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We present first results on the resummation of next-to-soft virtual (NSV) logarithms for the threshold
production of pseudoscalar Higgs boson through gluon fusion at the LHC. These results are presented after
resumming the NSV logarithms of the kind logið1 − zÞ to NNLL accuracy and matching them
systematically to the fixed order NNLO cross sections. These results are obtained using collinear
factorization, renormalization group invariance and recent developments in the NSV resummation
techniques. The phenomenological implications of these NSV resummed results for 13 TeV LHC are
studied and it is observed that these NSV logarithms are quite large. We also evaluate theory uncertainties
and find that the renormalization scale uncertainties get reduced further with the inclusion of NSV
corrections at various orders in QCD. We further study the impact of QCD corrections on mixed scalar-
pseudoscalar states for different values of the mixing angle α.
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I. INTRODUCTION

The ATLAS [1] and CMS [2] collaborations of the Large
Hadron Collider (LHC) have been successful in discover-
ing the Higgs boson of the standard model (SM) and this
has put the SM on a very strong footing. As a result, a lot of
work has been going on to investigate the properties and
interactions of this discovered Higgs boson with the other
SM particles [3–11]. Despite this phenomenal success, it is
widely known that the SM fails to explain certain natural
phenomena such as the baryon asymmetry in the universe,
existence of dark matter, tiny nonzero mass of neutrinos,
etc. In order to explain these phenomena, one has to go
beyond the realm of the SM. Supersymmetric theories
provide one such solution to the above mentioned prob-
lems. The minimal supersymmetric extension of the SM
(MSSM) is one of the simplest forms of the supersym-
metric theories. It has five Higgs bosons, out of which two
are neutral scalars (h,H), one is a pseudoscalar (A), and the

remaining two are charged scalars (H�). The pseudoscalar
Higgs boson which is CP odd could be as light as the
discovered Higgs boson. Hence, a dedicated effort has been
going on to determine the CP property of the discovered
Higgs boson, and to identify it with that of the SM,
although there are already indications that it is a scalar
with even parity [10–16].
Dedicated experimental searches for the pseudoscalar

Higgs boson by both, the CMS and ATLAS collaborations,
have been carried out from the LHC data for 8 TeV as well
as 13 TeV proton-proton collisions [17–26]. The searches
for heavy scalar resonances decaying into a pair of τ leptons
from the LHC 8 TeV data by CMS [17] and ATLAS [18]
have excluded the values of tan β higher than 6.3(57.6) for
mA ¼ 100ð1000Þ GeV at 95% confidence level. The exper-
imental searches in the decay channel A → ττ [22] have
kept more stringent limits on the pseudoscalar parameter
space than those obtained from the A → bb̄ channel [23].
The searches for pseudoscalar resonances in the top pair
production by the ATLAS collaboration using data from the
8 TeV LHC have put upper limits on tan β of the order of
unity for mA > 500 GeV [24]. Similar experimental
searches by the CMS collaboration using data from
13 TeV LHC have probed the pseudoscalar masses from
400 GeV to 750 GeV resulting in the exclusion of tan β
values below 1.0 to 1.5 depending on the value of mA at
95% confidence level [25]. The recent experimental
searches for heavy resonances in the ditau channel from
the 13 TeV LHC data by the ATLAS collaboration have
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excluded tan β > 1.0ð48Þ for mA ¼ 250 GeV (1.5 TeV) at
95% confidence level [26]. In all these analyses, the higher-
order corrections through the NNLO K-factor of about 2.0
have been used. The large size of these corrections suggests
that higher-order precision calculations through resumma-
tion can be useful in the experimental search for heavy
scalar resonances. These studies, which have seen excesses
over the background expectation in the Run 2 data of the
LHC, indicate that extensive attempts are going on for
discovering the BSM Higgs bosons with masses higher
than the discovered Higgs boson mass of 125 GeV. With
such intense experimental works under process, developing
the corresponding theoretical background has become
necessary, and motivated us for this work.
There is also a possibility that the observed Higgs boson

of 125 GeV mass is an admixture of scalar and pseudo-
scalar states. If this is true, then such a mixed scalar can be
produced in hadron collisions, through gluon fusion. Such
a possibility has already been explored in [27–29]. The
identification of such a mixed scalar-pseudoscalar state is
possible by studying various kinematic distributions of the
particles that this mixed state decays into [27]. This
requires the availability of fully differential distributions
and such a study has been taken up at the NNLO level in
[30]. The existence of such a mixed state indicates possible
new physics and hence, the CP violation in the Higgs
sector. Moreover, it can also explain the origin of the CP
violation in the SM and can address the problem of
baryogenesis. All these imply the requirement of a detailed
study for establishing the spin-parity properties of the
discovered scalar boson of 125 GeV mass. From the theory
side, this necessitates precision studies for the relevant
observable corresponding to both scalar and pseudoscalar
production processes to the same order of precision.
Higher order corrections in perturbative QCD (pQCD)

provide a way to achieve the required precision. The
pseudoscalar production cross sections are available to
NNLO accuracy in QCD [31–33]. The corrections are
large and are of the order of 67% at NLO and get increased
by an additional 15% at the NNLO level for the renorm-
alization and factorization scales set to μR ¼ μF ¼ mA=2
for the pseudoscalar mass mA ¼ 200 GeV. The large size
of these corrections imply that in order to achieve precise
theoretical results, corrections of even higher orders are
necessary.
The pseudoscalar Higgs production through gluon

fusion channel via quark loop and the LO results for
finite quark mass (exact) dependence are already avail-
able [34–37]. The calculation becomes simpler in the
infinite quark mass limit (effective field theory) and this
makes it easy to compute cross sections at higher orders in
perturbation theory. This effective field theory (EFT)
approach in the case of scalar Higgs boson production
[33,38,39] became extremely successful as the difference
between the exact and EFT results at NNLO level were

found to be within 1% [40–43]. For pseudoscalar pro-
duction at the hadron colliders, NNLO predictions in the
EFT approach are also available [31–33].
In [44,45] the computation of complete N3LO predic-

tions for the scalar Higgs boson production through gluon
fusion at the hadron colliders in the effective theory has
been accomplished. These third order corrections increase
the cross section by about 3.1% for the central scale choice
of mH=2 while the corresponding scale uncertainty has
reduced to as small as below 2%. In a recent study for
neutral current Drell-Yan process, the complete N3LO
results have been calculated for the first time [46]. The
corresponding cross section is found to be about 0.992
times that of the NNLO cross section for the invariant mass
regionQ ¼ 300 GeV indicating a small negative correction
from the third order in this kinematic region. Although the
scale uncertainty at N3LO level is found to be very mild, it
has been observed that the scale uncertainty bands for
N3LO and NNLO level cross sections do not overlap with
each other. The next step in the process is the computation
of N3LO cross sections for the pseudoscalar production
through gluon fusion. The first task in this direction is to
obtain the threshold enhanced cross section at N3LO level
and the same has already been computed in [47]. Further,
the approximate full N3LOA results are also available for
the pseudoscalar Higgs boson case [48].
However, these fixed order (FO) QCD predictions have

limited applicability because of the presence of large
logarithmic contributions that arise in the threshold region
of pseudoscalar production. At the threshold, the emission
of soft gluons gives large logarithmic contributions to the
cross section when the partonic center of mass energy
approaches the pseudoscalar mass mA. If these large
logarithms arising from the soft gluons can be resummed
to all orders in perturbation theory, then the problem of
spoiling the reliability of FO perturbative predictions can be
solved. We denote the soft-plus-virtual (SV) resummed
results by LL, NLL, etc. The next-to-next-to-leading
logarithmic (NNLL) resummed results [49–57] give a
sizable contribution and reduce scale uncertainties. These
logarithms in the parton level cross section dσ̂ computed to
order αks will appear as

αs
k

�
lnið1 − zÞ
1 − z

�
þ
; where i < 2k − 1: ð1Þ

Here, the subscript þ denotes the plus function and
z ¼ m2

A=s with z → 1 limit represents the partonic thresh-
old region. The precise contribution of these parton level
logarithms to the hadron level cross section depends on the
corresponding parton fluxes in that region. For the case of
the discovered Higgs mass region (125 GeV), the asso-
ciated gluon flux is large and hence, these threshold
logarithms due to the soft and collinear gluons are also
found to be significant. This way of resumming a set of
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large logarithms and then matching them to the FO results
can give robust theoretical predictions.
For the scalar Higgs boson production, the FO results are

available at N3LO level [45,58] and the corresponding
threshold resummed results have been computed to N3LL
accuracy [59,60]. The computation of the three-loop thresh-
old corrections for pseudoscalar Higgs boson production in
the threshold limit has been done in [61]. A knowledge of
the form factors up to three-loop level is needed to calculate
the threshold corrections to pseudoscalar production at
N3LO level.
Further, the ultraviolet (UV) and infrared (IR) divergen-

ces give rise to most of the logarithms at higher orders in
the intermediate stages of the computations. These loga-
rithms depend on the renormalization and factorization
scales and are present in the perturbative expansions. Such
logarithms help to estimate the error in theory predictions
resulting from the truncation of the perturbation theory to a
finite order.
There are various studies on the computation of SV

results in QCD corresponding to a number of observables
produced in hadron collisions. For SV results up to third
order, see [52,53,62–68]. A series of works in this direction
have been carried out for the resummation of the threshold
logarithms following the path breaking works by Sterman
et al. [69] and Catani et al. [70]. See [59,60,71–74] for
Higgs production in gluon fusion, [75,76] for bottom quark
annihilation and for Drell-Yan (DY) [65,72,77–79]. In z-
space, one has to deal with convolutions of these distri-
butions and so, one moves to the Mellin space approach
which uses the conjugate variable N for resummation. The
distributions DiðzÞ become functions of logiþ1ðNÞ where
we suppress terms of Oð1=NÞ in the threshold limit
of N → ∞.
However, it has also been observed that at higher orders

in QCD, threshold corrections alone cannot replace the
full FO results and in fact, it is found that the role of the
next-to soft-plus-virtual (NSV) terms, namely logið1 − zÞ,
i ¼ 0; 1;…, are also important. These NSV contributions
can, in principle, originate from parton channels other
than the one that corresponds to the Born contribution. It is
also important to see whether these NSV terms can be
resummed systematically to all orders exactly like the
leading SV terms. Several advancements in this direction
have been made [80–90]. In [91,92], the theories of mass
factorization, renormalization group invariance and
Sudakov K-plus-G equation have been exploited to provide
a result in z- and N-space to predict the NSV terms for DY
and Higgs boson production to all orders in perturbation
theory. In [93], the NSV resummation has been achieved to
leading logarithmic (LL) accuracy for color singlet pro-
duction processes in hadron collisions. It has been observed
that the resummation of NSV logarithms in the diagonal
channel gives large contributions to the cross sections,
while those from the qg channel are found to give negative

contributions of about 3% in the high mass region. It has
also been noticed that the inclusion of NSV resummed
results increases scale uncertainties obtained from the SV
resummation.
In this article, we compute the NSV corrections for the

pseudoscalar Higgs boson production process at N3LO
level based on the formalism developed in [52,53,91,92]
and the recent results at this order for scalar production
[45]. We further study the phenomenological impact of
resumming these NSV logarithms to NNLL accuracy after
they are systematically matched to the FO NNLO ones. We
represent the resummed results for the production of
pseudoscalar Higgs boson at leading logarithmic, next-to
leading logarithmic and next-to-next-to leading logarithmic
accuracy by LL, NLL and NNLL when we take into
account both SV and NSV threshold logarithms together.
Section II is devoted to developing the theoretical basis for
this work. Section III deals with the threshold corrections to
the cross section—the several ingredients required and
subsequently, a detailed explanation of these elements. In
Sec. IV, we present the analytical results for resumming the
NSV logarithms to N3LL accuracy. In Sec. V we recollect
the NSV resummation formalism developed recently in
[91,92] and in Sec. VI we present the numerical results for
the production of pseudoscalar Higgs boson for 13 TeV
LHC. Then we conclude this article.

II. THEORETICAL FRAMEWORK

Coupling of a pseudoscalar Higgs boson to gluons
happens through a virtual heavy top quark loop indirectly
which can be integrated out in the infinite top quark mass
limit. The effective Lagrangian [94] that is used to describe
the interaction of the pseudoscalar fields, ΦAðxÞ, with
gauge fields via the pseudoscalar gluonic operator,
OGðxÞ, and with light quark fields via the pseudoscalar
fermionic operator, OJðxÞ, are given by

LA
eff ¼ ΦAðxÞ

�
−
1

8
CGOGðxÞ −

1

2
CJOJðxÞ

�
: ð2Þ

The pseudoscalar gluonic and fermionic operators are
defined as

OGðxÞ ¼ GaμνG̃a
μν ¼ εμνρσGaμνGaρσ;

Gaμν ¼ ∂
μGaν − ∂

νGaμ þ gfabcGμ
bG

ν
c; ð3Þ

OJðxÞ ¼ ∂μðψ̄γμγ5ψÞ; ð4Þ

whereGa
μν is the gluonic field strength tensor and ϵμνρσ is the

Levi-Civita tensor. The pseudoscalar fermionic operator
OJðxÞ is the derivative of the singlet axial vector current. The
light quark field and its conjugate are represented byψ and ψ̄
respectively.Aswe integrate out the heavy top quark degrees
of freedom, the Wilson coefficients, CG and CJ, show a
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dependence on the mass of the top quark mt. As a result of
the Adler-Bardeen theorem [95], there is no QCD correc-
tions to CG beyond one-loop. On the other hand, CJ begins
only at second-order in the strong coupling constant. These
coefficients are expanded in powers of the renormalized
strong coupling constant as a series of as ≡ g2s=16π2 ¼
αs=4π. The Wilson coefficients are given by

CGðasÞ ¼ −as2
5
4G

1
2

F cot β; ð5Þ

CJðasÞ¼−
�
asCF

�
3

2
−3 ln

μ2R
m2

t

�
þa2sC

ð2Þ
J þ���

�
CG; ð6Þ

where GF is the Fermi constant, cot β is the ratio of the two
Higgs doublets’vacuumexpectationvalues in a generic two-
Higgs doublet model, CF is the quadratic Casimir in the
fundamental representation of QCD and μR is the renorm-
alization scale at which as is renormalized.
The unrenormalized strong coupling constant âs is

related to the renormalized one as by

âsSε ¼
�
μ2

μ2R

�
ε=2

Zasas; ð7Þ

with

Sε ¼ exp½ðγE − ln 4πÞε=2�;

where the renormalization constant, Zas , up to Oða3sÞ is
given by [53,61,96]

Zas ¼ 1þ as

�
2

ϵ
β0

�
þ a2s

�
4

ϵ2
β20 þ

1

ϵ
β1

�

þ a3s

�
8

ϵ3
β30 þ

14

3ϵ2
β0β1 þ

2

3ϵ
β2

�
: ð8Þ

Here μ is the scale introduced to keep the strong coupling
constant dimensionless in d ¼ 4þ ε space-time dimen-
sions. The QCD β functions ðβiÞ have the standard
definitions [96].

III. THRESHOLD CORRECTIONS

The inclusive cross section for a pseudoscalar Higgs
boson production at the hadron colliders can be computed
using [47]

σAðτ; m2
AÞ ¼ σA;ð0Þðμ2RÞ

X
a;b¼q; ¯q;g

Z
1

τ
dyΦabðy; μ2FÞ

× ΔA
ab

�
τ

y
;m2

A; μ
2
R; μ

2
F

�
; ð9Þ

where σA;ð0Þðμ2RÞ is the born cross section at the parton level
with finite top mass dependence and is given by

σA;ð0Þðμ2RÞ ¼
π

ffiffiffi
2

p
GF

16
a2scot2βjτAfðτAÞj2: ð10Þ

In the above equation, τA ¼ 4m2
t =m2

A and the function
fðτAÞ is given by

fðτAÞ ¼
( arcsin2 1ffiffiffiffi

τA
p τA ≥ 1

− 1
4

�
ln 1−

ffiffiffiffiffiffiffiffi
1−τA

p
1þ ffiffiffiffiffiffiffiffi

1−τA
p þ iπ

�
2

τA < 1
ð11Þ

The parton flux is given by

Φabðy; μ2FÞ ¼
Z

1

y

dx
x

faðx; μ2FÞfb
�
y
x
; μ2F

�
; ð12Þ

where fa and fb are the parton distribution functions
(PDFs) of the initial state partons a and b, renormalized at
the factorization scale μF. Here, ΔA

abðτ=y;m2
A; μ

2
R; μ

2
FÞ

represents the parton level cross section for the subprocess
initiated by a and b partons. This is the final result obtained
after performing the UV renormalization at scale μR and the
mass factorization at scale μF.
The chief aim of this article is to study how the

contribution from soft gluons affects the cross section
for pseudoscalar production at hadron colliders. We get
the final result that is IR safe by adding the soft part of the
cross section to the UV renormalized virtual part. However,
even this is not enough as mass factorization is needed to be
done using appropriate counter terms. This combination is
what is known as the SV cross section and the remaining
part is known as the hard part. While the resummed results
provide reliable predictions that can be compared against
the experimental data, it is important to find out the role of
subleading terms, namely logi ð1 − zÞ, i ¼ 0; 1;…. We call
them NSV contributions. Thus, we write the partonic cross
section as

ΔA
ggðz; q2; μ2R; μ2FÞ ¼ ΔA;NSV

gg ðz; q2; μ2R; μ2FÞ
þ ΔA;hard

gg ðz; q2; μ2R; μ2FÞ; ð13Þ

with z≡ q2=ŝ ¼ τ=ðx1x2Þ. Here, ΔA;NSV
gg ðz; q2; μ2R; μ2FÞ

includes the threshold SV and NSV contributions, such
that ΔA;SV

gg ðz; q2; μ2R; μ2FÞ contains distributions of type
δð1 − zÞ and Di where the latter is defined as

Di ≡
�
lnið1 − zÞ
1 − z

�
þ
: ð14Þ

On the contrary, the hard part of the cross section,
ΔA;hard

gg ðz; q2; μ2R; μ2FÞ, contains all regular terms in z.
The NSV cross section in z-space is computed in

d ¼ 4þ ε dimensions using [91]
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ΔA;NSV
gg ðz; q2; μ2R; μ2FÞ ¼ C expfΨA

g ðz; q2; μ2R; μ2F; εÞgjε¼0

ð15Þ

where ΨA
g ðz; q2; μ2R; μ2F; εÞ is a finite distribution and C is

the convolution defined as

CefðzÞ ¼ δð1 − zÞ þ 1

1!
fðzÞ þ 1

2!
fðzÞ ⊗ fðzÞ þ � � � : ð16Þ

Here⊗ represents convolution and fðzÞ is a distribution of
the kind δð1 − zÞ andDi. The subscript g signifies the gluon
initiated production of the pseudoscalar Higgs boson. An
equivalent formalism can be done in theMellin (N-moment)
space, which replaces the distributions in z by continuous
functions of the variable N. In this space, the threshold
limit of z → 1 changes to N → ∞. The finite distribution
ΨA

g depends on the form factors FA
g ðâs; Q2; μ2; εÞ with

Q2 ¼ −q2, the overall operator UV renormalization con-
stant ZA

g ðâs; μ2R; μ2; εÞ, the soft collinear distribution
Φgðâs; q2; μ2; z; εÞ and the mass factorization kernels
Γggðâs; μ2F; μ2; z; εÞ. The ΨA

g ðz; q2; μ2R; μ2F; εÞ can be written
in terms of these quantities in the following form [47]:

ΨA
g ðz; q2; μ2R; μ2F; εÞ ¼ ðln ½ZA

g ðâs; μ2R; μ2; εÞ�2
þ ln jFA

g ðâs; Q2; μ2; εÞjÞδð1 − zÞ
þ 2ΦA

g ðâs; q2; μ2; z; εÞ
− 2C lnΓggðâs; μ2F; μ2; z; εÞ: ð17Þ

In the next few sections, we will elaborate on how to get
these ingredients to compute the NSV cross section for
pseudoscalar production at N3LO in gluon fusion.

A. Operator renormalization constant

After the strong coupling constant renormalization
through Zas , the form factor FA

g ðâs; Q2; μ2; εÞ still does
not become completely UV finite. The additional renorm-
alization required to remove the residual UV divergences is
called the overall operator renormalization and is done
using the constant ZA

g . This is determined by solving the
underlying RG equation [47]:

μ2R
d

dμ2R
lnZA

g ðâs; μ2R; μ2; εÞ ¼
X∞
i¼1

aisγAg;i; ð18Þ

where the UVanomalous dimensions (γAg;i) up to three-loop
(i ¼ 3) are as follows:

γAg;1 ¼ β1; ð19Þ

γAg;2 ¼ β2; ð20Þ

γAg;3 ¼ β3: ð21Þ

Using the above renormalization group (RG) equation and
the solutions of γAg;i ’s, we obtain the overall renormalization
constant up to three-loop level:

ZA
g ¼ 1þ as

�
22

3ε
CA −

4

3ε
nf

�

þ a2s

�
1

ε2

	
484

9
C2
A −

176

9
CAnf þ

16

9
n2f



þ 1

ε

	
34

3
C2
A −

10

3
CAnf − 2CFnf


�

þ a3s

�
1

ε3

	
10648

27
C3
A −

1936

9
C2
Anf þ

352

9
CAn2f −

64

27
n3f




þ 1

ε2

	
5236

27
C3
A −

2492

27
C2
Anf −

308

9
CACFnf þ

280

27
CAn2f þ

56

9
CFn2f




þ 1

ε

	
2857

81
C3
A −

1415

81
C2
Anf −

205

27
CACFnf þ

2

3
C2
Fnf þ

79

81
CAn2f þ

22

27
CFn2f


�
: ð22Þ

As can be seen, ZA
g ¼ ZGG where ZGG is the renormaliza-

tion constant for OG operators which have been discussed
in detail in [61,97].

B. The form factor

The unrenormalized form factor, F̂A;ðnÞ
g , can be expanded

in terms of âs as below:

FA
g ≡X∞

n¼0

�
âns

�
Q2

μ2

�
nε
2

Snε F̂
A;ðnÞ
g

�
: ð23Þ

The unrenormalized results for the scale choice of μ2R ¼
μ2F ¼ q2 are given up to two-loop in [98] and up to three-
loop in [47]. These are required in the context of computing
NSV cross section as discussed below. The fact that QCD

NEXT-TO-SOFT-VIRTUAL RESUMMED PREDICTION FOR … PHYS. REV. D 105, 116015 (2022)

116015-5



amplitudes obey factorization property, gauge and RG
invariances lead to the consequence that the form factor
FA

g ðâs; Q2; μ2; εÞ satisfies the following K þ G type differ-
ential equation [47,99–103]:

Q2
d

dQ2
lnFA

g ðâs; Q2; μ2; εÞ

¼ 1

2

�
KA

g

�
âs;

μ2R
μ2

; ε

�
þGA

g

�
âs;

Q2

μ2R
;
μ2R
μ2

; ε

��
: ð24Þ

All the poles in ε are contained in the Q2 independent
function KA

g and those which are finite as ε → 0 are
contained in GA

g . The solution of the above K þ G equation
is given in a desirable form as below [52]:

lnFA
g ðâs; Q2; μ2; εÞ ¼

X∞
i¼1

âis

�
Q2

μ2

�
iε
2

SiεL̂
A
g;iðεÞ; ð25Þ

with

L̂A
g;1ðεÞ ¼

1

ε2
f−2AA

g;1g þ
1

ε
fGA

g;1ðεÞg; ð26Þ

L̂A
g;2ðεÞ ¼

1

ε3
fβ0AA

g;1g þ
1

ε2

	
−
1

2
AA
g;2 − β0GA

g;1ðεÞ



þ 1

ε

	
1

2
GA

g;2ðεÞ


; ð27Þ

L̂A
g;3ðεÞ ¼

1

ε4

	
−
8

9
β20A

A
g;1




þ 1

ε3

	
2

9
β1AA

g;1 þ
8

9
β0AA

g;2 þ
4

3
β20G

A
g;1ðεÞ




þ 1

ε2

	
−
2

9
AA
g;3 −

1

3
β1GA

g;1ðεÞ −
4

3
β0GA

g;2ðεÞ



þ 1

ε

	
1

3
GA

g;3ðεÞ


; ð28Þ

where AA
g;i’s are the cusp anomalous dimensions andGA

g;iðεÞ
are the resummation functions. The resummation functions,
GA

g;iðεÞ, further decompose into gA;ig;j ’s, and collinear ðBA
g Þ,

soft ðfAg Þ and UV ðγAg Þ anomalous dimensions [47,53,104].
Here, the soft anomalous dimensions, fAg ’s, were introduced
for the first time in [98]. The article [98] has shown that fAg ’s
fulfill the maximally non-Abelian property up to two-loop
level whose validity is reconfirmed in [104] at the three-loop
level. All thesefg can be found in [98,104],Ag;i in [104–108]
and Bg;i in [104,106,107] up to three-loop level.
For computing the NSV cross section, we need the gA;ig;j ’s

appearing in the GA
g;iðεÞ resummation functions. For N3LO

calculations, gA;1g;3 is needed in addition to the quantities
arising from the one- and two- loops. The form factors for
pseudoscalar production can be found in [98] up to two-loop
and is calculated by some of us in the article [61] up to three-
loop. However, in this computation of the SVþ NSV cross
section at N3LO, the form factor is needed in a definite form
which is slightly different from the one presented in this
recent article [61].With a little bit of effort, the required form
can be extracted from the above mentioned recent work. The
gA;kg;i ’s up to three-loop level are given below [47]:

gA;1g;1 ¼ CAf4þ ζ2g; gA;2g;1 ¼ CA

	
−6 −

7

3
ζ3



; gA;3g;1 ¼ CA

	
7 −

1

2
ζ2 þ

47

80
ζ22



;

gA;1g;2 ¼ C2
A

	
11882

81
þ 67

3
ζ2 −

44

3
ζ3



þ CAnf

	
−
2534

81
−
10

3
ζ2 −

40

3
ζ3



þ CFnf

	
−
160

3
þ 12 ln

�
μ2R
m2

t

�
þ 16ζ3



;

gA;2g;2 ¼ CFnf

	
2827

18
− 18 ln

�
μ2R
m2

t

�
−
19

3
ζ2 −

16

3
ζ22 −

128

3
ζ3



þ CAnf

	
21839

243
−
17

9
ζ2 þ

259

60
ζ22 þ

766

27
ζ3




þ C2
A

	
−
223861

486
þ 80

9
ζ2 þ

671

120
ζ22 þ

2111

27
ζ3 þ

5

3
ζ2ζ3 − 39ζ5



;

gA;1g;3 ¼ nfC
ð2Þ
J f−6g þ CFn2f

	
12395

27
−
136

9
ζ2 −

368

45
ζ22 −

1520

9
ζ3 − 24 ln

�
μ2R
m2

t

�

þ C2

Fnf

	
457

2
þ 312ζ3 − 480ζ5




þ C2
Anf

	
−
12480497

4374
−
2075

243
ζ2 −

128

45
ζ22 −

12992

81
ζ3 −

88

9
ζ2ζ3 þ

272

3
ζ5



þ C3

A

	
62867783

8748
þ 146677

486
ζ2

−
5744

45
ζ22 −

12352

315
ζ32 −

67766

27
ζ3 −

1496

9
ζ2ζ3 −

104

3
ζ23 þ

3080

3
ζ5



þ CAn2f

	
514997

2187
−

8

27
ζ2 þ

232

45
ζ22 þ

7640

81
ζ3




þ CACFnf

	
−
1004195

324
þ 1031

18
ζ2 þ

1568

45
ζ22 þ

25784

27
ζ3 þ 40ζ2ζ3 þ

608

3
ζ5 þ 132 ln

�
μ2R
m2

t

�

: ð29Þ
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C. Mass factorization kernel

The partonic cross section ΔA;NSV
gg ðz; q2; μ2R; μ2FÞ is UV

finite after performing the coupling constant and overall
operator renormalization using Zas and ZA

g . But it still
exhibits collinear divergences and thus, requires mass
factorization to remove them. In this section, the issue
of collinear divergences is dealt with and we describe
a prescription to remove them. The collinear singularities
that arise in the massless limit of partons are removed in
the MS scheme using the mass factorization kernel
Γðâs; μ2; μ2F; z; εÞ. The kernel satisfies the following RG
equation [47,52]:

μ2F
d

dμ2F
Γðz; μ2F; εÞ ¼

1

2
Pðz; μ2FÞ ⊗ Γðz; μ2F; εÞ; ð30Þ

where Pðz; μ2FÞ are the Altarelli-Parisi (AP) splitting
functions (matrix valued). We can expand Pðz; μ2FÞ and
Γðz; μ2F; εÞ in powers of the strong coupling constant as as
follows:

Pðz; μ2FÞ ¼
X∞
i¼1

aisðμ2FÞPði−1ÞðzÞ; ð31Þ

and

Γðz; μ2F; εÞ ¼ δð1 − zÞ þ
X∞
i¼1

âis

�
μ2F
μ2

�
SiεΓðiÞðz; εÞ: ð32Þ

We can solve the RGE for these mass factorization kernels.
The solutions in the MS scheme contains only the poles in ε
and are given in [52]. The relevant values of the observables
that are required for this computation are available in the
articles [105–107]. Only the diagonal AP kernels contribute
to our analysis. So, we expand the corresponding AP
splitting functions around z ¼ 1 and all those terms that do
not contribute to NSV are dropped.
The AP splitting functions near z ¼ 1 for the gluon

fusion subprocess take the following form [91]:

Pgg;iðz;asðμ2FÞÞ ¼ 2½Bg;iðasðμ2FÞÞδð1− zÞþAg;iD0ðzÞ
þCg;iðasðμ2FÞÞ log ð1− zÞþDg;iðasðμ2FÞÞ�
þOð1− zÞ; ð33Þ

where Cg;i and Dg;i are constants that can be obtained from
the splitting functions Pgg;i. Just as the cusp and the
collinear anomalous dimensions were expanded in powers
of asðμ2FÞ, the constants Cg and Dg can also be expanded
similarly as below:

Cgðasðμ2FÞÞ ¼
X∞
i¼1

aisðμ2FÞCg;i;

Dgðasðμ2FÞÞ ¼
X∞
i¼1

aisðμ2FÞDg;i; ð34Þ

whereCg;i andDg;i to third order are available in [105–107].

D. Soft collinear distribution

The resulting expression obtained after using the oper-
ator renormalization constant and the mass factorization
kernel is still not completely finite. It contains some
residual divergences which get cancelled against the con-
tribution arising from soft gluon emissions. This is why
the finiteness of ΔA;NSV

gg ðz; q2; μ2R; μ2FÞ in the limit ε → 0

requires the soft-collinear distribution Φgðâs; q2; μ2; z; εÞ
which has a pole structure in ε similar to that of the residual
divergences. The distribution Φgðâs; q2; μ2; z; εÞ satisfies
the K þG type differential equation [91]:

q2
d
dq2

Φg ¼
1

2

�
Kg

�
âs;

μ2R
μ2

; ε; z

�
þGg

�
âs;

q2

μ2R
;
μ2R
μ2

; ε; z

��
;

ð35Þ

where Kg contains all the divergent terms and Gg contains
all the finite functions of ðz; εÞ. A detailed study has been
given in [91].
We can rewrite Φgðâs; q2; μ2; z; εÞ in a convenient form

which separates the SV terms from the NSV ones. Hence,
we decompose it as

Φg ¼ ΦSV
g þΦNSV

g ; ð36Þ

such that ΦSV
g contains only the SV terms and the

remaining ΦNSV
g contains the NSV terms in the limit

z → 1. The form of ΦSV
g is given by

ΦSV
g ðâs; q2; μ2; z; εÞ ¼

X∞
i¼1

âis

�
q2ð1 − zÞ2

μ2

�
iε
2

× Siε

�
iε

1 − z

�
ϕ̂SV;ðiÞ
g ðεÞ; ð37Þ

where the expressions for ϕ̂SV;ðiÞ
g ðεÞ’s are explicitly given in

Appendix B.
As verified by some of us (upto N3LO) in [47], due

to the universality of the soft gluon contribution,
ΦSV

g ðâs; q2; μ2; z; εÞ must be the same as that of the
Higgs boson production in gluon fusion:

ΦA
g ¼ ΦH

g ¼ Φg;

i:e: GA;k
g;i ¼ ḠH;k

g;i ¼ Ḡk
g;i: ð38Þ
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Here,ΦH
g and ḠH;k

g;i can be used for any gluon fusion process
as these are independent of the operator insertion. The
constants, ḠH;1

g;1 ; Ḡ
H;2
g;1 ; Ḡ

H;1
g;2 , were determined from the result

of the explicit computations of soft gluon emissions to the
Higgs boson production in [37] and later, these corrections
were further extended to all orders in the dimensional
regularization parameter ε in [63], using which ḠH;3

g;1 and

ḠH;2
g;2 are extracted in [47]. A detailed description of these

constants, the ḠH;k
g;i ’s or the ḠA;k

g;i ’s, that are used in the
evaluation ofΦSV

g ðâs; q2; μ2; z; εÞ, are already given in [47].
Hence, we do not repeat them here but give the final results

for ϕ̂SV;ðiÞ
g ðεÞ in Appendix B after applying the available

relevant expressions. The third order constant ḠH;1
g;3 is

computed from the result of SV cross section for the
production of the Higgs boson at N3LO [44] which was
presented in the article [64].
Having discussed about the computation of the SV

part of the cross section, we now move on to calculate
the corresponding NSV part. The form of ΦNSV

g is given
by [91],

ΦNSV
g ðâs; q2; μ2; z; εÞ

¼
X∞
i¼1

âis

�
q2ð1 − zÞ2

μ2

�
iε
2

Siεφ
NSV;ðiÞ
g ðz; εÞ: ð39Þ

The φNSV;ðiÞ
g ðz; εÞ coefficients can be expressed as a sum of

singular and finite part in ε given by,

φNSV;ðiÞ
g ðz; εÞ ¼ φNSV;ðiÞ

s;g ðz; εÞ þ φNSV;ðiÞ
f;g ðz; εÞ; ð40Þ

where explicit expressions for the singular coefficients

φNSV;ðiÞ
s;g ðz; εÞ are given in Appendix C.
The coefficients φNSV;ðiÞ

f;g ðz; εÞ are finite as ε → 0 and
can be written in terms of the finite coefficients Gg

L;iðz; εÞ
as [91],

φNSV;ð1Þ
f;g ðz; εÞ ¼ 1

ε
Gg
L;1ðz; εÞ; ð41Þ

φNSV;ð2Þ
f;g ðz; εÞ ¼ 1

ε2
f−β0Gg

L;1ðz; εÞg þ
1

2ε
Gg
L;2ðz; εÞ; ð42Þ

φNSV;ð3Þ
f;g ðz; εÞ ¼ 1

ε3

	
4

3
β20G

g
L;1ðz; εÞ




þ 1

ε2

	
−
1

3
β1G

g
L;1ðz; εÞ −

4

3
β0G

g
L;2ðz; εÞ




þ 1

3ε
Gg
L;3ðz; εÞ; ð43Þ

where

Gg
L;1ðz; εÞ ¼

X∞
j¼1

εjGg;ðjÞ
L;1 ðzÞ; ð44Þ

Gg
L;2ðz; εÞ ¼ −2β0G

g;ð1Þ
L;1 ðzÞ þ

X∞
j¼1

εjGg;ðjÞ
L;2 ðzÞ; ð45Þ

Gg
L;3ðz; εÞ ¼ −2β1G

g;ð1Þ
L;1 ðzÞ − 2β0ðGg;ð1Þ

L;2 ðzÞ þ 2β0G
g;ð2Þ
L;1 ðzÞÞ

þ
X∞
j¼1

εjGg;ðjÞ
L;3 ðzÞ: ð46Þ

The coefficients Gg;ðjÞ
L;i ðzÞ given in the above equations are

parametrized in terms of logk ð1 − zÞ; k ¼ 0; 1;… while all
other terms that vanish as z → 1 are dropped

Gg;ðjÞ
L;1 ðzÞ ¼

Xiþj−1

k¼0

Gg;ðj;kÞ
L;i ðzÞ logk ð1 − zÞ: ð47Þ

The highest power of the logð1 − zÞ terms at every order
depends on the order of the perturbation, i.e., the power of
as and also the power of ε at each order in as.
The expansion coefficients φðkÞ

g;i are related to Gg;ðj;kÞ
L;i as

below [91]:

φðkÞ
g;1 ¼ Gg;ð1;kÞ

L;1 ; k ¼ 0; 1 ð48Þ

φðkÞ
g;2 ¼

1

2
Gg;ð1;kÞ
L;2 þ β0G

g;ð2;kÞ
L;1 ; k ¼ 0; 1; 2 ð49Þ

φðkÞ
g;3 ¼

1

3
Gg;ð1;kÞ
L;3 þ 2

3
β1G

g;ð2;kÞ
L;1 þ 2

3
β0G

g;ð2;kÞ
L;2 þ 4

3
β20G

g;ð3;kÞ
L;1 ;

k ¼ 0; 1; 2; 3: ð50Þ

IV. NEXT TO SV RESULTS

Using all the above available ingredients, we can calculate
the NSV coefficient functions for the pseudoscalar Higgs
boson production from gluon fusion in terms of the expan-
sion coefficients, φðkÞ

g;i ’s, defined in Sec. III D. The SV
corrections to the production of pseudoscalar Higgs boson
are available up to order a3s while the corresponding NSV
corrections are available up to order a2s. On the contrary, the
NSV corrections to the production of scalar Higgs boson are
available up to order a3s. As given in [48], the similarity
between pseudoscalar Higgs boson production and scalar
Higgs boson production is exploited which leads to the
conclusion that the pseudoscalar result can be approximated
from the available scalar Higgs boson result using

ΔA
ggðz; q2; μ2R; μ2FÞ ¼

g0ðasÞ
gH0 ðasÞ

½ΔH
ggðz; q2; μ2R; μ2FÞ

þ δΔA
ggðz; q2; μ2R; μ2FÞ�: ð51Þ
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Equation (51) effectively defines δΔA
ggðz; q2; μ2R; μ2FÞ as the

correction to the scalar Higgs coefficient functions such that
the rescaling g0ðasÞ=gH0 ðasÞ converts them to the pseudo-
scalar coefficients. Here, ΔA

ggðz; q2; μ2R; μ2FÞ represents the
coefficient function for pseudoscalar Higgs boson and
ΔH

ggðz; q2; μ2R; μ2FÞ represents the same for scalar Higgs
boson. Moreover, g0ðasÞ is the constant function of resum-
mation for pseudoscalar Higgs, and gH0 ðasÞ is the analogous
function for scalar Higgs.
All the above ingredients are known up to NNLO which

has led to the successful computation of δΔA
ggðz; q2; μ2R; μ2FÞ

up to two-loop level. It has been shown in [48] that the
δΔA

ggðz; q2; μ2R; μ2FÞ corrections vanish at the one-loop level,
and at the two-loop level, these δΔA

ggðz; q2; μ2R; μ2FÞ correc-
tions contain only the next-to-next-to-soft terms. It is
conjectured in [48] that this can be true to all higher
orders. If that is so, then these δΔA

ggðz; q2; μ2R; μ2FÞ correc-
tions do not contain any NSV terms atOða3sÞ. Moreover, in
[48] the authors suggest that to define an approximate

ΔA
ggðz; q2; μ2R; μ2FÞ at N3LO, the unknown Oða3sÞ contribu-

tions to δΔA
ggðz; q2; μ2R; μ2FÞ in Eq. (51) can be set to zero

with a sufficiently good approximation. By setting
δΔA

ggðz; q2; μ2R; μ2FÞ to zero this way in Eq. (51), one can
obtain the approximate N3LO cross sections denoted by
N3LOA [48,59,60,74,109–114]. Hence, in our analysis we
simply rescale the Higgs SVþ NSV coefficient functions
to obtain the corresponding ones of the pseudoscalar as

ΔA;NSV
gg ðz; q2; μ2R; μ2FÞ ¼

g0ðasÞ
gH0 ðasÞ

½ΔH;NSV
gg ðz; q2; μ2R; μ2FÞ�:

ð52Þ

The rescaling components, g0ðasÞ and gH0 ðasÞ, are known
from resummation [44,59,70,80] while the scalar Higgs
coefficient function, ΔH;NSV

gg ðz; q2; μ2R; μ2FÞ, are obtained
from [45,115]. The rescaling ratio g0ðasÞ=gH0 ðasÞ up to
a3s order is given below:

g0ðasÞ
gH0 ðasÞ

¼ 1þ asð8CAÞ −
1

3
a2s

�
−215C2

A þ 2CAnf þ 3CFnf

	
31 − 12 log

�
m2

t

μ2R

�
�

þ 1

81
a3s

�
C3
Að−11880ζ2 − 5616ζ3 þ 68309Þ þ C2

Anfð−216ζ2 − 1296ζ3 þ 1973Þ

þ CACFnf

	
7776 log

�
m2

t

μ2R

�
− 7128ζ2 þ 6048ζ3 − 67094



þ nfð432ζ2 − 631Þ

þ 9C2
Fnfð96ζ3 þ 763Þ þ 8CFn2fð162ζ2 þ 565Þ − 324Cð2Þ

J

�
: ð53Þ

It has been shown that the φðkÞ
g;i ’s given in Eqs. (48)–(50)

for the scalar and the pseudoscalar Higgs boson produc-
tions in gluon fusion are identical to each other at two-loop
level. The same is also noticed in the case of DY process
and scalar Higgs production via bottom quark annihilation
up to two-loop level. However, for the quark annihilation
process it is found that such universality breaks down at
third order for k ¼ 0, 1. This was checked in [91] using the
state-of-art results from [58,116–118]. In our present work,
when we explicitly compute φð0Þ

g;3 and φ
ð1Þ
g;3 from Eq. (52), we

notice that they are same for both scalar and pseudoscalar
Higgs boson productions via gluon fusion. Hence, the

universality of the φðkÞ
g;i ’s at third order can be checked only

when the explicit N3LO results are available for the
pseudoscalar Higgs boson production in gluon fusion.
As depicted in Sec. IV of [91], once we have the φðkÞ

g;i
values up to a certain order, we can predict the coefficients
of the highest logarithms in the coefficient functions to a
few consecutive higher orders of ΔA;NSV

gg ðz; q2; μ2R; μ2FÞ
computed using the formalism developed in [52,53,91].

Using the evaluated φðkÞ
g;i values, we could predict the three

highest logarithms of ΔA;NSV
gg ðz; q2; μ2R; μ2FÞ, up to Oða7sÞ

from Oða4sÞ. Even when we use the available φðkÞ
g;i ’s for

k ¼ 0, 1, we could predict these highest logarithmic terms

because they are independent of φð0Þ
g;3 and φð1Þ

g;3. The
ingredients needed to exactly match the other higher order
results of the pseudoscalar Higgs boson are still not
available. So, we compute the highest logarithms up to
Oða7sÞ from Oða4sÞ of the ΔA;NSV

gg ðz; q2; μ2R; μ2FÞ result.
The explicit results of the SVþ NSV cross section up to

N3LO are given in the Appendix Awhere it can be seen that
the general form of the output is depicted as:

ΔA;NSV
g;i ðz; q2Þ ¼ δð1 − zÞ½� � �� þ

Xi

j¼1=2;1;���
Dð2j−1Þ½� � ��

þ
Xi

j¼1=2;1;���
logð2j−1Þð1 − zÞ½� � ��: ð54Þ
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where i ¼ 1, 2, 3, and ½� � �� represent coefficients of the
corresponding distribution, logarithmic term or delta func-
tion. The constant terms in the above result actually
correspond to the log0ð1 − zÞ coefficients.

V. RESUMMATION OF THE NSV RESULTS
IN MELLIN SPACE

In order to study the all order behavior of the coefficient
function, Δgg, in the N-moment space, it is convenient
to use the following form of the partonic coefficient
function [91]:

Δggðq2; μ2R; μ2F; zÞ ¼ Cg
0ðq2; μ2R; μ2FÞC expð2Ψg

Dðq2; μ2F; zÞÞ;
ð55Þ

where

Ψg
Dðq2; μ2F; zÞ ¼

1

2

Z
q2ð1−zÞ2

μ2F

dλ2

λ2
Pggðasðλ2Þ; zÞ

þQgðasðq2ð1 − zÞ2Þ; zÞ; ð56Þ

with

Qgðasðq2ð1 − zÞ2Þ; zÞ ¼
�

1

1 − z
Ḡg

SVðasðq2ð1 − zÞ2ÞÞ
�

þ
þ φf;gðasðq2ð1 − zÞ2Þ; zÞ: ð57Þ

The coefficient Cg
0 is z independent and is expanded in

powers of asðμ2RÞ as

Cg
0ðq2; μ2R; μ2FÞ ¼

X∞
i¼0

aisðμ2RÞCg
0iðq2; μ2R; μ2FÞ; ð58Þ

where the coefficients Cg
0i are calculated in [61] for pseu-

doscalar. Equation (55) gives the z-space resummed result.
Now it is easy to compute the Mellin moment of Δgg.

The limit z → 1 translates to N → ∞ in the N-moment
space and to include NSV terms, we need to keep Oð1=NÞ
corrections in the large N limit. The Mellin moment of Δgg

is given by [91]

Δgg;Nðq2;μ2R;μ2FÞ¼C0ðq2;μ2R;μ2FÞexpðΨg
Nðq2;μ2FÞÞ; ð59Þ

The Mellin moment of the exponent acquires the following
form:

Ψg
N ¼ Ψg

SV;N þ Ψg
NSV;N; ð60Þ

where we can split Ψg
N in such a way that all those terms

that are functions of logjðNÞ; j ¼ 0; 1;… are kept in Ψg
SV;N

and the remaining terms that are proportional to
ð1=NÞlogjðNÞ;j¼0;1;… are contained in Ψg

NSV;N . Hence,

Ψg
SV;N ¼ logðgg0ðasðμ2RÞÞÞ þ gg1ðωÞ logðNÞ

þ
X∞
i¼0

aisðμ2RÞggiþ2ðωÞ; ð61Þ

where the ggi ðωÞ’s, identical to those in [70,72,76], are
obtained from the resummed formula for SV terms and
gg0ðasÞ is expanded in powers of as as (see [72])

logðgg0ðasðμ2RÞÞÞ ¼
X∞
i¼1

aisðμ2RÞgg0;i: ð62Þ

The ggi ðasðμ2RÞÞ’s are also provided in the ancillary files
of [91].
The function Ψg

NSV;N is given by

Ψg
NSV;N ¼ 1

N

X∞
i¼0

aisðμ2RÞðḡgiþ1ðωÞ þ hgi ðω; NÞÞ; ð63Þ

with

hgi ðω; NÞ ¼
Xi

k¼0

hgikðωÞ logkðNÞ: ð64Þ

where the resummation constants, ḡgi ðωÞ and hgi ðω; NÞ, are
given in [91].

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we will present our numerical results of
the NSV corrections at N3LO level in QCD for the
production of a pseudoscalar Higgs boson at the LHC.
Our predictions are based on EFTwhere the top quarks are
integrated out at higher orders. However, we retain the top

quark mass dependence at LO. The term Cð2Þ
J in the Wilson

coefficient CJðasÞ is taken to be zero in our analysis
because it is not available in the literature yet. For
simplicity, we have set cot β ¼ 1 in our numerical analysis.
Results for other values of cot β can be easily obtained by
rescaling the cross sections with cot2 β. At LO, we have
retained the full top quark mass dependence while EFT
approach has been used for higher order corrections. We
use MMHT 2014 PDFs throughout where the LO, NLO
and NNLO parton level cross sections are convoluted with
the corresponding order by order central PDF sets, but for
N3LO cross sections we simply use MMHT2014nnlo68cl
PDFs. The strong coupling constant is provided by the
respective PDFs from LHAPDF.
To estimate the impact of QCD corrections, we define

the K-factors as

KX
ð1Þ ¼

σXNLO
σLO

; KX
ð2Þ ¼

σXNNLO
σLO

; ð65Þ
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where X is either SVor SVþ NSV or Full which includes
all possible subprocesses or full ðggÞ which includes only
the gluon-gluon ðggÞ subprocess. When the full ðggÞ case is
computed, only the gg subprocess is considered at the nth
order while at the lower orders (k < n), all possible
subprocesses are taken together.
In Fig. 1, we plot the pseudoscalar production cross

section as a function of its mass mA at NLO (left panel) and
NNLO (right panel), by varying mA from 300 GeV to
2400 GeV. Here the “SV” results contain the SV threshold
logarithms and δð1 − zÞ contributions, while the “NSV”
corrections include the NSV logarithms in the gluon fusion
channel only. We note that the NSV corrections at higher
orders also arise from other partonic channels, a detailed
study of which is beyond the scope of the present work and
will be presented elsewhere. As can be seen from Fig. 1, the
SV results give sizable contribution to the fixed order
results however they underestimate the latter. The inclusion

of NSV corrections increases the cross section substantially
but they overestimate the FO results for the mass range of
mA we have considered.
To study the impact of these corrections better at SVand

beyond, we depict in Fig. 2 the corresponding K-factors
defined in Eq. (65). Since our NSV corrections include only
the gluon fusion channel, it is worthwhile to have com-
parison with the complete result of the gluon fusion channel
including the pure regular contributions. From these
K-factors, we notice that the SV corrections converge to
the FO result (denoted byKFull

i ) in the high mass region and
differ significantly in the small mass region. However, the
FO result here also does contain contributions from other
parton channels, and the difference noticed between the full

FO result and the pure gluon channel (denoted by KFullðggÞ
i )

contribution can be understood from the presence of these
other channels. We also notice that the SVþ NSV correc-
tions have a similar behavior to that of the complete gluon

FIG. 1. Pseudoscalar production cross section at NLO level (left panel) and NNLO level (right panel) with a comparison between fixed
order SV, SVþ NSV and full results for 13 TeV LHC.

FIG. 2. K-Factor for pseudoscalar production cross section at NLO level (left panel) and NNLO level (right panel) with a comparison
between fixed order SV, SVþ NSV, full (all subprocesses included) and full (only gg subprocess included at nth order) results for
13 TeV LHC.
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fusion channel contribution, with the former being a little
bit higher than the latter. This also indicates that the regular
or beyond NSV corrections have a negative impact but are
smaller in magnitude compared to the NSV corrections at
higher orders.
Next, we study the impact of resummation of these NSV

logarithms on the pseudoscalar production cross section at
NLL and NNLL accuracy. For the resummed cross section,
we do the matching as below:

σðmatchedÞ ¼ σSVþNSV
resum − σSVþNSVjðFOÞ þ σðFOÞ: ð66Þ

In Fig. 3, we depict the resummed K-factors at NLO and
NNLO orders, and contrast them against the corresponding
ones due to the SV resummation for a wide range of
pseudoscalar mass, i.e., 300 < mA < 2400 GeV. We
define these K-factors as

Kresum
ð1Þ ¼ σNLOþNLL

σLO
; Kresum

ð2Þ ¼ σNNLOþNNLL

σLO
;

K̄resum
ð1Þ ¼ σNLOþNLL

σLO
; K̄resum

ð2Þ ¼ σNNLOþNNLL

σLO
; ð67Þ

The resummed NLO SV K-factor ðKresum
ð1Þ Þ varies from 2.2

(at mA ¼ 300 GeV) to about 2.5 (at mA ¼ 2400 GeV).
However, the inclusion of NSV logarithms at NLL accu-
racy increase these results by about 30% in the low mass
region, and by about 40% of LO in the high mass region,
i.e., ðK̄resum

ð1Þ Þ varies from 2.5 to about 2.9. The resummation

of NSV logarithms to NNLL accuracy has a similar
behavior and enhance the SV resummed results by about
10% (30%) in the low (high) mass region.
We will next study the theoretical uncertainties due to the

unphysical scales, μR and μF, in our predictions. We will
present the conventional 7-point scale uncertainties and
make the following scale choices (μR=mA; μF=mAÞ:

(0.5,0.5),(0.5,1),(1.0,0.5),(1.0,1.0), (1.0,2.0),(2.0,1.0) and
(2.0,2.0) for a given value ofmA. All these uncertainties are
presented to NNLOþ NNLL and NNLOþ NNLL accu-
racy. In all the uncertainty plots, the first three results
correspond to FO results, the next three correspond to SV
resummation and the last three represent the NSV
resummed ones. We first plot the 7-point scale uncertainty
involved for the total pseudoscalar production cross section
at each order for mA ¼ 125 GeV (top) and mA ¼ 700 GeV
(bottom) in Fig. 4. We observe in Fig. 4 that the 7-point
scale uncertainties get reduced on going from NLO to
NNLO, NLOþ NLL to NNLOþ NNLL and NNLOþ
NNLL for both mA ¼ 125 and 700 GeV. However, this 7-
point scale uncertainties are found to increase while going
from the SV to NSV resummation. To better understand
this aspect, we study the scale variations due to μR and μF
separately by varying one of them between ½mA=2; 2mA�
and keeping the other fixed at mA, for both low and
high mass regions. In Fig. 5, we present the μR scale

FIG. 3. Resummed K-factor plots for 13 TeV LHC taking
MMHT 2014 as the reference PDF and choosing the central scale
μR ¼ μF ¼ mA.

FIG. 4. Uncertainty plot with 7-point scale uncertainty for
mA ¼ 125 GeV (top figure) and mA ¼ 700 GeV (bottom figure)
for 13 TeV LHC with MMHT 2014 PDF.
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uncertainties by keeping μF fixed at mA. Here we notice
that at second order, the NSV resummed results have
smaller scale uncertainties compared to the SV resummed
ones which in turn are smaller than the FO scale uncer-
tainties for both mA ¼ 125 and 700 GeV. In Fig. 6, we
study the μF scale uncertainties by keeping μR fixed at mA.
Here we notice that, contrary to the case of μR scale
uncertainties, the NSV resummed results have larger scale
uncertainties compared to the SV resummed ones which are
in turn larger than the corresponding FO ones for both
mA ¼ 125 and 700 GeV. This can be attributed to the
missing contributions from other partonic channels while
estimating the μF scale uncertainties in our SV and NSV
resummed predictions.
In Table I, we tabulate the percentage errors due to the

7-point scale uncertainty, μF scale uncertainty and μR scale
uncertainty cases for the pseudoscalar mass of 700 GeV. To
study the effect of parton fluxes on the scale uncertainties in
different kinematic regions, we present in Table II the
7-point scale uncertainties for different mA values. Here we

FIG. 5. Uncertainty plot with μF scale fixed formA ¼ 125 GeV
(top figure) and mA ¼ 700 GeV (bottom figure) for 13 TeV LHC
with MMHT 2014 PDF.

TABLE I. Percentage of uncertainty in the pseudoscalar pro-
duction cross sections due to scale variations, for the pseudoscalar
mass mA ¼ 700 GeV at 13 TeV LHC, using MMHT 2014 PDF.
The second column corresponds to 7-point scale variations, the
third column represents the uncertainty due to the μR scale
variations while keeping μF fixed and the last column represents
the uncertainty due to the μF scale variations while keeping μR
fixed.

Order

Percentage
uncertainty

(7-point variation)

Percentage
uncertainty
(μF fixed)

Percentage
uncertainty
(μR fixed)

LO 54.92 34.70 19.54
NLO 34.61 25.81 8.91
NNLO 18.18 14.96 3.48
LOþ LL 61.84 43.35 17.72
NLOþ NLL 28.45 18.80 28.45
NNLOþ NNLL 13.89 6.42 13.89
LO + LL 64.40 45.83 17.71
NLO + NLL 38.52 18.13 38.52
NNLO + NNLL 26.09 1.82 23.13

FIG. 6. Uncertainty plot with μR scale fixed formA ¼ 125 GeV
(top figure) and mA ¼ 700 GeV (bottom figure) for 13 TeV LHC
with MMHT 2014 PDF.
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observe that at the NLO and NNLO levels, the 7-point
scale uncertainties decrease as we go from 125 GeV to
about 1000 GeV and then, they slowly increase with
further increase in the mA values. We notice a similar
behavior for NLOþ NLL, NNLOþ NNLL, NLOþ NLL,
and NNLOþ NNLL.
For completeness, we also estimate the uncertainty due

to the choice of parton densities in our calculation. Figure 7
depicts the PDF uncertainties involved in the calculations
due to the choice of different PDF sets. For this analysis, we
choose NNPDF30, PDF4LHC15, HERAPDF20, CT14,
and ABMP16 as the reference PDF’s, and present the
results for the production cross section at NNLOþ NNLL,
normalized with the corresponding results obtained from
our default choice of MMHT2014 PDF set.
The requirement of these high-precision computations is

not only significant in the discovery of the pseudoscalar
Higgs but also crucial in establishing the CP properties
of the discovered Higgs boson. As mentioned in Sec. I,
the observed Higgs boson at the LHC can be an admixture
of scalar-pseudoscalar states and this mixing can be

parametrized by a single mixing angle α. In terms of this
mixing angle, a pure scalar state can be represented by
α ¼ 0 and a pure pseudoscalar state by α ¼ π=2. The
production of a mixed scalar-pseudoscalar Higgs boson
from gluon fusion at the LHC has been studied in [30]
through NNLO. In Table III, we give the production cross
sections at the LHC for different values of this mixing angle
α in the 125 GeV mass range. Here, we observe that the
inclusion of the SV resummed results increase the NLO
(NNLO) cross sections by about 30%ð12%Þ of the LO ones
while a further addition of the NSV resummed results,
increase the NLOþ NLL (NNLOþ NNLL) cross sections
by about 33%ð20%Þ of LO ones for the pure scalar state.
However for the pure pseudoscalar state, we observe that
the inclusion of the SV resummed results increase the NLO
(NNLO) cross sections by about 37%ð26%Þ of the LO ones
while a further addition of the NSV resummed results,
increase the NLOþ NLL (NNLOþ NNLL) cross section
by approximately 35%ð16%Þ of the LO ones. For the
mixed cases considered, the inclusion of the SV resummed
results increase the NLO (NNLO) cross sections by about
35%ð22%Þ of the LO ones for α ¼ π=4 and by approx-
imately 33%ð18%Þ of the LO ones for α ¼ π=6. Similarly,

TABLE II. Percentage of uncertainty in the pseudoscalar production cross sections due to 7-point scale variations for different values
of pseudoscalar mass at 13 TeV LHC.

7-point scale uncertainty

Order mA¼125GeV mA¼700GeV mA¼1000GeV mA¼1500GeV mA¼2000GeV mA¼2500GeV mA¼3500GeV

LO 44.46 54.92 57.91 61.67 64.84 67.75 72.98
NLO 36.02 34.61 27.59 28.70 29.80 30.98 33.62
NNLO 21.33 18.18 16.53 16.23 16.24 16.41 16.96
LOþ LL 54.49 61.84 65.13 69.45 73.29 76.94 84.43
NLOþ NLL 45.39 28.45 32.22 31.15 30.97 31.23 32.37
NNLOþ NNLL 22.94 13.89 20.75 21.09 21.82 22.67 24.30
LOþ LL 59.38 64.40 67.35 71.37 75.04 78.60 85.72
NLOþ NLL 62.71 38.52 40.42 38.08 36.92 36.27 35.67
NNLOþ NNLL 42.11 26.09 29.31 28.78 28.94 29.32 30.02

TABLE III. K-factors for the production cross sections of a
mixed state of scalar and pseudoscalar Higgs bosons. The
production cross sections are computed for mA ¼ 125 GeV at
13 TeV LHC using MMHT2014 PDFs for the central scale choice
of μR ¼ μF ¼ mA. Each column represents different values of the
mixing angle α.

K-factor α ¼ 0 α ¼ 1 α ¼ π=4 α ¼ π=6

Kð1Þ 1.6990 1.7124 1.7083 1.7048
Kð2Þ 2.1571 2.1814 2.1741 2.1677
Kresum

ð1Þ 2.0033 2.0803 2.0570 2.0368

Kresum
ð2Þ 2.2785 2.4392 2.3907 2.3485

K̄resum
ð1Þ 2.3425 2.4284 2.4025 2.3799

K̄resum
ð2Þ 2.4737 2.5966 2.5595 2.5272

FIG. 7. Pseudoscalar production cross sections at NNLOþ
NNLL for different choices of PDF’s, normalized with respect to
those obtained from MMHT2014 PDF’s.
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the addition of the NSV resummed results increase the
NLOþ NLL (NNLOþ NNLL) cross sections by approx-
imately 35%ð17%Þ of the LO ones for α ¼ π=4 and by
about 34%ð18%Þ of the LO ones for α ¼ π=6. Overall, we
observe that as we change the mixing angle, the corre-
sponding QCD corrections change only by a few percent.
In [30], the authors also conclude that if a Higgs boson

production is considered for any arbitrary value of the
mixing angle while neglecting its decay, then the results up
to NNLO may be obtained by a simple rescaling of the
scalar and pseudoscalar cross sections as below:

σ ¼ cos2 α · σH þ sin2 α · σA ð68Þ

where σ is the superposed cross section, σH is the pure
Higgs cross section and σA is the pure pseudoscalar Higgs
cross section. In such a scenario, if the pseudoscalar Higgs
boson production cross section is made available to a
precision comparable to that of the scalar Higgs boson, then
it can prove helpful in extracting the mixing angle to a
better accuracy.
It is necessary to clarify here that a number of angular

observables corresponding to the decay products of the
Higgs boson must be studied for establishing its properties.
When such a Higgs decay is considered, the simple
reweighting formula in Eq. (68) fails, and consequently,
the corresponding K-factors similar to those given in
Table III get modified slightly. However, such a detailed
analysis (including the angular distributions of the decay
products) is beyond the scope of this article.
Finally, we attempt to give predictions for the pseudo-

scalar production cross section after including the
resummed results to N3LL accuracy and then matching
them to the FO N3LOA results. Here, N3LOA results
represent the approximate full FO results at third order
in QCD which we have taken from the public code
[60,109,111–113]. In the left panel of Fig. 8, we plot

the pseudoscalar production cross section as a function of
its mass mA at third order and present the results upto

N3LOA þ N3LL. In the right panel, we give the corre-
sponding K-factors obtained by normalizing with the LO
cross sections. We also give K-factors for the FO case by
keeping only the third order SVand SVþ NSV results, and
compare with those of the N3LOA. The N3LOSV results are
closer to the N3LOA ones in the high mass region, while
N3LOSVþNSV results get a bit closer to the N3LOA ones in
the low mass region. We observe that the inclusion of NSV
corrections either at the FO level or their resummation
through NSV substantially increase the cross sections.
However, a detailed phenomenological study at N3LL

level accuracy, including the estimation of theoretical
uncertainties, require additional terms such as the resum-
mation constant hg33ðωÞ that are yet to be determined. In
each of the above cases, the N3LO level PDF’s are also not
available yet. However, it can be anticipated that the
uncertainty will get further reduced if the full N3LO results
with the corresponding PDF’s are made available.

VII. SUMMARY

In this work, we have performed the NSV resummation
for the pseudoscalar production process to NNLL accuracy
in QCD at the LHC. We further make a detailed phenom-
enology of the same and present our results for 13 TeV
LHC. We have computed the NSV corrections at both first
and second orders in QCD and compared them with the full
NLO and NNLO corrections for gluon fusion subprocess.
We find that these NSV corrections are potentially large
and enhance the pseudoscalar production cross sections
much more than the conventional SV or threshold loga-
rithms. We also give numerical results for the NSV
resummed results to NNLL accuracy by systematically
matching to the FO NNLO cross sections. We find that
these NSV resummed predictions give large contributions

FIG. 8. Pseudoscalar production cross section at third order in QCD (left panel) and the corresponding K-factors (right panel). The
corresponding resummed results to N3LL accuracy are also given after matching them to the approximate full N3LOA results.
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to the cross sections than what the SV resummation results
do. We estimate the size of these corrections in terms of the
resummed K-factors defined with respect to the LO and
find them to be as large as 3 at NNLOþ NNLL accuracy in
the high mass region. We also estimate in our predictions
the uncertainties due to the choice of various parton
densities and those due to the unknown renormalization
and factorization scales. We find that the conventional
7-point scale uncertainties do not get improvement after
performing the NSV resummation, suggesting the require-
ment of including NSV contributions from other parton
channels as well as beyond NSV contributions in the gluon
fusion channel. Specifically, we notice that the μF scale
variations while keeping μR fixed, lead to large uncertain-
ties in the pseudoscalar production cross sections in the
high mass region. However, for the pure μR variation,
keeping μF fixed, we find that the scale uncertainties get
reduced significantly to about 1.8% for mA ¼ 700 GeV
and are much smaller than those of the SV resummed
results ð∼6.4%Þ. We also present the production cross
sections for mixed scalar-pseudoscalar state and study the
impact of QCD corrections on them for different values of
the mixing angle α. We find that these QCD corrections
change with the mixing angle by a few percent. We

anticipate that these precision results are useful in future
analyses aiming to study the CP-properties of the discov-
ered Higgs boson.
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APPENDIX A: NSV COEFFICIENT FUNCTIONS

In this section, we present our analytical results of the
SVþ NSV coefficient functions up to N3LO order.
Expanding the SVþ NSV coefficient function in
Eq. (13), in powers of as, we obtain

ΔA;NSV
g ðz; q2Þ ¼

X∞
i¼0

aisΔA;NSV
g;i ðz; q2Þ: ðA1Þ

where

ΔA;NSV
g;0 ¼ δð1 − zÞ; ΔA;NSV
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APPENDIX B: SV COEFFICIENTS IN SOFT COLLINEAR DISTRIBUTION

In this section, we present the explicit expressions for ϕ̂SV;ðiÞ
g ðεÞ appearing in Eq. (37):
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g ðεÞ ¼ −
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APPENDIX C: SINGULAR NSV COEFFICIENTS IN SOFT COLLINEAR DISTRIBUTION

In this section, we present the explicit expressions for the singular coefficients φNSV;ðiÞ
s;g ðz; εÞ appearing

in Eq. (40):
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