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Bremsstrahlung in chiral medium: Anomalous magnetic contribution
to the Bethe-Heitler formula
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We investigate photon bremsstrahlung in chiral media. The chiral medium response to the magnetic field
is described by the chiral magnetic current j = boB, where b, is the chiral magnetic conductivity.
This current modifies the photon dispersion relation producing a resonance in the scattering amplitude.
We show that the resonant contribution is proportional to the magnetic moment u of the target nucleus.
We analytically compute the corresponding cross section. We argue that the anomalous contribution is
enhanced by a factor b3 /T2, where I' is a width of the resonance related to the chiral magnetic instability of
the electromagnetic field. The most conspicuous feature of the anomalous contribution to the photon
spectrum is the emergence of the kneelike structure at photon energies proportional to b,. We argue that the
phenomenological significance of the anomalous terms depends on the magnitude of the ratio of b to the

projectile fermion mass.
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I. INTRODUCTION

Chiral media are of great interest in a variety of diverse
physics fields [1-7]. Examples include the quark-gluon
plasma, Weyl and Dirac semimetals and the axion—one of
the main dark matter candidates. Their unusual properties
are due to the topological charge induced in them by the
chiral anomaly [8,9]. In particular, coupling of the electro-
magnetic field to the topological charge is described by
adding to the QED Lagrangian the P and CP-odd term [10]

L= —%mv,wfwv, (1)

where c, is the QED anomaly coefficient. In quark-gluon
plasma the dimensionless pseudoscalar field € is sourced by

the topological charge density g = 3;’—; GZDG“””. As aresult
Eq. (1) cannot be rewritten as a total derivative and
removed from the Lagrangian. Instead, it appears in the
modified Maxwell equations as the derivative of 0/6. In
Weyl semimetals the spatial components of 08 are propor-
tional to the distance between the Weyl nodes in the
momentum space. In many systems @ is believed to be a
slowly varying function of coordinates and time [4]. This is
the approximation also assumed in this work. In particular,
we treat the first derivative df as constant and adopt a fairly
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standard notation b* = (by, —b) = c40"0 = c,(0,—V0);
by is also known as the chiral conductivity o, [11,12].
To further simplify the analysis we constrain ourselves to
the spatially homogenous systems with |b| < b. These are
relevant in nuclear physics and astrophysics [13,14]. In this
paper we focus on the electromagnetically interacting
systems, but its methodology can be easily adapted for
the strongly interacting systems as well.

One can study properties of a novel material/medium by
shooting fast particles through it. This paper studies how
the chiral properties of a material are reflected in the photon
spectrum emitted by a charge fermion. The two processes
that determine the photon spectrum are the medium
polarization by the electromagnetic fields of the particle
and the photon radiation. The former induces the collisional
energy loss which includes the Cherenkov radiation
[15,16], while the latter is responsible for the radiative
energy loss. The corresponding leading order diagrams are
shown in Fig. 1.

The collisional energy loss in the chiral medium is
dominated by the chiral Cherenkov radiation, which in
many aspects is very different from the conventional
Cherenkov radiation due to a peculiar dependence of the
photon dispersion relation on b. We have discussed this
recently in [17] in the framework of the Fermi model [16]. In
short, the nonanomalous and anomalous/chiral Cherenkov
radiation are both electromagnetic excitations of the
medium induced by the moving charge, though they emerge
under different conditions: the former one when the particle
velocity is larger than the phase velocity of light, whereas the
latter when the chiral anomaly is present regardless of
velocity. Unlike the nonanomalous Cherenkov radiation
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FIG. 1. Diagrams contributing to the collisional (left) and
radiative (right) energy loss in the chiral medium at the leading
order in a. The left diagram includes the Cherenkov radiation.
Double wavy lines indicate excitation of the electromagnetic field
at finite b. The diagram with the photon emitted from the
outgoing fermion leg is not shown.

whose power decreases with energy (together with the total
collisional loss), the power of the chiral Cherenkov radiation
increases with energy and thus is very much relevant at high
energies. The full quantum expression for the radiation
power was derived in [18]. Similar results in different
contexts were reported in [7,19,20]. Photon radiation by a
plasma at finite axial chemical potential, which also induces
the chiral magnetic current, was investigated in [21-23].
The goal of this paper is to investigate the contribution of
the chiral anomaly to the photon production cross section in
charged fermion scattering off a heavy nucleus. This
process is responsible for the radiative energy loss which
is the dominant energy loss mechanism at high energy [24].
The chiral anomaly affects the virtual photon propagator
and the radiated photon wave function. The photon
propagator reads, in the Feynman gauge [19,25],'

2 .
4 G+ 1€4psb"q% + b, b,
Duzx(q) =1 ﬂ4 2”/; 2; . (2)
q*+b°q>—(b-q)

In homogeneous chiral matter with b =0, by # 0, the
components of the propagator (2) read, in the static limit

Duy(q) = limq°—>0 Dub(q) [26],

i

Dy(q) = 7 (3a)
q
Dy;(q) = Doi(q) =0, (3b)
i0;; €ikq" €iq"
Di(g) = =5 m— g+ =2 (3¢)

q* - b} bolg* —b})  bog?

The pole at g* = b} is related to the chiral magnetic
instability of the electromagnetic field as discussed in
Sec. IIC. In the scattering amplitude it corresponds to
the t-channel resonance which enhances the scattering

"The gauge dependence of the propagator is discussed in
Appendix (Al).

cross sections in the chiral medium [27]. To simplify the
calculation we restrict ourselves to the photon spectrum at
@ > by. In this region, the photon is approximately time-
like up to the corrections of order b3 /@?. In other words, we
neglect the anomaly in the photon wave function and
thereby isolate the contribution of the resonance in the
propagator.

In summary, we consider the following setup. A charged
fermion of high energy e radiates a photon of energy w as it
scatters on a heavy (static) ion immersed into a chiral
medium. The potential that the ion creates is modified in
the infrared by the anomaly scale b, which is assumed to be
much smaller than @ but much larger than the Debye mass
eT in the medium. In this regime the bremsstrahlung cross
section is enhanced by the r-channel resonance at the
momentum transfer g> = b3. The softest scale in this
scattering problem (apart from the Debye mass) is the
resonance cutoff I" which is inversely proportional to the
duration of the inverse cascade that drives the chiral
magnetic instability. In the next section we perform a
detailed analytical calculation of the photon production
cross section. Our main result is Eq. (27), which presents
this cross section in the ultrarelativistic limit. We discuss
the obtained result in Sec. III.

II. COULOMB AND MAGNETIC DIPOLE
BREMSSTRAHLUNG

A. Scattering potential

Following the original calculation of Bethe and Heitler
[28], we consider scattering of a charged fermion off a
nucleus of mass M and electric charge eZ. It will be seen in
Sec. I D that the anomalous contribution is driven by the
existence of momentum transfers such that |g| < by. The
nucleus recoil is g, = |q|*/(2M) < |q|by/(2M). Since for
any realistic system by < M, the recoil can be safely
neglected. Thus the electromagnetic field of the nucleus is
approximately static.

The potential induced by a stationary current J*(x) can
be computed as

A4(x) = —i / B D (x — XV, ()

3
=i/ é’,§3 S ()] (). ()

The current density of the static point source of charge eZ is

J¥(x) = eZ8"y6(x). It induces the Coulomb potential
A%q) =eZ/q’.  Alg)=0 (5)

implying that the scattering cross section off the point

charge is given by the Rutherford formula and is not
affected by the anomaly (in the static limit).
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A nontrivial contribution comes about if the nucleus is in
a state y with a finite expectation value of the magnetic
moment u. Indeed, the spin current associated with such a
state is V X y*uy. In the point particle limit the spin current
can be written as J(x) = V x (u5(x)). It represents the first
nonvanishing multipole moment of the vector potential.
Altogether the electrical current of the nucleus is

JO(x) = eZd(x), J(x) =V x (ud(x)), (6)

which in momentum space reads

Jq)=ez,  J(q)=igxp. (7)

According to (4) and (3) it produces the potential

A’(q)=—-iD"(q)J:(q)

; 16z €rirq’
= —€ijk,ukqj <_ -

‘12 - b% bo(‘lz —b<2)>

€t’irqr
+ 8a
bo‘f ) ( )

1 . b
=T {lwxq)“q—g(ﬂ-qqf—qzuf)], (8b)
0

while the time component is still given by the first equation
of (5). The potential satisfies the Coulomb gauge g - A = 0.
The expression for the potential in the configuration space
can be found in [27].

B. Scattering cross section

Quantization of the electromagnetic field at finite b is
similar to this procedure in vacuum except that the photon
polarization must be circular; see Appendix B. As
explained in the Introduction, in this work we consider
photons with @ > b, which allows us to neglect the chiral
Cherenkov effect and concentrate on the bremsstrahlung
per se. The differential cross section is then given by

1 , 1 op|
=5 Q,deY
do 5 |IM| 8027 ol ddQ dw 9)

ss'A

where p = (e,p), p' = (¢/,p’) and k = (w,k) are the
incoming, outgoing and emitted photon four-momenta,
respectively. The corresponding equations of motion imply
that p?> = p'> = m? and k> = —2b, |k|, where A = +1 is the
photon polarization. As mentioned before, we assume that
@ > by, so that k* ~ 0. The matrix element M can be
written as a sum corresponding to two Feynman diagrams
where the photon is emitted before and after the insertion of
the external field A(g), where g = p' — p + k:

oo KM
M = ea(p') (ﬁgmﬁ@

r—f+m
mﬂ"u)”(m’ (10)

+Ag)
where ¢4, = (0,e) is the circular photon polarization
vector. Plugging Eqgs. (5) and (8b) into (10) and averaging

over directions of p using (u;) = 0, (u;u;) = %Zéij yields
IMPP =M+ M,]? (11)

where | M, |? is proportional to ¢?>Z? and describes scatter-
ing off the Coulomb field (5); see Fig. 2. It does not depend
on by, and it ultimately leads to the Bethe-Heitler formula
when substituted into (9). The second term, |M,|?, is
proportional to x? and carries all the information about the
anomaly. We focus on this term from now on. Averaging
over the magnetic moment directions in (8b) gives

2

WA @) = 5 [(6"‘ - 2‘1) @ +83)

- 2l.b0€ijqui| . (12)

Its contribution to the cross section has the form
MM (A'A7*). When summed over the particle helicities,
M; M is symmetric with respect to swapping the indices i
and j. This implies that the second term in the square
brackets of (12) cancels out.”

It is convenient to express the cross section in terms of
g*> = —¢*, w and the parameters x and «’ defined as

k=k-p/lo=¢c¢—k-p/w,
K=k-plo=¢-k-p/o. (13)

Dotting the momentum conservation condition p + g —
k— p' =0 with p, g, k and p’ and solving the resulting
four equations, we obtain

q-p=-¢/2+Kw, q-p'=¢2+ko, (14)

2

2o _4
o(k—«') 5

p-p'=m k-g=w(K-x). (15)

Summing over the outgoing fermion spin and photon
polarization and averaging over the incident fermion spin,
we derive

We note, however, that this term contributes to the partial
cross sections for the helicity states.
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FIG. 2. Diagrams contributing to the Coulomb (e) and magnetic moment () terms in the bremsstrahlung cross section in the chiral
medium at the leading order in a. The outgoing photon is depicted by a single line, which is accurate up to terms of the order b3/w?.

1 A2t + )
§;|M}4|2 = 3K2K/2a)2(q2 _ b%)z {2KK/602[(K + K/)Z + qz}

+ ) [Plkp' e —Kp el

A
+ 4K2p2|p/ .e|2 + 4K/2p/2|p . e|2
—8k(p-e)(p-e) (e —mP)]}.  (16)

The polarization sums are computed using (B2):

- k)?
Z\e-p|2 :pz—(p ) =p*—(e—x)* =2ex —m*> —k*,
7

k2
(17a)
'k 2
Z|e PP =p?*- (pk2 ) =2¢K —m? —«?, (17b)
7
K -k
Sle-p)er-p) =p-p ~ 2
P
2
= «k'e + ke — m? —KK/+%, (17¢)

where (13)—(15) were used. Employing (17) in (16) and
substituting into (9) we obtain the differential cross section

20412 (b2 2 /
do, = "W 4) P 46y 4 e
6(27)°w(q = b5)* Ip|

2
q
X {mZKK/ (2€® +2¢? —4m® + ¢?)

1 1\2 e €\?2
Am? -\ === ) —4(===
+ (4m q)<1< K’) (K’ K')

2w 1 1 20% (K«
dAm? =g === ety A |
+m2(m q><K’ K>+m2 (K+KJ>} (8)

C. Regularization of the resonance

In a homogeneous medium (b = 0) the photon propa-
gator (2) has a resonance at g> = M? = —1bylq|. This
resonant behavior can be regulated in the usual way by
taking account of the finite resonance width:

1 1
_) b
gt +0*¢*—(b-q)*  q*+b*¢*—(b-q)* +ig’T?

(19)

so that the denominator now vanishes at g*> = M? — il*>/2.
It is noteworthy that the photon propagator exhibits both
the s-channel (¢> > 0) and the t-channel (¢> < 0) reso-
nances. This happens because M? can be positive or
negative depending on the photon polarization. The same
parameter I" regulates both channels. We note that I" in the
s-channel has a transparent physical meaning. Namely, it is
related to the photon decay width W as I'> = 2MW =
2/ |bol|q|W = 2byW.

The resonant behavior is closely related to the chiral
magnetic instability of the electromagnetic field in the
chiral medium which is driven by the modes with
Im¢° > 0; see e.g., [29—44]. From the dispersion relation
(¢°)? = ¢*> — Aby|q| it is evident that these modes have
g* < b}. In the limit of small ¢° there is only one unstable
mode |g| = by. The instability is eventually tamed by the
chirality flow between the magnetic field and the medium,
which induces the time dependence of b. It is reasonable
then to estimate W as the inverse of the chirality transfer
time W ~ a?>m?/T [30] (T is the temperature) which is the
softest scale in the problem. Another contribution to W
arises from inhomogeneity of the axial charge distribution
which induces spontaneous transitions between the
eigenstates of the curl operator (also known as the
Chandrasekhar-Kendall states) [45].

In our calculation, the denominators of (19) appear
multiplied by their complex conjugate. Taking advantage
of the fact that ¢° = 0 we can cast this product in a form
convenient for further analysis:
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Re 21172 _ Re I“z(q2 — b(z)) + 2b%1“2 + i(F4 —2bo(q2 — b(z)))
Fz(q —bg —il?) I((¢* - by)* + T
(¢* + bg)
= 20a
(¢* - b5)* +T* 209
Similarly,
*(q* + bg 3312 + (I = 2b¢)i
g(q220)4: % 2 (2 -20)l+1’ (20b)
(" —bg)” +T I*(g” — by — i)
4(q* + b? T2(5b% —T*) 4+ 2b2(2T* = bH)i
g(q 2_|—2 0) — Re (5 0 - 2)+2 0<. - 0)l+(q2_|_3b%) . (20C)
(> —bg)* + 1 [*(q° — by —il?)

Using Egs. (20) in (18) furnishes the final expression for the regulated cross section:
do, —_ m’e%’ p'| 1 [T2(5h§ —T*) +2b3(2I* — bY)i
dQdQ'dw ~ 6(2r)3wl? |p| 0

212 _npd 2 n _ 2 2
+{3b01“ +(g‘ 2b0)l+r2] [26 +22e 4m _<l_l> _2_0;(1/_1)]

m2kx’ m?> \« «

2 —2b3i 1 1)\2 11 e €\? 20 (K «
i L | WY (LG P (E L Y (L R LA | S 21
(o) le) o) ) R Gl e
where Q = ¢* — b3 —il2.

The integral over the final fermion directions d€2’ can be found explicitly by introducing the Feynman parameter x [46].
For example,

e*dQdQy
11’15/(277)2KK’Q_ (27)? ((I’ k +1’I2 / / 2 e (1_x))2

+(¢* + 3b§)1‘2}
m KK'

/(2;;)2 (p - k)2+p’2 / / bt (dg;" %) x+m(1—x))

(pk+p/2x P (pk+’2

/ e*dQ / 2dx
oo k7 +p7) o (1= B Y e (2 k(1 - )

TR k"
'\\/4p*K%>+(bo+il?) (b2 +iT2)—4ex—2m?
L [ 2arctanh (L” VAT (2;2/_;2)K)_(§,<(},§+ir)z)) )> dcosf
=¢ : (22)

1 |p' |\ /4p?K* + (bo + iT?) (B3 + iT?) — dex — 2m?)

Other integrals can be performed in a similar way and are listed in Appendix C. Substituting (22), (C1)—(C3), and (C6)—(C8)
into (21), we arrive at the final result

do, — m*e*’ p'| G €* +¢€? ,_2m2 , b3
do 62w M ((W el e T e 1) ww”)

s ! re [2(5b§ —T*) + 263 (2% — bg)il
2 m2et L1
A (207 +2p? Lo+1n | 20
+ (317%1—‘2 + (F4 - 2bg)l) < m2€4 Il,l - €4 + m2€% (Il 0~ IOJ)

2b%i 2620?
—i—eio ( 4(p°Ly o —2(e€ —m*),; +p"?ly,) —8ew(l, o —Iy;) + P (11 + I—l,l)) H (23)

where [ = 2arctanh(“;|) and /' = 2arctanh(“’ |)
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D. Ultrarelativistic limit

In practical applications the ultrarelativistic limit
€,€ > m is of most interest. The momentum transfer in
this case tends to be small, with the minimum occurring for
collinear p, p’ and k:

2,4

= (VE - VE 0 RO )
4e-€

Noting that the resonance contributes to the photon

spectrum only when ¢2. < b3 [see e.g., (18)], one finds

that the maximum possible photon energy in the resonant/
anomalous part of the spectrum is

2€2b0

@0 = 2eby +m?’

(25)

One can see this cutoff emerging directly in the integrals
(22) and (C1)—(C8). The anomalous part stems from the
imaginary part of those integrals and can be traced back
to the kinematic region where the argument of the
hyperbolic arctangent exceeds unity. In the ultrarelativistic
limit this can occur in the region where @ < @y. The
explicit expressions for the integrals can be found in
Appendix C.
In the ultrarelativistic limit, (23) reduces to

do et € 4e’e? e € 4¢? 4¢'?

@ou o) L (C ) (2 (25 ) — 1

= sapme |20 () + (5 5)m(e) () 1)
2

+ %Re{(Sb%FZ + (T = 263)1) (

2 —2p%i
€

Plugging the individual integrals (C9)—(C13) into (26) yields

do ~ 3(2n)we

do, ey € [ ((3bf+2m*)(e* +€?)
2m?*e'e

€’ 4¢” €? 4e

BimPr [ (4 (2 +€)b3) (2
+ 2 -+ 2.2, 2
I € m-e‘e m

2€? + 2€”?

— L.
m2et ’

2 / 2 2620}2
3 —4(e’ I —2(e€' )1 | + €71y,) + P (-1 +121) .

(26)
2 6/2 16 64 €/4 62 €/2
) a(E 1) -1
n 62) n<m4a)4>+ <€/2+€2>
2 e ¢ 4¢? 4¢'?
w2) T\e ) )
e? (e 0]
_ 45 (£ _
by’ e \m?  2bye
(27)

2 /9! 2 b (2 4 2 2
2 (- (e ) me g, ),
e” \m~ bye m-e “w 2¢”  2¢'e

where ® is the step function. In the limit by — O this
equation reduces to the result obtained in [46].

In the semisoft photon limit by < w < ¢, the spectrum
further simplifies:

do 32rn)Pw |m*>  \m*e?
4¢*  2bim

I11. DISCUSSION

The main results of this paper are Eqgs. (21) and (23),
displaying the contribution of the anomalous chiral mag-
netic current j = byB to the differential cross section of the
photon bremsstrahlung with energies @ > b,. As we
explained in the Introduction, the exclusion of the region

o < by allows us to disregard the chiral Cherenkov
radiation, which we intend to address in a separate work.
In the ultrarelativistic limit the cross section is given
by (27).

The two salient features of the anomalous contribution
are the enhancement by the large factor (by/I")? and the
emergence of the ultraviolet cutoff (25) due to the reso-
nance in the #-channel. The order of magnitude of the
anomalous contribution can be estimated using (28). If the
mass of the projectile charge particle is of the same order of
magnitude as b, or smaller, then the anomalous contribu-
tion is strongly enhanced. In the opposite limit, by <K m,
the ratio of the anomalous and the conventional contribu-
tions at @ < wy is of the order (by/T")?(by/m)?, and no
general statement can be made.

The total bremsstrahlung spectrum is a sum of the
Coulomb o, and the magnetic moment o, terms. The

"
Coulomb contribution to the photon emission is given by
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the amplitude M, in (11). The corresponding cross section
reads, in the ultrarelativistic limit for soft photons [28,47],

1n2€2 1
mo 2/

Naturally, the magnetic moment term is suppressed com-
pared to the Coulomb term by a factor (m/m,)* (u/uy)*Z 7.
Here py = e¢/2m,, is the nuclear magneton, and typical
values of the nuclear magnetic moments are in the range
|#| = (0.1 = 10)uy [48]. Considering that the two formu-
las (28) and (29) have similar dependence on photon and
projectile energies, the Coulomb term overshadows the
conventional (i.e., by = 0) magnetic moment term. For
systems with by~ m, the anomalous contribution is
enhanced by (by/T")% and therefore it can, in principle,
compete with the Coulomb term. Moreover, due to the knee
at w = w, the anomalous contribution can be clearly
distinguished; see Fig. 3.

There are several physical systems where the brems-
strahlung is modified by the chiral anomaly. In the quark-
gluon plasma produced in relativistic heavy-ion collisions,

do,

VAL
— 29
do  12(27)*m’w < (29)

2
do mpe

dw €8

107,

105,

1000 F

1000}

107 0.001 0.01 0.1 05 1

FIG. 3.

it is expected that b, is induced by the fluctuating
topological charge density of the color fields, though its
magnitude is quite uncertain [33]. Perhaps one can expect
that the finite temperature contributions to the photon
propagator are about the same order of magnitude as b,
and hence play a significant phenomenological role.
Another system with finite b, is the hypothetic cosmic
axion [49]. In this case b, is proportional to the time
derivative of the axion field, and thus to the axion mass.
Our model describes the interaction of the cosmic rays with
the axion field. Finally, chiral excitations in Dirac and Weyl
semimetals are described by the Hamiltonian with finite b
[7,50]. Extension of our formalism to anisotropic systems is
straightforward though quite laborious (see e.g., [15]).
At any rate, in the physical systems that we are aware of,
such as the Weyl semimetals and the axion, by < m,
implying that anomalous modifications of the photon
propagator have a small effect on the photon emission.
We also expect that similar considerations hold for the
gluon emission by a fast quark in the quark-gluon plasma
produced in heavy-ion collisions; there the anomaly
parameter also seems to be small. This leaves the chiral
Cherenkov effect as the leading source of the anomalous

do mhe

dw &
107+

10*F

10+

mle

100+

1F w
€

1078 107 0.001  0.01 0.1 1

Coulomb (dashed line), the magnetic moment (solid line) and the magnetic moment for b, = 0 (dotted line) terms of the

photon bremsstrahlung cross section in the ultrarelativistic limit (27), for m = m,,, I' = 0.01by, € = 100m, Z = 33, 4 = 5uy. From top
left to bottom right by = 0.1m,0.01m,0.001 and 0.0001m, respectively. The Coulomb term is taken from [47] in the ultrarelativistic

approximation [which reduces to (29) at w < €].
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photons in the chiral systems. Nevertheless, we note that
the values of the anomaly parameters b, and b can be
enhanced in external electric and magnetic fields (see e.g.,
[3]), making the anomalous resonance photon production
discussed in this paper phenomenologically relevant.
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APPENDIX A: PHOTON PROPAGATOR
IN THE CHIRAL MEDIUM

The classical equation of motion of the photon field is

[¢¥0* — 0 — e"”“ﬁba()ﬂ}Au = jh. (A1)
It is invariant under the gauge transform
Ay = A+ 0 (A2)

where y is an arbitrary function. In the Lorenz gauge 0 -
A = 0 the photon Green’s function obeys the equation

= i8,8%(x),
(A3)

[g40% = (1 = 1/£)0"0" — eV, 95| D,y(x)

where £ is the gauge parameter. In momentum space (A3)
becomes

[—k2g — (1 =1/E)kHKY + ie"”“ﬂbakﬁ]DM(k) =i8",, (A4)

which is solved by
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The terms in the second line vanish when D** is inserted in
the Feynman diagram due to the current conservation. The
terms in the first line yield (2).

A more general expression for the propagator can be
obtained in a covariant gauge (0 + Cb) - A = 0, where C is
a number.

APPENDIX B: PHOTON POLARIZATION SUM

The wave function of a photon at b = (b, 0) is a plane
wave (check normalization)

(X) —th’

\/2_60

(B1)

where ¢ = (0, ¢;) is a circular polarization vector satisfy-
ing the Lorenz gauge k- e; =k -e;, = 0. Once the wave
functions (B1) are chosen, there is no remaining gauge
freedom. Only circularly polarized photons solve the
equation of motion (Al).

This is in sharp contrast with the free photon wave
function which is also given by the plane wave as in (B1).
However, since k> = 0, there still remains gauge freedom
to transform the polarization vector e# — e + yk* without
changing the form of the wave function or violating the
Lorenz gauge condition.

The photon polarization sum is

y kik/
d?:Ze}( zj—(slj—k—z.
pol

(B2)

There is no remaining gauge freedom to transform it to any
other form. In particular, d”/ cannot be replaced with —g**.
As an illustration consider the amplitude ¢, - M. Let k be in
the z-direction; then, using the current conservation k -
M =0 we can write

> lew- MP =

pol

M+ M, [P
2
w
= M+ M+ M - el Mol
7& _gle;lM:
since k2 = w* —k* #0.

Introducing the unit vector n* = b* /by = (1,0) we can
cast the polarization sum (B2) in the boost-invariant form:

ktkY — (k- n)(k*n¥ + k' n*) + n*n* k?

(k-n)?—k*

A = —g - (B3)

Its spatial components reduce to (B2), while the other
components are d° = d% = 0.

APPENDIX C: ANGULAR INTEGRALS

The integrals described in Eq. (23) are

; 2 / KkdQdQY
= € _——
o (27)K'Q
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The rest of the integrals can be related to Egs. (22) and (C1)—(C3) by means of the transformationp — p’,p’ - p, v —» —w
and therefore

¢ =@ -p+k)P’—>p-p-kP=0-p+k?=q" (C4)
-k "k

k=e-PE o P B _p (C3)
® a)

Taking advantage of these transformations we derive
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In the ultrarelativistic limit € > m the remaining integral can be done explicitly with the following result:
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