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The total cross section of the process eþe− → ΛΛ̄ is calculated within the energy range close to the mass
of the ψð3770Þ charmonium state. Two different contributions were considered: the D-meson loop and the
three gluon charmonium annihilation one. Both of them contribute noticeably and in sum, fairly reproduce
the data. Large relative phase for these contributions are generated with respect to the pure electromagnetic
mechanism. As a by-product, the fit for the electromagnetic form factor of Λ hyperon is obtained for the
large momentum transferred region.
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I. INTRODUCTION

The bound state of a pair of charmed quarks are the one of
the most clear and simple system, which allows one to study
the details of a confinement mechanism and to refine the
conjectures of quantum chromodynamics (QCD). During
recent decades, these states are under intensive experimental
and theoretical study [1–4]. The special interest is focused
on the electron-positron annihilation processes with the
production of different mesonic and baryonic final states
thus, giving us a clear way to produce and to study the
charmonium in pure JPC ¼ 1−− state. The binary final states
(i.e., with two particles finally produced) give the possibility
to further simplify the consideration of the processes with
charmonium in the intermediate state [5].
Besides, it was shown a long time ago that these

processes are an excellent way to measure the electromag-
netic form factors of the particles produced [6,7]. There is an
enormous set of the measurements of the electromagnetic
form factors of the proton, for example, by the BABAR
Collaboration [8,9] or by the BES III Collaboration [10].
But the other baryons are also under study: Λ0 and Σ0

baryons [11,12], Σ� baryons [13], Ξ0, Ξ−, and Ω− baryons
[14]. For a recent review of the situation on ΛΛ̄ pair

production, see a review [15]. A lot of interest has been paid
to the near threshold behavior of these form factors [16,17],
which demonstrates the nontrivial enhancement effect.
Many theoretical ideas to explain this effect were proposed
(see, for example, [18,19]).
In this paper, we want to consider the process of electron-

positron annihilation into a pair of Λ hyperons, which was
recently precisely measured in the vicinity of ψð3770Þ
charmonium [20]. The charmonium ψð3770Þ is one of the
intriguing states that was studied by many collaborations
(for example, by KEDR-VEPP-4M [21,22], CLEO [23],
and more recently, BES III [24,25]). In one paper [25], one
can find the measurement of the cross section of the process
eþe− → pp̄ with the specific care to the region near the
mass of ψð3770Þ, which demonstrates the dip instead of
enhancing the Breit-Wigner peak. This is the manifestation
of the large relative phase that is generated by the inter-
mediate charmonium state with respect to the pure electro-
magnetic background. In papers [26,27], we showed that the
source of this phase is mostly attributed to the three gluon
mechanism of the charmonium decay. Here, we consider the
similar process eþe− → ΛΛ̄; which also must have large
relative phase coming from the same three gluon mecha-
nism. Since all the calculations were already done in [27],
here we just briefly recall the main formulas and put the
main focus on the details that differ in the ΛΛ̄ case.
The paper is organized in the following manner: in

Sec. II, the total cross section of the process eþe− → ΛΛ̄
in the Born approximation is presented and the electro-
magnetic form factors of the Λ hyperon are discussed;
Sec. III shows how the charmonium in the intermediate
state contributes to the total cross section; two subsequent
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Secs. IVand V show the main formulas for the OZI-allowed
mechanism with the D-meson loop and for the OZI-
violating three gluons mechanism. Section VI gives some
numerical estimations and comparison of our calculation
with experimental data from BES III [20]; Sec. VII con-
cludes our results and proposes some possible extension of
this work in the future.

II. BORN APPROXIMATION

We consider the process of electron-positron annihilation
into a pair of Λ baryons,

eþðqþÞ þ e−ðq−Þ → Λðp1Þ þ Λ̄ðp2Þ; ð1Þ

where quantities in parenthesis are the four momenta of the
corresponding particles. The cross section for the process
has the standard way,

dσ ¼ 1

8s

X
spins

jMj2dΦ2; ð2Þ

where the summation of the amplitude square jMj2 runs
over all possible initial and final particles spin states. We
systematically neglect the mass of the electron me in this
paper. The phase volume of final particles dΦ2 has the
form,

dΦ2 ¼
1

ð2πÞ2 δðqþ þ q− − p1 − p2Þ
dp1

2E1

dp2

2E2

¼ jpj
24π2

ffiffiffi
s

p dΩΛ ¼ β

24π
d cos θΛ; ð3Þ

where dΩΛ ¼ dϕΛd cos θΛ and ϕΛ and θΛ are the azimu-
thal and the polar angles of the final Λ-baryon momentum
in the center-of-mass reference frame (center of mass
system, c.m.s); i.e., θΛ is the angle between three momenta
of the initial electron q− and the final Λ-baryon p1 (see
Fig. 1) and jpj≡ jp1j ¼ jp2j ¼

ffiffiffi
s

p
β=2 is the modulus of

the three momenta of the final Λ or Λ̄. Here, the quantity
β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

Λ=s
p

is the final Λ-baryon velocity, with MΛ
being the mass of Λ baryon.
In the Born approximation [see Fig. 2(a)], the amplitude

M ¼ MB in (2) describes the electron-positron pair
annihilation into virtual photon, which then produces the

ΛΛ̄ pair. The amplitude MB corresponding to this process
has the form,

MB ¼ 1

s
Jeē→γ
μ ðqÞJμ

γ→ΛΛ̄ðqÞ; ð4Þ

where s ¼ q2 ¼ ðqþ þ q−Þ2 ¼ ðp1 þ p2Þ2 is the total
invariant mass squared of the lepton pair (q is the momen-
tum of the intermediate photon). The quantities Jeē→γ

μ and

Jγ→ΛΛ̄
μ are electromagnetic currents,

Jeē→γ
μ ðqÞ ¼ −e½v̄ðqþÞγμuðq−Þ�; ð5Þ

Jγ→ΛΛ̄
μ ðqÞ ¼ e½ūðp1ÞΓμðqÞvðp2Þ�; ð6Þ

where e is the modulus of electron charge e ¼ ffiffiffiffiffiffiffiffi
4πα

p
with α

being the fine structure constant [28]. In general, the vertex
of the photon with the Λ baryon has the form,

ΓμðqÞ ¼ F1ðq2Þγμ −
F2ðq2Þ
4MΛ

ðγμq̂ − q̂γμÞ; ð7Þ

where we use the notation â≡ aμγμ. Here, the functions
F1;2ðq2Þ are the Λ-baryon electromagnetic form factors
normalized as F1ð0Þ ¼ 0 and F2ð0Þ ¼ μΛ, where μΛ is the
Λ-baryon anomalous magnetic moment.
It was shown in [29] that the nontrivial structure of the

baryon starts to manifest itself even at relatively low q2, and
thus, one must take into account these effects of the
structure. Since experimental data at the moment do not
allow one to extract the electric GE and the magnetic GM
form factors of a baryons separately, we utilize the
assumption that jGEj ¼ jGMj, i.e., F2ðq2Þ ¼ 0. Then the
total cross section in Born approximation has the form,

FIG. 1. The definition of the scattering angle θΛ from (3) in the
center-of-mass reference frame.

(a)

(b)

FIG. 2. Feynman diagrams of the process eþe− → ΛΛ̄ in Born
approximation (a) and with the charmonium ψð3770Þ intermedi-
ate state (b).
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σBðsÞ ¼
2πα2

3s
βð3 − β2ÞjF1ðsÞj2: ð8Þ

The form factor F1 is chosen to have pQCD inspired form
[30,31], which takes into account the running of the QCD
coupling constant αs,

F1ðsÞ ¼
C

s2log2ðs=Λ2
QCDÞ

; ð9Þ

where ΛQCD is the QCD scale and the constant C should be
fitted on the experimental data for baryon-antibaryon
production in a wide energy range.
For a proton in our energy region, this fit was done in [25],

giving C ¼ ð62.6� 4.1Þ GeV4 (using ΛQCD ¼ 300 MeV).
This fit qualitatively agrees with the more recent result
of paper [32], where this constant was fitted to be equal
to C ¼ 72 GeV4 with ΛQCD ¼ 520 MeV.
In our case of ΛΛ̄ pair production, we fix this constant

using the whole range of BES-III measurement [20] pre-
sented in Fig. 3. Fitting the Born cross section from (8) with
respect to this data gives us the following parameter:

C ¼ ð43.1� 1.4Þ GeV4; ð10Þ

which we use further for Λ-baryon electromagnetic form
factor (9). We note that this expression for the form factor F1

with the constant C from (10) works for a relatively large
momentum transferred q2. It does not pretend to work near
the threshold since there are many delicate features playing
important role there, such as Coulomb-like enhancement
factor [33,34] or the manifestation of wavy nature of baryon
stabilization after its emerging from the vacuum [29].

III. THE QUARKONIUM ψð3770Þ
INTERMEDIATE STATE

The main task of our work is to describe the effect of the
charmonium resonance ψð3770Þ excitation in the process
(1). As one can see in Fig. 3, the experimental point for the
cross section at

ffiffiffi
s

p ¼ Mψ [whereMψ is the ψð3770Þmass]
flies higher the Born cross section curve. In [20], there is a
fit of this point with the use of some phenomenologically
inspired formula [see Eq. (3) in [20]]. Further, we develop
the model (based on our previous calculations [26,27]),
which reveals the underlying mechanism for this point to be
upstairs.
In the region of charmonium resonance ψð3770Þ exci-

tation, one should take into account the additional con-
tribution to the amplitude,

M ¼ MB þMψ ; ð11Þ

where Mψ takes into account the mechanism with the
charmonium ψð3770Þ in the intermediate state [see
Fig. 2(b)], which is enhanced by the Breit-Wigner factor,

Mψ ¼ gμν − qμqν=M2
ψ

s −M2
ψ þ iMψΓψ

Jeē→ψ
μ ðqÞJψ→ΛΛ̄

ν ðqÞ; ð12Þ

where Γψ is the total decay width of the ψð3770Þ resonance
and Jeē→ψ

μ and Jψ→ΛΛ̄
μ are the currents that describe the

transition of the lepton pair into the ψð3770Þ resonance and
the transition of the ψð3770Þ resonance into a ΛΛ̄ pair,
correspondingly. Following [26], we assume that Jeē→ψ

μ has
the same structure as Jeē→γ

μ from (5); i.e.,

Jeē→ψ
μ ðqÞ ¼ ge½v̄ðqþÞγμuðq−Þ�; ð13Þ

where the constant ge ¼ Fψ→eē
1 ðM2

ψ Þ is the value of the
form factor of the vertex ψ → eē at the ψð3770Þ mass shell
[here, we follow the same approximation as in the Born
case and assume that Fψ→eē

2 ðM2
ψ Þ ¼ 0]. We fix this constant

ge via the total decay width of ψ → eþe−, which is known
to be equal to Γψ→eþe− ¼ 261 eV [28],

ge ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12πΓψ→eþe−

Mψ

s
¼ 1.6 × 10−3: ð14Þ

We neglect a possible imaginary part of the vertex ge since
it was shown in [35] that it is small, less then 10% of
the real part. We also note a mistake in our paper [27]
where this constant is claimed to be related with the
ψ → pp̄ decay.
The amplitude Mψ from (12) interferes with the Born

one MB, giving the standard interference contribution to
the cross section,

FIG. 3. The total cross section for the process eþe− → ΛΛ̄.
The black line is the cross section in Born approximation (8). The
curve errors origin from the form factor constant (10) fitting
errors.
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dσint ¼
1

8s

X
spins

2Re½Mþ
BMψ �dΦ2; ð15Þ

which leads to the following form of the interference
contribution to the total cross section:

σintðsÞ ¼ Re

�
SiðsÞ

s −M2
ψ þ iMψΓψ

�
; ð16Þ

where SiðsÞ contains all the dynamics of the transformation
of charmonium into ΛΛ̄ pair and has the following explicit
form:

SiðsÞ ¼
egeβ
48πs

Z
1

−1
d cos θΛ

X
s0
ðJα

γ→ΛΛ̄Þ�J
ψ→ΛΛ̄
α : ð17Þ

Here, we used the following trick of invariant phase space
integration:

X
s0

Z
dΦ2ðJμγ→ΛΛ̄Þ�Jνψ→ΛΛ̄

¼ 1

3

�
gμν −

qμqν

q2

�X
s0

Z
dΦ2ðJαγ→ΛΛ̄Þ� J

ψ→ΛΛ̄
α ; ð18Þ

where summation
P

s0 goes over all spin states of final
particles. This trick significantly simplifies the treatment of
Lorenz indexes, but it is applied only for the total phase
space integration.
The subscript index i in (17) denotes the type of

mechanism of this transformation. Since the mass of
ψð3770Þ is higher than the threshold of the D-meson pair
production, it is natural to expect that the D-meson loop
will be the main mechanism in this reaction (see Fig. 4),
and we consider it below in Sec. IV. However, we need
also to consider the OZI-violating three gluon mechanism
(see Fig. 5), which we briefly recall in Sec. V.

Having the interference contribution (16) with the total
relative phase between Born amplitude MB and the
charmonium contribution one Mψ , we can restore the
total cross section using the procedure described in [27]
[see Eqs. (15) and (16) there].

IV. D-MESON LOOP MECHANISM

Here, we follow exactly to our previous calculations
[26,27] with only one systematic modification, which is
needed to describe the ΛΛ̄ pair final state instead of the
proton-antiproton one. The D-meson loop mechanism
(presented in Fig. 4) contributes to the interference of a
charmonium state with the Born amplitude [see (17)] as

SDðsÞ ¼ αD ðsÞZDðsÞ; ð19Þ

where

αDðsÞ ¼
αge
24 3π2

βF1ðsÞ;

ZDðsÞ ¼
1

s

Z
dk
iπ2

×
SpDðs; k2Þ

ðk2 −M2
ΞÞððk−p1Þ2 −M2

DÞððkþp2Þ2 −M2
DÞ

×GψDD̄ðs; ðkþp2Þ2; ðk−p1Þ2Þ
×GΛDΞðk2; ðk−p1Þ2ÞGΛDΞðk2; ðkþp2Þ2Þ; ð20Þ

and SpDðs; k2Þ is the trace of γ-matrices over the baryon
line,

SpDðs; k2Þ
¼ Sp½ðp̂1 þMΛÞγ5ðk̂þMΞÞγ5ðp̂2 −MΛÞðk̂ −MΛÞ�
¼ 2ððk2Þ2 þ k2ðs − 2ðM2

D þMΛMΞÞÞ
− sMΛMΞ þ cDÞ; ð21Þ

cD ¼ M4
D þ 2MΛMΞM2

D þ 2MΞM3
Λ −M4

Λ: ð22ÞFIG. 4. D-meson loop mechanism.

FIG. 5. Three gluon mechanism.
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The quantities GψDD and GDΞΛ in (20) are the form factors

for the vertexes ψ → DD̄ and D → ΞΛ.
The details of the calculation of quantity ZDðsÞ can be

found in [27], but here we just recall that technically we
calculate imaginary part of this quantity and then restore the
real part of it by using the dispersion relation with one
subtraction at q2 ¼ 0. First, we need to mention that the
subtraction constant here also vanishes since the Λ hyperon
(which is the uds quarks state) do not have open charm, and
thus, the vertex ψ → ΛΛ̄ at q2 ¼ 0 is zero.
Next, cutting the diagram by D-meson propagators,

we get the vertex ψ → DD̄ with the only dependence over
charmonium virtuality q2 ¼ s since D-meson legs are
on-mass-shell,

GψDD̄ðs;M2
D;M

2
DÞ ¼ gψDD̄

M2
ψ

s

logðM2
ψ=Λ2

DÞ
logðs=Λ2

DÞ
; ð23Þ

where the scale ΛD we fix on the characteristic value of the
reaction ΛD ¼ 2MD and the constant gψDD̄ is fixed by the
ψ → DD̄ decay width,

gψDD̄ ≡GψDD̄ðM2
ψ ;M2

D;M
2
DÞ

¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3πΓψ→DD̄

Mψβ
3
D

s
¼ 18.4; ð24Þ

where βD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

D=M
2
ψ

q
is the D-meson velocity in

this decay.
Next, we consider the function GΛDΞðk2; p2Þ from (20).

Again, the only dependence left in the imaginary part of
ZD is the off-mass-shellness of Ξ baryon in the t-channel
since k2 < 0. In [26,27], we used the following form of
ΛDP-vertex based on the results of [36,37]:

GΛDPðk2;M2
DÞ ¼

fDgDNΛ

mu þmc
; k2 < 0; ð25Þ

where fD ≈ 180 MeV and

gDNΛffiffiffiffiffiffi
4π

p ¼ 1.9� 0.6: ð26Þ

For quark masses, the following values are used: mu ≈
280 MeV and mc ¼ 1.27 GeV [28]. The SUð4Þ symmetry
leads us to the same result for GΛDΞ,

GΛDΞðk2;M2
DÞ ¼

fDgΛDΞ

mu þmc
; k2 < 0; ð27Þ

where

gΛDΞ ≈ gDNΛ ¼ 6.7� 2.1: ð28Þ

V. THREE GLUON MECHANISM

The three gluon mechanism first was considered in [26],
and in [27], it was refined and some misprints and minor
mistakes were corrected. So here we just present the final
formulas for its contribution to the interference of a
charmonium state with a Born amplitude [see (17)]:

S3gðsÞ ¼ α3gðsÞZ3gðsÞ; ð29Þ

where

α3gðsÞ ¼
αα3s
233

gegcolϕβF1ðsÞGψðsÞ; ð30Þ

Z3gðsÞ ¼
4

π5s

Z
dk1
k21

dk2
k22

dk3
k23

×
Sp3gδðq − k1 − k2 − k3Þ

ððp1 − k1Þ2 −M2
ΛÞððp2 − k3Þ2 −M2

ΛÞ
; ð31Þ

where the quantity gcol ¼ ð1=4ÞhΛjdijk TiTjTkjΛi ¼ 15=2
is the color factor and Sp3g is the product of traces over
the Λ-hyperon and the c-quark lines,

Sp3g ¼ Sp½Q̂αβγðp̂c þmcÞγμðp̂c −mcÞ�
× Sp½ðp̂1 þMΛÞγαðp̂1 − k̂1 þMΛÞγβ
× ð−p̂2 þ k̂3 þMΛÞγγðp̂2 −MΛÞγμ�;

with

Q̂αβγ ¼
γγð−p̂c þ k̂3 þmcÞγβðp̂c − k̂1 þmcÞγα
ððpc − k3Þ2 −m2

cÞððpc − k1Þ2 −m2
cÞ

þ ½gluon permutations�; ð32Þ

where the permutations over gluon vertices are performed
in the gray block in Fig. 5.
The quantity ϕ in (30) is related to the charmonium wave

function ψðrÞ as

ϕ ¼ jψðr ¼ 0Þj
M3=2

ψ

¼ α3=2s

3
ffiffiffiffiffiffi
3π

p ; ð33Þ

where αs is the QCD coupling constant. We should note
that this three gluon mechanism is very sensitive to this
quantity since it depends on its value in a rather high degree
[see Eqs. (30) and (33)]. We use the value αsðMcÞ ¼ 0.28,
which is expected by the QCD evolution of αs from the
b-quark scale to the c-quark scale, i.e., to s ∼M2

c. We note
that this value differs from the one for the J=ψ charmo-
nium, which tends to feel much smaller value of parameter
αsðMcÞ ¼ 0.19 [38].
The factor GψðsÞ in (30) is the form factor that describes

the mechanism of transition of three gluons (with a total
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angular momentum equal to 1) into the final ΛΛ̄ pair.
Following [27], we suggest that this mechanism has much
in common with the proton-antiproton pair production from
the photon,

jGψ ðsÞj ¼
Cψ

s2 log2 ðs=Λ2Þ : ð34Þ

For the constant Cψ , here we use the same value as it was
obtained in the case of proton-antiproton production [27]
since gluons to not feel the flavor of the quarks in the final
baryons,

Cψ ¼ ð45� 9Þ GeV4: ð35Þ

VI. NUMERICAL RESULTS

The main building blocks for the cross section are the
quantities ZDðsÞ from (20) and Z3gðsÞ from (31), which give
the corresponding (D-meson loop and three gluon) contri-
butions. In Fig. 6, we present the dependence of ZDðsÞ as a
function of total energy

ffiffiffi
s

p
in the range starting from the

threshold of the reaction
ffiffiffi
s

p ¼ 2MΛ up to 4.5 GeV. One can
see that the shape and the numerical values of the real and the
imaginary parts of this quantity remain the same as it were in
the case of proton-antiproton final state [see Fig. 7(a) in
[27]]. As for the Fig. 7 presenting real and imaginary parts of
the quantity Z3gðsÞ, it shows the similar general behavior of
the curves as it were in the case of proton-antiproton final
state [see Fig. 7(b) in [27]] but the numerical difference is
much more noticeable. Nevertheless, the characteristic large
negative values of this quantity still remains thus, giving a
large relative phase with respect to the Born contribution in
the amplitude.
In Fig. 8, one can see the contributions from pure

D-meson loop, while in Fig. 9, the pure three gluons

contribution is present. Both of these contributions are
compared with the data of BES III Collaboration [20] in the
vicinity of ψð3770Þ resonance. For D-meson loop contri-
butions, Fig. 8, the error bands are provided by the errors of
the parameter gΛDΞ from (28). One can see that the central
value of the curve goes lower then the experimental point,
while the upper error band touches it. For the three gluons
contribution, Fig. 9, the error bands represent the uncer-
tainty of the parameter Cψ from (35). We do not include to
this error bands the possible uncertainties due to the strong
dependence of this mechanism of parameter αs [see text
after Eq. (33)]. Here, we see a good agreement of this pure
three gluon mechanism with the data point at

ffiffiffi
s

p ¼ Mψ .

,

FIG. 6. The quantity ZDðsÞ from (20) as a function of
ffiffiffi
s

p
starting from the threshold

ffiffiffi
s

p ¼ 2MΛ. The vertical dashed line
shows the position of ψð3770Þ.

FIG. 7. The quantity Z3gðsÞ from (31) as a function of
ffiffiffi
s

p
starting from the threshold

ffiffiffi
s

p ¼ 2MΛ. The vertical dashed line
shows the position of ψð3770Þ.

FIG. 8. The D-meson loop contributing to the total cross
section with respect to the BES III data [20].
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In Fig. 10, we present the total cross section including
both of these mechanisms in comparison with the BES III
data [20]. We see a rather fair agreement of our calculation
with the data: the point at

ffiffiffi
s

p ¼ Mψ is rather close to the
curve and the left and right shoulders of the curve catch the
tendency of the data. Here, we must remind that we do not
do any extra fit of the parameters. All the parameters of our
model are fixed by the calculation for the case of the
proton-antiproton final state [27].

In Fig. 11, one can see the total relative phase ϕψ of
the charmonium contribution Mψ to the amplitude with
respect to the Born contributionMB without Breit-Wigner
factor; i.e.,

SDðsÞ þ S3gðsÞ ¼ jSðsÞjeiϕψ ; ð36Þ

where SDðsÞ was defined in (19) and S3gðsÞ is from (29).
The error bands on this plot are due to both the gΛDΞ and
Cψ parameters uncertainties. As one can see at the point of
the ψð3770Þ charmonium, the relative phase is rather large,

ϕψ ≈ 202°: ð37Þ

It seems that this feature is common for the charmonium
decay into the two baryons final state. We showed this
in the proton-antiproton final state for the charmonium
ψð3770Þ in papers [26,27] and for the charmonium
χc2ð1PÞð3556Þ in paper [35].

VII. CONCLUSION

We considered the process of the electron-positron
annihilation into a ΛΛ̄ pair in the vicinity of charmonium
ψð3770Þ resonance. Besides the Born mechanism, which is
the pure QED, there are two contributions related with the
intermediate charmonium ψð3770Þ state. One of them is the
D-meson loop, and the other is the three gluon mechanism.
It was shown that both mechanisms contribute notice-

ably and give much of the final result. The total sum of
them gives a rather good agreement with the experimental
point at

ffiffiffi
s

p ¼ Mψ . It is also important that our curve
reproduces the tendency of the experimental points at the
left and at the right shoulders with respect to the central
point. It is worth to notice again that we do not use any
fitting procedure in this calculation. The parameters were
fixed for the proton-antiproton production channel in the
paper [27].

FIG. 9. The three gluon contributing to the total cross section
with respect to the BES III data [20].

FIG. 10. The total cross section including two mechanisms in
comparison with the BES III data [20].

FIG. 11. The relative phase of total GeV charmonium ψð3770Þ
contribution as a function of

ffiffiffi
s

p
.
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It is extremely desirable to make a precise scan over the
energy region around the charmonium ψð3770Þ resonance
with the small steps. This could support the conclusion
that in the charmonium decay, the phase of ψ → pp̄ and
ψ → ΛΛ̄ vertexes are large (ϕψ ∼ 200°) and can be pre-
cisely measured in this channels. We showed this large
phase generation in a set of papers [26,27,35].
In the future, we plan to consider another binary final

states production process induced by the charmonium

annihilation. Polarized effects can also be considered since
the formalism is ready, and the data are present [39].
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