wigner function, which is given by

wHOðx; pÞ ¼
2

Fðω0Þ
e−

p2þω2
0
x2

ω0Fðω0Þ ;

where FðωÞ ¼ coth
βω

2
ð4:25Þ

is its thermal distribution function. To express the canoni-
cal equilibrium ensemble at temperature T, represented by
the mixed-state density operator ρ̂HO in Eq. (4.24), as a
mixed Gaussian state of the form (4.10), we now use our
classical phase-space variables X ¼ hx̂iα and P ¼ hp̂iα,
here restricted again to the expectation values of x̂ and p̂ in
coherent states,

jαi ¼ e−jαj2=2
X∞
n¼0

αnffiffiffiffiffi
n!

p jni: ð4:26Þ

These states are characterized by the complex variable α
whose real and imaginary parts are given by X and P,

α ¼ 1ffiffiffiffiffiffiffiffi
2ω0

p ðω0X þ iPÞ: ð4:27Þ

We therefore denote these coherent states simply by the
two real phase-space variables in the following, i.e.,

jX;Pi≡ jαi: ð4:28Þ

The coherent states of the harmonic oscillator have
minimal uncertainty with

σ0xx ≡ hx̂2iα − hx̂i2α ¼
1

2ω0

; ð4:29aÞ

σ0pp ≡ hp̂2iα − hp̂i2α ¼
ω0

2
; ð4:29bÞ

σ0xp ≡ 1

2
hx̂ p̂þp̂ x̂iα − hx̂iαhp̂iα ¼ 0: ð4:29cÞ
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On the other hand, for the mixed equilibrium state in the
canonical ensemble from (4.24) at temperature T ¼ 1=β,
with hÔiβ ¼ TrÔρ̂HO, one has hx̂iβ ¼ 0 and hp̂iβ ¼ 0, and
the full variances σðβÞ in the thermal state are readily
computed [or read off from (4.25)] as

σðβÞxx ¼ hx̂2iβ ¼
1

ω0

�
nBðω0Þ þ

1

2

�
; ð4:30aÞ

σðβÞpp ¼ hp̂2iβ ¼ ω0

�
nBðω0Þ þ

1

2

�
; ð4:30bÞ

σðβÞxp ¼ 1

2
hx̂ p̂þp̂ x̂iβ ¼ 0; ð4:30cÞ

where nBðω0Þ ¼ 1=ðexpðβω0Þ − 1Þ is the Bose-Einstein
distribution. Therefore, here we see explicitly that the full

thermal widths σðβÞxx and σðβÞpp of the oscillator’s phase-space
variables can be split into purely thermal or “classical”
parts σcxx, σcpp plus the purely “quantum” parts σ0xx, σ0pp
from minimal uncertainty, as noted in Ref. [26], i.e.,

σðβÞxx ¼ σcxx þ σ0xx; σðβÞpp ¼ σcpp þ σ0pp; ð4:31Þ

with

σcxx ¼ nBðω0Þ=ω0; σcpp ¼ ω0nBðω0Þ: ð4:32Þ

The minimal-uncertainty variances are already included in
each coherent pure state. To define a mixed Gaussian state
ρ̂G with the variances of the thermal equilibrium ensemble,
we therefore only include the classical thermal widths of
(4.32) in the incoherent sum [26], defining

ρ̂G ¼ Ñ
Z

dXdPexp

�
−

X2

2σcxx
−

P2

2σcpp

�
jX;PihX;Pj; ð4:33Þ

with normalization factor Ñ , ensuring that Trρ̂G ¼ 1,
which is clearly of the form (4.10). The index G here
emphasizes that such a mixed Gaussian state is, in general,
not equal to the mixed thermal quantum state ρ̂Q in the
canonical ensemble.2 For the harmonic oscillator in
Eq. (4.24), however, we have ρ̂HO ¼ ρ̂G.
One may directly verify that such a thermal state is

indeed a stationary solution of the harmonic Gaussian
equations of motion—(4.6a), (4.6b), and (4.8a)–(4.8c). In
general, it maps Gaussian states to Gaussian states in the
Hilbert space, as required. This finishes the discussion of
the Gaussian thermal state of a single harmonic oscillator,

and we now continue to model the entire system consisting
of our anharmonic oscillator coupled to an ensemble of
harmonic oscillators, in mixed Gaussian states with thermal
variances as described here, reintroducing the heat-bath
index s.

3. Heisenberg-Langevin equations in the GSA

We now turn to the form of the Heisenberg-Langevin
equations of motion (4.15a) and (4.15b) evaluated in the
Gaussian approximation. Steps (i) and (ii) from the
quantum equations of motion (4.15a) and (4.15b) with
the Ohmic bath (4.18), on timescales Λt ≫ 1 for a
sufficiently large cutoff Λ, cf. (4.19), lead to

d
dt
X ¼ P; ð4:34aÞ

d
dt
P ¼ −

�
ω2
0 þ

λ

2
σxx

�
X −

λ

6
X3 − γPþ ξðtÞ; ð4:34bÞ

for the center ðX;PÞ. The derivation is the same as the one
for the classical Langevin equations of motion, except for
the application of Wick’s theorem to the three-point
correlator hx̂3ðtÞi. The fluctuating force term ξðtÞ is given
by the expectation value of the quantum stochastic force
ξ̂ðtÞ from (4.16), where the transient initial shift vanishes if
the expectation value of x̂ð0Þ vanishes,

ξðtÞ≡ hξ̂ðtÞi ¼ hη̂ðtÞi − γðtÞhx̂ð0Þi

¼
X
s

gs

�
Φsð0Þ cosðωstÞ þ

Πsð0Þ
ωs

sinðωstÞ
�
: ð4:35Þ

It thus only depends on the initial conditions of the bath
oscillators’ phase-space variables Φsð0Þ;Πsð0Þ. Although
no longer operator valued and hence classical, this
GSA noise ξðtÞ is colored, in general, as we discuss in
Sec. IV B 5.
For the Gaussian widths, the analogous averaging of step

(i) leads to

d
dt
σxx ¼ 2σxp; ð4:36aÞ

d
dt
σxp ¼ σpp − σxxCðX; σxxÞ − γσxp

þ ⟪x̂ðtÞη̂ðtÞ⟫ − 2γδðtÞσxxð0Þ; ð4:36bÞ

d
dt
σpp ¼ −2σxpCðX; σxxÞ − 2γσpp

þ 2⟪p̂ðtÞη̂ðtÞ⟫ − 4γδðtÞσxpð0Þ: ð4:36cÞ

Here we have already assumed the Ohmic heat bath
JΛðωÞ in the limit Λ → ∞ where the memory integrals

2While every coherent state is Gaussian, the converse is not
true. There are pure states that are Gaussian, by the definition in
Eq. (4.5), which do not correspond to any coherent state (4.26)
and are therefore not contained in the incoherent sum (4.33).
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collapse, cf. (4.19). The initial delta functions can then
safely be neglected.
On the other hand, the irreducible correlators of the

oscillator particle’s position and momentum with the
fluctuating force operator, ⟪x̂ðtÞη̂ðtÞ⟫ and ⟪p̂ðtÞη̂ðtÞ⟫,
both contain a logarithmically divergent contribution
dðΛÞ ∼ lnðΛ=C0Þ, where C0 is the t ¼ 0 initial value of
the time-dependent curvature of the potential,

CðtÞ≡ CðX; σxxÞ ¼ ω2
0 þ

λ

2
ðX2ðtÞ þ σxxðtÞÞ: ð4:37Þ

We show in Appendix A 1 that this divergence can be
absorbed by a formally infinite but time-independent shift
of the particle’s momentum width σpp → σpp − dðΛÞ in
such a way that it cancels from both Eqs. (4.36b) and
(4.36c), which then describe the time dependence of the
ultraviolet-finite part of σpp, together with finite σxp and
σxx at all times. Note that the divergence of σpp with Λ →
∞ is an unavoidable effect of the unrealistic assumption of
an Ohmic bath without an UV cutoff. It can be interpreted
as corresponding to the bath continuously “measuring” the
position of the particle with arbitrarily high “resolution”
without an UV cutoff for Λ → ∞ [18,49].
Finally, for the evaluation of the irreducible correlators

⟪x̂ðtÞη̂ðtÞ⟫ and ⟪p̂ðtÞη̂ðtÞ⟫ according to rules (ii) and (iii),
we need to make an additional adiabatic approximation as
also explained explicitly in Appendix A 1. In this adiabatic
approximation we assume that we can average the curva-
ture C of the potential in (4.37) over timescales that are
large compared to the relaxation time of the heat bath. The
heat-bath oscillators are then considered as the fast degrees
of freedom that can adjust to slow changes in the curvature
CðtÞ. This adiabatic approximation then yields, for the
Gaussian widths,

d
dt
σxx ¼ 2σxp; ð4:38aÞ

d
dt
σxp ¼ σpp − CðtÞσxx − γσxp

þ CðtÞFðCðtÞÞ − ΔKðCðtÞÞ; ð4:38bÞ

d
dt
σpp ¼ −2CðtÞσxp − 2γσpp þ 2γΔKðCðtÞÞ; ð4:38cÞ

where for the Ohmic bath JΛðωÞ with Λ → ∞ the fluctu-
ating force ⟪x̂ðtÞη̂ðtÞ⟫ after ultraviolet subtraction yields
CF − ΔK . The first contribution is obtained from

FðCÞ ¼ 1

2ωC

�
1

2
þ 1

π
arctan

�
ω2
C − γ2=4
γωC

��
ð4:39Þ

upon inserting CðtÞ together with an equally slowly varying
frequency

ωCðtÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðtÞ − γ2=4

q
> 0; ð4:40Þ

assuming weak damping. The second contribution to the
fluctuating force is the ultraviolet subtracted one, given by

ΔKðCðtÞÞ ¼ ðCðtÞ − γ2=2ÞFðCðtÞÞ

− ðC0 − γ2=2ÞFðC0Þ −
γ

2π
ln
CðtÞ
C0

; ð4:41Þ

which determines the relevant (ultraviolet-finite) part of the
fluctuating force ⟪p̂ðtÞη̂ðtÞ⟫ on the ultraviolet subtracted
σpp as well, and which vanishes when C≡ C0 is used at all
times in the static limit; see Appendix A 1.
Together with Eqs. (4.34a) and (4.34b), these equations

for the evolution of the Gaussian widths, from Eqs. (4.38a)–
(4.38c), constitute the full set of equations of motion for our
particle in the anharmonic potential, and in contact with an
external heat bath, i.e., the Heisenberg-Langevin equations
within the GSA in our adiabatic approximation.
The static approximation is obtained from Eqs. (4.38a)–

(4.38c) by simply using the time-independent C ¼ C0, for
which we have ΔKðC0Þ ¼ 0. In this case, the equations for
the widths, cf. (A26a)–(A26c), can be solved independently
of those for the coordinates X, P; see Appendix A 1.
The asymptotic behavior of the solution, cf. Eq. (A.28),
uniquely fixes

σxxðtÞ → FðC0Þ; for t → ∞: ð4:42Þ

Therefore, with the static solution, there are only two
effects remaining from the GSA in comparison with the
classical time evolution. These are (a) a time-dependent
shift of the oscillator frequency in Eq. (4.34b),

ω2
0 → ω2

0 þ
λ

2
FðC0Þ; ð4:43Þ

with the stationary value (4.42) of σxxðtÞ for sufficiently late
times, and (b) a modified colored noise ξðtÞ, which we
specify in Sec. IV B 5 below. At very high temperatures, the
frequency shift is negligible, and the noise becomes white
again, such that the correct classical limit is guaranteed to
be recovered in this static approximation.
In the other direction, to go beyond the adiabatic

approximation, one could, in principle, include the feedback
of the time dependence of the curvature CðtÞ in (4.37) on the
off-diagonal variances between system particle and heat-
bath oscillators via postadiabatic corrections in the spirit of
time-dependent perturbation theory, in the future, as briefly
outlined in Appendix A 1 as well. For the results presented
below, we have either used the static approximation with
constant C0, cf. Eqs. (A26a)–(A26c), or the adiabatic
approximation in Eqs. (4.38a)–(4.38c), for comparison.
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4. Initial conditions

In the adiabatic approximation the thermal equilibrium
value C0 is an initial condition that has to be known
beforehand. It can be obtained by maximizing the von
Neumann entropy at fixed energy.
For a mixed Gaussian state of our single bosonic degree

of freedom, the von Neumann entropy S ¼ −Trðρ̂ ln ρ̂Þ can
be written in terms of the symplectic eigenvalue

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σxxσpp − σ2xp

q
of the correlation matrix

Σ ¼
�
σxx σxp

σxp σpp

�
; ð4:44Þ

which is related to the pair of eigenvalues λ� ¼ �if of ΣΩ,
where Ω is the symplectic matrix for the canonically
conjugate variables x and p. Thermal equilibrium implies
σxp ¼ 0, and we thus have f ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σxxσpp
p .

The von Neumann entropy can then be written as

S¼
�
fþ 1

2

�
ln

�
fþ 1

2

�
−
�
f −

1

2

�
ln

�
f −

1

2

�
: ð4:45Þ

Because we also have X ¼ 0 and P ¼ 0 in thermal
equilibrium, the expectation value of energy in the
Gaussian state reduces to

E ¼ 1

2
σpp þ

ω2
0

2
σxx þ

λ

8
σ2xx: ð4:46Þ

We can thus express σpp in terms of E and σxx and write

f2 ¼ 2Eσxx − ω2
0σ

2
xx −

λ

4
σ3xx: ð4:47Þ

Because the entropy (4.45) increases monotonically with f,
it reaches its maximum when f does, which is the case
when ∂f2=∂σxx ¼ 0. This yields

E ¼ ω2
0σxx þ

3λ

8
σ2xx; ð4:48Þ

f2 ¼
�
ω2
0 þ

λ

2
σxx

�
σ2xx: ð4:49Þ

The temperature T is now introduced using

T ¼ ∂E
∂S

¼ ∂E
∂f

�
∂S
∂f

�
−1

¼ ∂E
∂σxx

�
∂f
∂σxx

�
−1
�
∂S
∂f

�
−1
:

Working out the partial derivatives with respect to f and
σxx, we thus obtain

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ

λ

2
σxx

r 0
B@ln

σxx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ λ

2
σxx

q
þ 1

2

σxx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ λ

2
σxx

q
− 1

2

1
CA

−1

¼
ffiffiffiffiffi
C0

p �
ln
4ðC0 − ω2

0Þ
ffiffiffiffiffi
C0

p þ λ

4ðC0 − ω2
0Þ

ffiffiffiffiffi
C0

p
− λ

�−1
; ð4:50Þ

with C0 ¼ ω2
0 þ λ

2
σxx in the interacting case for λ ≠ 0.

Before we start a simulation at a given temperature, we
can therefore calculate C0 numerically via (4.50). In the
static approximation this is then fixed, and so is σxx in the
HLEs (4.34a) and (4.34b) for X and P.
The underlying initial conditions for the widths σφsφs

and σπsπs of the heat-bath oscillators in Eq. (4.23) corre-
spond to the thermal harmonic-oscillator variances
Eqs. (4.30a)–(4.30c), with additional off-diagonal cou-
plings σxφs

between the system and bath suddenly
switched on at t ¼ 0 as explained in more detail in
Appendix 1 b.
One crucial point left to mention here, however, is that

beyond the static approximation, the widths σxx; σpp; σxp
actually do evolve nontrivially in time, even in the adiabatic
approximation, when CðtÞ is assumed to vary slowly in
time. This is because the relaxation time for the widths of
the system particle to approach their stationary limits is
given by 1=γ, and this relaxation time is, in general, not
negligible compared to the characteristic timescale δt of the
variations δCðtÞ. Assuming, in the adiabatic approximation,
that the heat-bath DOF’s are fast compared to this char-
acteristic time δt is totally different from assuming that 1=γ
is. In fact, for small damping γ we expect to have 1=γ ≫
δt ≫ 2π=ωs for the relevant high frequencies that dominate
the Ohmic bath. We further comment on this in Sec. IV B 6
below, after elaborating on the colored noise needed in
either case.

5. Colored noise

Step (iii) in our approach to modeling the heat bath in the
GSA by the quantum-mechanical expectation value ξðtÞ≡
hξ̂ðtÞi of the stochastic quantum force from Eq. (4.35)
requires specifying initial conditions for the thermal corre-
lations of the bath oscillator expectation values Φs ¼ hφ̂siα
and Πs ¼ hπ̂siα in coherent states. In particular, the dis-
cussion leading to (4.33) implies that their initial thermal
variances are given by the classical variances (4.32) for
each heat-bath oscillator,

hΦsð0ÞΦs0 ð0Þiβ ¼ σcφsφs0 ð0Þ ¼ δss0nBðωsÞ=ωs;

hΠsð0ÞΠs0 ð0Þiβ ¼ σcπsπs0 ð0Þ ¼ δss0ωsnBðωsÞ;
hΦsð0ÞΠs0 ð0Þiβ ¼ σcφsπs0 ð0Þ ¼ 0: ð4:51Þ

Equation (4.35) then yields
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hξðtÞξðt0Þiβ ¼
X
s

g2s
ωs

nBðωsÞ cosðωsðt − t0ÞÞ: ð4:52Þ

With the definition of the spectral density of the heat bath in
Eq. (4.14), we can thus finally represent the unequal-time
correlations of ξðtÞ in the form

hξðtÞξðt0Þiβ ¼
Z

∞

0

dω
π

JðωÞnBðωÞ cosðωðt − t0ÞÞ ð4:53Þ

for an arbitrary spectral distribution JðωÞ of oscillators in
the bath. For the Ohmic bath (4.18) in the limit Λ → ∞, the
integral can be solved analytically, yielding

hξðtÞξðt0Þiβ ¼ γT

�
−

πT
sinh2ðπTðt − t0ÞÞ þ

1

πTðt − t0Þ2
�
ð4:54Þ

in the time domain, where the terms in brackets approach
2δðt − t0Þ for T → ∞, i.e., the classical-statistical limit with
a noise term ξðtÞ in the equations of motion which is
Gaussian and local in time [23]. For numerical purposes
and completeness, in the frequency domain the noise in
(4.54) corresponds to

hjξðωÞj2iβ ¼ hξð−ωÞξðωÞiβ
¼ γω

�
coth

�
ω

2T

�
− sgnω

�
¼ 2γωnBðωÞ; for ω > 0; ð4:55Þ

where the white-noise limit is recovered from the classical
Rayleigh-Jeans law with nBðωÞ → T=ω at high temper-
atures. Therefore, ξðtÞ represents a “colored” noise term
with a Gaussian autocorrelation, but with the quantum
contribution subtracted, in the sense that ξðtÞ vanishes
identically at T ¼ 0. This is due to the fact that in our
framework, zero-point fluctuations are already naturally
taken into account by the Gaussian widths, σ0xx; σ0xp; σ0pp,
and therefore do not contribute to the fluctuation of the
mean coordinate and momentum.

6. Extracting the Gaussian spectral function

In order to extend the definition of the (antisymmetrized)
classical-statistical spectral function in Eq. (3.13) to the
correct quantum spectral function that respects the fluc-
tuation-dissipation relation with the colored-noise distri-
bution of the heat bath in the GSA, first note that the FDR
(3.9) must be replaced by

iFðωÞ ¼ KðωÞ
2γω

2πiρðωÞ; ð4:56Þ

for a general heat-bath kernel KðωÞ ¼ hjξðωÞj2iβ. Now we
use the definition (3.10) of the classical-statistical spectral
function to arrive at a balance-type equation

ρðωÞ ¼ 2γT
KðωÞ ρcðωÞ ¼

T
ωnBðωÞ

ρcðωÞ; ð4:57Þ

which allows us to use the classical-statistical extraction
scheme for the spectral function, i.e., using Eq. (3.13) in the
GSA as well, and just rescale the result to obtain the
corresponding quantum spectral function.
Having defined the extraction scheme of the spectral

function in the GSA, we can further elaborate on the
problems that occur when we keep the full time evolution
of the Gaussian widths (4.38a)–(4.38c). Since the GSA is
only an approximation to the infinite hierarchy of the time
evolution of higher moments of the (in principle, exact)
Wigner quasiprobability distributionwðx; pÞ in phase space,
to quadratic order [25], one can no longer guarantee that
classical and quantum dynamics are strictly divided into the
evolution of the expectation values X, P, and the second-
order moments σxx; σpp; σxp, respectively. Therefore, some
classical contributions to the spectral function are also
contained in the time evolution of the widths. Extracting
the spectral function naively as in (4.57) is therefore not
sufficient, if the quantum corrections are highly non-
Gaussian by themselves, when the full time evolution of
the widths is included. In this case, one would actually need
some improved procedure to correctly extract these non-
Gaussian contributions contained in the second-order
unequal-time correlators. This undesirable effect is explic-
itly demonstrated for sufficiently large anharmonicity λ
in Sec. VI.
In summary, a complete simulation eventually comprises

the following steps:
(i) Generate a random realization of the stochastic force

ξðtÞ distributed according to the colored-noise cor-
relations in (4.54).

(ii) Integrate the Gaussian equations of motion (4.34a),
(4.34b), and (4.38a)–(4.38c) numerically.

(iii) Calculate the spectral function from the particular
time history of the expectation values via (4.57).

(iv) Finally, repeat steps (1) through (3) and average the
spectral function over all realizations of the stochas-
tic force to obtain the thermal equilibrium spectral
function.

More details of steps (i) and (ii) are described in
Appendixes A 2 and A 3, respectively.

V. REAL-TIME FRG

As another possibility for real-time calculations we have
also explored the FRG [27–29] on the closed time path
[38]. In the FRG one aims to compute the effective action
Γ, which is obtained from the generating functional Z of the
theory [3]. Assuming the so-called effective average action
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ΓΛ is known at some initial energy scale Λ in the UV, the
essential idea is to construct the full Γ step by step by
interpolating Γk from the microscopic UV action ΓΛ to the
macroscopic action Γ in the IR. This is achieved by
introducing a parameter k corresponding to the energy
scale down to which the theory is valid. Using an auxiliary
device called the regulator Rk, one suppresses both thermal
and quantum fluctuations of modes with ω < k. In par-
ticular, assuming that at sufficiently high energies (and
momenta, where S ≫ ℏ) the theory behaves classically, one
may start the interpolation in the UV with ΓΛ ¼ S, the
classical bare action [see Eq. (5.27) below]. (This can be
shown rigorously by a saddle-point approximation, where
the regulator term acts as a δ functional in the limit k → ∞
[36].) One then computes the flow of the effective average
action through “theory space” [29] until it reaches the full
macroscopic effective action Γk→0 ¼ Γ of the theory.
Ideally, one would solve the flow from k → ∞ to k ¼ 0,
but in almost all practical applications it is sufficient to start
with some large but finite UV cutoff k ¼ Λ and to stop at
some sufficiently small finite value k ¼ kIR in the IR.

A. Flow equation

The FRG flow is determined by the equation that was
derived by Wetterich [27,28] in the imaginary-time formal-
ism but here formulated on the CTP [38],

∂kΓk½ϕ� ¼
i
2
Trfð∂kRkÞ ∘ ðΓð2Þ

k ½ϕ� þ RkÞ−1g; ð5:1Þ

for a real scalar field ϕTðxÞ ¼ ðϕcðxÞ;ϕqðxÞÞ in D ¼ dþ 1
spacetime dimensions and Keldysh space, where we adopt
the convention of Ref. [37] and define the Keldysh rotation
to be measure preserving, i.e.,

ϕc ¼ 1ffiffiffi
2

p ðϕþ þ ϕ−Þ; ϕq ¼ 1ffiffiffi
2

p ðϕþ − ϕ−Þ; ð5:2Þ

for the classical (or average) field ϕc and the quantum (or
response) field ϕq, and vice versa,

ϕþ ¼ 1ffiffiffi
2

p ðϕc þ ϕqÞ; ϕ− ¼ 1ffiffiffi
2

p ðϕc − ϕqÞ ð5:3Þ

for the inverse transformation. By ϕ� we denote the field
components that live on the forward (þ) and backward (−)
parts of the closed time path. This convention has the
convenient property that for a symmetric potential VðϕÞ,
the potential term −VðϕþÞ þ Vðϕ−Þ on the closed time
path is invariant under the interchange ϕc ↔ ϕq, i.e., does
not distinguish between classical and quantum field
components. For a detailed introduction to the formalism
and a derivation of the flow equation, see, for example,
Refs. [38,36].

The flow in Eq. (5.1) on the right-hand side includes the
regulator Rk and Γð2Þ

k ½ϕ�, the Hessian of Γk½ϕ�,

Γð2Þ
k ½ϕ� ¼

� Γcc
k ½ϕ� Γcq

k ½ϕ�
Γqc
k ½ϕ� Γqq

k ½ϕ�

�
; ð5:4Þ

where we have already used a notation defined below, in

Eq. (5.5), for brevity. Note that Rk and Γð2Þ
k both have the

form of self-energies on the closed time path, i.e., 2 × 2
matrices in Keldysh ðc; qÞ space. Therefore, ∘ denotes 2 ×
2 matrix multiplication, and the trace also implies integra-
tion over adjacent coordinates. We denote functional
derivatives of the effective average action as

Γα1…αn
k ½ϕc;ϕq�ðx1;…; xnÞ ¼

δnΓk½ϕc;ϕq�
δϕα1ðx1Þ…δϕαnðxnÞ

; ð5:5Þ

where Greek indices from the beginning of the alphabet
denote CTP indices, α1;…; αn ∈ fc; qg. Correspondingly,
ΓðnÞ
k ½ϕ� denotes the tensor of rank n containing all func-

tional derivatives with respect to the classical and quantum
fields. The full scale-dependent propagator Gk in front of
the background field expectation value ϕ is given by

−G−1
k ½ϕ� ¼ Rk þ Γð2Þ

k ½ϕ� ð5:6Þ

in compact matrix notation, or explicitly

GK̃
k ½ϕ0;k� ¼ 0; ð5:7aÞ

GR
k ½ϕ0;k� ¼ −ðΓqc

k ½ϕ0;k� þ RR
k Þ−1; ð5:7bÞ

GA
k ½ϕ0;k� ¼ −ðΓcq

k ½ϕ0;k� þ RA
k Þ−1; ð5:7cÞ

GK
k ½ϕ0;k� ¼ GR

k ∘ ðΓqq
k ½ϕ0;k� þ RK

k Þ ∘ GA
k ð5:7dÞ

at the scale-dependent minimum ϕ0;k, which satisfies the
quantum equations of motion δΓ½ϕ0;k� ¼ 0. The super-
scripts A, R, K, and K̃ denote the advanced, retarded,
Keldysh, and anomalous components, respectively. For the
expressions in an arbitrary background field configuration
ϕðxÞ, see, for example, Ref. [38].
Being the imaginary part of the retarded propagator, the

spectral function ρkðωÞ can be computed from the retarded
two-point function in the usual way,

ρkðωÞ ¼
1

π

ImΓqc
k ðωÞ

ðReΓqc
k ðωÞÞ2 þ ðImΓqc

k ðωÞÞ2 : ð5:8Þ

B. Causal regulators

The need for respecting causality in the process of
constructing regulators for the real-time FRG was already
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mentioned in Ref. [40], where the advantages of using such
a causal regulator were manifest in the results for dynami-
cal critical exponents. In this section, we construct such a
causal regulator step by step in the 0þ 1 dimensional case.
The construction is based on considering the regulator term
as an additional self-energy with the causal matrix structure
of the Keldysh action, and it can be generalized to field
theories in higher dimensions. For our single real degree of
freedom ϕTðtÞ ¼ ðϕcðtÞ;ϕqðtÞÞ, we first add a term to the
Keldysh action of the form

ΔSk½ϕ� ¼
1

2

Z
∞

−∞
dt
Z

∞

−∞
dt0ϕTðtÞRkðt; t0Þϕðt0Þ; ð5:9Þ

with

Rkðt; t0Þ ¼
�
RK̃
k ðt; t0Þ RA

k ðt; t0Þ
RR
k ðt; t0Þ RK

k ðt; t0Þ

�
ð5:10Þ

being a 2 × 2 matrix on the CTP. We call a regulator causal
if it maintains the causal structure of the corresponding
Keldysh action, as e.g., defined in Chapter 2.7 of Ref. [17].
Most importantly, a causal regulator has to ensure that the
retarded (advanced) propagator stays retarded (advanced)
during the flow.
Here, we propose a new, quite general construction of

causal regulators which proceeds as follows: We assume
that the bilinear termΔSk½ϕ� really is the result of a coupling
of the field ϕ to an ensemble of Gaussian degrees of
freedom which have been integrated out, e.g., see
Chapter 3.2 of Ref. [17]. In fact, the other way round,
any term quadratic in the fields can be linearized via
Hubbard-Stratonovich transformation to replace it by a
linear coupling to the Gaussian Hubbard fields representing
the ensemble. Therefore, the assumption that ΔSk½ϕ� is the
result of integrating an ensemble of Gaussian degrees of
freedom should still be fairly general. As such, after Fourier
transform, the corresponding retarded/advanced compo-
nents can readily be written as spectral integrals

RR=A
k ðωÞ ¼ −

Z
∞

0

dω0

2π

2ω0Jkðω0Þ
ðω� iεÞ2 − ω02 ; ð5:11Þ

so that the spectral density JkðωÞ ≥ 0 for ω > 0 of the
fictitious Gaussian ensemble is given by the imaginary part
of the retarded bath propagator DR

bathðωÞ, which is repre-
sented here, after the Gaussian integration of the bath, by
DR

bathðωÞ ¼ −RR
k ðωÞ, i.e.,

JkðωÞ≡ −2ImDR
bathðωÞ ¼ 2ImRR

k ðωÞ; ð5:12Þ

as can explicitly be checked from (5.11). Note that for a
single oscillator with frequency ωk and coupling gk in the
bath, it is normalized here to ωJkðωÞ ¼ πg2kðδðω − ωkÞþ

δðωþ ωkÞÞ, and we generally have Jð−ωÞ ¼ −JðωÞ. This
fixes the retarded/advanced components of the regulator.
Since it is furthermore desirable to keep a system in

thermal equilibrium during the flow, if it was in equilibrium
initially, one may also require the symmetry

ΔSk½T βϕ
c; T βϕ

q� ¼ ΔSk½ϕc;ϕq�; ð5:13Þ

which is a sufficient condition for thermal equilibrium on
the closed time path [59], where the transformation T β is
defined as

T β

 
ϕcðωÞ
ϕqðωÞ

!
¼
 

coshðβω
2
Þ − sinhðβω

2
Þ

− sinhðβω
2
Þ coshðβω

2
Þ

! 
ϕcð−ωÞ
ϕqð−ωÞ

!

for our real degree of freedom ϕðtÞ. We can now insert the
general ansatz for the regulator term and check that this
condition is satisfied, if

RK̃
k ðωÞ≡ 0; and

RK
k ðωÞ ¼ cothðβω=2ÞðRR

k ðωÞ − RA
k ðωÞÞ

¼ cothðβω=2ÞiJkðωÞ: ð5:14Þ

This implies that our fictitious Gaussian ensemble should
then represent a heat bath at the same temperature T as that
of the equilibrium system that is being regulated.
Our construction of causal regulators for thermal equi-

librium systems therefore starts at specifying suitable FRG
scale k-dependent spectral densities JkðωÞ to represent
some fictitious heat bath. Here, we specifically use an
analytic spectral density of the form

JkðωÞ ¼ kω expf−ω2=k2g; ð5:15Þ

which has the desired regulating property by giving rise to
an Ohmic bath with damping constant γk ¼ k=2 in the IR,
while it rapidly goes to zero towards the UV,

JkðωÞ →
�
kω for ω ≪ k

0 for ω ≫ k:
ð5:16Þ

The suppression of low-frequency modes is thus realized
by the coupling to the fictitious heat bath with a FRG-
scale-dependent damping constant which starts out large,
of the order of Λ in the UV, and vanishes with k → 0
towards the IR. Inserting (5.15) into the spectral repre-
sentation (5.11) explicitly yields, for the corresponding
causal heat-bath regulator in our example,

RR=A
HB;kðωÞ ¼

1ffiffiffi
π

p
�
1

2
k2 − kωF

�
ω

k

��
� ikω

2
exp

�
−
ω2

k2

�
;

ð5:17Þ
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with the Dawson function

FðxÞ≡ 2ffiffiffi
π

p e−x
2

erfiðxÞ ¼ e−x
2

Z
x

0

dtet
2

: ð5:18Þ

The real and imaginary parts of the retarded regulator are
shown in Fig. 2. Note, however, that its feature of
representing a causal Green function unavoidably entails

Z
∞

−∞

dω
2π

ðRR
k ðωÞþRA

k ðωÞÞ¼
Z

∞

0

dω
2π

4ReRR
k ðωÞ¼0: ð5:19Þ

In particular, whenever we construct a causal regulator in
this way, the real part must have a zero crossing. It must
start out negative for ω ≫ k in the UV, and with a single
zero crossing as shown here, it thus becomes positive for
ω ≪ k in the IR.
Note that a positive real part at ω ¼ 0 corresponds to a

negative mass-squared shift, which can affect the propa-
gator poles for sufficiently large k in an uncontrollable and
unphysical way, a feature that is at least unpleasant for a
FRG regulator. Here, the easiest way out seems to be
adding a frequency-independent counterterm that has the
form of a Callan-Symanzik regulator. Such a frequency-
independent term is certainly causal, and it can offset
RR=A
HB;kðωÞ by a k-dependent constant such that the real part

of the resulting regulator stays strictly negative during the
flow. We therefore introduce an additional positive param-
eter α to define

RR=A
k ðωÞ≡ RR=A

HB;kðωÞ − αk2: ð5:20Þ

Since the absolute value of the real part of RR=A
HB;kðωÞ is

monotonically decreasing for ω > 0, we restrict α from
below by requiring α > RR=A

HB;kð0Þ=k2.
The effect of this can be understood in two equivalent

ways: First, as every bath ensemble, cf. Eq. (4.12), the
regulator heat-bath necessarily induces a negative shift of
the system particle’s mass or oscillator frequency squared,

by −Δω2
HBðkÞ, which here is k dependent as our regulator

bath is and can explicitly be written in the form

Δω2
HBðkÞ ¼

Z
∞

0

dω
π

JkðωÞ
ω

¼ RR=A
HB;kð0Þ: ð5:21Þ

With our analytic spectral density (5.15), for example, we
have Δω2

HBðkÞ ¼ k2=
ffiffiffiffiffiffi
4π

p
, and α must be chosen large

enough to compensate this mass shift, αk2 ≥ Δω2
HBðkÞ.

This is necessary for the theory to remain causal during the
flow in the first place; see the discussion that follows below.
Second, in order to regularize all infrared modes, we must
have a negative real part of the regulator at ω ¼ 0, requiring
the strict inequality αk2 > RR=A

HB;kð0Þ.
To further illustrate how the analytic structure of the

propagators is changed by the heat-bath regulator, and how
a suitable Callan-Symanzik counterterm can solve the
issue, it is constructive to consider a spectral density for
the regulator bath based on the Drude model, cf. Sec. IV B
and Ref. [19], as a simpler alternative, which yields, with
2γ ¼ ωD ¼ k,

JkðωÞ ¼
ωk

1þ ðω=kÞ2 : ð5:22Þ

Using Eq. (5.11) again, we then explicitly obtain

RR=A
k ðωÞ ¼ 1

2

k2

1 ∓ iω=k
− αk2; ð5:23Þ

where we already included the Callan-Symanzik counter-
term for which we expect to require α > 1=2 ¼ Δω2

HB=k
2.

To see how the regulator affects the poles during the flow,
we consider an exemplary retarded (advanced) propagator
of the form

GR=A
k ðωÞ ¼ −

1

ω2 � iγω − ω2
0 þ RR=A

k ðωÞ
: ð5:24Þ

The two are related by the symmetry GR
k ðωÞ ¼ GA

k
�ð−ωÞ.

The simplicity of the regulator (5.23) allows us to derive
analytic expressions for the poles ωp ¼ ωpðkÞ by solving
the cubic equation

ω2
p � iγωp − ω2

0 þ
k2

2ð1 ∓ iωp=kÞ
− αk2 ¼ 0: ð5:25Þ

To keep the analytic structure intact, when the regulator is
switched on, the retarded (advanced) propagator must only
have poles in the lower (upper) half-plane. For simplicity,
in our illustration here, we assume that ω2

0 and γ stay
constant during the flow. The resulting poles ωpðkÞ of the
retarded propagator are shown in Fig. 3 for different
choices of α. For k ¼ 0 the physical poles of the retarded
propagator are located at

FIG. 2. Real and imaginary parts of RR
k ðωÞ in units of k2 for the

bath with the analytic cutoff in Eq. (5.15).
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ωp;�ðk ¼ 0Þ ¼ −i
γ

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 −

γ2

4

r
ð5:26Þ

in the complex plane, as represented by the black dots in
Fig. 3, corresponding to the expected quasiparticle excita-
tions. We see that these two poles ωpðkÞ are located
symmetrically around the real-part-zero axis. They move
upwards with k towards the IR, coming from lower values
of their imaginary parts, and thus always stay in the lower
half-plane and never cause problems with causality, even
for a vanishing Callan-Symanzik term with α ¼ 0.
However, for nonvanishing k > 0 there is a third pole

with a vanishing real part moving along the imaginary axis,
which is entirely due to the regulator. In the time domain, it
represents the purely relaxational contribution [18] arising
here from our regulator heat bath. The crosses in the origins
in Fig. 3 mark the point where it disappears for k → 0þ in
the IR. The corresponding FRG scale k dependence of its
imaginary parts ImωpðkÞ are shown for the same three
values of α in Fig. 4.
Following these from the IR towards the UV, we see that

for α ≤ 1=2 the imaginary part of the relaxational regulator
pole first moves to smaller values. Eventually, however,
it turns around and increases again towards the UV, for
α < 1=2 without bound. In this case it thus always crosses
the real axis and moves into the upper half-plane (where a
retarded self-energy should be analytic) so that causality is
violated by the regulator at the finite FRG scale k. For α ¼
1=2 it turns around as well but approaches 0− for k → ∞ in
the UV and never moves into the upper half-plane. This is
the liming case where α is chosen precisely such that the
total regulator in (5.23) has a root at ω ¼ 0. For larger
values α > 1=2 the imaginary part of the relaxational
regulator pole remains strictly negative, and the regulator

never violates causality (here, for α ¼ 1 it decreases
monotonically, in fact). Its real part has no zero crossings
anymore and always leads to a positive mass/frequency shift
because the Callan-Symanzik counterterm is large enough
to overcompensate the negative shift in the squared mass/
frequency caused by Δω2

HB from the heat-bath regulator.

C. Truncation of the effective average action

Before we discuss the details of our truncation, we first
give the explicit expression for the effective average action
at the starting point k ¼ Λ, where it equals the bare Keldysh
action, ΓΛ ¼ S. For the anharmonic oscillator (2.1) coupled
to an external Ohmic heat bath with damping constant γ, the
Keldysh action is given by [17]

FIG. 3. Trajectories of the poles ωpðkÞ of the retarded propagator (5.24) with the Drude regulator (5.23) in the complex plane, moving
with the FRG scale k from the UV towards the IR, with ω0 ¼ 1, γ ¼ 0.5, and three different values of α. The black dots mark the
quasiparticle poles (5.26) of the propagator at k ¼ 0, where the regulator vanishes. They move with k in the lower half-plane, as
indicated by the arrows, but never cross the real axis. The crosses at the origin mark the points where the regulator-induced third poles
disappear with k → 0 in the IR. Their flows are indicated by arrows as well. For α < 1=2 this relaxational regulator pole violates
causality: It starts in the upper half-plane and only crosses at a finite value of the FRG scale k during the flow into the lower half-plane,
where it has a turning point (at the end of the line) before it moves up again and disappears in the origin.

FIG. 4. FRG scale k dependence of the imaginary parts
ImωpðkÞ of the regulator-induced relaxational poles in the
retarded propagators of Fig. 3. Here, α ¼ 1=2 is the limiting
case; i.e., causality is always violated at large k for α < 1=2.
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S½ϕ� ¼ 1

2

Z
∞

−∞

dω
2π

ϕTð−ωÞ
�

0 ω2 − iγω − ω2
0

ω2 þ iγω − ω2
0 2iγω cothð ω

2TÞ

�
ϕðωÞ

−
2λ

4!

Z
∞

−∞
dtðϕcðtÞϕcðtÞϕcðtÞϕqðtÞ þ ϕcðtÞϕqðtÞϕqðtÞϕqðtÞÞ; ð5:27Þ

where we already used the Fourier transform of the
quadratic part in the action for convenience. With this
general structure of the bare action in mind, one possibility
to truncate the Wetterich equation for the full effective
average action is a functional Taylor expansion in terms of
the 1-PI n-point vertex functions [28]. Using the origin in
field space, ϕ0 ¼ ðϕc

0;ϕ
q
0Þ ¼ 0, as the expansion point, and

the abbreviation

ΓðnÞ
k ðx1;…; xnÞ≡ ΓðnÞ

k ½ϕc ¼ 0;ϕq ¼ 0�ðx1;…; xnÞ

to denote the n-point vertex ΓðnÞ
k , it reads

Γk½ϕ� ¼
XQ
n¼1

1

n!

Z
dDx1…dDxn

× Γα1…αn
k ðx1;…; xnÞϕα1ðx1Þ…ϕαnðxnÞ; ð5:28Þ

such that the Q-point vertex is the highest one that is taken
into account.
In this work, we use this vertex expansion (5.28) up to

the order Q ¼ 6 in combination with a loop expansion of
the corresponding right-hand sides of the flow equations.3

For the latter we adopt an ordering scheme tied to the
vertex expansion in such a way that the highest n-point
function (with n ¼ Q) is assumed to be given by a

frequency- (and momentum-) independent (but scale k-
dependent) vertex, while successively higher loops are
included for the lower n-point functions. Specifically, we
include ðQ − nÞ=2-loop structures for the n-point func-
tions with n ¼ 2,…, Q. With Q ¼ 6 here, this amounts to
taking into account the two-loop structure of the two-
point functions, the one-loop structure of the four-point
functions, and the scale-dependent constant six-point
vertex without substructure (corresponding to order zero
in the loop expansion).
Note that our combined vertex and loop-structure

expansion at the order Q ¼ 4 would essentially only yield
a mass resp. frequency shift of the main peak in the spectral
function, corresponding to the 0 ↔ 1, 1 ↔ 2, and higher
one-step transitions. In order to describe effects such as
collisional broadening or higher resonance excitation
frequencies in the spectral function, e.g., corresponding
to 0 ↔ 3 or 1 ↔ 4 transitions, one needs nonlocal (here
meaning frequency-dependent) corrections of one-loop
form in the four-point function [36]. In the combined
scheme we adopt here, with Q ¼ 6 this implies self-
energies of two-loop structure; it then automatically also
includes the local but k-dependent six-point vertex, which
leads to a further quantitative improvement.
To explain the truncation in more detail, we start with the

formal expression for the effective average action,

Γk½ϕ� ¼
1

2

Z
xx0

ϕTðxÞ
�

0 Γð2Þ;A
k ðx; x0Þ

Γð2Þ;R
k ðx; x0Þ Γð2Þ;K

k ðx; x0Þ

�
ϕðx0Þ þ 3

4!

Z
xx0

ϕαðxÞϕβðxÞΓαβ;β0α0
k ðx; x0Þϕβ0 ðx0Þϕα0 ðx0Þ

−
1

6!

Z
x
ð3
2
μkðϕcðxÞÞ5ϕqðxÞ þ 5μkðϕcðxÞÞ3ðϕqðxÞÞ3 þ 3

2
μkϕ

cðxÞðϕqðxÞÞ5Þ þOðϕ8Þ; ð5:29Þ

where we denote spacetime integrations over x, in short, byZ
x
…≡

Z
dDx…: ð5:30Þ

The first line in (5.29) corresponds to the two-loop exact
two-point function, the second line to the one-loop exact
four-point function, and the third line to the zero-loop

exact six-point function. Their detailed structures are
explained in reversed order, starting from the six-point
function, in Secs. V C 1–VC 3, respectively.
At this point it is convenient to follow Ref. [36] and to

introduce the shorthand notations BR
k ; B

A
k ; B

K
k as follows,

BR
k ¼ GR

k ∘ ∂kRR
k ∘ GR

k ; ð5:31aÞ

3In the symmetric phase of ϕ4 theories, without spontaneous symmetry breaking or tunneling in quantum mechanics for ω2
0 > 0, all odd

n-point functions vanish identically, and the minimum of the effective average action is fixed at ϕ0 ¼ ðϕc
0;ϕ

q
0Þ ¼ 0, independent of k.
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BA
k ¼ GA

k ∘ ∂kRA
k ∘ GA

k ; ð5:31bÞ
BK
k ¼ GR

k ∘ ∂kRK
k ∘ GA

k þ GR
k ∘ ∂kRR

k ∘ GK
k

þ GK
k ∘ ∂kRA

k ∘ GA
k ; ð5:31cÞ

for convolutions of propagators and regulator insertions
with fixed outgoing legs ðc; qÞ, ðq; cÞ, and ðc; cÞ, respec-
tively. These are counterparts of the retarded, advanced, and
Keldysh propagatorsGR

k ,G
A
k , andG

K
k with all possible ways

of inserting one regulator term ∂kRk in between.

1. Six-point function and effective potential

Working out general flow equations for n-point couplings
by the diagrammatic method can be rather cumbersome,
especially in the case of the six-point coupling that we are
interested in. In fact, it is much more convenient to first
consider the flow equation for the scale-dependent force
from the effective potential VkðφÞ, here defined as a
function of the rescaled classical field φ≡ ϕc=

ffiffiffi
2

p
by

−V 0
kðφÞ≡ 1ffiffiffi

2
p δΓk½ϕ�

δϕqðxÞ
				
ϕc¼ ffiffi2p

φ¼const:
ϕq¼0

; ð5:32Þ

and generally valid with any ansatz for the effective average
action Γk½ϕ�, where the prime denotes ordinary differ-
entiation with respect to the constant classical field variable
φ. In a general nonequilibrium situation, the potential might
be spacetime x ¼ ðx0;xÞ dependent. This is not the case,
however, for a spatially homogeneous system in thermal
equilibrium.
The definition in (5.32) is motivated by the form of the

potential term SV ½ϕc;ϕq� in the bare Keldysh action on the
closed time path, given by

SV ½ϕc;ϕq� ¼
Z
x

�
−V
�
ϕcþϕqffiffiffi

2
p

�
þV

�
ϕc−ϕqffiffiffi

2
p

��
; ð5:33Þ

for a general potential VðφÞ in the Lagrangian of the theory,
where −V 0ðφÞ is the force in the classical field equations
obtained from the ϕq → 0 limit.
For the spacetime-independent vertices, we are inter-

ested in the flow equations for the Taylor coefficients

VðnÞ
k ð0Þ of the scale-dependent effective potential VkðφÞ

used in (5.32), when expanded around a possibly likewise
scale-dependent minimum φ0;k. In our case, φ0;k ≡ 0 for
all k, and we are interested, in particular, in the sixth-order
Taylor coefficient, which is precisely our six-point

coupling constant, μk ≡ Vð6Þ
k ð0Þ.

Using Eq. (5.32) to define the scale-dependent effective
potential (up to a constant), we can then furthermore relate
the desired Taylor coefficients to the spacetime integrals of
the corresponding n-point functions, via

VðnÞ
k ð0Þ ¼ −2n=2−1

Z
x2…xn

Γqc…c
k ðx; x2;…; xnÞ; ð5:34Þ

where we have also used the exchange symmetries of the
n-point functions,

Γ…αβ…
k ð…; x; y;…Þ ¼ Γ…βα…

k ð…; y; x;…Þ; ð5:35Þ

which are valid specifically for a real scalar field theory
[60], in order to combine equivalent terms in (5.34).
To obtain the flow equation for the derivative of the

effective potential, we thus have to project the Wetterich
equation (5.1) on constant classical field configurations
accordingly. To achieve this, we first take the functional
derivative with respect to the quantum field ϕqðxÞ on both
sides of the Wetterich equation and then set ϕq ¼ 0,
ϕc ¼ const, which diagrammatically corresponds to the
equation (see e.g., [37])

ð5:36Þ

Due to the functional derivative, the flow of the zero-point
energy Vkð0Þ is lost, of course. This is generally true on the
closed-time path, however, where the Keldysh action
contains no information on the zero-point energy either
because the contributions to a constant offset in VðφÞ
from the forward and backward branches exactly cancel,
cf. Eq. (5.33).
For the flow of the higher Taylor coefficients of the

effective potential, we can set ϕq ¼ 0 in (5.36), but we need
to maintain the dependence on the constant classical field
φ. This implies that one would need a partially field-
dependent, full three-point vertex function

Γqcc
φ;k ðx; x2; x3Þ≡ Γqcc

k ½ϕc ¼
ffiffiffi
2

p
φ;ϕq ¼ 0�ðx; x2; x3Þ

in the loop diagram on the rhs of (5.36) which obeys its own
flow equation involving successively higher n-point func-
tions as usual. At this point we employ a local-vertex
approximation in the sense that we neglect possible space-
time-dependent substructures but maintain the required field
dependence in the local part. Consistency with Eq. (5.34)
then requires us to use,

Γqcc
φ;k ðx; x2; x3Þ ¼ −

1ffiffiffi
2

p V 000
k ðφÞδðx − x2Þδðx − x3Þ; ð5:37Þ

where the dependence on the constant classical field φ will
be needed for the higher-order derivatives later. Using this
local-vertex approximation and the definition in (5.31c), the
flow equation for the effective potential from (5.32) and
(5.36) becomes

∂kV 0
kðφÞ ¼ −

i
4
V 000
k ðφÞ

Z
dDp
ð2πÞD BK

φ;kðpÞ: ð5:38Þ
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The notation BK
φ;k on the right indicates that field-dependent

propagators Gφ;k ≡Gk½
ffiffiffi
2

p
φ; 0� are analogously being used

inside the loop. To further illustrate the technique needed
for further derivatives with respect to the classical field
expectation value φ, first consider, for example, the fully
field-dependent retarded propagator GR

k ½ϕc;ϕq�. For the
successive Taylor coefficients of the effective potential,
we can again set the classical field ϕcðxÞ ¼ ffiffiffi

2
p

φ to its
constant expectation value and the quantum field to zero,
ϕqðxÞ ¼ 0. For the partially field-dependent GR

φ;k ≡
GR

k ½
ffiffiffi
2

p
φ; 0� this implies that we can relate the ordinary

partial derivative with respect to the constant field expect-
ation value φ to its functional derivative with respect to the
classical field ϕcðxÞ,

∂

∂φ
GR

φ;k ¼
ffiffiffi
2

p Z
dDx

δGR
k ½ϕc;ϕq�
δϕcðxÞ

				
ϕcðxÞ¼ ffiffi2p

φ
ϕqðxÞ¼0

: ð5:39Þ

To evaluate the functional derivative inside the integral, we
make use of (5.7b), which, after applying the functional
chain and product rules, directly tells us that

δGR
k ½ϕc; 0�
δϕcðxÞ ¼ GR

k ∘ Γqcc
k ð·; x; ·Þ ∘ GR

k : ð5:40Þ

The dots in the arguments of the intermediate three-point
function indicate that the middle argument is fixed by the
external differentiation point x, whereas the first and the
third argument are convoluted with those of the propagators
at the outgoing and incoming legs. After this functional
derivative we can now insert our local-vertex approximation
from Eq. (5.37), which, from (5.39), then yields

∂

∂φ
GR

φ;k ¼ −V 000
k ðφÞGR

φ;k ∘ GR
φ;k: ð5:41Þ

This is the final derivative relation for the retarded propa-
gator that we intended to illustrate here. Together with the
FDR, we can now construct arbitrarily high φ derivatives of
the retarded, advanced, and Keldysh propagators in the
local-vertex approximation,

∂φG
R=A
φ;k ðωÞ ¼ −V 000

k ðφÞðGR=A
φ;k ðωÞÞ2; ð5:42aÞ

∂φGK
φ;kðωÞ ¼ −V 000

k ðφÞGK
φ;kðωÞðGR

φ;kðωÞ þ GA
φ;kðωÞÞ;

ð5:42bÞ

∂φB
R=A
φ;k ðωÞ ¼ −2V 000

k ðφÞBR=A
φ;k ðωÞGR=A

φ;k ðωÞ; ð5:42cÞ

∂φBK
φ;kðωÞ ¼ −V 000

k ðφÞfðBR
φ;kðωÞ þ BA

φ;kðωÞÞGK
φ;kðωÞ

þ BK
φ;kðωÞðGR

φ;kðωÞ þ GA
φ;kðωÞÞg: ð5:42dÞ

These relations form the basis for a set of recurrence
relations because we can now obtain flow equations for the
higher derivatives of the scale-dependent effective potential
from (5.38) by iterating the relations (5.42a)–(5.42d).
Setting the classical field variable φ to the expansion point
(here at φ ¼ 0) afterwards, then finally results in corre-

sponding flow equations for the Taylor coefficients VðnÞ
k ð0Þ

which are related to the n-point coupling constants via
(5.34). The resulting flow equation for the sixth-order

Taylor coefficient μk ¼ Vð6Þ
k ð0Þ is derived explicitly in

Appendix B 3.

2. Four-point function

In a real-time ϕ4 theory there are three different types of
four-point vertices at one-loop level, namely, (a) the
classical ϕcϕcϕcϕq vertex, (b) the quantum ϕcϕqϕqϕq

vertex, and (c) the “anomalous” ϕcϕqϕcϕq vertex [36]. The
former vertices (a) and (b) already exist at tree level in the
bare Keldysh action (5.27) and acquire (nonlocal) correc-
tions during the FRG flow. In contrast, the anomalous
vertex (c) does not exist at tree level and is first generated at
one-loop order. Since in our truncation scheme we want the
flow of the four-point function to be one-loop exact, we
have to consider all three vertices (a)–(c).
We start with a few general remarks on how to truncate

the flow equation for a four-point function Γαββ0α0
k consis-

tently within the framework of our truncation scheme, with
the upper indices αββ0α0 corresponding to
(a) the classical αββ0α0 ¼ cccq vertex,
(b) the quantum αββ0α0 ¼ cqqq vertex, and
(c) the anomalous αββ0α0 ¼ cqcq vertex.
The flow equation for each of these four-point functions is
obtained from a corresponding fourth-order functional
derivative of the Wetterich equation (5.1). This is straight-
forward but tedious, so it is not explicitly repeated here.
The result, evaluated at the origin in field space (see e.g.,
[61]), can be compactly summarized [38] as follows,

ð5:43Þ
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At this level, when using scale-dependent local vertices
on the right-hand side of the flow, there is a natural
separation into s-, t-, and u-channel contributions, corre-
sponding to the first three diagrams in (5.43). We
furthermore omitted the explicit labeling of the legs in
the rightmost diagram containing the six-point function,
which is local anyway, at the order Q ¼ 6 of our

truncation scheme, and the order of the external legs is
hence irrelevant.
With scale-dependent local vertices inside the flow, we

can now apply our loop expansion by splitting the four-
point function Γαββ0α0

k into a sum of s-, t-, and u-channel
contributions, each of which is local in two of the three
relative coordinates x − x0, x − y, and x0 − y0,

Γαββ0α0
k ðx;y;y0; x0Þ ¼ δðx− yÞδðx0 − y0ÞΓαβ;β0α0

k ðx;x0Þ ðs− channelÞ
þ δðx− x0Þδðy− y0ÞΓα0α;ββ0

k ðx;yÞ ðt− channelÞ
þ δðx− y0Þδðy− x0ÞΓαβ0;βα0

k ðx;x0Þ ðu− channelÞ; ð5:44Þ

with the symmetries Γαβ;β0α0
k ðx;x0Þ¼Γβ0α0;αβ

k ðx0;xÞ, Γαβ;β0α0
k ¼

Γβα;β0α0
k , and Γαβ;β0α0

k ¼ Γαβ;α0β0
k . Note that such s-, t-, and u-

channel splitting is generally not possible beyond one loop:
Although (5.43) formally has a one-loop structure, with full
four- and six-point vertices on the right-hand side of (5.43),
it would contain structures of arbitrarily high loop order.
In general, i.e., with nonlocal vertex functions inside the
loops, Eq. (5.44) would therefore represent an additional
approximation.

Here we stick with scale-dependent local vertices inside
the loops and decompose Eq. (5.43) into the three channels
(5.44), which are all determined by essentially the same
two-point correlation Γαβ;β0α0

k ðx; x0Þ with suitably permuted
indices and arguments. We are therefore free to arbitrarily
select one out of the three equivalent channels. For the
s-channel the flow equation reads

ð5:45Þ

where an extra factor of 1=3 in front of the six-point diagram
occurs because we evenly distribute the local six-point
contributions to the s-, t-, and u-channels, cf. Eq. (5.44). As
full four- and six-point functions on the rhs of the flow
equation in (5.45) would invalidate this s-, t-, and u-channel
splitting, they are therefore beyond the truncation scheme
used here. At the present order Q ¼ 6 this scheme requires
the flow of the four-point function only to be one-loop
exact, and we may therefore replace the full four-point and
six-point vertex functions by effective local coupling con-
stants νk and μk, respectively. For the four-point functions
on the rhs of (5.45) this amounts to inserting

Γαββ0α0
k ðx; y; y0; x0Þ → −

1

2
ναββ

0α0
k δðx − yÞδðx − x0Þδðx0 − y0Þ

ð5:46Þ

with effective local coupling constants ναββ
0α0

k [see Eq. (5.48)
below]. Moreover, at our truncation order Q ¼ 6 the
six-point function is determined by the scale-dependent

local (classical) vertex Vð6Þ
k ð0Þ ¼ μk already, cf. Eq. (5.34).

Inserting (5.46) into (5.45), the rhs of the flow equa-
tion (5.45) therefore becomes

∂kΓ
αβ;β0α0
k ðx; x0Þ ¼ −

i
4
ναβγδk νδ

0γ0β0α0
k Bγγ0

k ðx; x0ÞGδδ0
k ðx; x0Þ

þ i
24

μkδðx − x0ÞBK
k ðx; x0Þ; ð5:47Þ

where summation over repeated indices is implied again.
The effective local coupling constants νk are given by
summing up all the (nonlocal) contributions of the four-
point function,

−
1

2
ναββ

0α0
k ¼

Z
x−y

Z
x−x0

Z
x0−y0

Γαββ0α0
k ðx; y; y0; x0Þ: ð5:48Þ

We can then insert the ansatz (5.44) into (5.48) and Fourier
transform as follows,

−
1

2
ναββ

0α0
k ¼ ðΓαβ;β0α0

k þ Γα0α;ββ0
k þ Γαβ0;βα0

k Þjp¼0; ð5:49Þ
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where one can readily see that the ν’s are just the sum over
the three channels of (5.44) evaluated at zero momentum,
consistent with the one-loop expansion of the flow equation.
The relation (5.49), together with the flow equation (5.47),
constitutes our final system of one-loop exact flow equations
for the full four-point function Γαββ0α0

k in which the scale-
dependent constant vertices are calculated self-consistently.
Having the general flow equations for the four-point

functions of type (a)–(c) at hand, we need to briefly discuss
one minor additional subtlety. Recall that the anomalous
vertex (c) is first generated at one-loop order. It hence has a
structure that is highly nonlocal in spacetime. The local
approximation (5.48) is therefore not suitable in this case,
and the anomalous vertex has no constant contribution at
tree level. Thus, it is, in fact, more accurate to set the
effective coupling constant for this anomalous vertex (c) to
zero, i.e., νcqcqk ¼ 0, on the rhs of Eq. (5.47) at our
truncation order, and only employ (5.48) for the classical
and quantum vertices (a) and (b). We emphasize that we
nevertheless still solve (5.47) for all of three vertex
functions (a)–(c). Setting νcqcqk ¼ 0 to zero only effectively
removes all diagrams from the rhs of the flow equa-
tions (5.47) that would represent a constant contribution
from the anomalous vertex. As a result, the anomalous
vertex is not fed back at all into the flow equations for the
four-point functions. One would have to go beyond the one-
loop expansion on the rhs of the flow equations (5.47) in
order to do this in a consistent way (see [36]). In our
combined vertex and loop-expansion scheme, that would
imply increasing the truncation order to at least Q ¼ 8.
However, the calculated anomalous four-point vertex func-
tion will enter the flow of the two-point function and thus
cannot be neglected entirely, although it does not reenter the
flow equations for the four-point functions themselves.
We conclude this subsection by introducing a few further

notations that will be convenient in the following sub-
sections. For the two-point vertex functions we define the
shorthand notations

Vcl
k ðx; x0Þ≡ Γcc;cq

k ðx; x0Þ;
Vqu
k ðx; x0Þ≡ Γcq;qq

k ðx; x0Þ;
Van
k ðx; x0Þ≡ Γcq;cq

k ðx; x0Þ

to emphasize the distinction between the classical (a),
quantum (b), and anomalous (c) vertex functions. We
furthermore introduce the diagrammatic notation

ð5:50Þ

to denote the two-point correlation Γαβ;β0α0
k ðx; x0Þ in each

channel of the full four-point vertex function, in order to
emphasize its one-loop structure. We use this notation in
the next subsection to represent the two-loop order in the
flow equation of the two-point function Γαα0

k ðx; x0Þ.

3. Two-point function

The exact flow equation of the two-point function at the
minimum ϕ0 ¼ 0 has the formal structure of a tadpole
diagram, except that it contains the full four-point vertex
function [36,38],

ð5:51Þ

According to our truncation scheme at order Q ¼ 6, we
need to solve the flow equation for the two-point function
in a two-loop exact way, which we achieve by inserting our
one-loop exact four-point functions (5.44) from the pre-
vious section without further approximation into the rhs of
the flow equation (5.51). With the notation just introduced
in (5.50) above, this yields

ð5:52Þ

The s- and u-channel contributions [the second and third
diagrams in (5.52)] are responsible for generating a dynamic
frequency dependence in the two-point function and there-
fore in the spectral function likewise. This is why we have to
go to at least order Q ¼ 6 in the first place, to see effects in
the spectral function that are beyond a constant mass or
frequency shift. These contributions generate a dynamic

frequency dependence since they explicitly depend on the
external frequency (and momentum in higher dimensions)
that flows through the diagram. In contrast, the t-channel
contribution [first diagram in (5.52)] is proportional to
∼δðx − x0Þ and thus only contributes a constant shift to the
bare mass or frequency ω0. Translating the diagrams into
formal expressions then finally leads to
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∂kΓ
cq
k ðpÞ ¼ −

i
2
Vcl
k ðp ¼ 0Þ

Z
dDq
ð2πÞD BK

k ðqÞ

− i
Z

dDq
ð2πÞD ðBK

k ðqÞVcl
k ðp − qÞ

þ BA
k ðqÞVan

k ðp − qÞÞ; ð5:53Þ

∂kΓ
qq
k ðpÞ¼−i

Z
dDq
ð2πÞDðB

K
k ðqÞVan

k ðp−qÞ

þBR
k ðqÞVqu

k ðp−qÞþBA
k ðqÞVqu

k ðq−pÞÞ; ð5:54Þ

here for the advanced A and Keldysh K components of
the two-point function. Together with the flow equations
for the four-point vertex functions [see (5.49) and (5.47)] and
the scale-dependent six-point vertex (see Appendix B 3),
they now represent a closed system of flow equations. We
solve this coupled system of flow equations numerically with
the method outlined in Appendix B 1; we then calculate the
spectral function in the IR (k → 0) via (5.8). As we have
explained in the beginning of this work, this system of flow
equations is then fully consistent with our expansion order
Q ¼ 6 in the sense that the flows of the two-point functions
are two-loop exact, those of the four-point functions are one-
loop exact with self-consistent tree-level contributions, and
those of the six-point function, being a scale-dependent
constant, are self-consistent at tree level.
At this point we note, for completeness, that the

classical-statistical limit is readily implemented in the
real-time FRG flows by simply deleting the quantum
ϕcϕqϕqϕq vertex from the microscopic action (5.27)
together with replacing the quantum distribution function
by the classical Rayleigh-Jeans distribution, which
amounts to replacing cothðβω=2Þ → 2T=ω for ω ≪ T
(e.g., see [17]).

4. UV initial conditions

In the UV (at k ¼ Λ) the effective average action is given
by the bare action (5.27), from which we can read off the
initial conditions for two, four, and six-point functions,

Γð2Þ;K̃
Λ ðωÞ ¼ 0; ð5:55aÞ

Γð2Þ;R=A
Λ ðωÞ ¼ ω2 � iγΛω − ω0

2
Λ; ð5:55bÞ

Γð2Þ;K
Λ ðωÞ ¼ 2iγΛω coth ðβω=2Þ; ð5:55cÞ

Vcl
Λ ðωÞ ¼ Vqu

Λ ðωÞ ¼ −
λΛ
6
; Van

Λ ðωÞ ¼ 0;

μΛ ¼ 0; ð5:55dÞ

with the bare damping γΛ, the inverse temperature β ¼ 1=T
(entering through the FDR), the bare coupling constant λΛ,
and the bare frequency ω0Λ.

VI. RESULTS

For the discussion of the results, we set the bare mass/
frequency ω0 ¼ 1 to unity, which corresponds to implicitly
expressing energies in units of ω0 and all dimensionful
parameters in appropriate powers thereof (e.g., the coupling
λ is measured here in units of ω3

0). We furthermore use a
rather small damping of γ ¼ 0.06 in order to warrant the
reliability of our benchmark solution from the exact
diagonalization.
We start by discussing our results at a rather high

temperature of T ¼ 32 (in units of ω0) in Fig. 5. The high-
temperature spectral functions, in principle, contain all
possible energy differences En − Em in the spectrum
which are allowed by selection rules, e.g., due to the
conserved parity in our case, weighted by the appropriate
factor e−βEn jhnjx̂jmij2 that quantifies the probability for the
transition in the thermal mixed state of the canonical
ensemble, cf. Eq. (2.9). At a small value of λ ¼ 1=32 for
the coupling in the quartic anharmonicity in panel (a), the
system behaves nearly harmonically, and all approaches
more or less coincide. The classical approximation for
T ≫ ω is well justified. The main peak has a Breit-Wigner-
like shape which arises from the thermal ensemble of one-
step transitions jni → jnþ 1i (see Fig. 1), where the jni
are distributed according to the Boltzmann weight e−βEn ,
cf. Eq. (2.9). Because the coupling is small, the transition
energies for the different n that contribute are all close to
that of the ground-state transition, which itself is only a
little larger than ω0 ¼ 1 in the harmonic case. The central
frequency ωc of this rather narrow main peak at ωc ≳ 1 is
therefore also close to ω0. All nonperturbative methods
describe this main peak in perfect agreement with the exact
solution. In contrast, the results from NLO two-loop
perturbation theory (taken from Ref. [36]) show spurious
double-peak structures. Most importantly, such a splitting
of the main peak does not occur in the classical-statistical
limit. Although the quartic coupling λ ¼ 1=32 is rather
small in Fig. 5(a), this is not surprising because the relevant
thermal coupling λT ¼ 1 is comparatively large: In fact,
one can rescale variables in the classical-statistical theory
to trade the explicit dependence on the quartic coupling λ
for a dependence only on the combination λT (which is not
possible in the full quantum theory). Hence, the effective
expansion parameter of the classical-statistical theory in
the perturbative series is not λ but the thermal coupling λT.
Since λT ¼ 1 in Fig. 5(a) and even λT ¼ 128 in Fig. 5(b),
we cannot expect the perturbative expansion to be valid
here. This once again emphasizes the need for nonpertur-
bative real-time methods here, and we can appreciate the
huge qualitative improvements brought about by the FRG.
This is particularly reassuring for field-theory applications
beyond the classical-statistical limit where we neither have
exact solutions nor ab initio results from real-time
simulations.
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The second peak represents the corresponding thermal
ensemble of three-step transitions, jni → jnþ 3i. It would
be absent in the harmonic case and is therefore small
because λ is small. In the NLO two-loop perturbative
calculation it occurs at ω ¼ 3ω0, corresponding to the
unperturbed energy difference in all these transitions.
Diagrammatically it originates from nonlocal “sunset”
diagrams at two-loop level which contain three bare
propagators. Cutkosky’s cutting rule then implies that
the spectral function, i.e., the imaginary part of the retarded
propagator, peaks at ω ≈ 3ω0. It is therefore neither at the
correct frequency nor of the correct shape. The perturba-
tive calculation overestimates its height and underesti-
mates its width. This is a manifestation of the fact that the
perturbative expansion is not valid here because the
effective expansion parameter of the classical-statistical
theory, λT ¼ 1, is not small.
Beyond perturbation theory, the spread of the individual

transition energies generally grows with ω, and the second
peak therefore tends to be wider than the main peak as well.
The resonance frequency of the second peak is somewhat
larger but close to 3ωc (which is still well below T ¼ 32
here). In fact, in our present truncation to the real-time FRG
flows, the second peak has to be at ω ≈ 3ωc, as discussed
below. The fact that its central frequency is thus somewhat
underpredicted by the real-time FRG in Fig. 5(a) is there-
fore a first hint at the systematic errors due to the truncation.

All other methods (except perturbation theory, of course)
are in perfect agreement with the exact diagonalization
result around this second peak as well. In particular, we
observe no noticeable differences between the static and
adiabatic GSA results. This also implies that extracting the
Gaussian spectral functions quasiclassically, as described in
Sec. IV B 6, is justified because the spectral function of the
nearly harmonic system depends almost solely on the
evolution of the expectation values X and P.
Results at the same temperature T ¼ 32 but a consid-

erably larger coupling of λ ¼ 4 are shown in Fig. 5(b).
This fairly strong coupling increases the splitting between
the individual transition lines, whose widths are due to the
heat-bath coupling with the same small γ ¼ 0.06 as before
in each of the two ensembles so that the two corresponding
peaks are broadened significantly and their substructure
becomes clearly visible in the exact-diagonalization sol-
ution. For the same reason, these peaks have moved up in
energy to about 3ω0 and 9ω0, respectively, which also
implies that the classical limit T ≫ ω is not as well satisfied
here, especially in the second peak. As compared to Fig. 5
(a) this second peak is more pronounced because the matrix
elements for the three-step transitions are larger at larger
coupling.
The real-time FRG, at the order Q ¼ 6 in the truncation

outlined in Sec. V, has notable problems reproducing the
classical limit for large coupling, as also seen in Fig. 5(b). Its

FIG. 5. Comparison of high-temperature spectral functions, at T ¼ 32with weak damping γ ¼ 0.06, over frequency (all in units of ω0)
from the various methods. Panel (a) shows results at a weak coupling of λ ¼ 1=32, and (b) shows the corresponding ones at a rather
strong coupling of λ ¼ 4. The sharp individual peaks from the quantized transition energies, cf. Fig. 1, gradually build up the broad
continuum distributions observed at high temperatures in (a). These represent the classical limit in which the classical-statistical spectral
functions agree with the GSA results (static/adiabatic), and all of them coincide with the solution from the exact diagonalization.
Increasing the coupling at fixed temperature increases the splitting between the transition energies so that the individual peaks reemerge
in (b). The main peak represents the ensemble of one-step transitions jni ↔ jnþ 1i, and the second one represents that of the three-step
transitions jni ↔ jnþ 3i at higher excitation energies. The time-dependent second moments σxxðtÞ, σxpðtÞ, and σppðtÞ beyond the static
approximation in the GSA produce contributions which are dismissed when extracting the spectral function from the quasiclassical
method described in Sec. IV B 6. These contributions, which can be neglected in the nearly harmonic system (a), are mainly responsible
for the differences between the static and adiabatic GSA results in (b). The classical limit also serves to assess the truncation used in the
real-time FRG calculations (performed on a frequency grid with 512 points in the interval ω ∈ ½0; 15�). Whether or not we are explicitly
employing the classical limit in the real-time FRG flow equations makes no noticeable differences here. The corresponding NLO two-
loop perturbative results are shown as dashed lines for comparison and agree with those of Ref. [36].

REAL-TIME METHODS FOR SPECTRAL FUNCTIONS PHYS. REV. D 105, 116017 (2022)

116017-23



main peak is so broad that it almost swamps the second
peak. To improve the truncation, on one hand, we have to go
to higher orders of Q ≥ 8 in our combined vertex and loop
expansion. On the other hand, self-consistent solutions
might also be important, as shown, for example, in
Ref. [36], where the four-point function flowed self-
consistently. Quite expectedly, this increases the analytical
as well as the numerical effort tremendously. Unfortunately,
it also leads to a decreased numerical stability of the flow at
the same time. As shown in Ref. [36] the relevant parameter
in the loop expansion is the thermal quartic coupling λT.
There, it was observed that the FRG spectral functions
start to deviate from the classical-statistical result for rather
small but certainly nonperturbative values of λT ≈ 4 when
the four-point function of one-loop structure is employed.
This should be compared to the comparatively huge value
λT ¼ 128 in Fig. 5(b), which exceeds this proposed range
of validity by nearly 2 orders of magnitude. As visible in

Fig. 5(a) and also below in Fig. 6(d) for comparatively small
but already nonperturbative values of λT ∼ 1 – 2, the real-
time FRG is still capable of accurately describing the shape
of the spectral function. Hence, there seems to be a limiting
value λT ∼ 4 for our combined loop and vertex expansion at
the present order as well. At this value e.g., the splitting of
the four-point function in the s, t, and u channels is no
longer sufficient, and higher loop structures have to be taken
into account. Compared to the perturbative results, this is a
tremendous improvement, however, as already discussed in
relation to Fig. 5. The NLO two-loop result is not able to
describe the spectral functions reasonably well for any of
the parameters that we have considered. Despite its diffi-
culty with the necessarily very large thermal couplings λT of
the classical limit, the real-time FRG is thus nevertheless
very well suited to describe nonperturbative phenomena at
lower temperatures where the classical-statistical calcula-
tions have to break down eventually.

FIG. 6. Strong-coupling spectral functions with λ ¼ 4 (and γ ¼ 0.06) at successively lower temperatures starting with T ¼ 4 in
(a) down to T ¼ 0.5 in (d). With decreasing temperature the contributions from higher states in the one-step and three-step transitions get
exponentially suppressed so that the corresponding ensembles of the main and second peaks in the spectral functions get compressed
towards their lowest transition frequencies until only a few individual transition lines remain. The (static) GSA spectral function follows
the ensemble averages of the main and second peaks more closely than the classical one as temperature is lowered beyond the range of
validity of the classical approximation (T ≫ ω). In our present truncation of the real-time FRG, the second peak for ω ≈ 3ωc stays at
about 3 times the central frequency ωc of the main peak (a frequency grid with 320 points on ω ∈ ½0; 8�was used for T ¼ 1, 2, 4, and one
with 200 points on ω ∈ ½0; 5� for T ¼ 0.5). As in Fig. 5, the corresponding NLO two-loop perturbative results are included as dashed
lines for comparison.
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Due to the sufficiently high temperature, as in Fig. 5(a),
the classical and the static GSA spectral functions still
coincide, with minute differences due to the higher relevant
frequencies here only in the second peak. They both
interpolate the substructure of the exact solution and agree
with the average shape very well. However, the GSA in the
adiabatic approximation, with the nontrivial time evolution
of the Gaussian widths included, now shows visible
deviations from those averages in the second peak of the
three-step ensemble. This is because for a coupling as
strong as λ ¼ 4 used here, our quasiclassical approach of
extracting the spectral function described in Sec. IV B 6
becomes inconsistent, which we can infer from the fact that
the classical spectral function better matches the exact one
than the adiabatic GSA result does. Beyond the static
approximation, the time dependence of the Gaussian
widths σxxðtÞ, σxpðtÞ, and σppðtÞ produces contributions
to the spectral functions that are not contained in the
quasiclassical extraction scheme based on the classical
unequal-time correlators of XðtÞ and PðtÞ alone. This
explicitly demonstrates the relevance of the discussion at
the end of Sec. IV B 6.
Our results for the same strong coupling of λ ¼ 4 (and

γ ¼ 0.06), but now at successively lower temperatures
between T ¼ 4 and T ¼ 0.5, are summarized in Fig. 6.
We leave out the GSA results from the adiabatic approxi-
mation with the time-dependent widths in this summary
because they do not represent improvements over the static
GSA results. A dedicated comparison of the two approxi-
mation schemes for the GSA is deferred to Fig. 7 and
discussed below.

The two ensembles of one-step and three-step transition
lines in the exact spectral functions of Fig. 6 become
sparser with decreasing temperature because the transitions
with larger n get sequentially more suppressed. Because
this removes strength from the higher-frequency side of
each of the two, the corresponding peaks become narrower
and their central frequencies shift to smaller values with
decreasing temperature. In contradistinction to the high-
temperature limit and Fig. 5, for very low temperatures
these ensembles cannot be represented by broad peaks
anymore, and the quantization in terms of the individual
transition lines can eventually no longer be neglected.
While all methods reproduce the general trend of the

overall infrared shift and reduction of width of the main
peak in the spectral function, there are quantitative
differences worth discussing: At the starting temperature
of T ¼ 4 in Fig. 6(a), classical and GSA spectral functions
are still very similar and both agree well (on average) with
the exact result, while the FRG solution shows problems
analogous to those discussed in relation to Fig. 5(b).
Reducing the temperature to T ¼ 2, we see in Fig. 6(b)
that the classical and GSA spectral functions start to
separate from each other. The classical result tends to
underestimate the central frequency of the main peak, and
the GSA more closely follows its shape, on average. In
particular, the GSA tends to better reproduce its rather
abrupt start due to the relatively sharp and well-isolated
quantum-mechanical ground-state transition line on the
low-frequency side.
When it comes to the second peak representing the three-

step transition lines, the GSA result is clearly able to
describe their ensemble average significantly better than
the classical spectral function. This trend continues towards
lower temperatures, where the GSA results are able to
follow these ensemble averages more closely than the
classical spectral functions and show an enhanced strength
in the second peak as compared to the classical-statistical
result. Consequently, all these effects become more pro-
nounced at T ¼ 1 in Fig. 6(c). At the lowest temperature
T ¼ 0.5 of this comparison in Fig. 6(d), it becomes obvious
that the GSA in our static approximation eventually also
tends to underestimate the central frequency of the second
peak in the Caldeira-Leggett model.
The classical spectral function is bound to approach its

mean-field value in the limit T → 0, which is here simply
given by the Breit-Wigner form with width γ around the
unperturbed ω0. It should therefore only be considered valid
for high temperatures. In contrast, the exact vacuum spectral
function (for T → 0) in the interacting theory still contains
all possible ground-state transitions j0i ↔ j1i; j3i; j5i;…
which are inherently quantummechanical. Because even the
lowest energy difference between the ground and first
excited states increases in the presence of the quantum
self-interactions which are not included in the classical
limit, the latter thus necessarily fails to describe the

FIG. 7. Comparison of static and adiabatic approximation in the
GSA at strong coupling (λ ¼ 4 with γ ¼ 0.06 as before) and low
temperature (T ¼ 0.5). With the adiabatic corrections included in
the time evolution, the central frequency of the main peak
matches the exact one slightly better than in the static approxi-
mation. An additional “flank” on its right (shown in the insert)
resembles the multipeak substructure of the individual transitions
from the exact diagonalization. Moreover, we observe a splitting
of the second peak in the adiabatic approximation, which at least
qualitatively resembles the first two distinct three-step transitions
in the exact diagonalization.
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low-temperature mass shift correctly. We also notice that it
produces a main peak which is systematically too broad in
comparison with the exact solution. In the language of the
closed time path and the Martin-Siggia-Rose (MSR) path-
integral formulation of classical-statistical mechanics, it is
missing a quantum ϕcϕqϕqϕq vertex. The real-time FRG,
which includes such a vertex, therefore becomes better for
smaller temperatures, and the location of its main peak, with
central frequency ωc, fits the quantum-mechanical solution
quantitatively quite well. The strength from the higher
excitations in the second peak is best reproduced by the
real-time FRG as well, although its central frequency stays
closer to the one in the classical spectral function, as most
prominently seen in the T ¼ 0.5 plot in Fig. 6(d). The
reason for this can be understood from the truncation
described in Sec. V. The effective mass shift of the main
peak is indeed generated by the tadpole diagram in (5.52).
However, nonlocal “sunset” diagrams are responsible for
the second peak (e.g., see Ref. [36]). They contain three
Green functions which all include the correct effective mass
shift as explained above. The imaginary part of this diagram
from Cutkosky’s cutting rule then fixes the location of the
second peak in the spectral function to ω ≈ 3ωc. This could
best be improved upon with self-consistency and by
including higher-order vertex corrections.
To further assess the influence of the static approxima-

tion in the GSA, we also ran the adiabatic GSA simulations
at our lowest temperature T ¼ 0.5. The results are shown
in Fig. 7. We observe that the adiabatic approximation of
the GSA quantitatively yields a slightly better estimate of
the central frequency in the main peak. An additional
structure on its right side, as shown in the inserts, might
even be interpreted as a remnant of the individual tran-
sition-line substructure. Such a process is not contained in
the classical-statistical approach.
The three-step transitions at higher frequencies are

captured by both of the GSA results. In the adiabatic
version of the GSA, a double-peak structure thereby
emerges resembling the corresponding substructure in the
exact diagonalization result, which is a purely quantum-
mechanical effect [and which is never observed in the
classical spectral function, cf. Fig. 6(d)]. Quantitatively,
however, both GSA results underestimate the exact frequen-
cies and appear to be too broad as compared to the exact
diagonalization solution. The continuous high-frequency
falloff of the spectral function from there on is in fact
described best by the static GSA result, which includes the
quasiclassical correction factor from the colored quantum
noise, cf. Sec. IV B 5. In contrast, the large-ω behavior of
the adiabatic GSA result does not match that of the exact
solution so precisely anymore. This is another indication
that the quasiclassical method to measure the spectral
functions as described in Sec. IV B 6 eventually becomes
inconsistent with the full time evolution of the Gaussian
widths in the adiabatic GSA at very low temperatures (or

very high frequencies), in agreement with the discussion of
the classical limit of the GSA in Fig. 5 above.

VII. CONCLUSION AND OUTLOOK

In Secs. II–Vwe have established four different real-time
methods for calculating spectral functions. These are based
on exact diagonalization, classical-statistical field theory,
the GSA, and the FRG formulated on the Keldysh closed-
time path. We have compared the results from these various
methods in Sec. VI for the spectral function of the quartic
anharmonic oscillator coupled to an Ohmic heat bath at
finite temperature as in the Caldeira-Leggett model.
Having established the underlying quantum-mechanical

structure of the spectral function for the anharmonic
Caldeira-Leggett oscillator from exact diagonalization in
Sec. II, we were able to demonstrate explicitly how the
quantum-mechanical system with its discrete transition
lines gradually turns into a classical one when the temper-
ature is increased, as illustrated here by the changing
behavior of the spectral function. The quartic anharmo-
nicity with coupling strength λ of the system is responsible
for the emergence of distinct thermal ensembles, each of
which consists of individual transition lines whose sepa-
ration increases with λ. With increasing temperature T,
more and more transitions between states higher up in the
spectrum contribute to each ensemble. It is then the
ensemble averages that tend to the continuous broad peaks
of the spectral function in the classical limit T ≫ ω.
Although computationally expensive, such an approach
could be used to calculate spectral functions for field
theories or at least small many-body systems exactly,
which is an interesting topic for future work. Here it
provides our benchmark solution.
We have summarized the most important concepts

needed for classical-statistical simulations in Sec. III.
These can be used for ab initio calculations of spectral
functions in the classical limit of large bosonic occupation
numbers. This limit is realized at high temperatures or low
frequencies, i.e., for T ≫ ω, and it can therefore also be
used to study the static and dynamic universal behavior
near a thermal phase transition at Tc of the critical infrared
modes with ω ≪ Tc [21–24]. Here it served us as the
limiting case to verify the validity of the other approaches
in the high-temperature limit. We have observed that in this
limit the classical result describes the exact spectral
function perfectly well as a coarse-grained version of the
quantum-mechanical one. However, the classical approach
is not able to resolve the quantum-mechanical substructure
from the individual transition lines, and it also under-
estimates the frequencies of the main and second peaks in
the spectral function when it reaches its limitations at
smaller temperatures.
In Sec. IV we have shown how to construct a consistent

description of an external heat bath in the Gaussian state
approximation, describing the effects of thermalization,
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dissipation, and quantum-mechanical decoherence. There,
we have employed two distinct approximations—static and
adiabatic—and discussed their effects on the spectral
functions in Sec. VI. We have verified that the GSA is
perfectly consistent with the high-temperature limit, where
it reproduces the classical results as expected. In the static
approximation the GSA is able to follow the ensemble
averages of the exact solution towards lower temperatures
than the classical spectral functions, thus extending their
range of applicability by some margin. While the GSA can
serve as a useful qualitative tool to study the existence and
rough structure of quantum effects as (small) corrections to
classical-statistical simulations towards lower tempera-
tures, it leaves the discrete substructure in the ensemble
peaks unresolved. An interesting opportunity for future
studies would be to investigate alternatives to Gaussian
distributions of pure states, e.g., based on the logistic
function as suggested in [62], for the system particle at
large anharmonicities, where the leading corrections to the
classical limit are already expected to be non-Gaussian.
While the GSA in the static approximation presented

here might not be so well suited for high-precision
calculations at strong coupling λ, it does incorporate the
exact classical-statistical field theory limit near a thermal
second-order phase transition at a critical temperature Tc,
where the dynamics are dominated by critical infrared
modes. However, at a finite “distance" to the critical point
or in nonequilibrium phase transitions along trajectories in
the phase diagram that get close to it, quantum-mechanical
effects might well become important. In such a situation, as
relevant e.g., in heavy-ion collision experiments searching
for the QCD critical point, the GSA could serve as a useful
indicator for that to happen.
For our real-time FRG calculations of spectral functions,

in Sec. V we have introduced the novel concept of heat-bath
regulators. These are constructed from coupling the system
to a fictitious external heat bath, which is introduced in the
spirit of the Caldeira-Leggett model as an ensemble of
harmonic oscillators, controlled by a FRG scale k-depen-
dent spectral density JkðωÞ. This provides a rather intuitive
picture of suppressing infrared modes by overdamping, and
it is particularly well suited for near-equilibrium real-time
calculations. The construction includes regulating real and
imaginary parts of self-energies, while the causal structure
of the Keldysh action is built in. At the same time, this
causal structure of such a regulator added to the Keldysh
action necessarily also requires adding a Callan-Symanzik
counterterm, in order to avoid acausal regulator singularities
and to suppress long-wavelength infrared modes. With these
counterterms included, however, our heat-bath regulators
can straightforwardly be generalized to field theories in d
spatial dimensions, which is the subject of ongoing work.
An analogous construction scheme might also be feasible,
for example, by imagining the bath to be an ensemble of
Klein-Gordon fields, which brings along further subtleties

such as e.g., Lorentz covariance that are not present in our
0þ 1-dimensional example here.
After establishing our causal regulators, we have adopted

a truncation scheme for real-time FRG calculations, which
is a modification of that used in Ref. [36] in that it combines
vertex and loop expansions. At our present truncation order
it includes a self-consistent vertex expansion of the self-
energies up to two-loop order. We have demonstrated in
Sec. VI that such a truncation yields robust and quantita-
tively very reasonable results for the main peak in the
spectral function at low temperatures. Noticeable problems
occurred only in reproducing the classical limit at strong
coupling λ, which indicates that higher-order nonlocal
structures in the vertex functions might have to be taken
into account to describe this regime in parameter space.
With regulators and the truncation scheme for real-time

FRG calculations in place, the potential of this new
direction of field-theory applications for the future includes
studying dynamic critical phenomena and nonequilibrium
phase transitions, work we have not touched upon here but
which is also underway already.
The first FRG calculations of dynamical critical expo-

nents z for various dynamical models [39–41] or critical
spectral functions [37] have only relatively recently
become available and will be systematically expanded.
Moreover, the approach of building causal regulators
might be analogously possible also for fermions, leading
to the perspective of studying different dynamics in
renormalizable chiral effective theories, such as the
quark-meson model as an alternative and extension to
the analytically continued Euclidean FRG flows [8–10,12]
or the chiral parity-doublet model for nuclear and chirally
symmetric hadronic matter [11,63] within our real-time
FRG framework.
For nonequilibrium phase transitions, both the real-time

FRG and classical-statistical simulations are well suited to
study off-equilibrium phenomena such as finite-time tra-
jectories in the vicinity of a critical point in the phase
diagram [64]. It is believed that the theoretical under-
standing of such systems might yield protocols to locate
the QCD critical point through the data obtained from
heavy-ion collisions (see e.g., [65–68]). Both the classical-
statistical simulations, possibly extended by the static GSA,
and the real-time FRG provide promising computational
frameworks for further investigations of such nonequili-
brium systems in the future.
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APPENDIX A: GSA DETAILS

1. Equations of motion for Gaussian widths

Based on an adiabatic approximation, in this appendix
we derive expressions for the stochastic forces KxpðtÞ and
KppðtÞ on the variances σxpðtÞ and σppðtÞ in Eqs. (4.36b)
and (4.36c), which are given by the irreducible correlators

KxpðtÞ≡⟪x̂ðtÞη̂ðtÞ⟫; and KppðtÞ≡⟪p̂ðtÞη̂ðtÞ⟫: ðA1Þ

With the explicit expression for the fluctuating force in
Eq. (4.16), without the transient initial shift, these are

KxpðtÞ ¼
X
s

gs

�
Gxφs

ðtÞ cosðωstÞ þ
1

ωs
GxπsðtÞ sinðωstÞ

�
;

ðA2Þ

KppðtÞ ¼
X
s

gs

�
Gpφs

ðtÞcosðωstÞþ
1

ωs
GpπsðtÞ sinðωstÞ

�
;

ðA3Þ

where

Gxφs
ðtÞ≡⟪x̂ðtÞφ̂sð0Þ⟫; GxπsðtÞ≡⟪x̂ðtÞπ̂sð0Þ⟫; ðA4aÞ

Gpφs
ðtÞ≡⟪p̂ðtÞφ̂sð0Þ⟫; GpπsðtÞ≡⟪p̂ðtÞπ̂sð0Þ⟫ ðA4bÞ

describe the irreducible correlations between the heat-bath
oscillators and the system particle. To calculate these
correlators we first consider their respective equations of
motion obtained straightforwardly from their time deriva-
tives together with the HLEs (4.15a) and (4.15b) for x̂ðtÞ
and p̂ðtÞ,

d
dt
Gxφs

ðtÞ ¼ Gpφs
ðtÞ; ðA5aÞ

d
dt
GxπsðtÞ ¼ GpπsðtÞ; ðA5bÞ

d
dt
Gpφs

ðtÞ ¼ −
Z

t

0

dt0γðt − t0ÞGpφs
ðt0Þ

− ⟪V 0ðx̂ðtÞÞφ̂sð0Þ⟫þ ⟪ξ̂ðtÞφ̂sð0Þ⟫; ðA5cÞ

d
dt
GpπsðtÞ ¼ −

Z
t

0

dt0γðt − t0ÞGpπsðt0Þ

− ⟪V 0ðx̂ðtÞÞπ̂sð0Þ⟫þ ⟪ξ̂ðtÞπ̂sð0⟫: ðA5dÞ

To evaluate the last cumulants on the right of Eqs. (A5c)
and (A5d), we first note that the bath oscillators have
(equally distributed and independent) minimum uncertainty
at the beginning,

⟪φ̂sð0Þφ̂s0 ð0Þ⟫ ¼ δss01=ð2ωsÞ; ðA6Þ

⟪π̂sð0Þπ̂s0 ð0Þ⟫ ¼ δss0ωs=2: ðA7Þ

Therefore, Eq. (4.16) immediately entails that

⟪ξ̂ðtÞφ̂sð0Þ⟫ ¼ gs
2ωs

cosðωstÞ; ðA8aÞ

⟪ξ̂ðtÞπ̂sð0Þ⟫ ¼ gs
2
sinðωstÞ: ðA8bÞ

Having in mind the limit Λ → ∞ for later, the contri-
bution from the transient initial shift γðtÞx̂ð0Þ → 2γδðtÞx̂ð0Þ
is dismissed here again.
More difficult to compute are the cumulants with the

conservative force terms on the right of Eqs. (A5c) and
(A5d). The application of Wick’s theorem is a priori only
justified for equal-time correlators from the Gaussian state
(4.21). If we also use it for the unequal-time correlators
here, we obtain

⟪V 0ðx̂ðtÞÞφ̂sð0Þ⟫ ¼ CðXðtÞ; σxxðtÞÞGxφs
ðtÞ; ðA9Þ

with the curvature of the potential given by

CðX; σxxÞ ¼ ω2
0 þ

λ

2
ðX2 þ σxxÞ ðA10Þ

and an analogous expression for the corresponding force
term in (A5d). As in the main text, we abbreviate the time-
dependent curvature in the following simply by

CðtÞ≡ CðXðtÞ; σxxðtÞÞ;

and its initial value by C0 ¼ Cð0Þ.
Putting everything together, and combining (A5a) and

(A5b) with (A5c) and (A5d), then yields two decoupled
second-order differential equations for the irreducible
correlations of x̂ðtÞ with the initial heat-bath coordinates
and momenta. These differential equations describe driven
harmonic motion with damping (including memory effects)
and, most importantly, with an, in general, time-dependent
frequency given by the square root of the curvature CðtÞ,

d2

dt2
Gxφs

ðtÞ þ
Z

t

0

dt0γðt − t0Þ d
dt0

Gxφs
ðt0Þ

þCðtÞGxφs
ðtÞ ¼ gs

2ωs
cosðωstÞ; ðA11aÞ

d2

dt2
GxπsðtÞ þ

Z
t

0

dt0γðt − t0Þ d
dt0

Gxπsðt0Þ

þ CðtÞGxπsðtÞ ¼
gs
2
sinðωstÞ: ðA11bÞ
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For low frequencies ωs ≪ Λ, on the timescales relevant
for the driving force, the memory integrals over the
damping kernel reduce to ordinary (local in time) damping
terms γ d

dt Gxφs
ðtÞ and γ d

dt GxπsðtÞ, cf. Eq. (4.19).
An exact analytic solution to the general oscillator

problem with time-dependent restoring force CðtÞ is
unfortunately not known, at least to us. Therefore, we
have to resort to an additional adiabatic approximation,
assuming that the curvature of the potential fluctuates
slowly about a temperature-dependent equilibrium value
C0ðTÞ obtained from a mean-field prescription,

C0ðTÞ≡ hCðX; σxxÞiβ ¼ ω2
0 þ

λ

2
hx̂2iβ; ðA12Þ

To go beyond this approximation, we furthermore split the
time-dependent value of the curvature into this constant
equilibrium value plus a small perturbation,

CðtÞ ¼ C0ðTÞ þ δCðtÞ; ðA13Þ

and treat δCðtÞ as a correction to the exactly solvable
Eqs. (A11a) and (A11b) for the constant C0 ≡ C0ðTÞ
(dropping the temperature dependence in the following)
in time-dependent perturbation theory with the initial
condition δCð0Þ ¼ 0 so that the equilibrium value C0 is
our initial value for CðtÞ at the same time.

a. Static solution

The zeroth-order static solution is then the textbook
problem of the driven harmonic oscillator. After the
transient initial time, when all contributions from solutions
to the homogeneous equations have died out due to the
damping, the solutions are given by

G0
xφs

ðtÞ ¼ gs
2ωs

AðωsÞ cosðωst − θðωsÞÞ; ðA14aÞ

G0
xπsðtÞ ¼

gs
2
AðωsÞ sinðωst − θðωsÞÞ; ðA14bÞ

with amplitude

AðωÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC0 − ω2Þ2 þ γ2ω2

p ðA15Þ

and phase shift θðωÞ,

tan θðωÞ ¼ γω

C0 − ω2
: ðA16Þ

Inserting the static solutions (A14a) and (A14b) into the
fluctuating force of Eq. (A2), for example, we obtain

KxpðtÞ ¼
X
s

gs

�
G0

xφs
ðtÞ cosðωstÞ þ

1

ωs
G0

xπsðtÞ sinðωstÞ
�

¼
X
s

g2s
2ωs

C0 − ω2
s

ðC0 − ω2
sÞ2 þ γ2ω2

s
; ðA17Þ

where trigonometric relations are used to simplify the result
in the last line. The analogous calculation for the force in
(A3) yields

KppðtÞ ¼
X
s

g2s
2

γωs

ðC0 − ω2
sÞ2 þ γ2ω2

s
: ðA18Þ

Using the definition (4.14) of the spectral function JðωÞ of
the bath modes, the fluctuating forces on the variances
defined in (A1) finally become

KxpðtÞ ¼
Z

∞

0

dω
2π

JðωÞðC0 − ω2Þ
ðC0 − ω2Þ2 þ γ2ω2

ðA19Þ

and

KppðtÞ ¼ γ

Z
∞

0

dω
2π

JðωÞω2

ðC0 − ω2Þ2 þ γ2ω2
: ðA20Þ

Note that in the static approximation with constant C0, the
stationary solutions (A14a) and (A14b) lead to stochastic
forces Kxp and Kpp that are in fact time independent
as well.
If we now introduce the Ohmic heat bath JΛðωÞ, we

observe that these constant stochastic forces are logarithmi-
cally UV divergent in the limit Λ → ∞, however. This is a
known artifact of the Ohmic bath without a cutoff as
mentioned in the main text [18,49]. To remove this constant
contribution, which is irrelevant for the time evolution of
σxx in (4.34b), we first introduce

dðΛÞ≡
Z

∞

0

dω
2π

JΛðωÞω2

ðC0 − ω2Þ2 þ γ2ω2
; ðA21Þ

which for the Ohmic bath in Eq. (4.18) diverges with
Λ → ∞ as

dðΛÞ ∼ γ

2π
ln
Λ2

C0
: ðA22Þ

With this constant contribution to the fluctuating forces,
we then define a subtracted σrpp via

σrpp ¼ σpp − dðΛÞ: ðA23Þ

This removes the UV divergence in the stochastic forces
from both Eqs. (4.36b) and (4.36c) at the same time. The
constant stochastic force Kpp on σpp in Eq. (4.36b) is then
absorbed completely in the static approximation, and the
subtracted force in (4.36b) reads
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KxpþdðΛÞ¼
Z

∞

0

dω
2π

JΛðωÞC0
ðC0−ω2Þ2þ γ2ω2

→
C0

4πωC

�
πþ2arctan

�
ω2
C− γ2=4
γωC

��
; ðA24Þ

for Λ → ∞, where we have introduced the shifted oscillator
frequency,

ωC ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0 − γ2=4

q
> 0; ðA25Þ

assuming weak damping. The complete equations of motion
(4.36a)–(4.36c) for the relevant Gaussian widths, without
the transient initial terms and with the subtraction (A23), in
the static approximation thus read

d
dt
σxx ¼ 2σxp; ðA26aÞ

d
dt
σxp ¼ σrpp − C0σxx − γσxp þ C0FðC0Þ; ðA26bÞ

d
dt
σrpp ¼ −2C0σxp − 2γσrpp; ðA26cÞ

where

FðC0Þ ¼
1

2ωC

�
1

2
þ 1

π
arctan

�
ω2
C − γ2=4
γωC

��
: ðA27Þ

This is a rather simple set of inhomogeneous first-order
differential equations with the particular solution, for weak
damping γ < 2

ffiffiffiffiffi
C0

p
, when all homogeneous contributions

have died out for t → ∞,

σxxðtÞ → FðC0Þ; σxpðtÞ → 0;

σppðtÞ ¼ σppð0Þ þ σrppðtÞ → σppð0Þ: ðA28Þ

b. Initial conditions

The vanishing constant force on the subtracted σrpp in
the last line of this static approximation is consistent with
the initial condition σpφs

ð0Þ ¼ 0, cf. (A3) for t ¼ 0.
Because of the constant subtracted force (A.24) on σxp,
however, we have implicitly assumed nontrivial initial
conditions for the σxφs

. Suitable initial conditions that are
consistent with the constant (subtracted) Kxp can be read
off from Eq. (A2) for t ¼ 0,

σxφs
ð0Þ ¼ gs

2ωs

C0
ðC0 − ω2

sÞ2 þ γ2ω2
s
: ðA29Þ

With σpφs
ð0Þ ¼ 0 and σpπsð0Þ ¼ 0 the time derivative of

Eq. (A2) for t ¼ 0 then implies that σxπsð0Þ ¼ 0 also.

In summary, the presence of the constant force on σxp in
(A.26b) requires us to slightly modify the initial covariance
matrix in (4.23). As we switch on the coupling between the
heat bath and the particle at t ¼ 0, we have implicitly
assumed here that this happens via switching on the off-
diagonal σxφs

via the term

σxφs
ðtÞ ¼ ΘðtÞσxφs

ð0þÞ þ � � � ; with

σxφs
ð0þÞ ¼ gs

2ωs
C0A2ðωsÞ: ðA30Þ

This is analogous to the discontinuities that arise in σxpðtÞ
and σppðtÞ at t ¼ 0 as well, from the initial shifts in
Eqs. (4.36b) and (4.36c). Therefore, the initial covariance
matrix in (4.23), strictly speaking, refers to Σð0−Þ, whereas
we start the integration of the equations of motion in the
GSA at t ¼ 0þ with

Σð0þÞ¼

0
BBBBBBBBBBBB@

σxxð0Þ σxpð0þÞ … σxφs
ð0þÞ 0 …

σxpð0þÞ σppð0þÞ … 0 0 …

..

. ..
. . .

.

σxφs
ð0þÞ 0 σφsφs

ð0Þ 0

0 0 0 σπsπsð0Þ
..
. ..

. . .
.

1
CCCCCCCCCCCCA
:

ðA31Þ

c. Adiabatic approximation

Assuming that the curvature of the potential CðtÞ varies
slowly in time compared to the relevant bath oscillator
frequencies, we can elevate the static approximation to an
adiabatic one: Using the driven oscillator solutions in
Eqs. (A14a) and (A14b) for the fast bath oscillator degrees
of freedom, we may then simply replace C0 by CðtÞ in the
final expressions for the equations of motion. The stochas-
tic forces then become time dependent as well, but they
remain ultraviolet finite also for the Ohmic bath JΛðωÞwith
Λ → ∞, after the time-independent subtraction of the static
approximation. The adiabatic approximation then yields,
for the Gaussian widths,

d
dt
σxx ¼ 2σxp; ðA32aÞ

d
dt
σxp ¼ σrpp − CðtÞσxx − γσxp

þ CðtÞFðCðtÞÞ − ΔKðCðtÞÞ; ðA32bÞ

d
dt
σrpp ¼ −2CðtÞσxp − 2γσrpp þ 2γΔKðCðtÞÞ; ðA32cÞ
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where KxpðtÞ is obtained from (A24) or (A26b) with
C0 → CðtÞ, i.e.,

FðCðtÞÞ ¼
Z

∞

0

dω
2π

JΛðωÞ
ðCðtÞ − ω2Þ2 þ γ2ω2

; ðA33Þ

and an additional time-dependent force

ΔKðtÞ¼
Z

∞

0

dω
2π

JΛðωÞ

×
2ω4ðCðtÞ−C0Þ−ω2ðC2ðtÞ−C20Þ

ððCðtÞ−ω2Þ2þγ2ω2ÞððC0−ω2Þ2þγ2ω2Þ ðA34Þ

arises on both σxp and σpp.
Finally, to include time-dependent (postadiabatic) cor-

rections to this adiabatic approximation, one might fur-
thermore use the retarded Green function of the unperturbed
oscillator,

gRðtÞ ¼
1

ωC
ΘðtÞe−γt=2 sinðωCtÞ;

with

�
d
dt2

þ γ
d
dt

þ C0

�
gRðtÞ ¼ δðtÞ: ðA35Þ

This allows one to reformulate Eqs. (A11a) and (A11b) as a
self-consistency problem of time-dependent perturbation
theory [with the initial condition that Cðt ¼ 0Þ ¼ C0],

Gxφs
ðtÞ ¼G0

xφs
ðtÞ−

Z
∞

0

dt0gRðt− t0ÞδCðt0ÞGxφs
ðt0Þ; ðA36Þ

GxπsðtÞ¼G0
xπsðtÞ−

Z
∞

0

dt0gRðt− t0ÞδCðt0ÞGxπsðt0Þ; ðA37Þ

where the leading-order corrections are obtained upon
inserting G0

xφs
and G0

xπs for Gxφs
and Gxπs on the right-

hand sides of these equations. Exploiting the corresponding
perturbative corrections or even self-consistent solutions
might be an interesting opportunity for further studies.

2. Colored-noise synthesis

As already discussed in Sec. IV B 1 the colored noise
will lead to our equations of motion (4.34a), (4.34b), and
(4.38a)–(4.38c) being non-Markovian, i.e., nonlocal in
time [48]. Therefore, the stochastic noise ξðtÞ occurring
in (4.34b) can no longer be generated “on the fly” as done
in classical-statistical simulations. However, different
realizations of colored noise and their numerical synthe-
sis have already been extensively studied in the context of
effective open quantum system formalisms, especially in
quasiclassical Heisenberg-Langevin and Schrödinger-
Langevin approaches (see e.g., [57,69–72] and references
therein). We employ a commonly used approach profiting
from FFT algorithms [73]. The idea is to sample a

realization of the stochastic forces in frequency space
according to

hjξðωÞj2i ¼ KðωÞ ðA38Þ

with the noise kernel

KðωÞ ¼ 2γωnBðωÞ; for ω > 0: ðA39Þ

Performing a discrete Fourier transform (DFT) of the
ξðωÞ then yields a realization of the stochastic force in the
time domain which (in the continuum limit) is described
by the desired autocorrelation

hξðtÞξðtþ t0Þi ¼ γ

π

Z
∞

0

2ω

expðωβÞ − 1
cosðωt0Þdω ðA40Þ

¼ −
πγ

β2 sinh2ðπt0=βÞ þ
γ

πt02
: ðA41Þ

To this end, the discrete and finite set of time points
ti ∈ f0; h; 2h;…; tmax − h; tmaxg at which expectation val-
ues are calculated is translated into the set of relevant
frequencies ωi∈f−π

h;−
π
hþ 2π

tmax
;−π

hþ 4π
tmax

;…;πh−
2π
tmax

;πhg. For
all frequencies, the stochastic force ξðωiÞ is then sampled
from a Gaussian distribution with varianceKðωiÞ. Finally, a
DFT of ξðωiÞ is performed, yielding the desired ξðtiÞ.

3. Leapfrog algorithm

In the traditional leapfrog integration scheme, before the
first step, P and σxp are staggered backwards half a step
according to

Pðt0 − h=2Þ ¼ Pðt0Þ −
h
2
_Pðt0Þ; ðA42Þ

σxpðt0 − h=2Þ ¼ σxpðt0Þ −
h
2
_σxpðt0Þ: ðA43Þ

After that, each step follows the same procedure. First,
we evolve P and σxp a full step forward in time,

Pðtþ h=2Þ ¼ Pðt − h=2Þ þ h _PðtÞ þ
ffiffiffi
h

p
ξðtÞ; ðA44Þ

σxpðtþ h=2Þ ¼ σxpðt − h=2Þ þ h _σxpðtÞ; ðA45Þ

and then evolve X, σxx, and σpp by a full step using the new
values of P and σxp,

Xðtþ hÞ ¼ XðtÞ þ h _Xðtþ h=2Þ; ðA46Þ

σxxðtþ hÞ ¼ σxxðtÞ þ h _σxxðtþ h=2Þ; ðA47Þ

σppðtþ hÞ ¼ σppðtÞ þ h _σppðtþ h=2Þ: ðA48Þ
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Note that _σppðtþ h=2Þ would require the knowledge of
CðX; σxxÞjtþh=2, which is approximated by

Cðtþ h=2Þ ¼ CðtÞ þ Cðtþ hÞ
2

: ðA49Þ

To obtain all expectation values at the same point in time,
P and σxp can be evolved forward by half a step,

PðtÞ ¼ Pðt − h=2Þ − h
2
_PðtÞ; ðA50Þ

σxpðtÞ ¼ σxpðt − h=2Þ − h
2
_σxpðtÞ: ðA51Þ

APPENDIX B: DETAILS ON THE
REAL-TIME FRG

1. Numerical implementation

The numerical implementation starts by incorporating
the two-point function on an ω-grid using 2N − 1 grid
points on an interval ½−L;L�. The number of grid points
2N − 1 is chosen to be odd to ensure that ω ¼ 0 is one of
the grid points. Therefore, there are 2N − 1 possible values
ω ¼ −L;−Lþ δ;…; 0;…; L − δ, L with δ ¼ L=ðN − 1Þ.
The advanced two-point function Γð2Þ;A

k ðωÞ and the
vertex functions are therefore represented by a discrete
data set

Γð2Þ;A
k;j ¼ Γð2Þ;A

k ðωjÞ; Vcl
k;j ¼ Vcl

k ðωjÞ and Van
k;j ¼ Van

k ðωjÞ
ðB1Þ

with ωj ¼ −Lþ jδ for j ¼ 0;…; 2ðN − 1Þ. The numeri-
cal implementation also exploits the symmetry relation
Vqu
k ðωÞ ¼ Vcl

k ð−ωÞ to only calculate and store the
classical and anomalous vertices. Using these approx-
imations the coupled set of flow equations consisting of
partial and ordinary integro-differential equations is
reduced to a finite set of ordinary integro-differential
equations for the variables

Γð2Þ;A
k;j ;Vcl

k;j;V
an
k;j for j¼ 0;…;2ðN − 1Þ; and μk: ðB2Þ

For simplicity, the resulting differential equations are
numerically solved using an explicit Euler method. To
increase the efficiency, the equations are reformulated
using the RG “time” parameter t ¼ logðk=ΛÞ. In general,
convolution integrals of the typeZ

∞

−∞
dωfðωÞgðΩ − ωÞ; ðB3Þ

with Ω fixed, have to be solved numerically using a
trapezoidal rule for integration. Doing this for N grid

points has a numerical complexity of OðN2Þ. This may be
optimized by performing a FFT to real space, where the
convolution integrals are simply multiplications, and then
translating the result back into momentum space using an
inverse FFT, as is done in Ref. [36]. Furthermore, the
convolution requires g to be evaluated outside the region
where the discrete data are available. Therefore, the
function value gðωÞ must be extrapolated from the
discrete values gj ¼ gðωjÞ. Here it is important to roughly
know the behavior of gðωÞ for jωj → ∞.
If gðωÞ → �∞ for jωj → ∞ (i.e., for g ¼ Γð2Þ;A

k ), a
second-order Taylor expansion at the boundaries is
employed, where the derivatives are evaluated using finite
differences with a single-sided three-point form for the first
derivative and a single-sided four-point form for the second
derivative.
If gðωÞ → const for jωj → ∞ (i.e., for g ¼ Vcl

k ; V
an
k ), the

function value gðωÞ is just set to the limit limω0→�∞ gðω0Þ.
The drawback is that this constant must be known a priori,
which, in general, is not the case, but can be motivated from
the UV limit (5.55d), replacing λΛ by the corresponding
effective coupling following Eq. (5.48). This method works
best if L is chosen large enough that gðωÞ ≃ limω0→�∞ gðω0Þ
for jωj > L is a sensible approximation.
For all numerical calculations the flow parameters are

characterized by Λ ¼ 20, kIR ¼ 0.01. In every case the ω
grid is chosen large enough to cover the full range of all
relevant excitations and fine enough to properly resolve
individual peaks of width γ.

2. Regulator dependence

An important test for a given truncation is how sensitive
it is to the specific choice of the regulator. In the optimal
case, the effective average action limk→0 Γk in the IR should
not depend on the regulator. But for any finite truncation a
spurious dependence on the regulator will certainly be
introduced. To analyze this dependence, we test two
possibilities of causal regulators, namely,

(i) a linear combination RHB;k − αk2 of a heat-bath
regulator defined as (5.11) and the Callan-Symanzik
regulator (in the following referred to simply as
“heat-bath regulator” or in short “HB+CS”) and

(ii) a Callan-Symanzik-like regulator where the damp-
ing is uniformly increased by 2k for all frequen-
cies, i.e., RR=A

k ðωÞ ¼ −k2 � 2ikω (in the following
referred to as “CS+damping regulator”).

For convenience, the heat-bath regulator is reparametrized
according to α ¼ α0 þ α0, where the α0 term eliminates the
negative mass shift quadratic in k from the heat-bath
regulator and the α0 term then adjusts the regulating mass.
To be explicit, we have α0 ¼ 1=

ffiffiffiffiffiffi
4π

p
for the regulator

in Eq. (5.17).
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For the parameters λ ¼ 4 and γ ¼ 0.06 and two different
temperatures T ¼ 0.5, 4, a comparison between the result-
ing spectral functions is shown in Fig. 8. We also include
the comparison with the FRG result when applying the
classical limit, i.e., deleting the quantum ϕcϕqϕqϕq vertex
and replacing the quantum distribution function by the
Rayleigh-Jeans distribution, cothðωβ=2Þ → 2T=ω [17]. It
becomes clear that the results indeed depend on the specific
choice for the regulator.
We first focus on the T ¼ 4 case, visualized in Fig. 8(a),

where we know from the discussion in Sec. VI that the
main peak is quantitatively well described by the classical
result. Taking this classical-statistical spectral function as a
benchmark for the FRG, we see that the qualitative
structure of the main peak is better described by a lower
value for α0. In contrast, the second bump in the spectral
function at around ω ≈ 6 is better described for a higher
value of α0. Therefore, α0 should be chosen such that both
the main peak and the second peak are both described
sufficiently well, resulting in an optimization problem
for α0.4

For the CSþ damping regulator the main peak is
slightly more sharpened, reducing the agreement with
the classical-statistical spectral function in comparison
with the heat-bath regulator. The CSþ damping regulator
also shows a second bump, but it is much less pronounced
than in the case of a heat-bath regulator. This 0þ 1

dimensional example already indicates the importance
of using a heat-bath regulator in practical calculations.

For completeness, we note that the classical limit of the
FRG agrees very well with the full quantum result, which
indicates that T ¼ 4 is indeed a temperature where the
system behaves classically.
We now turn to the low-temperature (T ¼ 0.5) case,

shown in Fig. 8(b), where we qualitatively observe the
same regulator dependence as in the T ¼ 4 case in
Fig. 8(a). The resulting spectral function obtained from
the FRG shows a very weak dependence on the Callan-
Symanzik counterterm parameter α0. It also shows a slight
broadening of the main peak and a minor enhancement of
the second bump for increasing α0. The CSþ damping
regulator produces a sharper main peak like in the T ¼ 4

case and, further, a decrease in the height of the second
bump. This suggests that the effects of the regulator noted
above are stable under the variation of the temperature,
such that the same conclusion in favor of the heat-bath
regulator applies. Turning to the classical limit of the FRG,
we see that the resulting spectral function lies significantly
closer to the classical-statistical result, most visible
through the shape of the main peak, as expected. The
shape of the second bump of the classical limit in the FRG
also agrees with the classical-statistical spectral function.
However, it is located at lower frequencies, which is an
effect of the structure of the nonlocal sunset diagrams in
the flow equation of the two-point function (cf. the
discussion in Sec. VI in the context of Fig. 6), and
therefore a purely truncational issue.
We conclude from this discussion that a heat-

bath regulator produces more accurate results than sim-
pler options like the CSþ damping regulator, and it
therefore should be the preferred choice for real-time
calculations.

FIG. 8. Comparison between different choices for the Callan-Symanzik counterterm coefficient α at the UV parameters λ ¼ 4,
γ ¼ 0.06 at two temperatures T ¼ 4 (a) and T ¼ 0.5 (b) for the heat-bath regulator (“HB+CS”), the CSþ damping regulator, and results
from the classical-statistical simulation. We also include the result for the classical limit in the real-time FRG, which arises by deleting
the quantum ϕcϕqϕqϕq vertex and replacing the quantum distribution function with its Rayleigh-Jeans counterpart [17]. For T ¼ 4 it
agrees very well with the full quantum result from the FRG, indicating that we are already close to the classical limit there. For T ¼ 0.5 it
differs from the quantum result and matches the classical-statistical spectral function better, as expected. (For the FRG we use an
N ¼ 320, L ¼ 8 grid for T ¼ 4, and an N ¼ 200, L ¼ 5 grid for T ¼ 0.5.)

4It is worth mentioning here that for higher values of α0 than
the ones listed in Fig. 8, the stability of the flow decreases
significantly.
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3. Full flow equations

For the four-point vertex, we choose to neglect the
contributions arising from the anomalous vertex on the rhs
of Eq. (5.47) entirely and to approximate both the classical
and the quantum vertex by combining all (possibly non-
local interaction terms) into one effective local interaction.
In terms of the effective coupling constants, this choice
reads

−
1

2
νcccqk ¼ 3Γcc;cq

k ðp ¼ 0Þ; ðB4aÞ

−
1

2
νcqqqk ¼ 3Γcq;qq

k ðp ¼ 0Þ; ðB4bÞ

−
1

2
νcqcqk ¼ 0 and all others ¼ 0 ðB4cÞ

where the effective coupling constants are the same for all
permutations of the CTP indices. Equipped with this choice
of the effective coupling constants, it is straightforward to
draw the diagrams in Eq. (5.47) to arrive at the flow
equations listed in Eqs. (B6a)–(B6c).
The flow equation for the six-point function is gained, in

principle, by functionally differentiating the flow equa-
tion (5.1) six times. Since this is rather cumbersome, in
general, as mentioned above, we instead use the method of
Taylor expanding the flow of the effective potential to sixth
order as described in Sec. V C 1. As a shorthand notation
we define

λclk ≡ νcccqk and λquk ≡ νcqqqk ðB5Þ

for the effective coupling constants.

∂kVcl
k ðx; x0Þ ¼ −

i
4
λclk λ

cl
k ðBK

k ðx; x0ÞGA
k ðx; x0Þ þ BA

k ðx; x0ÞGK
k ðx; x0ÞÞ þ

i
24

μkδðx − x0ÞBK
k ðx − x0 ¼ 0Þ; ðB6aÞ

∂kV
qu
k ðx; x0Þ ¼ −

i
4
λclk λ

qu
k ðBK

k ðx; x0ÞGR
k ðx; x0Þ þ BR

k ðx; x0ÞGK
k ðx; x0ÞÞ þ

i
24

μkδðx − x0ÞBK
k ðx − x0 ¼ 0Þ; ðB6bÞ

∂kVan
k ðx; x0Þ ¼ −

i
4
λclk ðλclk BK

k ðx; x0ÞGK
k ðx; x0Þ þ λquk BA

k ðx; x0ÞGA
k ðx; x0Þ þ λquk BR

k ðx; x0ÞGR
k ðx; x0ÞÞ; ðB6cÞ

∂kμk ¼ −
i
2

Z
dDp
ð2πÞD

�
15λ3k½BA

k ðpÞGK
k ðpÞð2GA

k ðpÞ þ GR
k ðpÞÞ þ BR

k ðpÞGK
k ðpÞðGA

k ðpÞ þ 2GR
k ðpÞÞ

þ BK
k ðpÞðGA

k ðpÞGR
k ðpÞ þ ðGA

k ðpÞÞ2 þ ðGR
k ðpÞÞ2Þ�

−
15

2
μkλk½GK

k ðpÞðBA
k ðpÞ þ BR

k ðpÞÞ þ BK
k ðpÞðGA

k ðpÞ þ GR
k ðpÞÞ�

�
: ðB6dÞ
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