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As the strength of the magnetic field (B) becomes weak, novel phenomena, similar to the Hall effect in
condensed matter physics, emerges both in charge and heat transport in a thermal QCD medium with a
finite quark chemical potential (μ). So we have calculated the transport coefficients in a kinetic theory
within a quasiparticle framework, wherein we compute the effective mass of quarks for the aforesaid
medium in a weak magnetic field (B) limit (jeBj ≪ T2; T is temperature) by the perturbative thermal QCD
up to one loop, which depends on T and B differently to left-handed (L) and right-handed (R) chiral modes
of quarks, lifting the prevalent degeneracy in L and R modes in strong magnetic field limit (jeBj ≫ T2).
Another implication of weak B is that the transport coefficients assume a tensorial structure: The diagonal
elements represent the usual (electrical and thermal) conductivities (σOhmic and κ0 as the coefficients of
charge and heat transport, respectively) and the off-diagonal elements denote their Hall counterparts (σHall
and κ1, respectively). It is found in charge transport that the magnetic field acts on L and R modes of the
Ohmic part of electrical conductivity in an opposite manner, viz. σOhmic for L mode decreases and for R
mode, increases with Bwhereas the Hall-part σHall for both L and R modes always increases with B. In heat
transport too, the effect of the magnetic field on the usual thermal conductivity (κ0) and Hall-type
coefficient (κ1) in both modes is identical to the above-mentioned effect of B on charge transport
coefficients. We have then derived some coefficients from the above transport coefficients, namely
Knudsen number (Ω is the ratio of the mean-free path to the length scale of the system) and Lorenz number
in Wiedemann-Franz law. The effect of B on Ω either with κ0 or with κ1 for both modes is identical to the
behavior of κ0 and κ1 with B. The value of Ω is always less than unity for the entire temperature range,
validating our calculations. Lorenz number (κ0=σOhmicT) and Hall-Lorenz number (κ1=σHallT) for L mode
increases and for R mode decreases with magnetic field. It also does not remain constant with temperature
hence violating the Wiedemann-Franz law.

DOI: 10.1103/PhysRevD.105.116009

I. INTRODUCTION

Quark-gluon plasma (QGP) is the deconfined phase of
quarks and gluons which is believed to have existed in the
early universe, about 10−5 sec after the cosmic big bang
and at the core of superdense stars such as neutron stars and
quark stars. Experiments at European Council for Nuclear
Research, Relativistic Heavy Ion Collider, Brookhaven
National Laboratory and Large Hadron Collider (LHC)
have been successful in creating QGP in colliders [1]. It is
also established that a magnetic field, whose magnitude
varies from jeBj ¼ 0.1m2

π for Super Proton Synchrotron
energy to jeBj ¼ 15m2

π for LHC, is also produced during
noncentral heavy ion collisions [2–4]. The strength of this
magnetic field is strong during the initial stages of QGP but
it decays very fast with time. The lifetime of magnetic field
in a charged medium, however, gets enhanced due to
the charge properties of the medium [5–8]. As the

nonvanishing magnetic field can affect the evolution of
strongly interacting matter significantly [9–16], therefore
the detailed study of its effects on transport phenomena
[17,18], thermodynamical behavior [19,20] of quark-gluon
plasma, dilepton production from QGP [21–23] has been
done. Further, the bulk evolution of QGP matter via
relativistic hydrodynamics has been described successfully,
which gave satisfactorily the collective flow of the created
matter detected in experiments [24–26]. The small ratio of
shear viscosity to the entropy density (η=s) of strongly
interacting plasma agrees well with the lower bound of
η=s ¼ 1

4π, where ℏ ¼ 1; kB ¼ 1, obtained using AdS=CFT
correspondence [27] hence, validates the use of hydrody-
namical model of QGP [28–32]. The evolution of QGP
after heavy-ion collisions can be studied using relativistic
hydrodynamics where transport coefficients serve as input
parameters.
We study the charge and heat transport coefficients

which also play an important role in the hydrodynamical
description of strongly interacting matter [33–35]. The
topological effects induced by the magnetic field can be
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quantified using electrical conductivity and play a crucial
role in the study of the chiral magnetic effect [36], which is
a signature of CP violation in the strong interaction.
Dilepton and photon production rates are used to probe
the thermalized strongly interacting matter because they
hardly interact with the hadrons in the region of hot and
dense matter and hence carry information about the early
stage of heavy ion collisions. Electrical conductivity (σel)
can be used for phenomenological studies of heavy ion
collisions [37]. Another key transport coefficient is thermal
conductivity of the QGP medium, which measures the
transport of heat due to temperature gradient in the
medium. The hydrodynamical equilibrium of the system
can be determined using Knudsen number, which is the
ratio of mean-free path to the characteristic length of the
medium. The mean-free path (λ) is related to the thermal
conductivity (κ) as λ ¼ 3κ=ðvCvÞ, where v is the relative
velocity of quark and Cv is the specific heat at constant
volume. Further, the relative behavior of κ and σel can be
understood in terms of Wiedemann-Franz law, which states
that ratio, κ=σel, of the thermal to electrical conductivity is
directly proportional to the temperature, with proportion-
ality constant being roughly the same for all metals. The
ratio κ=ðσelTÞ is known as Lorenz number (L), which is
independent of temperature and depends on fundamental
constants for all metals [38]. However, the violation of
Wiedemann-Franz law has been observed in many systems,
such as hydrodynamic electron liquid [39], high tempera-
ture superconductors [40], Luttinger liquid [41], strongly
interacting QGP medium [42] and hot hadronic matter [43].
Hence, it would be interesting to study the Wiedemann-
Franz law in our system of interest.
In the present work, we have explored the effect of

(a) weak magnetic field and (b) baryon asymmetry, in
charge and heat transport phenomena. The weak and strong
magnetic field limit can be understood from the relativistic
dispersion relation of a fermion of mass m in a uniform
magnetic field (B ¼ Bẑ):

E2
n ¼ p2

z þm2 þ 2nqB: ð1Þ

Here, n ¼ 0; 1; 2;… denotes the Landau levels. The
probability of fermions getting thermally excited to higher

Landau levels is exponentially suppressed as expð−
ffiffiffiffiffi
qB

p
T Þ

[44]. (i) In the strong magnetic field limit,
ffiffiffiffiffiffi
qB

p
≫ T, so the

fermions occupy only the lowest Landau level (n ¼ 0).
This is known as LLL approximation. (ii) If

ffiffiffiffiffiffi
qB

p
≪ T,

then fermions can occupy higher Landau levels. This
implies that the thermal energy is much larger than the
energy level spacing (∼

ffiffiffiffiffiffi
qB

p
) so that T can excite fermions

into the excited states, which justifies calling the condition
qB ≪ T2, the weak magnetic field limit. The transport
coefficients can be calculated in strong and weak magnetic
field using different approaches/models, viz. Nambu-Jona-
Lasinio model [45–47], Chapmann-Enskog approximation

[48–50], the correlator technique using Green-Kubo for-
mula [51–54], effective fugacity model [55–58], lattice
simulation [59–61]. However, we have used the kinetic
theory approach by solving the relativistic Boltzmann
transport equation. The calculation of transport coefficients
using kinetic theory has been done [18,62,63] in the
presence of strong magnetic field (qfB ≫ T2; m2

f), where
qf and mf are the electric charge and mass of quark for fth
flavor. In a strongly magnetized medium, the motion of
charged particle is restricted to the 1þ 1-dimensional
Landau level dynamics, where quark momentum is along
the direction of magnetic field. In the presence of a weak
magnetic field, however, temperature is the dominant
energy scale (T2 > qfB > m2

f) and the effect of magnetic
field comes through the cyclotron frequency (ωc). In
contrast to the case of a strong background magnetic field,
motion of charges is no longer restricted to be along the
direction of magnetic field, which gives rise to “transverse”
responses. This can also be understood via the tensor
structure of the transport coefficients at the two magnetic
field strength regimes. In the case of strong magnetic field,
the coefficient matrix is diagonal, whereas in the presence
of a weak magnetic field, off-diagonal elements also
manifest. The off diagonal elements are represented by
σHall and κ1 in the case of electrical and thermal con-
ductivities respectively. This is corroborated by the fact that
there is no σHall and κ1 in the case of strong magnetic field.
Furthermore, σHall and κ1 vanish even in the presence of a
weak magnetic field if the chemical potential, μ, is zero
[64]. The role of interaction among partons is incorporated
using a quasiparticle description of partons, where vacuum
masses of partons are replaced by medium generated
masses. The medium generated mass is calculated from
the pole of propagator, obtained through perturbative
thermal QCD in the presence of background weak mag-
netic field. In some previous studies, authors have incorpo-
rated the pure thermal medium mass of quarks in the
computation of transport coefficients [64,65], whereas we
have used the thermally generated mass with magnetic field
correction. The dispersion relation of quasiparticles in the
weak magnetic field gives rise to four collective modes, two
from left-handed and two from right-handed modes.
Various properties of dispersion relation have been dis-
cussed in [66,67]. The degeneracy in left- and right-handed
chiral modes of quarks is lifted due to their different mass in
the presence of weak magnetic field, which is in contrast to
the case of strong magnetic field. The system can be either
in left-handed mode or right-handed mode, hence the
medium generated masses for left- and right-handed chiral
modes of quarks have been taken into account separately
for the estimation of transport coefficients under both
modes. We further studied the physical behavior of the
system using the aforementioned transport coefficients via
Knudsen number and Wiedemann-Franz law for both
modes separately.
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The paper is organized as follows: in Sec. II, we discuss
the quasiparticle model of partons and hence evaluate the
medium generated mass. We use this mass as an input to
incorporate the interactions among partons, in our calcu-
lation of transport coefficients. In Secs. III and IV, we
discuss the computation of charge and heat transport
coefficients using kinetic theory within the relaxation time
approximation. In Sec. V, we present and discuss the
results for Ohmic and Hall conductivity, thermal and
Hall-type thermal conductivity, Knudsen number and
Wiedemann-Franz law. Finally, we conclude our work
in Sec. VI.

II. QUASIPARTICLE MODEL FOR HOT AND
DENSE QCD MATTER

At asymptotically high temperature, a system of quarks
and gluons can be treated as an ideal gas due to asymptotic
freedom. The interaction among quasiquarks and quasi-
gluons can be incorporated through medium dependent
mass of quasiparticles which can be evaluated using one-
loop perturbative thermal QCD. In pure thermal medium at
finite quark chemical potential (μ), the thermally generated
mass for quarks and gluons is obtained to be as [68]

m2
th ¼

1

8
g2CF

�
T2 þ μ2

π2

�
;

m2
g ¼

1

6
g2T2

�
CA þ 1

2
Nf

�
; ð2Þ

respectively, where CF ¼ ðN2
c − 1Þ=2NC ¼ 4

3
for NC ¼ 3,

CAðCA ¼ 3Þ is the group factor, Nf is the number of flavor,
g is the QCD coupling constant with g2 ¼ 4παs, where αs is
the one-loop running coupling constant, which runs with
temperature as [69]

αsðΛ2Þ ¼ 1

b1 ln
�

Λ2

Λ2

MS

� ; ð3Þ

where b1 ¼ ð11Nc − 2NfÞ=12π and ΛMS ¼ 0.176 GeV.
The renormalization scale for quarks and gluons is chosen
to be Λq ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ μ2=π2

p
and Λg ¼ 2πT respectively.

Further, the dispersion relation of fermions in pure thermal
medium (B ¼ 0) in the low (p ≪ mth) momentum and high
momentum (p ≫ mth) limit are given as [68,70]

ωþðpÞ ¼ mth þ
p
3
; p ≪ mth ð4Þ

ωþðpÞ ¼ pþm2
th

p
; p ≫ mth: ð5Þ

As we can see, the thermal mass in both the low and high
momentum limits is of the same order, mth ∼ gT.
The effective quark mass for fth flavor can be written

as [71]

m2
f ¼ m2

f0 þ
ffiffiffi
2

p
mf0mf;th þm2

f;th; ð6Þ

wheremf0 andmf;th are the current quark mass and thermal
mass for fth flavor respectively. In presence of magnetic
field, the one-loop running coupling constant, which
runs with temperature and magnetic field, is given
by [69]

αsðΛ2; jeBjÞ ¼ αsðΛ2Þ
1þ b1αsðΛ2Þ ln

�
Λ2

Λ2þjeBj
� : ð7Þ

The effective quark mass in the presence of magnetic field
can be generalized to

m2
f ¼ m2

f0 þ
ffiffiffi
2

p
mf0mfth;B þm2

fth;B; ð8Þ

where mfth;B can be obtained by taking the static limit of
the denominator of the dressed quark propagator
in the magnetic field. The inverse of the dressed quark
propagator using the Schwinger-Dyson equation can be
written as

S�−1ðPÞ ¼ S−1ðPÞ − ΣðPÞ
¼ P − ΣðPÞ; ð9Þ

where S−1ðPÞ is the bare inverse propagator and ΣðPÞ is the
quark self-energy. So, to calculate the effective quark
propagator in the presence of magnetic field at finite
temperature, we need to evaluate the quark self-energy
as shown in Fig. 1. The quark propagator in the presence of
a background magnetic field following the Schwinger
formalism can be written in terms of the Laguerre poly-
nomial (Llð2αÞ ) [72]

FIG. 1. One-loop quark self-energy in hot and magnetized
medium.
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iSðKÞ ¼
X∞
l¼0

−idlðαÞDþ d0lðαÞD̄
k2L þ 2ljqfBj

þ iγ:k⊥
k2⊥

; ð10Þ

where qf is the absolute charge of fth flavor, l ¼ 0, 1, 2,…
are the Landau levels, jj and ⊥ are the parallel and
perpendicular components of momentum, respectively,
with respect to direction of magnetic field, α ¼ k2⊥=jqfBj,
k2L ¼ m2

f0 − k2jj and dlðαÞ; d0lðαÞ; D; D̄ are given as [73]

dlðαÞ ¼ ð−1Þle−αClð2αÞ;

d0lðαÞ ¼
∂dl
∂α

;

D ¼ ðmf0 þ γ:kjjÞ þ γ:k⊥
�m2

f0 − k2jj
k2⊥

�
;

D̄ ¼ γ1γ2ðmf0 þ γ:kjjÞ; ð11Þ

with Clð2αÞ ¼ Llð2αÞ − Ll−1ð2αÞ. In the weak field limit,
the quark propagator can be reorganized in a power series
of magnetic field ðqfBÞ as

iSðKÞ ¼ iðK þmf0Þ
K2 −m2

f0

−
γ1γ2ðγ:Kjj þmf0Þ

ðK2 −m2
f0Þ2

ðqfBÞ; ð12Þ

where the first term in Eq. (12) is the free fermion
propagator and the second term is the OðqfBÞ correction
to it. Neglecting the current quark mass under the limit

ðm2
f0 < qfB < T2Þ in the numerator and using the follow-

ing metric tensor in Eq. (12),

gμν ¼ gμνjj þ gμν⊥ ;

gμνk ¼ diagð1; 0; 0;−1Þ; gμν⊥ ¼ diagð0;−1;−1; 0Þ;
pμ ¼ pμ

k þ pμ
⊥; pμ

k ¼ ðp0; 0; 0; p3Þ;
pμ
⊥ ¼ ð0; p1; p2; 0Þ; p ¼ γμpμ ¼ pk þ p⊥;
pk ¼ γ0p0 − γ3p3; p⊥ ¼ γ1p1 þ γ2p2; ð13Þ

with

iγ1γ2Kjj ¼ −γ5½ðK:bÞu − ðK:uÞb�; ð14Þ

we obtain the quark propagator in the presence of a
magnetic field at finite temperature as

iSðKÞ ¼ iK
K2 −m2

f0

−
iγ5½ðK:bÞu − ðK:uÞb�

ðK2 −m2
f0Þ2

ðqfBÞ; ð15Þ

where uμ ¼ ð1; 0; 0; 0Þ denotes the local rest frame of the
heat bath. Introduction of a particular frame of reference
breaks the Lorentz symmetry of the system. Similarly,
bμ ¼ ð0; 0; 0; 1Þ denotes the preferred direction of the
magnetic field in our system which then breaks the rota-
tional symmetry of the system. Using the quark propagator
(15), the one-loop quark self-energy up to OðqfBÞ in hot
and weakly magnetized medium can be written as

ΣðPÞ ¼ g2CFT
X
n

Z
d3k
ð2πÞ3 γμ

�
K

ðK2 −m2
f0Þ

−
γ5½ðK:bÞu − ðK:uÞb�

ðK2 −m2
f0Þ2

ðqfBÞ
�
γμ

1

ðP − KÞ2 ; ð16Þ

where T is the temperature of the system and
g2 ¼ 4παsðΛ2; jeBjÞ. The first term is the thermal medium
contribution (Σ0) whereas the second one is with magnetic
field correction term (Σ1).
The general covariant structure of quark self-energy at

finite temperature and magnetic field can be written as [66]

ΣðPÞ ¼ −AP − Bu − Cγ5u −Dγ5b; ð17Þ

where A, B, C, D are the structure functions. Using
Eqs. (16) and (17), the general form of these structure
functions is obtained as

Aðp0; p⊥; pzÞ ¼
1

4

TrðΣðPÞPÞ − ðP:uÞTrðΣðPÞuÞ
ðP:uÞ2 − P2

; ð18Þ

Bðp0;p⊥;pzÞ¼
1

4

ð−P:uÞTrðΣðPÞPÞþP2TrðΣðPÞuÞ
ðP:uÞ2−P2

; ð19Þ

Cðp0; p⊥; pzÞ ¼ −
1

4
Trðγ5ΣðPÞuÞ; ð20Þ

Dðp0; p⊥; pzÞ ¼
1

4
Trðγ5ΣðPÞbÞ: ð21Þ

These structure functions are found to depend upon various
Lorentz scalars defined by

p0 ≡ Pμuμ ¼ ω; ð22Þ

p3 ≡ Pμbμ ¼ −pz; ð23Þ

p⊥ ≡ ½ðPμuμÞ2 − ðPμbμÞ2 − ðPμPμÞ2�1=2; ð24Þ

where ω; p⊥; pz are termed as Lorentz invariant energy,
transverse momentum and longitudinal momentum respec-
tively. The detailed calculation of all these structure
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functions is shown in the Appendix and results are quoted
here:

Aðp0; jpjÞ ¼
m2

th

jpj2Q1

�
p0

jpj
�
; ð25Þ

Bðp0; jpjÞ ¼ −
m2

th

jpj
�
p0

jpjQ1

�
p0

jpj
�
−Q0

�
p0

jpj
��

; ð26Þ

Cðp0; jpjÞ ¼ −4g2CFM2
pz

jpj2Q1

�
p0

jpj
�
; ð27Þ

Dðp0; jpjÞ ¼ −4g2CFM2
1

jpjQ0

�
p0

jpj
�
; ð28Þ

where Q0 and Q1 are Legendre functions of the first and
second kind, respectively, read as

Q0ðxÞ ¼
1

2
ln

�
xþ 1

x − 1

�
; ð29Þ

Q1ðxÞ ¼
x
2
ln

�
xþ 1

x − 1

�
− 1 ¼ xQ0ðxÞ − 1; ð30Þ

with magnetic mass obtained as [74]

M2ðT; μ; mf0; qfBÞ ¼
jqfBj
16π2

�
πT
2mf0

− ln 2þ 7μ2ζð3Þ
8π2T2

�
;

ð31Þ

where ζ is the Riemann zeta function. The general covariant
structure of quark self-energy Eq. (17) can be recast in

terms of left-handed [PL ¼ ðI − γ5Þ=2] and right-handed
[PR ¼ ðI þ γ5Þ=2] chiral projection operators as

ΣðPÞ ¼ −PRA0PL − PLB0PR; ð32Þ
with A0 and B0 defined as

A0 ¼ APþ ðB þ CÞuþDb; ð33Þ

B0 ¼ APþ ðB − CÞu −Db: ð34Þ
Using Eqs. (9) and (32), the inverse fermion propagator can
be written as

S�−1ðPÞ ¼ Pþ PR½APþ ðB þ CÞuþDb�PL

þ PL½APþ ðB − CÞu −Db�PR; ð35Þ
and using PL;Rγ

μ ¼ γμPR;L and PLPPL ¼ PRPPR ¼
PLPRP ¼ 0, we obtain

S�−1ðPÞ ¼ PRLPL þ PLRPR; ð36Þ
where L and R are

L ¼ ð1þAÞPþ ðB þ CÞuþDb; ð37Þ

R ¼ ð1þAÞPþ ðB − CÞu −Db: ð38Þ

Thus, we get the effective quark propagator as

S�ðPÞ ¼ 1

2

�
PL

L
L2=2

PR þ PR
R

R2=2
PL

�
; ð39Þ

where

L2 ¼ ð1þAÞ2P2 þ 2ð1þAÞðB þ CÞp0 − 2Dð1þAÞpz þ ðB þ CÞ2 −D2; ð40Þ

R2 ¼ ð1þAÞ2P2 þ 2ð1þAÞðB − CÞp0 þ 2Dð1þAÞpz þ ðB − CÞ2 −D2: ð41Þ

Next, we take the static limit (p0 ¼ 0; jpj → 0) of L2=2 and
R2=2, after expanding the Legendre functions involved in
structure functions in power series of jpj

p0
. Considering up to

Oðg2Þ, we obtain

L2

2

				
p0¼0;jpj→0

¼ m2
th þ 4g2CFM2; ð42Þ

R2

2

				
p0¼0;jpj→0

¼ m2
th − 4g2CFM2: ð43Þ

The degenerate left- and right-handed modes get separated
out in the presence of weak magnetic field and hence the
thermal mass (squared) at finite chemical potential in the
presence of weak magnetic field obtained as

m2
L ¼ m2

th þ 4g2CFM2; ð44Þ

m2
R ¼ m2

th − 4g2CFM2; ð45Þ

which is opposite to the case of strong magnetic field where
left- and right-handed chiral modes have the same mass
[62]. The quasiparticle mass obtained above consists of
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pure thermal and magnetic contributions. The thermal mass
is independent of chiral modes whereas the magnetic
contribution depends on the chiral modes. The dispersion
relation for both chiral modes of quarks at low and high
momentum limit in the lowest Landau level is given by [66]

ωL=RðpzÞ ¼ mL=R þ pz

3
; ðpz ≪ mL=RÞ ð46Þ

ωL=RðpzÞ ¼ jpzj þ
m2

L=R

pz
; ðpz ≫ mL=RÞ: ð47Þ

The form of dispersion relations in both low and high
momentum limits even in the presence of magnetic field is
similar to that in the absence of magnetic field and the
masses in both limits are of the same order. However, the
quasiparticle mass used in our computation is obtained
from the static limit of the pole of the full quark propagator
(up to one-loop quark self-energy), which is independent of
low momentum and high momentum limits. Now, we will
evaluate the charge and thermal transport coefficients in the
presence of weak magnetic field at finite chemical potential
for left- and right-handed modes separately as the system
will not be in both modes simultaneously.

III. CHARGE TRANSPORT COEFFICIENTS

The Boltzmann transport equation governs the evolution
of phase space density fðx; pÞ associated with the partons
in our system. The QGP is a relativistic plasma, since T ≫
any mass scale in the system. This validates the use of the
relativistic Boltzmann transport equation (RBTE) to carry
out our investigation. The RBTE for relativistic particle
with a charge q in the presence of external electromagnetic
field can be written as [75]

pμ
∂μfðx; pÞ þ qFμνpν

∂fðx; pÞ
∂pμ ¼ C½f�; ð48Þ

where f is the distribution function deviated slightly from
equilibrium distribution function (f0) with f ¼ f0 þ δf
(δf ≪ f0). Fμν is the antisymmetric electromagnetic field
tensor,C½f� is the collision integral that describes the rate of
change of distribution function by virtue of collisions. The
general form of collision integral consists of absorption and
emission terms in phase space volume element. This leads
to nonlinear integro-differential equation which is very
complicated to solve. Hence, we simplify the equation
using relaxation-time approximation (RTA). Under relax-
ation time approximation, the external perturbation takes
the system slightly away from equilibrium from which it
relaxes towards the equilibrium exponentially with time
scale τ. The collision integral under RTA takes the form as

C½f� ≃ −
pμuμ
τ

ðf − f0Þ≡ −
pμuμ
τ

δf; ð49Þ

where uμ is the fluid 4-velocity, τ is the thermal averaged
relaxation time. Equation (48) in 3-notation can be
written as

∂f
∂t

þ v:
∂f
∂r

þ qðEþ v × BÞ: ∂f
∂p

¼ −
1

τ
ðf − f0Þ: ð50Þ

We consider the spatially uniform ∂f
∂r ≈ 0 and static

medium ∂f
∂t ¼ 0 such that there are no space-time gradient.

Then Eq. (50) simplifies to

qðEþ v ×BÞ: ∂f
∂p

¼ −
1

τ
ðf − f0Þ: ð51Þ

For the sake of simplicity of calculation, we choose the
transverse electric and magnetic field as E ¼ Ex̂ and
B ¼ Bẑ. This yields

f − qBτ

�
vx

∂f
∂py

− vy
∂f
∂px

�
¼ f0 − qEτ

∂f0
∂px

: ð52Þ

In order to solve Eq. (52), we take the following ansatz of
distribution function fðpÞ as [76]

fðpÞ ¼ f0 − τqE:
∂f0
∂p

− ξ:
∂f0
∂p

; ð53Þ

and f0 is given by

f0ðpÞ ¼
1

eð
ffiffiffiffiffiffiffiffiffiffi
p2þm2

p
−μÞ=T þ 1

; ð54Þ

which is the space and time independent solution to the
Boltzmann equation and f0 satisfies

∂f0
∂p

¼ v
∂f0
∂ε

;
∂f0
∂ε

¼ −βf0ð1 − f0Þ; ð55Þ

where ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
is the single particle energy. Using

the ansatz Eq. (53) in Eq. (52), we get

�
f0 − τqE:

∂f0
∂p

− ξ:
∂f0
∂p

�
− qBτ

�
vx

∂

∂py
− vy

∂

∂px

�
�
f0 − τqE:

∂f0
∂p

− ξ:
∂f0
∂p

�
¼ f0 − qEτ

∂f0
∂px

: ð56Þ

The first term in the parentheses on the left-hand side of
Eq. (56) can be rewritten as
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�
f0 − τqE:

∂f0
∂p

− ξ:
∂f0
∂p

�
¼ f0 þ βτqEvxf0 þ ðξ:vÞβf0:

ð57Þ

Neglecting the f20 terms at high temperature and using the
following second order partial derivatives,

∂
2f0

∂pypx
¼ βpxpyf0

ε2

�
β þ 1

ε

�
; ð58Þ

∂
2f0

∂pypz
¼ βpypzf0

ε2

�
β þ 1

ε

�
; ð59Þ

∂
2f0
∂p2

y
¼ −β

�
f0
ε
−
f0p2

y

ε2

�
β þ 1

ϵ

��
; ð60Þ

the second term on the left-hand side of Eq. (56) gets
reduced to

qBτ

�
vx

∂

∂py
− vy

∂

∂px

��
f0 − τqE:

∂f0
∂p

− ξ:
∂f0
∂p

�

¼ qBτβ

�
ξyvx
ε

−
ξxvy
ε

−
vyτqE

ε

�
f0: ð61Þ

Combining Eqs. (57) and (61), Eq. (56) is obtained as

τqBqEvy
ε

−
qB
ε
ðvxξy − vyξxÞ

þ 1

τ

�
ξx

px

ε
þ ξy

py

ε
þ ξz

pz

ε

�
¼ 0: ð62Þ

The above equation should be satisfied for any value of
velocity; therefore, comparing the coefficients of vx, vy and
vz of Eq. (62), we get

ξz ¼ 0; ð63Þ

ωcτqEþ ωcξx þ
ξy
τ
¼ 0; ð64Þ

ξx
τ
− ωcξy ¼ 0; ð65Þ

where ωc ¼ qB
ε is termed as the cyclotron frequency.

Solving for ξx and ξy, we have

ξx ¼
−ω2

cτ
3qE

ðω2
cτ

2 þ 1Þ ; ξy ¼
−ωcτ

2qE
ðω2

cτ
2 þ 1Þ : ð66Þ

Using Eq. (80) in Eq. (53), the distribution function fðpÞ
for quarks simplifies to

fðpÞ ¼ f0 −
qEvxτ

ð1þ ω2
cτ

2Þ
�
∂f0
∂ε

�
þ qEvyωcτ

2

ð1þ ω2
cτ

2Þ
�
∂f0
∂ε

�
;

ð67Þ

and for antiquarks (f → f̄; q → −q;ωc → −ωc),

f̄ðpÞ ¼ f0 þ
qEvxτ

ð1þ ω2
cτ

2Þ
�
∂f̄0
∂ε

�
þ qEvyωcτ

2

ð1þ ω2
cτ

2Þ
�
∂f̄0
∂ε

�
:

ð68Þ

The induced current in the system as a result of external
electromagnetic fields can be written as

ji ¼ σOhmicδ
ijEj þ σHallϵ

ijEj; ð69Þ

where σOhmic and σHall are Ohmic and Hall conductivities
respectively, ϵij is the 2 × 2 antisymmetric unity tensor,
with ϵ12 ¼ −ϵ21 ¼ 1. It is clear from the above equation
that σOhmic describes the longitudinal response (current
along the direction of electric field) and σHall describes the
transverse response (current transverse to the electric field).
Further, the induced current can be written in terms of
deviation δf (δf̄) from f0 (f̄0) as

j ¼ gf

Z
d3p
ð2πÞ3 vðqδfðpÞ þ q̄δf̄ðpÞÞ; ð70Þ

where q̄ is the charge of antiparticle and gf ¼ 3 × 2 is the
color and spin degeneracy factor of fermions. Using
Eqs. (69) and (70), the Ohmic and Hall conductivity for
a system of multiple charge species can be written as

σOhmic ¼
1

6π2T

X
f

gfq2fτf

Z
dp

p4

ε2f

1

ð1þ ω2
cτ

2
fÞ
½f0fð1 − f0fÞ þ f̄0fð1 − f̄0fÞ�; ð71Þ

σHall ¼
1

6π2T

X
f

gfq2fτ
2
f

Z
dp

p4

ε2f

ωc

ð1þ ω2
cτ

2
fÞ
½f0fð1 − f0fÞ − f̄0fð1 − f̄0fÞ�; ð72Þ
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where f stands for flavor and here we have used f ¼ up
(u), down (d). The relaxation time for quarks (antiquarks)
used above for calculation of conductivities is given by
[77], where massless u- and d-quarks were considered with
μ ≪ T:

τqðq̄Þ ¼
1

5.1Tα2s logð 1αsÞð1þ 0.12ð2Nf þ 1ÞÞ :

It was argued in [78] that finite parton mass has little effect
on scattering cross section and hence on relaxation time.
This leads to the qualitatively same result for massless and
massive partons. The current light quark (mu;d) masses are
chosen to be 0.1 times the strange quark mass (ms0) which
is in compliance with chiral perturbation theory [79,80].
The parameters were adjusted to get the best fitted lattice
data with ms0 ¼ 80 MeV [81]. The Ohmic and Hall
conductivity obtained above is defined by current which
appears due to the effect of an electric and magnetic field
when there is no temperature gradient or we can say
isothermal Ohmic and Hall conductivity. As discussed in
the quasiparticle model, we will incorporate the quasipar-
ticle mass which was obtained to be different for left- and
right-handed chiral modes. uðūÞ and dðd̄Þ quarks are spin-1

2

particles and they can assume right handedness or left
handedness depending on their up or down spin with
respect to their direction of motion. We have taken into
account both modes for up and down quarks and computed
the conductivities for L and R modes separately. In the case
of baryonic symmetry i.e., at zero quark chemical potential,
the distribution function for quarks and antiquarks becomes
equal and hence Hall conductivity vanishes.

IV. HEAT TRANSPORT COEFFICIENTS

In the nonrelativistic case, the heat equation is obtained
by the validity of the first and second laws of thermody-
namics, where the flow of heat is proportional to the
temperature gradient and the proportionality factor is called
the thermal conductivity. We are intended to study the
thermal conductivity in the system of partons. The heat
flow 4-vector which is defined to be the difference between
energy diffusion and enthalpy diffusion is given as [82]

Qμ ¼ ΔμαTαβuβ − hΔμαNα; ð73Þ

where Δμα ¼ gμα − uμuα is the projection operator. Nα is
characterized as first moment of distribution function
which corresponds to the particle four-flow vector as

Nα ¼
X
f

gf

Z
d3p
ð2πÞ3

pα

εf
½ff − f̄f�; ð74Þ

whereas, Tαβ is characterized as second moment of dis-
tribution function which corresponds to the energy-
momentum tensor as

Tαβ¼
X
f

gf

Z
d3p
ð2πÞ3

pαpβ

εf
ðffþ f̄fÞþgg

Z
d3p
ð2πÞ3

pαpβ

εg
fg;

ð75Þ

where, ff; f̄f and fg are quark, antiquark and gluon
distribution function, εg is the single particle energy for
gluons and gg ¼ 8 × 2 is the degeneracy factor of the
gluons. We can obtain the particle number density, energy
density and pressure from the above equation as n ¼ Nαuα,
e ¼ uαTαβuβ and P ¼ −ΔαβTαβ=3 respectively. Therefore,
enthalpy per particle can be obtained as h ¼ ðeþ PÞ=n.
The heat flow 4-vector in the rest frame of the heat bath is
orthogonal to fluid 4-velocity, i.e., Qμuμ ¼ 0. Thus, heat
flow is spatial which can be written in terms of infinitesimal
changes in the distribution function as

Q ¼
X
f

gf

Z
d3p
ð2πÞ3

p
εf

½ðεf − hfÞδff þ ðεf þ h̄fÞδf̄f�

þ gg

Z
d3p
ð2πÞ3 pδfg: ð76Þ

The particle four-flow and energy-momentum tensor can be
decomposed with respect to an arbitrary normalized time-
like four vector, uμ ¼ γð1; v⃗Þ, where uμuμ ¼ 1. The most
general decomposition is given as [83,84]

Nμ ¼ nuμ þ vμ; ð77Þ

Tμν ¼ −Pgμν þ wuμuν þ πμν; ð78Þ

where vμ is the particle diffusion current, w ¼ eþ P is the
heat function per unit volume, and πμν is the shear-stress
tensor. Using the continuity equation and law of increase of
entropy, the required form of symmetrical 4-tensor πμν and
4-vector vμ were obtained to be as [83]

πμν ¼ −cη
�
∂uμ

∂xν
þ ∂uν

∂xμ
− uμuα

∂uν

∂xα
− uμuα

∂uμ

∂xα

�

−
�
ζ −

2

3
η

�
∂uα

∂xα
ðgμν − uμuνÞ; ð79Þ

vμ ¼ κ

c

�
nT
w

�
2
�
∂

∂xμ

�
μ

T

�
− uμuα

∂

∂xα

�
μ

T

��
: ð80Þ

Here, η and ζ are shear and bulk viscosity coefficients and κ
is the thermal conductivity, taken in accordance with their
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nonrelativistic definitions. The zero particle flux
(nui þ vi ¼ 0) corresponds to the pure thermal conduction.
The spatial components ui ¼ −vi=n of the 4-velocity are of
the first order in the gradients; since πμν; vμ are written only
as far as this order, the 4-velocity component u0 must be
taken as unity. To the same accuracy, omitting the second
term in the square bracket of Eq. (80), the energy flux
density from Tμν is given as

cT0i ¼ cwu0ui ¼ −cwvi=n

¼ −κ
nT2

eþ P

�
∂

∂xi

�
μ

T

��
; ð81Þ

which relates the energy flux density/heat flow with the
gradient of thermodynamical potential (U ¼ μ=T) as in
Navier-Stokes theory. In terms of 4-gradient, the above
equation can be written as

Qμ ¼ −κ
nT2

eþ P
∇μU; ð82Þ

where κ is the thermal conductivity and ∇μ is the 4-
gradient, ∇μ ¼ ∂μ − uμuν∂ν. The entropy density
[s ¼ sðe; nÞ] in equilibrium state in terms of energy
density, pressure and chemical potential can be written
as [85]

s ¼
�
eþ P
T

�
−
�
μ

T

�
n: ð83Þ

Further, the inverse of temperature (T−1) and thermody-
namic potential (U) can be defined as the partial derivative
of sðe; nÞ:

ds ¼ 1

T
de − Udn: ð84Þ

Using Eqs. (83) and (84), we obtain

d

�
P
T

�
¼ −ed

�
1

T

�
þ ndU;

dP
nT

¼ dU þ 1

T2

�
Pþ e
n

�
dT: ð85Þ

Generalizing it to the 4-gradient, the heat flow can be
rewritten as

Qμ ¼ κ

�
∇μT −

T
eþ P

∇μP
�
; ð86Þ

and in the local rest frame, the spatial component of heat
flow can be written as

Q ¼ −κ
�
∂T
∂x

−
T
nh

∂P
∂x

�
: ð87Þ

One can thus obtain the thermal conductivity (κ)
by comparing Eqs. (76) and (87). We will first calculate
the contribution of quarks and antiquarks to the thermal
conductivity. So now, expressing the relativistic Boltzmann
transport equation in terms of gradients of flow velocity and
temperature in relaxation time approximation as

pμ
∂μT

�
∂f
∂T

�
þ pμ

∂μðpνuνÞ
�
∂f
∂p0

�

þ q
�
F0jpj

∂f
∂p0

þ Fj0p0

∂f
∂pj þ Fijpj

∂f
∂pi þ Fjipi

∂f
∂pj

�

¼ −
pμuμ
τ

δf; ð88Þ

where p0 ¼ ε − μ and for very small μ, it can be approxi-
mated as p0 ≈ ε. Using the following partial derivatives,

∂f0
∂T

¼ ε

T2
f0ð1 − f0Þ; ð89Þ

∂f0
∂p0

¼ −
1

T
f0ð1 − f0Þ; ð90Þ

∂f0
∂pj

¼ −
pj

Tp0

f0ð1 − f0Þ; ð91Þ

Eq. (88) is given as

−
δf
τ
¼ f0ð1 − f0Þ

p0

�
pμ

∂μT

�
p0

T2

�
−
pμ

∂μðpνuνÞ
T

−
q
T
ðF0jpj þ Fj0pjÞ

�
þ q
p0

�
Fijpj

∂f
∂pi þ Fjipi

∂f
∂pj

�

¼ 1

T
f0ð1 − f0Þ

�
1

T
ðp0

∂0T þ pj
∂jTÞ þ T∂0

�
μ

T

�
þ pjT

p0
∂j

�
μ

T

�
−

1

p0
ðp0pν

∂0uν þ pjpν
∂juνÞ

− 2q
E:p
p0

�
þ qðv×BÞ: ∂f

∂p
; ð92Þ
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where 2Fij ¼ ϵijkBk. Now, exerting the energy-momentum

conservation ð∂0uμ ¼ ∇μP
nh Þ along with relativistic Gibbs-

Duhem relation,

∂j

�
μ

T

�
¼ −h

T2

�
∂jT −

T
nh

∂jP

�
;

we obtain Eq. (92) as

−
δf
τ
¼ 1

T
f0ð1−f0Þ

�
1

T
ðp0

∂0TÞ

þ
�
p0−h
p0

�
pj

T

�
∂jT−

T
nh

∂jP

�

þT∂0

�
μ

T

�
−pjpνð∂juνÞ−2q

E:p
p0

�
þqðv×BÞ:∂f

∂p
;

ð93Þ

where ∂f
∂p ¼ ∂

∂p ðf0 þ δfÞ and ∂f0
∂pj ∝ vj, therefore the Lorentz

term vanishes for the equilibrium distribution function and
we get

−
δf
τ
¼ 1

T
f0ð1−f0Þ

�
p0

T
∂0Tþ

�
p0−h
p0

�
pj

T

�
∂jT−

T
nh

∂jP

�

þT∂0

�
μ

T

�
−
pjpν

p0

ð∂juνÞ−
2q
p0

ðE:pÞ
�

þqðv×BÞ∂ðδfÞ
∂p

: ð94Þ

Now, choosing the ansatz for infinitesimal deviation ðδfÞ
from f0 as [57]

δf ¼ ðp:χ Þ ∂f0
∂ε

; ð95Þ

where χ in turn is related to thermal driving force and
magnetic field in medium and takes the form as

χ ¼ a1cþ a2Y þ a3ðY × cÞ: ð96Þ

Here, c ¼ B
jBj and Y ¼ ∇T

T − ∇P
nh . Using Eqs. (95) and (94),

we have

p:χ
τ

¼
�
p0

T
∂0Tþ

�
p0−h
p0

�
p
T
:

�
∇T−

T
nh

∇P
�

þT∂0

�
μ

T

�
−
pjpν

p0

ð∂juνÞ−
2q
p0

ðE:pÞ−qðv×BÞ:χ
�
:

ð97Þ

The derivative is split up covariantly into time and space
parts: ∂μ ¼ uμDþ∇μ, where D ¼ uμ∂μ ¼ ð∂t; 0Þ and
∇μ ¼ ∂μ − uμD ¼ ð0; ∂iÞ. The time derivative term [∂0T,
∂0ðμTÞ] can be written in terms of ∇μuμ by using the
following relations [77,82]:

DT
T

¼ −
�
∂P
∂e

�
n
∇μuμ; ð98Þ

TD

�
μ

T

�
¼ −

�
∂P
∂n

�
e
∇μuμ: ð99Þ

Therefore, Eq. (97) becomes

p:χ
τ

¼
�
−p0

�
∂P
∂e

�
n
∇μuμ þ

�
p0 − h
p0

�
p
T
:

�
∇T −

T
nh

∇P
�

−
�
∂P
∂n

�
e
∇μuμ −

pjpν

p0

ð∂juνÞ

−
2q
p0

ðE:pÞ − qðv ×BÞ:χ
�
: ð100Þ

p0

τ
v:ða1cþ a2Y þ a3ðY × cÞÞ

¼ ðp0 − hÞv:Y − qðv ×BÞ:a2Y − qðv ×BÞ:a3ðY × cÞ;
ð101Þ

where ðv ×BÞ:c ¼ 0. Using the properties of scalar triple
product, the parameters a1, a2 and a3 can be obtained by
comparing the terms with different tensor structures in both
sides of Eq. (101) independently, and we have

ε

τ
a1 ¼ a3qjBjðc:YÞ; ð102Þ

ε

τ
a2 ¼ ðε − hÞ − a3qjBj; ð103Þ

ε

τ
a3 ¼ a2qjBj; ð104Þ

where p0 ≈ ε; jBj ¼ B. Employing the above equations and
defining ωc ¼ qB

ε , the parameters reduced to the following
forms:

a1 ¼
τ3

ε

ðε − hÞ
ð1þ ω2

cτ
2Þω

2
cðc:YÞ;

a2 ¼
τ

ε

ðε − hÞ
ð1þ ω2

cτ
2Þ ;

a3 ¼
τ2

ε

ðε − hÞ
ð1þ ω2

cτ
2Þωc: ð105Þ
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Substituting a1, a2, a3 in Eq. (96), we obtain the δf
correction to the distribution function in the presence of the
weak magnetic field from Eq. (95) as

δf ¼ τðε − hÞ
ð1þ ω2

cτ
2Þ ½v:Y þ τωcv:ðY × cÞ

þ τ2ω2
cðc:YÞðv:cÞ�

∂f0
∂ε

: ð106Þ

Similarly, δf̄ can be calculated as

δf̄¼ τðεþ h̄Þ
ð1þω2

cτ
2Þ½v:Y−τωcv:ðY×cÞþτ2ω2

cðc:YÞðv:cÞ�
∂f0
∂ε

;

ð107Þ

where h̄ is the enthalpy per particle for antiquarks. Using
Eqs. (106) and (107) in (76), the heat flow in the weakly
magnetized medium, generalizing to the system of different
charged particles takes the form as

Q ¼
X
f

gfτf

Z
d3p
ð2πÞ3

p
εf

� ðεf − hfÞ2
ð1þ ω2

cτ
2
fÞ
ðv:Y þ τfωcv:ðY × cÞ þ τ2fω

2
cðc:YÞðv:cÞÞ

∂f0f
∂εf

þ ðεf þ h̄fÞ2
ð1þ ω2

cτ
2
fÞ
ðv:Y − τfωcv:ðY × cÞ

þ τ2fω
2
cðc:YÞðv:cÞÞ

∂f̄0f
∂ϵf

�
; ð108Þ

where hf and h̄f is the enthalpy per particle of quarks and
antiquarks for fth flavor respectively. We will simplify the
calculation by fixing the direction of B along the z-axis and
temperature gradient in the x-y plane.

Q ¼ −κ0TY − κ1TðY × cÞ; ð109Þ

where thermal transport coefficients in weakly magnetized
medium, κ0ð¼ κq þ κgÞ and κ1, can be defined as

κ0 ¼
X
f

gfτf
6π2T2

Z
dp

p4

ε2f

� ðεf − hfÞ2
ð1þ ω2

cτ
2
fÞ
f0fð1 − f0fÞ

þ ðεf þ h̄fÞ2
ð1þ ω2

cτ
2
fÞ
f̄0fð1 − f̄0fÞ

�
þ κg; ð110Þ

and

κ1 ¼
X
f

gfτ2f
6π2T2

Z
dp

p4

ε2f

�ðεf − hfÞ2ωc

ð1þ ω2
cτ

2
fÞ

f0fð1 − f0fÞ

−
ðεf þ h̄fÞ2ωc

ð1þ ω2
cτ

2
fÞ

f̄0fð1 − f̄0fÞ
�
; ð111Þ

where f stands for fth flavor. Similar to the discussion of
charge transport coefficients, here we have thermal (κ0) and
Hall-type thermal conductivity (κ1). Hall-type thermal
conductivity emerges due to the transverse temperature
gradient which is induced by the action of the magnetic
field perpendicular to the initial direction of heat current
and would be contributed by quarks and antiquarks. So far,
we have obtained the contribution due to quarks and
antiquarks to the thermal conductivity. Now, we will
calculate the gluonic contribution to thermal conductivity.

Since gluons do not interact with the electromagnetic field
therefore Eq. (88) for gluons assumes the form as

pμ
∂μT

�
∂fg
∂T

�
þ pμ

∂μðpνuνÞ
�
∂fg
∂p0

g

�
¼ −

pμuμ
τ

δfg; ð112Þ

where fg ¼ 1=ðeεg=T − 1Þ; p0
g ¼ εg is the single particle

energy of gluon. Using the following partial derivative,

∂fg
∂T

¼ ε

T2
fgð1þ fgÞ; ð113Þ

∂fg
∂p0

g
¼ −

1

T
fgð1þ fgÞ; ð114Þ

Eq. (112) can be rewritten as

1

T
fgð1þfgÞ

�
1

T
ðp0

gDTþpj∇jTÞþTD

�
μ

T

�
þpjT

p0
g
∇j

�
μ

T

�

−
1

p0
g
ðp0

gpν
∂0uνþpjpν

∂juνÞ
�
¼−

δfg
τg

: ð115Þ

Considering only thermal driving forces and taking
the gluon chemical potential to be zero, we obtain the
equation as

1

T
fgð1þ fgÞ

�
pj

�∇jT

T
−
∇jP

nh

��
¼ −

δfg
τg

; ð116Þ

where τg is thermal relaxation time for gluons given as [77]

τg ¼
1

22.5Tα2s logð 1αsÞð1þ 0.06NfÞ
: ð117Þ
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Putting δfg in Eq. (76) and comparing with Eq. (82),
we obtain the gluonic contribution to the thermal conduc-
tivity as

κg ¼
ggτg
6π2T2

Z
dpp4fgð1þ fgÞ: ð118Þ

Therefore, thermal conductivity due to quarks, antiquarks
and gluons along the initial direction of heat current is
given by

κ0¼
X
f

gfτf
6π2T2

Z
dp

p4

ε2f

� ðεf−hfÞ2
ð1þω2

cτ
2
fÞ
f0fð1−f0fÞ

þ ðεfþ h̄fÞ2
ð1þω2

cτ
2
fÞ
f̄0fð1− f̄0fÞ

�
þ ggτg
6π2T2

Z
dpp4fgð1þfgÞ:

ð119Þ

Gluons will not contribute to κ1 because the Lorentz force
will not change their direction of motion. The thermal
conductivity is obtained from heat current in temperature
gradient on the condition that there is no electric current
[86]. Hall-type thermal conductivity is the thermal analog
of classical Hall effect where temperature plays the role of
voltage and heat flow replaces the electric current [87] and
it is the Lorentz force acting on charged particles affecting
the curvature of the carrier’s trajectories through the
magnetic field. At zero chemical potential, κ1 will not
vanish due to the unequal contribution from quarks and
antiquarks in the same direction, unlike in the case of Hall
conductivity in charge transport.

V. RESULTS AND DISCUSSIONS

In this section, we will discuss the results regarding the
Ohmic and Hall conductivity, thermal and Hall-type

thermal conductivity and further Knudsen number and
Wiedemann-Franz law as their application.

A. Ohmic and Hall conductivity

In Fig. 2, we have shown the variation of ratio of Ohmic
conductivity to temperature (σOhmic=T) with respect to
temperature for zero and finite magnetic field at nonzero
chemical potential (μ ¼ 30 MeV). It is evident that the
magnitude of σOhmic=T gets a decrease in the presence of
magnetic field as shown in Figs. 2(a) and 2(b). The
difference between the magnitude of conductivities for L
and R modes increases with an increase in magnetic field
due to different effective quark mass for L and R modes,
Eq. (44). This can also be deduced from the plots of
distribution function of quark for left-handed and right-
handed mode at fixed momentum and temperature shown
in Figs. 3 and 4 respectively, where Tc ≃ 160 MeV is the
deconfinement temperature from hadron phase to QGP
phase. Further, σOhmic=T for L mode decreases with
magnetic field whereas it shows increasing trend for R
mode. This behavior of σOhmic=T with magnetic field for L
and R modes is attributed to the factor τ

ε2ð1þω2
cτ

2Þ. The

thermal mass squared with magnetic field correction for the
left(right)-handed mode is m2

LðRÞ ¼ m2
th � 4g2CFM2,

which is found to increase (decrease) with magnetic field.
The appearance of this mass in the denominator of τ

ε2ð1þω2
cτ

2Þ
factor leads to the decreasing (increasing) behavior of
σOhmic=T for left (right)-handed mode. The increasing
behavior of σOhmic=T with temperature for both modes
could be due to the Boltzmann factor expð−εðpÞ=TÞ in the
distribution function. Figure 5 shows the variation of
normalized Ohmic conductivity at different constant values
of quark chemical potential for eB ¼ 0.1m2

π, where it
increases with increase in quark chemical potential for
both modes. With increasing quark chemical potential the
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FIG. 2. Variation of σOhmic=T for L mode (a) and R mode (b) with temperature at different fixed values of magnetic field.
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FIG. 3. Variation of distribution function of quark (f0) in left- and right-handed mode with temperature at low (a) and high momentum
(b), where effective quark mass has been used.
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(b), where effective quark mass has been used.
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Boltzmann factor expð−μ=TÞ increases due to the higher
contribution from quarks than antiquarks. The transverse
motion of charged particle under the action of Lorentz force
leads to the generation of Hall current. The variation of
σHall=T with temperature for different values of magnetic
field at μ ¼ 30 MeV is shown in Fig. 6 for both modes. It
increases with magnetic field as σHall=T is proportional to
ωc for the considered range of temperature, chemical
potential and magnetic field. The decreasing behavior of
normalized Hall conductivity with temperature is predomi-
nantly due to the factor ωcτ in the numerator of Eq. (72).
σHall=T for left-handed mode is relatively smaller than
right-handed mode as the mass for left mode is compara-
tively larger than right mode. Hence, we can say that the
variation of Ohmic conductivity with magnetic field is
affected through the effective mass as shown in Fig. 2,
where at eB ¼ 0, σOhmic=T has relatively higher magnitude.
At eB ¼ 0, Hall conductivity vanishes and its behavior
with magnetic field is affected through the direct

dependence on qfB in the numerator of Eq. (72).
Similar to Ohmic conductivity, Hall conductivity also
increases with quark chemical potential for L and R modes
as shown in Fig. 7. At zero chemical potential, the number
of quarks and antiquarks are the same and their contribution
to the Hall current is the same but opposite in direction. So,
the net Hall current vanishes at zero chemical potential and
can be explicitly seen in Eq. (72).

B. Thermal and Hall-type thermal conductivity

Figures 8 and 9 show the variation of ratio of thermal
conductivity to temperature (κ0=T) for left- and right-
handed mode with temperature at different fixed values
of magnetic field and quark chemical potential respectively.
At zero magnetic field, there would be no lifting of
degeneracy and hence we compared κ0=T in the absence
and presence of magnetic field (with both modes). κ0=T
increases with temperature for both modes and has
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FIG. 6. Variation of σHall=T for L mode (a) and R mode (b) with temperature at different fixed values of magnetic field.
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approximately the same value at eB ¼ 0.1m2
π . The increas-

ing behavior of κ0=T with temperature is due to the factor
ðε − hÞ2, ðεþ hÞ2 and distribution function as can be seen
from Eq. (119). Further, κ0=T for L mode decreases with
magnetic field whereas for R mode it increases with
magnetic field. The difference between magnitude of
thermal conductivity for left- and right-handed mode is
again attributed to the different effective quark mass for
both modes, similar to the σOhmic=T. Since, ðεþ hÞ2 is
higher in magnitude than ðε − hÞ2 therefore ðεþ
hÞ2 expðμ=TÞ leads to the decreasing behavior of κ0=T
with quark chemical potential for both modes.
Furthermore, due to the deflected motion of particles under
the action of Lorentz force, there is generation of Hall
component of thermal conductivity (κ1) in a direction
perpendicular to both the magnetic field and initial thermal
driving force. The variation of κ1=T with temperature at
different fixed values of magnetic field and quark chemical
potential is shown in Figs. 10 and 11 respectively for both
modes. Considering the absolute value of the ratio ðκ1=TÞ,
we infer that ðκ1=TÞ increases with temperature and
magnetic field. The increasing behavior with temperature
is due to the ðεþ hÞ2 factor in the numerator of Eq. (111).
Moreover, the direct dependence on magnetic field leads to
the amplification of Hall-type thermal conductivity with
magnetic field. Further, κ1=T decreases with quark chemi-
cal potential and will not vanish for μ ¼ 0 due to the
unequal contribution from quarks and antiquarks in the
same direction. We can also infer that the behavior of
longitudinal thermal conductivity with magnetic field is
affected through the effective quark mass for both modes
whereas Hall-type thermal conductivity is affected through
direct dependence on magnetic field as could be seen in
Eq. (111). κ1=T is comparatively smaller in magnitude than
κ0=T, similar to the charge transport.

C. Knudsen number

The applicability of ideal hydrodynamic requires local
thermal equilibration. The degree of thermalization in fluid
produced in heavy ion collision can be characterized by the
dimensionless parameter which is termed Knudsen number
(Ω), which is the ratio of microscopic length scale (mean-
free path) to the macroscopic length scale (characteristic
length scale) of the system [88]. The mean-free path (λ) is
identified as 3κ=ðvCvÞ with v and Cv as relative velocity
and specific heat at constant volume respectively. Knudsen
number can be recast as

Ω ¼ 3κ

vCvL
; ð120Þ

where we have taken v ≃ 1, L ¼ 4 fm. Cv is evaluated
from the temperature gradient of energy density, i.e.,
Cv ¼ ∂ðuαTαβuβÞ=∂T. The small value of Knudsen number
implies the large number of collisions which bring the
system back to local equilibrium. The behavior of Ω0

(associated to κ0 and κg) and Ω1 (associated to κ1) with
magnetic field is found to be closely related to behavior of
κ0 and κ1 for both modes. As we can see that effect of
magnetic field on Cv is not so much pronounced as shown
in Figs. 12(a) and 12(b). Ω0 decreases with magnetic field
for L mode whereas increases with magnetic field for R
mode as shown in Fig. 13, similar to the κ0=T. Moreover,
Ω1 shows the increasing trend with magnetic field as shown
in Fig. 14, similar to the trends followed by κ1=T (taking
the absolute value of κ1). Knudsen number (Ω0 and Ω1) is
found to be less than unity for both modes in the presence
of weak magnetic field at μ ¼ 30 MeV, thus it ensures the
system to be in thermal equilibrium.

4.03.02.0

Temperature (GeV)

-0.007

-0.006

-0.005

-0.004

-0.003

κ 1/T
 (

G
eV

)

μ = 30 MeV
μ = 50 MeV
μ = 100 MeV

L Mode
(for eB = 0.1 mπ

2 )

(a)

4.03.02.0

Temperature (GeV)

-0.014

-0.012

-0.01

-0.008

κ 1/T
 (

G
eV

)

μ = 30 MeV
μ = 50 MeV
μ = 100 MeV

R Mode
(for eB = 0.1 mπ

2 )

(b)
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FIG. 14. Variation of Knudsen number (Ω1) for L mode (a) and R mode (b) with temperature at different fixed values of magnetic field.
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D. Wiedemann-Franz law

The interplay between charge and heat transport coef-
ficients can be understood via Wiedemann-Franz law. The
temperature behavior of Lorenz number (κ0=σOhmicT) (for
L and R modes) and Hall-Lorenz number (κ1=σHallT) (for L
and R modes) for eB ¼ 0.1 m2

π, 0.5 m2
π at μ ¼ 30 MeV is

plotted in Figs. 15 and 17. Lorenz number in the absence of
magnetic field at finite chemical potential is shown in
Fig. 16. Since Lorenz and Hall-Lorenz number is larger
than unity, it implies that the effect of thermal transport
coefficient is more pronounced than charge transport
coefficient, hence suggesting that hot QCD matter is a
good conductor of heat than charge. It is evident that
Lorenz and Hall Lorenz number is not constant with
temperature. Lorenz number for L mode increases with
magnetic field whereas for R mode decreases with mag-
netic field. For L mode, Lorenz number shows the
increasing trend with temperature for eB ¼ 0.1m2

π whereas
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4.03.02.0

Temperature (GeV)

610

620

630

640

650

L
or

en
z 

nu
m

be
r

eB = 0, μ = 30 MeV

FIG. 16. Variation of Lorenz number with temperature for zero
magnetic field at finite quark chemical potential.

4.03.02.0

Temperature (GeV)

2000

3000

4000

5000

6000

7000

κ 1/(
σ H

al
lT

)

eB = 0.1 mπ
2

eB = 0.5 mπ
2

L Mode
(at μ = 30 MeV)

(a)

4.03.02.0

Temperature (GeV)

2000

3000

4000

5000

6000

7000

κ 1/(
σ H

al
l T

)

eB = 0.1 mπ
2

eB = 0.5 mπ
2

R Mode
(at μ = 30 MeV)

(b)

FIG. 17. Variation of Hall Lorenz number for L mode (a) and R mode (b) with temperature at different fixed values of magnetic field.

PUSHPA PANDAY and BINOY KRISHNA PATRA PHYS. REV. D 105, 116009 (2022)

116009-18



with further increase the magnetic field it starts decreasing
with temperature. This opposite behavior with temperature
is due to the difference in the increment of the ratio
ðκ0=σOhmicÞ at eB ¼ 0.1m2

π; 0.5m2
π . Hall Lorenz number

for L mode increases with magnetic field, whereas that for
R mode decreases with magnetic field similar to the
previous case as shown in Fig. 15. It increases with
temperature for both modes. Here, the behavior of
Lorenz number is found to be in contrast to the case of
metals where it is roughly the same in the Drude model at
temperatures 273 and 373 K [38]. Therefore, violation of
Wiedemann-Franz law is observed.

VI. CONCLUSION

In this work, we have studied the charge and heat
transport coefficients in hot QCD matter in the presence
of weak magnetic field at finite chemical potential, where
interactions have been incorporated through effective
masses using quasiparticle description. In weak magnetic
field, we have found that the left- and right-handed chiral
modes of quarks get separated due to difference in their
mass and become nondegenerate contrary to the strong
magnetic field case. Another consequence of weak mag-
netic field also came into light in transport phenomena as
generation of Hall effect. Transport coefficients adopt the
tensorial structure where we get the nonvanishing trans-
verse responses. The diagonal elements of tensor structure
of transport coefficients give longitudinal conductivity
whereas off-diagonal elements represent their Hall counter-
parts. We have calculated the transport coefficients using
the effective mass of quarks for left- (L) and right-handed
(R) chiral modes separately and studied the effect of
magnetic field and quark chemical potential on transport
coefficients for both modes. We studied the variation of
σOhmic=T and σHall=T for L and R modes at different values
of magnetic field and quark chemical potential with
temperature. σOhmic=T for L mode decreases with magnetic
field whereas it increases with magnetic field for R mode.
The opposite behavior with magnetic field for L and R
modes in Ohmic conductivity is due to different values of
effective quark mass for both modes. On the other hand,
σHall=T for both modes increases with magnetic field. This
is due to direct dependence of magnetic field on Hall
conductivity. Additionally, both conductivities for L and R
modes positively amplify with quark chemical potential.
Hall conductivity vanishes at zero quark chemical potential
due to equal and opposite contribution of quarks and
antiquarks. Analogous to Ohmic and Hall conductivity,
we have studied the thermal and Hall-type thermal con-
ductivity for both modes. Since gluons are not affected by
magnetic field therefore thermal conductivity due to gluons
is incorporated in longitudinal thermal conductivity. The
Hall-type thermal conductivity is the manifestation of
transverse temperature gradient under the action of
Lorentz force. κ0=T for L and R modes shows mutually

opposite behavior with magnetic field which is again due to
the different effective quark masses for left- and right-
handed mode. κ1=T increases with magnetic field for both
modes similar to the Hall conductivity in charge transport.
Both conductivities record a drop in their values with
increasing quark chemical potential. Moreover, κ1 does not
vanish at zero quark chemical potential due to the unequal
contribution from quarks and antiquarks in the same
direction. In application of the aforementioned conductiv-
ities, we have investigated the equilibrium property through
Knudsen number (Ω0 and Ω1) where it is found to be less
than unity ensuring the system to be in thermal equilibrium.
The variation of Knudsen number with magnetic field is
found to be closely related to the thermal and Hall-type
thermal conductivity, as the specific heat at constant
volume does not show significant change with magnetic
field. Further, the relative behavior of charge and heat
transport coefficients has been studied via Wiedemann-
Franz law where Lorenz and Hall Lorenz number are found
to be greater than unity, hence depicting that hot QCD
matter is a good conductor of heat. Moreover, Lorenz and
Hall Lorenz number increases with magnetic field for L
mode and decreases with magnetic field for R mode.
Lorenz number for L mode (at eB ¼ 0.1m2

π) and for R
mode (at eB ¼ 0.1m2

π , 0.5m2
π) increases with temperature.

As we further increase the magnetic field, Lorenz number
for L mode shows a decreasing trend with temperature. So,
Lorenz and Hall Lorenz number are not constant with
temperature, thereby violating the Wiedemann-Franz law.
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APPENDIX: CALCULATION OF STRUCTURE
FUNCTIONS

Here, we will show the computation of structure func-
tions from Eq. (18) to (21) in one-loop order for hot and
weakly magnetized medium under hard thermal loop
(HTL) approximation. Since trace of odd number of
gamma matrices is zero, Eq. (18) can be written as

A ¼ 1

4

TrðΣ0PÞ − ðP:uÞTrðΣ0uÞ
ðP:uÞ2 − P2

; ðA1Þ

where

Σ0 ¼ g2CFT
X
n

Z
d3k
ð2πÞ3 γμ

K
K2 −m2

f

γμ
1

ðP − KÞ2 : ðA2Þ

Using the following two traces,

Tr½γμKγμP� ¼ −8K:P; ðA3Þ
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Tr½γμKγμu� ¼ −8K:u; ðA4Þ

we obtain

AðPÞ ¼ 1

4jpj2 g
2CF½I1ðPÞ þ I2ðPÞ�; ðA5Þ

where ðP:uÞ2 − P2 ¼ jpj2. We will use the frequency sum

to evaluate I1ðPÞ and I2ðPÞ with k0 ¼ iωn, p0 ¼ iω, E1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

f0

q
and E2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − kÞ2

p
. The frequency sum for

the fermion-boson case is [68]

T
X
n

Δ̃s1ðiωn; E1ÞΔs2ðiðω − ωnÞ; E2Þ

¼
X

s1;s2¼�1

−
s1s2
4E1E2

ð1 − f̃ðs1E1Þ þ fðs2E2ÞÞ
iω − s1E1 − s2E2

: ðA6Þ

The leading T2 behavior will come from s1 ¼ −s2 ¼ 1
with E1 ≈ k and E2 ¼ jp − kj. Defining lightlike four-
vector K̂ ¼ ð−i; k̂Þ and K̂0 ¼ ð−i;−k̂Þ, we have

iωþ E1 − E2 ≃ iωþ p:k̂ ¼ P:K̂; ðA7Þ

iω − E1 þ E2 ≃ iω − p:k̂ ¼ P:K̂0; ðA8Þ

and using the angular integration under HTL approxima-
tion,

Z
dΩ
4π

K̂:u

P:K̂
¼ 1

jpjQ0

�
p0

jpj
�
; ðA9Þ

we get

Aðp0; jpjÞ ¼
m2

th

jpj2Q1

�
p0

jpj
�
: ðA10Þ

Similarly, structure function B can be evaluated as

Bðp0; jpjÞ ¼ −
m2

th

jpj2
�
p0

jpjQ1

�
p0

jpj
�
−Q0

�
p0

jpj
��

: ðA11Þ

Using Eq. (16) in (20) and (21), where the contribution
from Σ0 vanishes due to the trace of the odd number of
gamma matrices and we get the nonvanishing contribution
form Σ1 only, and hence we get

Cðp0; jpjÞ ¼ −
1

4
Trðγ5Σ1uÞ; ðA12Þ

Dðp0; jpjÞ ¼
1

4
Trðγ5Σ1bÞ: ðA13Þ

Using the following two traces,

Tr½γ5γμγ5½ðK:bÞu − ðK:uÞb�γμu� ¼ 8ðK:bÞ; ðA14Þ

Tr½γ5γμγ5½ðK:bÞu − ðK:uÞb�γμb� ¼ 8ðK:uÞ; ðA15Þ

we obtain

C ¼ g2CFjqfBj
4

T
X
n

Z
d3k
ð2πÞ3

8ðK:bÞ
ðK2 −m2

f0Þ2ðP − KÞ2 ;

ðA16Þ

D ¼ −
g2CFjqfBj

4
T
X
n

Z
d3k
ð2πÞ3

8ðK:uÞ
ðK2 −m2

f0Þ2ðP − KÞ2 ;

ðA17Þ

which in turn requires the calculation of frequency sum [89]

Y ¼ T
X
n

Δ2
FðKÞΔBðP − KÞ;

¼
�

−∂
∂m2

f0

�
T
X
n

ΔFðKÞΔBðP − KÞ; ðA18Þ

where

T
X
n

ΔFðKÞΔBðP − KÞ

¼
X

s1;s2¼�1

−
s1s2
4E1E2

ð1 − f̃ðs1E1Þ þ fðs2E2ÞÞ
iω − s1E1 − s2E2

: ðA19Þ

For s1 ¼ −s2 ¼ 1, we get

C¼4g2CFjqfBj
16π2

�
πT
2mf0

− ln2þ7μ2ζð3Þ
8π2T2

��
−pz

jpj2Q1

�
p0

jpj
��

;

ðA20Þ

D¼−
4g2CFjqfBj

16π2

�
πT
2mf0

− ln2þ7μ2ζð3Þ
8π2T2

��
1

jpjQ0

�
p0

jpj
��

:

ðA21Þ
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