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The Berry phase is analyzed for Weyl and Dirac fermions in a phase space representation of the
worldline formalism. Kinetic theories are constructed for both at a classical level. Whereas the Weyl
fermion case reduces in dimension, resembling a theory in quantum mechanics, the Dirac fermion case
takes on a manifestly Lorentz covariant form. To achieve a classical kinetic theory for the non-Abelian
Dirac fermion Berry phase a spinor construction of Barut and Zanghi is utilized. The axial anomaly is also
studied at a quantum level. It is found that under an adiabatic approximation, which is necessary for
facilitating a classical kinetic theory, the index of the Dirac operator for massless fermions vanishes. Even
so, similarities of an axial rotation to an exact noncovariant Berry phase transform are drawn by application
of the Fujikawa method to the Barut and Zanghi spinors on the worldline.
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I. INTRODUCTION

The Berry, or geometric, phase describes the phase
accumulation from a nonholonomic motion of a quantum
system [1], and successfully explains the Hall current and
conductivity [2], the anomalous Hall effect [3], and
electronic transport properties in condensed matter [4],
such as for relativistic Fermi-Dirac distributions in Weyl
semimetals [5]. The phase is characterized by a topology
made visible through the adiabatic theorem [6], and for
chiral fermions exist as Weyl nodes in crystal quasimo-
mentum space [4] that permit an anomalous inflow gov-
erning a chiral (axial) anomaly. It has shown in [7–9] that at
a classical level—in contrast to its usual quantum habitat—
the effects of an anomaly are present in a Boltzmann
equation in what is known as the chiral kinetic theory.
Classical chiral (massless) kinetic theories, (based on an

invariant phase space measure due to the Berry phase [10]),
have been extended to non-Abelian Dirac fermions [8] and
gauge fields [11], and to even spatial dimension [12]. Also
see [13] for lattice quantum chromodynamic (QCD) simu-
lations of non-Abelian Berry curvatures. Furthermore, quan-
tum chiral kinetic theories (nonequilibrium real-time theories
exhibiting quantum anomalous phenomena [14]) have been

well-studied, from Hamiltonian approaches [15,16], path
integrals [7–9,17], Wigner function approaches [16,18–20],
and effective theories [16,21–24]. Quantum kinetic theories
in a worldline setting have also been studied in [25]. Further
applications are shown in [26], and the numerical simulations
for chiral kinetic theories have been developed in the context
of heavy-ion collisions in [27]. The chiral radiation transport
theory of neutrinos has been recently developed in [28]
based on a generalized chiral kinetic theory in curved
spacetime [29].
Likewise, quantum kinetic theories for massive fermions

have also been derived based on a quantum field theoretic
Wigner function [30,31], with follow-up studies in, e.g.,
[32]; also, see recent reviews in [33]. A quantum kinetic
theory for massive fermions is also one microscopic
approach to describe the spin polarization in the relativistic
heavy ion collisions [34]. See [35] and references therein
for the applications of quantum kinetic theory combined
with hydrodynamic simulations to discuss the spin polari-
zation. After integrating over the momentum, the quantum
kinetic theory becomes a macroscopic description for spin
dynamics, named relativistic spin hydrodynamics [36].
More discussions on the spin polarization in the relativistic
heavy ion collisions can be found in the recent reviews [37].
While Lorentz covariant kinetic theories exist in a

quantum setting, a manifestly covariant classical kinetic
theory guided by anomalous effects stemming from an
invariant phase space measure is curiously absent [38], and
its construction is half of the twofold scope of the current
work. Since a Dirac fermion dispersion relation exists in
topological insulators [39], Dirac semimetals [40], etc.,
with prominent 3þ 1 dimensional non-Abelian Berry
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curvature, the construction of a corresponding classical
kinetic theory can prove indispensable for their transport
and nonequilibrium study. A distinct merit of the worldline
approach as compared to a perturbative in ℏ Wigner
function approach (see, e.g., [16,18–20]), is its nonpertur-
bative construction, which may be important for non-
perturbative corrections to kinetic theories that may
include for example the Schwinger effect. Another key
merit of the worldline formalism is an all-orders description
of the gauge field. In quantum electrodynamics (QED) and
QCD a classical description of a kinetic theory may then
serve as a starting point to a nonperturbative in ℏ descrip-
tion of a quantum kinetic theory. A classical kinetic theory,
built on a Lorentz covariant Berry phase, is accessible
through a phase space representation of the first-quantized
worldline formalism, and equipped with such a Berry phase
brings us to the other half of our twofold scope: exploring
the relationship of the phase with the axial anomaly.
The Berry phase in a phase space worldline setting

provides us with a unique perspective to study the anomaly.
One can understand an exact [41] Berry phase that includes
both diagonal (adiabatic) and off-diagonal parts, on the
worldline with the use of a non-Abelian gauge transforma-
tion, U ∈ G for group G, of Hamiltonian, H ∈ LieðGÞ,
under propertime or parametrization, τ:

H → U−1HU þ iℏU−1 d
dτ

U; ð1Þ

this is essentially thewell-known transformation in quantum
mechanics [43], but with time replaced with propertime. The
exact Berry phase is−iℏU−1ðdU=dτÞ, and on the other hand
the axial anomaly describes the nonconservation of axial
current, broken by quantum effects in a gauge field configu-
rationwith nontrivial topology [44]. The connection between
the Berry phase and Wess-Zumino terms through a Born-
Oppenheimer approximation was first established in [45],
and there has been ample work comparing and contrasting
both the axial anomaly and its potential origins from the
Berry phase; see, e.g., [6]. Then in [42] a careful study
illustrated key differences with application of the adiabatic
approximation. We find similarly that while a classical
kinetic theory may be built from a worldline phase space
Berry phase under adiabaticity, the same adiabaticity criteria
employed at the quantum level—we calculate the index for
massless fermions [46]—makes the anomaly disappear.
To achieve a classical kinetic theory in a worldline phase

space setting, we make use of a coherent state formalism
[47] on the worldline; this process entails an identification
of the matrix weighted worldline action and path ordering
as a path integral over coherent states. An intuitive
construction built with spinors fortunately exists owing
to Barut and Zanghi (BZ) [48,49]. The formalism has been
extended to curved space [50], and can be quantized in
propertime in a Schrödinger-like picture [51]. Coherent

states have proved useful in the non-Abelian Stokes
theorem [52], and the non-Abelian worldline instanton
method [53]. Coherent states have also enjoyed application
to chiral kinetic theories in several contexts: for non-
Abelian Dirac fermions [10] and gauge fields [11], and
in a worldline setting with Grassmann variables for color
and fermionic degrees of freedom [25]. Note that an
analogous auxiliary formulation may also be utilized [54].
A phase space representation of the worldline formalism

is provided in Sec. II. Then a classical kinetic theory for
Weyl fermions is derived in Sec. III. Next a Berry phase for
Dirac fermions is given in Sec. IV, along with a BZ
coherent state to analyze the phase in Sec. VA, and finally
a Dirac classical kinetic theory is argued in Sec. V B. Last,
we analyze potential connections to the axial anomaly
under a Berry phase both under adiabaticity in Sec. VI, and
more generally as a gauge transformation using the
Fujikawa method in Sec. VII.
Notations are as follows: We work in Minkowski

spacetime with metric gμν ¼ diagð1;−1;−1;−1Þ. For the
completely antisymmetric tensor, ϵμναβ, we take ϵ0123 ¼ 1.
Our QED covariant derivative readsDμ ¼ ∂μ þ iðe=ℏcÞAμ.
The covariant Weyl matrices are σμ ¼ ðI2; σiÞ and σ̄μ ¼
ðI2;−σiÞ. For Dirac matrices we work in the Weyl repre-
sentation:

γ0¼
�

I2
I2

�
; γi¼

�
σi

−σi

�
; γ5¼

�−I2
I2

�
; ð2Þ

with spin tensor σμν ¼ ði=2Þ½γμ; γν�, and an antisymmetric
tensor in Lorentz indices is indicated with brackets such that
A½μν� ¼ Aμν − Aνμ. Let us finally remark on some variable
specificities: pμ and qμ represent, respectively, the kinetic
and canonical momenta. Subscripts with “W” and “D”
refer, respectively, to Weyl and Dirac fermions. Dotted
variables denote a total derivative with respect to proper-
time, e.g., _x ¼ dx=dτ.

II. PHASE SPACE WORLDLINE
REPRESENTATION

Let us begin our discussion of the Berry phase by first
reviewing the worldline formalism [55], but in phase space
[56] rather than configuration space. While the phase space
representation enjoyed active study initiated by Midgar’s
QCD loop calculations [56], it fell out of favor in place of
the configuration space representation. This is in part due to
the analytically tractable quadratic form in the configura-
tion space worldline action; i.e., there is at least an Oð_x2Þ
term present in the action. Even so, with the aid of the BZ
coherent state [48,49] adopted for the worldline, we can
demonstrate there are key advantages for certain applica-
tions in the usage of a phase space worldline representation.
One advantage can be clearly seen in the intuitive extension
of a 3 dimensional Weyl Hamiltonian, i.e., HW ¼ p × σ,

PATRICK COPINGER and SHI PU PHYS. REV. D 105, 116014 (2022)

116014-2



proposed in [7–9], for development of a classical kinetic
theory, to the quantum mechanical-like 3þ 1 dimensional
worldline Dirac Hamiltonian,

HD ¼ −=pþmc; ð3Þ

with kinetic momentum pμ, thus affording us, upon trans-
formation, with an intuitive picture of the Berry phase in
momentum space. Also, let us point out that worldline
phase space representations have enjoyed application to
noncommutative Snyder spaces [57].
To illustrate the phase space representation let us derive

the propagator for a massive fermion in a background
electromagnetic field. We begin with the formal solution
[58], where we have assumed a minimal substitution,
∂μ → Dμ ¼ ∂μ þ iðe=ℏcÞAμ, and introduce Schwinger
propertime such that

GðA; x; yÞ ¼ hxj −ℏ
iℏ=∂ − e

c =A −mcþ iϵ
jyi

¼
Z

∞

0

dTihxje− i
ℏðHD−iϵÞT jyi; ð4Þ

where now HD ¼ −=qþ ðe=cÞ=AðxÞ þmc, with canonical
momentum qμ, and a small ϵ is required for convergence of
the propertime integral, which from here out we leave
implicit. Here, operators are understood based on context.
Let us construct the appropriate path integral via a
Legendre transformation [59]. Then in the Heisenberg
representation we construct a path integral through a
Legendre transformation using L ¼ qμð∂H=∂qμÞ −H.
One can find with the use of the Hamiltonian equation,
_xμ¼−ði=ℏÞ½xμ;H�¼γμ, where we have also used ½qμ; xν� ¼
iℏgμν. Then for kinetic momentum, pμ ¼ qμ − ðe=cÞAμðxÞ,
we find for the Lagrangian,

L ¼ −pμ _xμ −
e
c
AμðxÞ_xμ þ =p −mc: ð5Þ

Finally, using the identity,

hxje− i
ℏHT jyi ¼

Z
xðTÞ¼x

xð0Þ¼y
Dx
Z

Dp
2πℏ

Pe
i
ℏ

R
T

0
dτL; ð6Þ

one can find the accompanying path integral form as,

GðA; x; yÞ ¼ i
Z

∞

0

dT
Z

x

y
Dx
Z

Dp
2πℏ

e
i
ℏSAWD; ð7Þ

SA ≔
Z

T

0

dτ

�
−mc − pμ _xμ −

e
c
Aμ _xμ

�
; ð8Þ

with a path ordered (acting on Dirac indices) factor
being

WD ≔ P exp

�
i
ℏ

Z
T

0

dτ=p

�
: ð9Þ

For a derivation from breaking up the propertime, T, into
infinitesimal segments see [60]. Let us also mention that an
effective action can also be constructed in a similar fashion:

Γ½A� ¼ −iℏTr ln
�
iℏ=∂ −

e
c
=AðxÞ −mc

�
ð10Þ

¼ iℏtr
Z

∞

0

dT
T

I
Dx
Z

Dp
2πℏ

e
i
ℏSAWD; ð11Þ

with appropriate counterterms. Here
H
Dx ¼ R dx0 R Dx

with periodic path integral endpoints xð0Þ ¼ xðTÞ ¼ x0.
Let us remark that the functional trace in the effective

action in Eq. (11) may instead be expressed in terms of
momentum [58]. This amounts a replacement of the path
integral measure to

R
Dx
H
Dp=ð2πℏÞ, where now H Dp ¼R

dp0 R Dp with periodic path integral endpoints,
pðTÞ ¼ pð0Þ ¼ p0. The periodicity in momentum is impor-
tant for the realization of a Berry phase in the worldline
phase space construction.
In this section, we have introduced the phase space

worldline representation for Dirac fermions; however, it is
first instructive to examine the massless Weyl fermion case.
Then we can bridge the connection to quantum mechanical
classical kinetic theory case [7–9].

III. WORLDLINE CLASSICAL KINETIC
THEORY FOR WEYL FERMIONS

Due to the chiral anomaly spawning from the fermion
determinant under chiral rotation [61], Eq. (9) may not be
separated into left and right parts. Also it has been found
important to take the small mass limit only for final expect-
ation values for the massive theory [62], indeed massless
QED and QED in the small mass limit are two different
theories [63]. Nevertheless it is of theoretical interest to
analyze the case of Weyl fermions as they appear as gapless
excitations in semimetals [5], whose study has supplied a
new understanding and observation [40] of the anomaly.
Therefore we postulate the following Lagrangian for left
component Weyl fermions in Minkowski spacetime as

LW ¼ iℏψ†
Lσ̄μD

μψL: ð12Þ

Upon integrating out the fermions we are left with the
effective action, which may be represented in the worldline
path integral formalism following similar steps as outlined
above, whose form is similar to Eq. (11) however with the
replacement
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WD → WW ≔ P exp

�
i
ℏ

Z
T

0

dτpμσ̄
μ

�
; ð13Þ

and also for the massless fermions, m → 0.
We may diagonalize the pμσ̄

μ term by breaking up the
path integral, inserting complete sets of eigenstates,
UðpÞU†ðpÞ ¼ I2, as illustrated in [7–9]. The eigendecom-
position of the Weyl worldline Hamiltonian reads

U†pμσ̄
μU ¼ p0I2 þ jpjσ3; ð14Þ

where importantly the energy remains diagonal and does
not contribute to the Berry phase. Let us next confine our
attention to the worldline effective action, which traces over
Eq. (13). Then after the transformation one may find for the
revised path ordered element:

trWW¼ trP exp

�
i
ℏ

Z
T

0

dτ½p0I2þjpjσ3−BW× _p�
�
; ð15Þ

where Berry’s connection and curvature are, respectively,

BW ¼ −iℏU†∇pU; SW ¼ ∇p × BW; ð16Þ

andwe havemade use of the cyclicity of the trace and the fact
thatUðpð0ÞÞ ¼ UðpðTÞÞ. To find the unitary transformation
let us write p ¼ jpjðsin θp cosωp; sin θp sinωp; cos θpÞ,
then the normalized set of eigenvectors, with U ¼
ðu−; uþÞ, are

u− ¼
�
e−iωp cos θp

2

sin θp
2

�
; uþ ¼

�−e−iωp sin θp
2

cos θp
2

�
: ð17Þ

For large propertimes, T, such that the adiabatic theorem
applies and off-diagonal terms in the Berry phase may be
dismissed, Eq. (15), decouples into

trWW ≈
X
�

exp

�
i
ℏ

Z
T

0

dτ½p0 � jpj − B∓
W × _p�

�
; ð18Þ

where � sums over the positive and negative energy
contributions, and the components of the Berry phase
for adiabatic transport for the positive and negative energy
particles can be found as

B�
W ¼ −iℏu�∇pu�; S�W ¼∇p ×B�

W ¼∓ℏ
p

2jpj3 : ð19Þ

To construct a kinetic theory, let us focus on the positive
energy particle; here the worldline action reads,

SW ¼
Z

T

0

dτ

�
−pμ _xμ−

e
c
Aμ _xμþp0− jpj−Bþ

W× _p

�
: ð20Þ

One may note that after a reparametrization, τ → Tτ0, the
proper time, T, would act as a Lagrange multiplier sending
the single particle action on shell, i.e., p0 ¼ jpj. The
equations of motion for the worldline action above are

_pμ ¼
e
c
Fμν _xν; _x ¼ p

jpj þ SþW × _p; _x0 ¼ 1; ð21Þ

which are the same as those for the reduced dimension, (i.e.,
3þ 1 → 3), quantum mechanics case found in [7–9].
Therefore we can see the Weyl worldline Berry phase is
the same as its noncovariant counterpart, and therefore
analogous treatments with the quantum mechanical case
hold. One may equally well here define a classical
kinetic theory by constructing an invariant measure phase
space, ð1þ S�W × BÞd3xd3p=ð2πÞ3 with magnetic field B,
whose introduction into a phase space distribution, ρW ¼
ð1þ S�W × BÞfW, modifies a Liouville equation, and makes
possible classically the axial anomaly, chiral magnetic effect
[64], and chiral vortical effect [65]. While a phase space
worldline classical kinetic theory is the same for the non-
relativistic case for Weyl fermions, for Dirac fermions the
worldline construction displays several unique features.

IV. BERRY PHASE FOR DIRAC FERMIONS

Moving our attention to the full case of Dirac fermions
we wish to apply a geometric phase transformation to
trWD, given in Eq. (9), as was accomplished for the Weyl
case above. A natural Lorentz invariant choice for the
transformation is through the use of spinors. Then one may
cast the spinors into an s ∈ SOð1; 3Þ similarity transform.
Following Eq. (1), one can then see =p → s−1=psþ iℏs−1 _s
with accompanied Berry phase, where s−1 ¼ γ0s†γ0. The s
may be chosen to take

s−1=ps ¼ pγ0; ð22Þ

where we make use of the following notations throughout:

p ≔
ffiffiffiffiffiffiffiffiffiffi
pμpμ

p
; p̂μ ¼ pμ=p: ð23Þ

A key distinction from Weyl fermion case above and the
Dirac Hamiltonian of quantum mechanics, i.e.,
γ0γ · pþ γ0m, is that the transformed element of the phase
space worldline Dirac fermion, Eq. (22) is proportional to
p. However, like the Weyl fermion case (for jpj ¼ 0)
discussed above the degenerate point at p ¼ 0 here is
crossed, signaling anomalous effects in the breakdown of
adiabaticity [7].
In the Dirac representation of the gamma matrices

Eq. (22) would be diagonal; however, we elect to use
the Weyl representation. A hallmark of using Weyl spinors
is that s is block diagonal, so therefore so too is the Berry
phase, and thus the Berry phase in the Weyl representation
can only mix left and right parts.
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Let us digress on the generalization of the diagonaliza-
tion of the worldline phase space Hamiltonian. One may
equally well select s such that the transformed element is
pγ5, which is diagonal in the Weyl representation, and of
course one may alternatively use the Dirac representation.
As expected these choices are irrelevant to quantum
observables; we will revisit the ambiguity in Sec. VI.
Let us also note that we will treat a noncovariant eigende-
composition, which does not transform under SO(1,3), in
Sec. VII; it yields pγ5 and has interesting properties such a
covariant Berry phase, in contrast here where a side-jump is
present after Lorentz boost [9,19].
The explicit eigendecomposition of =p is motivated from

positive and negative energy eigenspinor solutions such that
=pui ¼ pui and =pvi ¼ −pvi, with ūi ¼ uiγ0 and v̄i ¼ viγ0.
The set of eigenspinors are orthonormalized so that
ūiuj ¼ −v̄ivj ¼ δij, ūivj ¼ 0, and

P
i uiūi − viv̄i ¼ I4.

A set of solutions in the Weyl gamma matrix representation
can be found as [66]

ui¼
1ffiffiffi
2

p
 ffiffiffiffiffiffiffiffiffiffi

p̂μσ
μ

p
ξiffiffiffiffiffiffiffiffiffiffi

p̂μσ̄
μ

p
ξi

!
; vi¼

1ffiffiffi
2

p
 ffiffiffiffiffiffiffiffiffiffi

p̂μσ
μ

p
ηi

−
ffiffiffiffiffiffiffiffiffiffi
p̂μσ̄

μ
p

ηi

!
; ð24Þ

for the sets of two component spinors, ξi and ηi. However, for
simplicitywe select ξ1 ¼ η1 ¼ ½1; 0�T and ξ2 ¼ η2 ¼ ½0; 1�T .
The arguments of the square roots are understood to be

ffiffiffiffiffiffiffiffiffiffi
p̂μσ

μ
q

¼ ð2pðpþ p0ÞÞ−1=2½pμσ
μ þ pI2� ≔ p̂μ

1
2

σμ; ð25Þ
ffiffiffiffiffiffiffiffiffiffi
p̂μσ̄

μ
q

¼ ð2pðpþ p0ÞÞ−1=2½pμσ̄
μ þ pI2� ¼ p̂μ

1
2

σ̄μ: ð26Þ

Gathering the spinors into a similarity transform
of the type depicted above one can construct s ¼
ð1= ffiffiffi

2
p Þ½u1; u2; v1; v2�ðγ0 − γ5Þ, or

s ¼ γμγ0p̂
μ
1
2

; s−1 ¼ γ0γμp̂
μ
1
2

; ð27Þ

which takes =ps ¼ sγ0p or s−1=p ¼ pγ0s−1. An exact (con-
taining both adiabatic components and parts that do not
commute with the adiabatic components) Berry phase that
is a pure gauge transformation of =p can be found as

BPGμ ¼ −iℏs−1ð∂p
μsÞ

¼ ℏ
2

1

p0 þ p
γ0fðδμν − p̂μp̂νÞσν0 − p̂νσνμgγ0: ð28Þ

Let us now remark on the adiabatic theorem as it applies
to the worldline construction with propertime taking the
place of real time. It is sufficient to examine solely the path
ordered expression in Eq. (9) that appears in the path
integral. Then in analogy to the quantum mechanical case,
we can recognize an adiabaticity for both large propertimes,

T, and large gap separating eigenvalues of the positive and
negative modes, 2p: 2pT ≫ 2πℏ; see, e.g., [7–9]. Let us
write this step as

lim
Ad

WD ≔ lim
pT≫πℏ

WD

≈ sP exp

�
i
ℏ

Z
T

0

dτ½pγ0 − BAdμ _pμ�
�
s−1; ð29Þ

for adiabatic Berry phase depicted with BAdμ. sð−1Þ are
given in Eq. (27). Yet, in the worldline formalism in
contrast to a quantum mechanical Berry phase we encoun-
ter two obstacles: 1) The propertime T is a parameter, and
moreover for full quantum observables is integrated over.
Thus the large propertime criteria for adiabaticity in such
instances is not met. 2) pμ is also integrated over and
moreover need not lie on shell; this distinction also impedes
an adiabatic approximation. Nevertheless, for the construc-
tion of a classical kinetic theory—built from the classical
equations of motion—such obstacles may be avoided since
one may take the propertime integral which acts as a
Lagrange multiplier enforcing the on-shell constraint. (We
will also look at the quantum chiral anomaly case in
Sec. VI, in which the propertime criteria may surprisingly
be met.) It is also of interest to speculate where appropriate
the nonadiabatic case. This is for small gap and small
(approaching the UV limit) propertimes such that
2pT ≪ 2πℏ. We will, however, mostly focus on the
adiabatic Berry phase in this study so as to provide contrast
from the worldline perspective to previous classical kinetic
theory studies [7–9,11,12], whom have all but exclusively
employed the adiabatic theorem.
In order to identify the adiabatic part of the Berry phase

for the Weyl representation gamma matrices let us show in
matrix form the phase’s explicit eigenspinor representation.
We have for Bμ _pμ the following:

ℏ
2i
γ0ðγ0− γ5Þ

0
BBB@
ū1 _u1 ū1 _u2 ū1 _v1 ū1 _v2
ū2 _u1 ū2 _u2 ū2 _v1 ū2 _v1
v̄1 _u1 v̄1 _u2 v̄1 _v1 v̄1 _v2
v̄2 _u1 v̄2 _u2 v̄1 _v2 v̄2 _v2

1
CCCAðγ0− γ5Þ: ð30Þ

Then for large eigenvalue �p, and hence large gap
separating u and v leading to the adiabatic theorem, we
can determine the pieces that remain in the adiabatic limit
are those with structure ūi _uj and v̄i _vj. One can compactly
write the connection making use of the rotation compo-
nents of the spin tensor, which are

Γμν ≔ ½γμ; γν� þ γ0½γμ; γν�γ0; ð31Þ

Γμν is composed of two gamma matrices with nonequal
spatial indices. Using the above one can find for the
adiabatic Berry connection as
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Bμ
Ad ¼ i

ℏ
8

1

p0 þ p
Γμνp̂ν: ð32Þ

Note that, the connection here is block diagonal by virtue of
the Weyl representation.
As anticipated for the adiabatic theorem with trans-

formation to pγ0 we have that ½Bμ
Ad; γ0� ¼ 0. Likewise one

can find that fBμ; γ0g ¼ 2Bμ
Adγ0. The adiabatic Berry phase

for Dirac fermions has been explored in [4,67,68], where it
was illustrated that the phase may likened to Thomas
procession, with usage of Lorentz covariant spinors, and
the spin-orbit interaction with usage of noncovariant ones.
The adiabatic Dirac Berry phase in a quantum mechanical
setting was further analyzed with motivation to a classical
kinetic theory in [8].
Let us next address the Berry curvature. First we confirm

that the exact curvature disappears since it is a pure gauge,

SμνPG ¼ ∂μBν
PG − ∂νBμ

PG þ iℏ−1½Bμ
PG; B

ν
PG� ¼ 0; ð33Þ

using Eq. (28). However the adiabatic curvature is finite. It
is useful to introduce the following identity with the tensor
given in Eq. (31):

½Γμν;Γαβ� ¼ 8½wν½αΓμβ� þ wμ½βΓνα��; ð34Þ

for wμν ≔ gμν − gμ0gν0. Then, we can determine the adia-
batic curvature as

SμνAd ¼ ∂pμBν
Ad − ∂pνBμ

Ad þ iℏ−1½Bμ
Ad; B

ν
Ad�

¼ i
ℏ
8

ðp̂½μ þ g½μ0ÞpαΓαν� − ðpþ p0ÞΓμν

p2ðp0 þ pÞ : ð35Þ

We find the above connection and curvatures are radial
[68], i.e., pμB

μ
Ad ¼ pμS

μν
Ad ¼ 0.

In this section we have defined a Berry connection and
curvature in the phase space worldline representation that
serve as a natural extension from the quantum mechanical
picture. An adiabaticity is also discussed, however we leave
the study on the Berry phase for nonadiabatic processes for
future work. Before we may construct a classical kinetic
theory from the adiabatic Berry phase we must first employ
a coherent state picture so that we can treat a well-defined
scalar weighted worldline action. The coherent state picture
is furthermore of value in its physical opaqueness.

V. WORLDLINE CLASSICAL KINETIC
THEORY FOR DIRAC FERMIONS

Having treated the Berry phase for Dirac fermions in the
phase-space worldline setting, inline for the Weyl case, one
can see that the adiabatic phase is non-Abelian. Therefore
the worldline action is matrix weighted and a path ordering
is present [c.f., Eq. (18): the Weyl case possesses neither
after the adiabatic theorem], and determination of the

Euler-Lagrange equations is challenging. To address this
we make use of a coherent state, and fortunately a coherent
state formalism exists for the worldline phase space
representation under the initial work of Barut and
Zanghi [48], and the formalism has been applied to the
path integral [49].

A. Barut-Zanghi spinor coherent state

With the BZ coherent state, the phase space conjugate
variables, ðxμ; pμÞ, are enlarged to accommodate spin
degrees of freedom with c-number spinors ðz;−iz̄Þ ∈ C4,
with z̄ ¼ z†γ0. BZ spinors exist in a first-quantized setting;
however, they possess many features in common with the
usual second-quantized spinors in Quantum Field Theories
(QFTs), we will illustrate below.
First, to get a better understand the formalism, let us

briefly review the case before having applied the
Hamiltonian transformation, Eq. (1), leading to Berry’s
phase. To do so let us begin by writing down the worldline
action of Eq. (11) with Eq. (8) with the BZ spinors as

SD ¼ SA þ
Z

T

0

dτ½z̄=pzþ iℏz̄ _z�; ð36Þ

where the z; z̄ are the auxiliary c-number spinors acting on
Dirac indices. One may find the equations of motion from
the above action as

_xμ ¼ z̄γμz; _pμ ¼
e
c
Fμν _xν; _z ¼ i

ℏ
=pz; _̄z ¼ −

i
ℏ
z̄=p:

ð37Þ

An advantage of the usage of BZ spinors comes from an
intuitive interpretation of their bilinear form to the corre-
sponding QFT observable. For example, consider the
velocity with z̄γμz; we can see this quantity may be likened
to the vector current, however at classical level and without
second quantized operators obeying the Clifford algebra.
A symplectic system with appropriate Poisson brackets
may also be constructed [48]. Last, consider the case of no
background electromagnetic field, notice that an oscillating
motion is present about the center-of-mass frame, i.e., there
are sinusoidal terms in _xμ with argument 2pτ. This is the
Zitterbewegung [69], which predicts a rapid center of
charge oscillation about the center-of-mass of the electron.
More details for the above equations can be found
in [48,49].
After having applied the transformation of Eq. (1) with s

given in Eq. (27) one can see

z̄=pz → z̄s−1=psz; z̄ _z → z̄ _zþz̄s−1 _sz: ð38Þ

One can then recognize the SO(1,3) transformation as
being a Lorentz transformation of the gamma matrices,
characterizable for momentum dependent boost/rotation,
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ωμν, as sðpÞ ¼ exp½ði=2ÞωμνðpÞσμν� and s−1ðpÞ ¼
exp½−ði=2ÞωμνðpÞσμν�.
To construct a path integral from a path ordered element

such as Eq. (9) obeying the Dirac matrix representation of
the Clifford group in 3þ 1 dimensions, we require the
resolution of the identity. Consider for ðz;−iz̄Þ ∈ C4 the
normalization

Z0 ¼
Z

dz̄dze−z̄z ¼ π4; ð39Þ

which one may supplement with generators such that

Zη ¼
Z

dzdz̄e−z̄zþz̄ηþη̄z ¼ Z0eη̄η: ð40Þ

Then the resolution of the identity immediately follows as,Z
dΩzzaz̄b ≔ Z−1

0 ∂ η̄a∂ηbZηjη¼0 ¼ δab; ð41Þ

where we have made explicit Dirac indices. Similar
manipulations lead toZ

dΩzzaz̄bzcz̄d ¼ δcdδabþ δadδbc;Z
dΩzzaz̄bzcz̄dzez̄f ¼ δabδcdδef þ δabδcfδedþ δadδbcδef

þ δadδcfδbeþ δafδbcδedþ δafδcdδbe;

ð42Þ
etc., corresponding to all permutations of spinor bilinears.

B. Covariant and classical equations of motion
with Berry phase

Equipped with a Dirac fermion Berry phase and also a
spinorlike coherent state one can cast the path ordered
factor into a path integral with Berry’s phase. To achieve
this let us break up the path ordered Dirac matrix weighted
exponential as

trWD ¼ lim
N→∞

trP
YN−1

n¼0

�
I4 þ

i
ℏ
τ

N
pμ

�
nτ
N

�
γμ
�
; ð43Þ

where into each infinitesimal element we introduce both the
redefinition including the Berry phase through ss−1 ¼ I4,
for similarity transform given by Eq. (27), and also the
resolution of unity of the coherent state, Eq. (41). Then
taking the large N limit the Dirac matrix exponential
becomes

trWD ¼
I

DΩz exp

�
i
ℏ

Z
T

0

dτ½z̄pγ0z− z̄Bμz _pμ þ iℏz̄ _z�
�
:

ð44Þ

Here the
H
DΩz describes the measure with the coherent

state integral, Eq. (41), with periodic boundary conditions,
zð0Þ ¼ zðTÞ, by virtue of the Dirac trace. Note also that like
before we assume here that pð0Þ ¼ pðTÞ, and hence
sðpð0ÞÞ ¼ sðpðTÞÞ, since one may equally well write
the trace of the effective action in terms of momentum
as opposed to the coordinates.
Applying Eq. (44) to the effective action in Eq. (11), we

see that the worldline action now becomes

S0D ¼ SA þ
Z

T

0

dτ½z̄pγ0z − z̄Bμz _pμ þ iℏz̄ _z�; ð45Þ

where SA is the part of the action given by Eq. (8); c.f. see
Eq. (36). The equations of motion for enlarged phase space
of ðxμ; pμ; z; z̄Þ are

_xμ ¼ D̄μ − S̄μν _pν; _pμ ¼
e
c
Fμν _xν; ð46Þ

_̄z ¼ −
i
ℏ
z̄ðpγ0 − Bμ _pμÞ; _z ¼ i

ℏ
ðpγ0 − Bμ _pμÞz; ð47Þ

where we have denoted spin averaged quantities as
S̄μν ≔ z̄Sμνz, D̄μ ≔ z̄Dμz, etc. Here the diagonal element
with commutation with the Berry phase reads

Dμ ≔ γ0p̂μ − iℏ−1p½γ0; Bμ�: ð48Þ

Note that the commutation term vanishes for the adiabatic
Berry connection. The above equations are the 3þ 1
dimensional Lorentz covariant extension in phase space
of the 3 dimensional ones found in Eq. (21), or in [7–9].
We must invert

Gμν ≔ gμν þ
e
c
S̄μσFσ

ν; ð49Þ

and it is convenient to do the inversion with the help of
Cayley Hamilton’s theorem. A few Lorentz invariants will
come in handy:

IF̃F ¼−
1

4
F̃μνFμν; I ˜̄SS̄ ¼−

1

4
˜̄SμνS̄μν; IS̄F ¼

1

2
S̄μνFμν;

ð50Þ

where F̃μν ¼ ð1=2ÞϵμναβFαβ. Let us also introduce the
following identities:

F2 − F̃2 ¼ −IF̃FI4; S̄2 − ˜̄S2 ¼ −I ˜̄S S̄I4;

F̃F ¼ IF̃FI4;
˜̄S S̄ ¼ I ˜̄S S̄I4; S̄F − F̃ ˜̄S ¼ −IS̄FI4;

ð51Þ

where we use an implicit Lorentz index matrix notation,
e.g., Fμ

ν≕F. Then we can find that
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ðS̄FÞ2 þ IS̄FS̄F − IF̃FI ˜̄S S̄I4 ¼ 0; ð52Þ

which is Cayley Hamilton’s theorem stemming from
det½G − λδ� for generic eigenvalue λ. Then using the above
formula, one can verify the inverse of Eq. (49) is

½G−1�μν ¼
1ffiffiffiffiffiffiffiffiffiffi
detG

p
�
gμν þ

e
c
F̃μσ

˜̄Sσν

�
; ð53Þ

where
ffiffiffiffiffiffiffiffiffiffi
detG

p ¼ 1 − ðe=cÞIS̄F − ðe=cÞ2IF̃FI ˜̄S S̄. Then we
can then find for the equations of motion, Eqs. (46)–(47),

ffiffiffiffiffiffiffiffiffiffi
detG

p
_xμ ¼

�
gμν þ

e
c
F̃μσ

˜̄Sσν

�
D̄ν; ð54Þ

ffiffiffiffiffiffiffiffiffiffi
detG

p
_pμ ¼

�
e
c
Fμν þ

�
e
c

�
2

IF̃F
˜̄Sμν

�
D̄ν: ð55Þ

These are the covariant worldline equivalent of Eq. (21), (or
those in a quantum mechanical setting as shown in [7–9]).
Let us first remark on the exact pure gauge case, Eq. (28).

It can be clearly seen that only a trivial correction to the
equations of motion can be found, i.e., _xμ ¼ D̄μ and
_pμ ¼ ðe=cÞFμνD̄ν, since the Berry curvature vanishes in
the pure gauge case. There will be no terms that contain the
anomaly factor, IF̃F, and hence one cannot construct a
classical kinetic theory. Therefore, let us examine just the
adiabatic case for a classical kinetic theory.
Similar to the Weyl case, one may find for the modified

and canonically conserved [70] phase space measure as

dμD ¼
ffiffiffiffiffiffiffiffiffiffi
detG

p d4pd4xdΩz

ð2πÞ4 : ð56Þ

The phase space measure has been extended to include BZ
spinors. To construct a classical kinetic theory let us define
a phase space distribution function, f, that satisfies a
collisionless Boltzmann equation,

d
dτ

f ¼
� ∂
∂τ þ _xμ∂μ þ _pμ∂p

μ þ _za∂z
a þ _̄za∂ z̄

a

�
f ¼ 0: ð57Þ

Let us furthermore assume the most general distribution
function, which has the form of aWigner function [31,33,71]
up to bilinear in BZ spinors, and may be written as

fðx;p;z; z̄Þ ¼ f0ðx;pÞ

þ 1

4
z̄fSþ γ5Pþ γμVμþ γμγ5Aμþ σμνT μνgz:

ð58Þ

The key distinction between the above and the distribution
function for theWeyl case is that we no longer have pure left-
or right-handed distributions. Therefore averaging _x with

Eq. (58) over momentum and spin no longer represents a
vector current density. However, by the physical opaqueness
of the BZ formalismwe can interpret the classical quantities.
This is simplest to do studying the case before having applied
the Hamiltonian transformation leading to the Berry phase
with classical equations of motion given in Eq. (37)—here
the canonically conserved phase space measure is Eq. (56)
but with

ffiffiffiffiffiffiffiffiffiffi
detG

p
→ 1. Then it can be readily inferred after

averaging over the BZ spin variables, using Eq. (42), that
each constituent in Eq. (58) may be likened to its associated
quantum expectation value. Namely we have that the vector
and axial vector currents are, respectively, given by

jVμ ¼
Z

d4pdΩz

4ð2πÞ4
ffiffiffiffiffiffiffiffiffiffi
detG

p
_xμz̄γνVνz; ð59Þ

jAμ ¼
Z

d4pdΩz

4ð2πÞ4
ffiffiffiffiffiffiffiffiffiffi
detG

p
_xμz̄γνγ5Aνz: ð60Þ

Classical currents associated with f0, S, P, and T μν vanish
after taking the BZ spinor integral for either the before [with
velocity given in Eq. (37)] or after [Eqs. (54)–(55)] Berry
phase cases due to a trace over an odd number of gamma
matrices. What is interesting but anticipated is that jAμ

vanishes before having taken the transformation leading to
the Berry phase; let us now examine after the transformation.
To arrive at a classical phenomenological equivalent of

the anomaly let us make use of the fact that

∂μð
ffiffiffiffiffiffiffiffiffiffi
detG

p
_xμÞ ¼ 0; ð61Þ

∂μ
pð

ffiffiffiffiffiffiffiffiffiffi
detG

p
_pμÞ ¼

�
e
c

�
2

IF̃F∂μ
pð ˜̄SμνD̄νÞ; ð62Þ

∂zað
ffiffiffiffiffiffiffiffiffiffi
detG

p
_zaÞ þ ∂ z̄að

ffiffiffiffiffiffiffiffiffiffi
detG

p
_̄zaÞ

¼ i
2ℏ

e
c

�
e
c
IF̃F

˜̄Sμν − Fμν

�
z̄½Sμν; pγ0 − Bμ _pμ�z: ð63Þ

Also, our treatment so far has been generic. Let us now go
ahead and assume an adiabatic connection, Eq. (32), and
curvature, Eq. (35); also Dμ → γ0p̂μ in the adiabatic case.
Then, using Eqs. (42), we may go ahead and integrate out
the spin degrees of freedom to find as anticipated that the
vector current is conserved,

∂μjVμ ¼ 0: ð64Þ

However the divergence of the classical axial vector current
can be found as
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∂μjAμ ¼
�
e
c

�
2

IF̃F

Z
d4p
ð2πÞ4

1

2
trγργ5Aρ∂p

μ S̃
μν
Adγ0p̂ν

¼
�
e
c

�
2

IF̃F

Z
d4p
ð2πÞ4

−2ℏ
p3ðp0 þ pÞA × p: ð65Þ

We find the nonconservation of classical axial current is
proportional to the factor of the anomaly, IF̃F, Eq. (50), as
expected, indicating an anomalous contribution at a
classical level, and an initial axial vector distribution,
Aμ, must be present for nonvanishing Eq. (65); in this
way a net chirality may be introduced. In a similar way, for
the Weyl case; one strictly had a distribution for a chiral
particle with enslaved helicity owing to the adiabaticity, and
in order for the classical axial anomaly to appear the
degenerate gas of Weyl fermions had to have an imbalance
in chemical potentials for the chiral particles. Finally, forms
of Aμ can be reasoned such that the right-hand side of
Eq. (65) be equivalent to that given by the axial anomaly,
namely with value ℏe2=ð2c2π2ÞIF̃F. However, the axial
vector distribution is largely unconstrained, with the
exception of the Boltzmann equation in Eq. (57); therefore,
we leave the expression in Eq. (65) as its final form.
Classical constructions of the anomaly in a kinetic theory

have been explored for Weyl fermions [11,12], and also for
massive and massless Dirac fermions in [8]. Notably in [8]
through a quantum mechanical non-Abelian Berry phase it
was found the anomaly appeared only after application of
the massless limit. At the quantum level, particularly with
utilization of the Wigner function formalism, kinetic
theories that encapsule the axial anomaly have been
well-studied; see Sec. I for pertinent literature. Let us point
out, that our setup in contrast with others’ which make use
of a Wigner function formalism possess differences. Most
notably we must insert a similarity transform to arrive at the
Berry phase and hence classical description of a classical
kinetic theory. If such a similarity transform was introduced
into, e.g., a Schwinger-Keldysh partition function, the
initial density matrix would be transformed as well.
Therefore, one must inherently treat the classical descrip-
tion of the axial current nonconservation in Eq. (65) at a
phenomenological level.
We will expose in the next section a striking example of

why Eq. (65) cannot fully represent the axial anomaly at the
quantum level: We will apply the adiabatic approximation
to the quantum anomaly to show the anomaly always
vanishes.

VI. VANISHING INDEX UNDER ADIABATICITY

We saw above that through an incompressible phase
space by virtue of the Berry phase, what would be a
quantum level crossing was imparted into an otherwise
classical construction—just as was originally demonstrated
in [7–9], and for the Weyl case in Sec. III. Also like the
Weyl case where a chiral chemical potential was used, for

the Dirac case in order to see a nonconservation of the
current a distribution function with axial vector coupling
was required. However, the quantum anomaly exists
independent of an initial distribution, and no phenomeno-
logical addition is needed, therefore it is prudent we explore
the fully quantum case with appeal to a Berry phase. We
will demonstrate that the axial anomaly under the adiabatic
approximation as conceived in Eq. (29) for Dirac fermions
in a phase space the worldline setting vanishes.
Let us treat the index theorem for just such a quantum

description [46]. It has the virtue of describing rigorously
the sum over the zero modes of the Dirac operator in a
gauge field. We may equate the index to the number of
chiral modes and hence the quantum anomaly description
of a nonconservation of axial current for massless fermions.
Our strategy will be to apply the Berry transformation and
adiabatic theorem; the assumption is if an adiabatic Berry
phase as led to in Eq. (29) shares a topological origin to the
index theorem, then such a step would be unhindered,
otherwise their connection would be null. Let us emphasize
we treat only the adiabatic case; taking an exact pure
gauge transformation Eq. (28) would not hinder the index
theorem.
We take as our definition of the index in Minkowski

spacetime:

In ≔ lim
M→∞

Trγ5
−M

iℏ=D −M
; ð66Þ

which agrees with the definition for the pseudoscalar
condensate for large mass. To arrive at a more conventional
definition [72] note that also In ¼ limM→∞ Trγ5 ×
½M2=ðℏ2=D2 þM2Þ�. One may cast the above into a phase
space worldline path integral:

In ¼ lim
M→∞

tr
Z

d4pMγ5GðA; p; pÞ; ð67Þ

with Green’s function given by Eq. (7) withm → M written
in the momentum representation.
Now let us turn our attention to the evaluation of the

traced path ordered element; this is trγ5WD. One may break
up path ordered element as shown in Eq. (43), inserting in a
complete sets of states, i.e., ss−1 ¼ I4 with s given by
Eq. (27) to arrive at

trγ5WD ¼ trγ5P exp

�
i
ℏ

Z
T

0

dτ½γ0p − Bμ _pμ�
�
; ð68Þ

where we note that ½s; γ5� ¼ ½s−1; γ5� ¼ 0 and that
sðpð0ÞÞ ¼ sðpðTÞÞ due to the periodicity criteria.
That we may apply the adiabatic theorem and drop level

crossing terms amounts to the propertime, T, and p being
finite and large; see Eq. (29) and related arguments in
Sec. IV. Specifically one has pT ≫ πℏ. As an initial
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observation, let us absorb M into the Schwinger proper
time, T, such that T → M−1T. This step would already be at
odds with the adiabaticity criteria sending the integration
limits to ½0;M−1TÞ, which would negate the criteria for
the adiabatic theorem. Nevertheless, one may show that
trγ5WD is in fact independent of T since

ℏ
i
d
dT

trγ5WD ¼ trγ5=pðTÞWD ¼ trγ5WD=pð0Þ
¼ −trγ5=pðTÞWD ¼ 0; ð69Þ

where we have made use of the definition of the path
ordering in T, the Dirac trace, and the momentum perio-
dicity criteria: =pðTÞ may be put into the path ordering
because it is already in its path ordered place. However
since pð0Þ ¼ pðTÞ, it may equally well go to the front of
the path ordering. The argument is analogous to the fact
that ∂In=∂M2 ¼ 0 for finite M in Eq. (66); see [72] and
references therein for details. Therefore, Eq. (68) too must
be independent of T. Even so we surprisingly find that with
the adiabatic approximation the index vanishes. Namely

trγ5P exp

�
i
ℏ

Z
T

0

dτ½γ0p − BAdμ _pμ�
�

¼ 0; ð70Þ

and hence

lim
Ad

In ¼ 0; ð71Þ

where the limit acts on the path ordered element as shown
in Eq. (29). This step can be clearly seen by expanding the
path ordering in the above similar as was defined for
Eq. (43). Since Bμ

Ad will always be a product of two spatial
gamma matrices, i.e., γiγj for i; j ¼ 1–3, one will find an
infinite product of even spatial gamma matrices, and a
product of γ0 matrices. Hence, the trace with γ5 must
always vanish. Therefore, the adiabatic approximation for
the index theorem cannot be applied.
This statement holds quite generally. Even if we selected,

instead of s given in Eq. (27), s with spinors such that
s−1=ps ¼ γ5p, one would find the same disappearance.
Such a transform could be written ð1= ffiffiffi

2
p Þ½u1; u2; v1; v2�.

We will further look at another example of a similarity
transform in the following section not built from covariant
spinors, but which still follows the same adiabaticity
criteria; using it too one can see that Eq. (71) still holds.
While the propertime criteria for the adiabatic theorem

can be met according to Eq. (69), finite (large) p cannot
since all values are integrated over. Then when the adiabatic
theorem is applied, a level crossing at p ¼ 0 is inhibited.
However such a level crossing makes possible the anomaly
in topological gauge fields, and therefore by applying the
adiabatic theorem we have inhibited the anomaly and hence
why it is thought Eq. (71) vanishes. We can furthermore

stress this inhibition noting that the index, according to
Eq. (69), is independent of the mass, M, since trγ5WD is
independent of T, which would have enforced a coupling to
the mass. Since there is no mass coupling the adiabatic
theorem, relying on both a large mass and on-shell criteria,
is incompatible with the index. Let us also remark that a
similar phenomenon of a vanishing anomaly has been
found in [62], whereby the divergence of the axial current,
through the axial Ward identity (comprised of the index and
pseudoscalar condensate components), vanishes. Last, that
the adiabatic theorem cannot lead to the quantum anomaly
was first examined in [42]. However, our approach here is
novel in that we may directly contrast with the kinetic
theory through the adiabatic Berry phase.
A curious corollary follows from the above arguments:

instead of the adiabatic approximation, one uses the off-
diagonal level crossing components of the Berry phase, i.e.,
those with v̄ _u or ū _v in Eq. (30); then In need not disappear
from taking the Dirac trace. Exploring this more fully is,
however, left for future studies.
While we have seen that the adiabatic Berry phase makes

the index, or quantum anomaly, vanish, the same cannot be
said for an exact Berry phase, or a transformation given by
Eq. (1). With the aid of the Fujikawa method applied to the
BZ coherent state one can observe several commonalities
between both chiral rotations and transformations leading
to an exact Berry phase.

VII. FUJIKAWA METHOD ON THE WORLDLINE

To begin our discussion let us first show how an axial
rotation in the BZ spinor coherent state can reproduce the
axial-Ward identity [44] via the Fujikawa method [61]. This
derivation serves two purposes: We may shortly contrast
the axial rotation with a similarity transform leading to the
Berry phase. And we may also confirm the validity of
the BZ spinor coherent state, especially confirming how the
formalism relates to the subtleties of an axial rotation to the
fermionic determinant. To begin let us take the effective
action, Eq. (11), however written with the aid of the
coherent state:

Γ½A� ¼ iℏ
Z

∞

0

dT
T

I
Dx
Z

Dp
2πℏ

e
i
ℏSA trWD; ð72Þ

trWD ¼
I

DΩz exp

�
i
ℏ

Z
T

0

dτ½z̄=pzþ iℏz̄ _z�
�
; ð73Þ

where SA can be found from Eq. (8). Then we perform the
axial rotation

z → exp½iθðτÞγ5�z: ð74Þ

We acquire an anomalous phase from the transformation,
which in principal requires regularization for its evaluation.
The BZ coherent state factor becomes
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trWD ¼ det½e2iθγ5 �
I

DΩz

×exp

�
i
ℏ

Z
T

0

dτ½z̄=pz−ℏ_θ z̄e2iθγ5γ5zþ iℏz̄e2iθγ5 _z�
�
:

ð75Þ

Note that we have bosonic degrees of freedom for the
coherent state, and hence the sign of the determinant.
Rather than evaluating the anomalous phase directly, we

absorb it into functional determinant of the coherent state.
For the c-number spinor variable one finds

trWD ¼ det

�
e−2iθγ5=p − ℏ_θγ5 þ iℏ

d
dτ

�
−1
: ð76Þ

One can also find the same functional determinant after
integrating out the spinors from Eq. (73), then inserting
expðiθγ5Þ expð−iθγ5Þ into the argument of the determinant.
Let us pause to notice the axial rotation can be written

into the form of a Hamiltonian transformation via Eq. (1) as

=p → e−iθγ5=peiθγ5 þ iℏe−iθγ5
d
dτ

eiθγ5 : ð77Þ

Therefore, one can classify an axial gauge transformation
as an exact Berry or geometric phase according to Eq. (1).
However, unlike the Berry phase where commonly evoked,
there is obviously no eigendecomposition in the axial
transform.
To arrive at the axial-Ward identity let us reverse the

steps we have taken with Eq. (76) to arrive at a path ordered
expression,

trWD ¼ trP exp

�
i
ℏ

Z
T

0

dτ½e−2iθγ5=p − ℏ_θγ5�
�
: ð78Þ

Finally, let us restrict the form of the rotation angle so that
θðτÞ ¼ θðxðτÞÞ, then the effective action may be written as

Γ½A� ¼ −2ℏTrθγ5 − iℏTr ln

�
=p −

e
c
=A − ℏ=∂θγ5 − e2iθγ5mc

�
;

ð79Þ

which is precisely the form of the QED partition function
after applying the axial rotation. The axial-Ward identity
can be found by looking at small θ, and also by evaluating
the functional trace of γ5 [61].
Having demonstrated how the Fujikawa method may be

applied to the BZ spinor coherent state on the worldline, let
us look at a special eigendecomposition that unlike that
used in Sec. IV is composed of noncovariant eigenvectors.
A noncovariant treatment for the Berry phase has also been
explored in [73], which examined the phase’s relationship
to a spin-orbit coupling. The treatment has been explored

in [68] where the Berry curvature was argued to possess
topological characteristics of the Yang-Mills meron [74].
Consider a similarity transform, s̃, such that s̃−1ps̃ ¼ γ5p,

but with s̃−1 ≠ γ0s̃†γ0, and hence cannot be cast into an
SO(1,3) transformation with Dirac matrix representation.
The similarity transform reads

s̃ ¼ 1ffiffiffi
2

p ðI4 − γ5p̂Þ ¼ exp

�
−
8nþ 1

4
πγ5p̂

�
; ð80Þ

s̃−1 ¼ 1ffiffiffi
2

p ðI4 þ γ5p̂Þ ¼ exp

�
8nþ 1

4
πγ5p̂

�
; ð81Þ

for n ∈ Z. The similarity transform resembles the axial
transform, Eq. (74), however with the additional placement
of the linear term p̂. The Berry phase here reads

B̃PGμ ¼
1

2p2
½σμνpν þ iγ5ðpγμ − p̂μ=pÞ�; ð82Þ

which is a pure gauge transformation and the adiabatic
approximation has not been used. A spin-tensor structure of
the adiabatic phase, the σμνpν=ð2p2Þ part of the connection,
here is readily apparent.Note,we have that the phase here too
is radial: B̃PGμpμ ¼ 0.
Let us remark that application of Eq. (80) instead of

Eq. (27) to the path ordered element for the quantum axial
anomaly presented in Sec. VI would also lead to a
vanishing index theorem. Therefore the incompatibility
of the worldline adiabaticity and the index theorem is quite
robust.
Similar to the above case with an axial rotation let us

redefine the coherent state spinors with the transform given
in Eq. (80),

z → s̃z: ð83Þ

Then in analogy to Eq. (75) we find for the BZ coherent
state factor

trWD ¼ det½e−ð8nþ1Þ
2

πγ5p̂�
I

DΩz

× exp

�
i
ℏ

Z
T

0

dτ½z̄=pzþ iℏz̄ s̃ _̃s zþ iℏz̄e−
ð8nþ1Þ

2
γ5p̂ _z�

�
;

ð84Þ

where we have used the fact that s̃†γ0 ¼ γ0s̃, and that
s̃=ps̃ ¼ =p. We find in a similar way to the axial rotation of
Eq. (74), here too lies a functional determinant stemming
from the Jacobian of the transformation, however here with
a functional trace of γ5p̂. Also analogous to Eq. (75), we
see the similarity transform does not change the =p term.
Following analogous steps as used for the axial rotation

one can also find that
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trWD ¼
I

DΩz exp

�
i
ℏ

Z
T

0

dτ½z̄pγ5z− z̄B̃μ
PGz _pμþ iℏz̄ _z�

�
;

ð85Þ

which is the expected Berry phase transformation. An
interesting merit of using the noncovariant eigenvector
transformation can be seen in that now the worldline
Lagrangian is manifestly Lorentz invariant and no side-
jump [9,19] term is present after boosting.
Unlike the axial rotation case, here the passage to an

equivalent effective action is not a straightforward pro-
cedure. Because of a the _pμ term present in the Lagrangian
a noncommutative structure persists, marring a simple form
for the effective action. Therefore we cannot rigorously
define the determinant given in Eq. (84) in an operator
form, and hence cannot evaluate it at this time.

VIII. CONCLUSIONS

The Berry phase has been examined in the worldline
formalism in a phase space representation with both aim to
classical and quantum phenomena related to the axial
anomaly, for the former classical kinetic theories were
constructed for both Weyl and Dirac fermions. For the case
ofWeyl fermions the chiral kinetic theory in the phase space
worldline representation resembled closely the same theory
which could be found from a reduced dimension quantum
mechanical construction.However, forDirac fermions a non-
Abelian Berry phase was present, which demanded appli-
cation of a coherent state—we adopted spinors introduced by
BZ—to the path ordered element (9) so that classical
equations of motion could be found. With application of
the adiabatic theorem on the phase space worldline, and
introduction of a Wigner-like distribution function, a
classical and covariant kinetic theory was formulated, whose
nonconservation of axial current could be seen with axial
vector contributions in the distribution function.

However, using the same adiabaticity that was applied to
construct the Dirac classical kinetic theory, yet applied to
the quantum Dirac operator index, it was found that the
index vanished, suggesting that one may not apply the
adiabatic theorem in determination of the axial anomaly.
Therefore, we argue the anomalous effects found in the
Dirac classical kinetic theory should be of phenomeno-
logical origin; this is moreover the case since for the kinetic
theory an axial vector distribution was required, whereas
for the index theorem no such introduction by hand would
be necessary. Even though adiabaticity mars calculation of
the Dirac index, by application of the Fujikawa method for
BZ spinors, we find a chiral rotation shares some similar-
ities to the similarity transform leading to a noncovariant
Berry phase.
To achieve the classical kinetic theories, new approaches

using the Berry phase on the phase space worldline
were found which merit future study. Notably, we have
only examined the adiabatic case; however, a nonadiabatic
limit, i.e., with 2pT ≪ 2πℏ, requires further investigation.
This is important because this well incorporates both
the UV limit in propertime and, in the on-shell limit,
massless fermions. Also, a noncommutative structure is
present in the Berry transformed worldline Hamiltonian
that may point to new physics and will be studied in
another work.
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