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We develop a method by which vacuum transitions may be included in light-front calculations. This allows
tadpole contributions which are important for symmetry-breaking effects and yet are missing from standard
light-front calculations. These transitions also dictate a nontrivial vacuum and contributions from vacuum
bubbles to physical states. In nonperturbative calculations these separate classes of contributions (tadpoles
and bubbles) cannot be filtered; instead, we regulate the bubbles and subtract the vacuum energy from the
eigenenergy of physical states. The key is replacement of momentum-conserving delta functions with model
functions of finite width; the width becomes the regulator and is removed after subtractions. The approach is
illustrated in free scalar theory, in quenched scalar Yukawa theory, and in a limited Fock-space truncation of

¢* theory.
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I. INTRODUCTION

Recent calculations of the critical coupling in two-
dimensional ¢* theory [1-13] have shown that there is a
discrepancy in the nonperturbative equivalence of equal-
time and light-front quantization. Although this discrepancy
can be explained with a computed shift in the renormalized
mass [5,6,8,14], this explanation is a correction to the light-
front calculation, rather than a direct calculation. In addi-
tion, calculations with coordinates that interpolate between
equal-time and light-front quantizations [15,16] indicate
that the light-front limit should obtain the same critical
coupling as obtained in equal time quantization [17]. The
key is the inclusion of tadpole contributions, which on the
light front requires zero modes, modes with zero longi-
tudinal momentum, to represent transitions to and from the
vacuum, as illustrated in Fig. 1(a." In a nonperturbative
calculation, where one cannot pick and choose classes of
diagrams, the presence of vacuum transitions necessarily
imports (divergent) vacuum bubbles, of a sort shown in
Fig. 1(b), as well as tadpoles.2

"These figures were drawn with JaxoDraw [18].

*This is a separate question from perturbative equivalence,
which has been generally established. For recent discussions, see
[19-21].
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Zero-mode contributions to physical states and the
corresponding nontriviality of the light-front vacuum
[19,20,22,23] are of broader interest than just the critical
coupling in ¢* theory. They enter into any discussion of
symmetry breaking, such as the Higgs mechanism, and of
vacuum condensates [24]. More recently they have been
identified as possible contributions to higher-twist distribu-
tion functions [25]. For these reasons, we explore a possible
method for inclusion, within the context of two-dimensional
scalar theories; extension to three and four dimensions
should be straightforward.3

Contributions such as tadpoles and vacuum bubbles
that involve transitions to and from the vacuum must
rely on terms normally excluded from light-front
Hamiltonians. These are terms with only creation oper-
ators or only annihilation operators. With light-front
longitudinal momenta constrained to be non-negative,
momentum conservation requires that the operators create
or annihilate zero momentum. On this basis they are
always dropped. However, depending on the zero-
momentum behavior of the Fock-space wave functions,
matrix elements of such terms need not be zero.

For example, consider light-front quantization [28—34] of
a two-dimensional scalar theory. We define light-front
coordinates [28] and momenta as xT =r+z and
pt=E+ p., with x© chosen as the light-front time.
The mass-shell condition for the total two-momentum

3For alternative methods, see [26,27].
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FIG. 1. (a) Tadpole graph and (b) vacuum bubble in ¢* theory.
Note the momentum-conserving transitions to and from the
vacuum that imply light-front zero-mode contributions.

(P, P*) is then M?> = P*P~, which gives the fundamental
bound-state eigenproblem as

2

Pl (P)) =y (P, (11)

where P~ is the light-front Hamiltonian. A typical Fock-
state wave function for an eigenstate of this Hamiltonian
satisfies an equation of the following form:

1

Vpipsps -

x contributions from other Fock sectors =

n ﬂ2
Do walpl ) +
i Pi

2

M
FV/n’ (1.2)

with 7 the number of constituents. The symmetry for bosons
then requires that the small momentum behavior of this wave
function is

<. (1.3)

The matrix element of a vacuum transition in ¢* theory
reduces to

sl [ %4_”;5(2;7, ) [La' v (19

1

N/Hn+44dp1+ (;jpn+l <PJr Zp >

n+4 4+ n+ r

[ p (o

With Q=3pl,, pr=x0, and [[5), dpf =
Q3dQ [T} dx;6(1 = > % x;), this becomes

e [ et 5<sz ) [La' vl
o [T
/H" dp; 6 P+ an?)
TP

(1.6)

which is finite and nonzero. Thus, such vacuum-transition
terms cannot be ignored automatically.

Vacuum transitions also generate vacuum bubbles which
make contributions proportional to the size L of the spatial
dimension as expressed through 475(0) = [dx~=L. A
nonperturbative calculation requires a cutoff, to regulate this
infinity, and a subtraction of the vacuum energy from any
eigenenergy of a physical state. We regulate by replacing
delta functions of momentum with model functions o, that
have a width parameter ¢ and take the limit of € — O at the
end of a calculation.* For the (nontrivial) vacuum state, we
compute a finite energy density, with the model parameter ¢
related to the spatial volume L in a model-dependent
way: 475,(0) = L

For any finite width e, there will be additional modes
present in any calculation. We call these ephemeral
modes, since they are not zero modes but instead dis-
appear in the limit of zero width. The remaining imprint is
essentially a zero-mode contribution, but obtained as a
limit. Contributions to massive states, beyond the vacuum-
energy shift and tadpoles, are generally negligible for weak
coupling; however, for strong coupling, the Fock-state
momentum wave functions can become broad enough that
they overlap with ephemeral modes. Depending on the zero-
momentum behavior of these wave functions, there can be
additional contributions from vacuum transitions.

Such contributions cannot be readily captured with the
discretized light-cone quantization (DLCQ) formalism [35],
and DLCQ calculations with constrained zero modes [36—38]
are incomplete. For good resolution of the ephemeral modes,
the DLCQ resolution K must satisfy 1/K < ¢/P*. Also, the
integrals that must be represented by the rectangular DLCQ
grid are highly singular, for which the grid is ill suited.
Calculations would be best undertaken with a basis function
expansion, for which matrix elements can be computed once
and for all with an adaptive Monte Carlo integration, such as
is available in the VEGAS package [39].

Even with antiperiodic boundary conditions, the DLCQ
approach cannot neglect zero modes. With such boundary

*This is equivalent to the regulator used in [19] for the
calculation of a time-ordered product. The parameter R in their
Eq. (22), introduced as the radius of a circle approaching infinity,
is essentially 1/e. However, the circle at infinity is something that
arises in diagrammatic calculations rather than nonperturbative
eigenvalue problems.
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conditions one can avoid the constraint equation, but the
approximation to the integral operators in P~ is the midpoint
rule with an error no better than the 1/K? for periodic
boundary conditions, where the integrals are approximated
by the trapezoidal rule. The trouble is that the coefficient of
the 1/K? correction is small only if the integrand is slowly
varying. If instead there is rapid variation, such as can
happen near zero momentum, the approximation becomes
quite poor except at very high resolution. In other words, if
zero-mode contributions are important, antiperiodic boun-
dary conditions do not provide an approximation any better
than periodic boundary conditions.

To explore the inclusion of vacuum transitions, we first
consider ¢* theory in more detail; in Sec. II we consider the
leading tadpole and vacuum-bubble contributions. Next, in
Sec. I1I, we develop an analytic solution for a free scalar as a
generalized coherent state of ephemeral modes. The vacuum
bubble contributions replicate the one-loop calculation
emphasized by Collins [22]. We also consider the solution
for a shifted scalar with nonzero vacuum expectation value.
This is done in the continuum, without interpolation from
equal-time quantization and without discretization. Finally,
we consider quenched scalar Yukawa theory in lowest-order
Fock truncation in Sec. IV, to see the subtraction of the
vacuum energy of the neutral scalar in the charge-zero
sector from the dressed scalar energy in the charge-one
sector. Numerical calculations are postponed to future work.
|

dP1dP2
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Pmt P04 + P40 + P22 + Pl% + P31’

s (S oo
(S0

dp1dP2
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II. LOWEST-ORDER ¢* THEORY

The Lagrangian for two-dimensional ¢* theory is

14,4

O 1)

NI>—‘

where p is the mass of the boson and 4 is the coupling
constant. The light-front Hamiltonian density is

1 A
= §ﬂ2¢2 + 5454- (2.2)

The mode expansion for the field is®

#t =0.37) = [ L falp)e v 4 (e ).

Jaxp
(2.3)

The nonzero commutation relation is

la(p).a’(p")] (2:4)

=dp-p').

The light-front Hamiltonian is P~ = Py + P;,,. with

d(p1 + pa)la(pi)a(ps) + a'(p1)a’ (p2)]. (2.5)
(2.6)

p2)a(ps)a(pa), (2.7)
(p1)a’(pa)a’(ps)a’(pa). (2.8)
= py)a’(pr)a’(p2)a(p’)a(ph). (2.9)
a'(py+ p2 + p3)a(pi)a(p2)a(ps). (2.10)

*Without a solution to the constraint equation, the error in DLCQ with periodic boundary conditions is of order 1/K, unless the end

points (the zero modes) make no contribution to the integrals.

®For convenience we drop the + superscript and will from here on write light-front momenta such as p* as just p.
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dpdp,dp;

a(py)a’ (pa)a’(ps)a(p; + p2 + p3).

_—y
-
Y6 4ny/pipaps(pr + pat p3)

(2.11)

The subscripts indicate the number of creation and annihilation operators in each term.
To isolate the contribution from the tadpole and vacuum bubble in Fig. 1, we consider only two terms in the Fock-state

expansion of the eigenstate

lw(P)) = wa'(P)|0) +

in order to represent the five constituents in the intermediate
states, and we keep only the first term of P and the first
three terms of P;., as the only terms that connect the two
Fock sectors. We then consider the eigenvalue problem

2

Py + Prolw(P) = (4 o Jlwe). 213

\/_/47zH ]ii[l‘:lp,

<i§‘?>w i

1

1

(2 pi)

A dp.d
+20—/ Pidps 8(p1+ 2
45

4 VvV P1P2P’1P’2

where we have invoked a sector-de Pendent energy shift,
with no Py, in the top Fock sector.

The second equation can be solved iteratively with respect
to the self-coupling of the five-constituent Fock state in the
third term of (2.16); this corresponds to a diagrammatic
expansion. The leading term in the expansion generates the
vacuum bubble in Fig. 1(b) that contributes Py, in (2.15).
The second term, where the self-interaction acts once,
produces the tadpole in Fig. 1(a). Both are written explicitly
in (2.17) and (2.18) below. Subtraction of Pg,. from both
sides of (2.15) eliminates the divergent bubble.

From (2.15) and (2.16), the contributions take the forms

Hsdpl 56(Z?pl)2
bubtle [ o ZP s

i p;
N_/

4
X i) . (2 17)
i
In the top sector, there are, of course, no vacuum corrections
from higher Fock sectors.

MZ
P
dQ H4 dx; (

+/f[dp,»6<P—

(50

O IACRSARSY ) CIIE

|
where we include the shift of vacuum energy Py, to be
obtained from solving the corresponding vacuum eigenvalue
problem

(2.12)

(Py + Py )lvac) = Py|vac), (2.14)
with |vac) the lowest eigenstate. Projection of the eigenvalue
problem for the lowest massive state onto Fock sectors yields a

system of equations for the Fock-state wave functions

245 Lﬂ\/l_[“—+ (ps < pl,pz,pz,m)]u/l

M2
>W5(p1,,175)— <?+P\7ac>l//17 (215)
I Y | / / _%2 2 16
Py = P)¥s(Ps Py P3s Pas Ps) = P Ys, (2.16)
4 5
adpole - /H (T p) P = T 1)
\% H Pi P i%
dpidp) 5<P4+P5 Py — D)
Vpapspiph M-yt ke
3.
% 6(21 pl+p1). (218)

VI pir

The expression for the bubble diverges as € — 0 and is
proportional to §(0) = L/4x; however, the same expres-
sion is obtained for the nontrivial vacuum energy Py,. and
is subtracted.

The expression for the tadpole contribution can be
simplified by noting that §(P -3 p;) reduces to
8(P — ps), which can be used to do the ps integral, and
8(ps+ ps—pj—py) becomes 3(ps+ P —p|—ph),
which can be used to do the p/ integral. Finally,
5.(5°2 p; + p}) can be written 5.(p, — p)) and used to
do the p} integral. These leave
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Ydp; 1 5.3 % p; S = Py, . .
tadpole ~ Hl pl - . 6(21 Zl)l) < PO |VaC> PVdC|Va’C> (3 1)
[T} pi paP P _ 4 _up?
’ ’; i P We will show that the vacuum is a generalized coherent
d
/ Q/ H Xi (2'19) state,
(T ) ()
vac) = VZeA'|0), (3.2)
which is finite and inversely proportional to P, the mark of
a light-front self-energy correction. where
Of course, in a nonperturbative calculation, these con-
tributions cannot be separated. However, with the bubbles + o dpidp, f(p1,p2) : ;
regulated, one can solve the eigenproblems for the vacuum Al = 1 T ¢ (p1)a’(p2). (3.3)
’ 0 VPiP2 ot
and the massive states and then carry out the necessary Py,
subtraction prior to taking the width parameter € to zero. For such a state. we have
III. FREE SCALAR
A. Free vacuum atpivae) =2 [ SELLLLa ppee) G
. \/_ St
The free vacuum |vac) is an eigenstate of the free scalar
Hamiltonian Py in (2.5): and
|
fpi,p
alpr)a(po)vac) =~ PP o
PP ot
dp\dps  f(pi, P)f(P2sPy) o o i
+4 1 1 11 a'(py)a’(p3)|vac).
\/ P1P2P' D) Ctor A
(3.5)
With these we can apply P; to obtain
_ dpidp, VRN f(p1.p2)
Py |vac p1+p2)a’(pr)a’(py) + 1
jlvac) = Wm e (a2 + ot
dp\dp; f(pl,p ) f(P2. )
] ot Lo Lat 4D PhNac)
P1P2P\ P p] A N A
2
+ [anea o) [ar 2= f(” Pt (p)vac). 36)
p /P

The solution to Pj|vac) = Py,.|vac) is then possible if

dp,dp fpi,p
Vac - / ] 2 + pZ) # (37)
N VPP =+
and the symmetrized coefficients of a’(p,)a’(p,) sum to
zero:
2 / /
W o(p1+p dpidp
0="_ e( 1 2) 2”2/ . /1 2 56(]7/1"']7/2)
2 /PP P1Pr/P1P2
f(pi.p) f(popy) 1[w* w2 f(pl,pz)
X T T + —+— \/_ .
RIS Pr P2l VP1P2 o) Pz

(3.8)

I
In the second term of (3.8), we can compute

/dpldpz 0 )f(pl,p’l)f(pz,p’z)
pipy PRI oot
_ F(p1,xQ)f(p2. (1 —x)Q)
=i [ 0a0s.0) [ PG R

— F(p)f(p2) / 0d05.(0) = 0. (3.9)

The sum of coefficients in (3.8) is then zero if
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1
f(P17P2)=—§5e(P1 + pa). (3.10)

This determines the vacuum state.
With this solution for the coherent-state wave function,
the energy of the vacuum is

P /dpldpz (P1+p2)?
vac — T 5 1 1
pPipP2 T
B _,M_2 QdQdx 65.(0)*
Q2 (1_X)Qx(1x)

_ ——/dQé 66(0)Aoo dQs.(0)
WA L1 AL
_?EE 167; (3.11)

Here L is the (infinite) volume of light-front space;
however, o, at finite € regulates P,. when it is embedded
in a nonperturbative calculation.

This result is proportional to the one-loop vacuum
bubble computed by Collins [22]. The equivalent pertur-
bative calculation, corresponding to the loop in Fig. 2, is

dg\dg, (a1 + a2) L poda )
1 K
vad e e
2
:2%/616116161255@;24' zf) ’ (3.12)
9192 0" o

which matches (3.11). The leading factor of 2 comes from
the two possible contractions of the double scalar creation
and annihilation operators.

Any massive state in the free theory has a Fock-state
wave function that is a product of delta functions of the
individual particle momenta p;. This part of the state will
not mix with the ephemeral modes, provided the width
parameter € is chosen such that it is much less than all the
p,. For example, the single-particle state with mass u and
momentum P is just a’(P)|vac). It is an eigenstate of Py —
Py,. with eigenvalue y?/P. Weak couplings that broaden

q1 l

q2 I

FIG. 2. One-loop self-energy graph as a simple vacuum bubble
which contributes to the vacuum state of a free scalar. The dashed
line indicates the intermediate state of two ephemeral modes.

the momentum-space wave functions only slightly will
produce effectively unmixed contributions, but calculations
with strong couplings require more care.

B. Shifted scalar

Next we consider the shifted free scalar where
¢ — ¢ + v. The new Lagrangian is

1
L= ‘Cv:O —,u21]¢)—§/12’l)2, (313)
and the Hamiltonian is P~ = Py + P;, with the interac-

tion part

P = /dx‘ﬂ vp = \/‘TﬂﬂzU/j_I;ée(P)[a(p)

. 1
+a'(p)] +5u*0’L.

> (3.14)

The constant term represents the shift in the energy of the
vacuum and is therefore proportional to the spatial size L.

The vacuum state |vac), is now an eigenstate of P,
(Py + Pi,)|vac), = Pyc|vac),. (3.15)

It can be constructed from the free vacuum as e®|vac) with

B=0 [ ap\ampop)la(p)=a(p)l.  (316)
This works because
Ep(x e B =p(x)+v (3.17)
and
eBPye =Py + Py (3.18)

This then permits

(Py + Py, )|vac), = eBPge
0 int 0

= P\TaceB|VaC> =

“BeBlvac) = eBPy|vac)

Py, |vacy,. (3.19)
Thus, in both the free and the shifted cases, the vacuum is a
generalized coherent state of ephemeral modes.

The state is also correctly normalized, because
B'¢B|vac) = (vac|e~BeB|vac)

,{vac|vac), = (vac|e

= (vac|vac) = 1.

(3.20)

The vacuum expectation value of the field can also be
computed:

116006-6



TADPOLES AND VACUUM BUBBLES IN LIGHT-FRONT ...

PHYS. REV. D 105, 116006 (2022)

,(vac|gp(x™)|vac), = (vac|e® p(x™)e?|vac)
= (vacle Bp(x™)eB|vac)

= (vac|(¢(x™) —v)|vac) = —v. (3.21)

This restores the shift.

IV. QUENCHED SCALAR YUKAWA THEORY

In order to look at a case with more structure, we
consider scalar Yukawa theory [40], for which the
Lagrangian is

1 1
L= 0 =m?y +3(0,0)° =514 = gdliP. (4.1)

where y is a complex scalar field with mass m and ¢ is a
real scalar field with mass u. The two fields are coupled by
a Yukawa term with strength g. In two dimensions, the
light-front Hamiltonian density is

1
H=m*y|* + 5/12422 + gdlx|*. (4.2)

The mode expansions for the fields are (2.3) for ¢ and

e (p)e™ /2 + cL(p)eP 2l (43)

_ [ _dp
¥= \Arp

The nonzero commutation relations of the creation and
annihilation operators are (2.4) and

[co(p).ci(p)] =d(p—p'). (4.4)

In terms of these operators, the quenched light-front
Hamiltonian P~ = [dx~H = Py + Py, is specified by

Py = / Ap" e (p)e(p) + L (ple-(p)

ﬂ_2 dqdq,

e
+ [ adlagatq) + 15 [ L
x 8:(q1 + q2)[a(qr)alqn) + a'(q1)a’ (q)],

and

- = __dpdg el c
int g \/m{[ +(p+Q) +(p)

+cL(p+q)c_(p)la(g) + He.}. (4.6)

Pair creation and annihilation terms are suppressed for
the complex scalar; without this quenching, the theory is
unstable [41]. This also suppresses ephemeral modes for
the complex scalar, which would need to appear in pairs
to conserve charge, leaving only those of the neutral
scalar. The vacuum in the charge-zero sector is that of
the free scalar, as given in the previous section; this
provides the value of Py, for subtraction in the charge-
one sector.

We seek eigenstates of P, for which the two-dimensional
light-front mass eigenvalue problem is

2
Plve) = (4 P o). @)

We limit this to the charge-one sector. This sector is
characterized as a single complex scalar dressed by a
cloud of neutrals. For the present purposes we will
consider only a severe Fock-space truncation that keeps
no more than two neutrals. The Fock-state expansion for
the eigenstate is then

lw(P)) = yoc} (P)[0)

+ / dqdps(P — g — )y (q)a’ (g)c’(p)[0)
+/dQ1dQ2dP5(P —4q1 — 492 —P)

xm(ql,q2>%awa)aqu)ci(pno» (48)

The normalization condition (w(P’)|y(P)) = (P — P)
becomes

1= |l//o|2+/deIl//1|2+/dqldquWzI2~ (4.9)

To construct the eigenvalue problem for the wave
functions, we act with P and Py, on the eigenstate and
then project onto the three Fock sectors included in the
truncation. Terms that generate higher Fock sectors are

dropped. For Py we have
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2

Palw(P)) ="vac, (PO} + [ daaps(p—q-p) (*

+m§)w1<q>a*<q>ci<p>|o>

+/d dasdpi(P >(”2+”2+’”2) ( >‘ (aal (a2)el ()0
qragapo\r"=qy =gy = p)\ — T — T |¥2{q1.92) —=a \q1)a (q2)C P
149> 1~ 492 PP AC B 1 2)C+
1992 5, (g1 + g woa (ar)a ()< (P)[0) + dqldqz 8e(q1 + 42)w2(41.92)¢! (P)[0).  (4.10)
V419 V4
The last two terms violate momentum conservation but only by amounts of order e, the width of §.. For P;, we find
Pralw(P) =L [ L2 — @<L (P) +yoa' @] ()]0
An) \ap(p + q
dq,dg,dp . n
+ V22 3(P=p=a1=a)lwa(q1.a:)a"(4)ct(p + 42)
Van) \/ap(p + ¢2)
+wi(g)a’(g)a’ () (p)]]0). (4.11)

. . _ 2
Projection of P~ |y (P)) = (%4

day(q dqldqz
\/471 v/ qP(P—q) 49192

=4+

<ﬂqz P"fq) (@) \/_\/m

and

22 2 2
MoK m H W
<—+—+7>W2(Q1,Qz)+75e(41+612) i

a9 9 P-q9—-q 2

vi(q1)

\/@

+ Py)|lw(P)) onto each of the three Fock sectors yields the following three equations:

1L {
ﬁ\/ﬂ \/Clz(P—QI)(P—%

The vacuum energy P,. appears only in the first equation,
because the Fock-space truncation prevents any such
correction in all but the lowest Fock sector.

We build a matrix representation for these equations by
introducing basis-function expansions

1
WI(Q):ﬁZanfn(CD? l//2 611,(]2 an]gn] 611,Q2
n

(4.15)
with p=P—-—¢q and p=P—gq,—q,, respectively,
m=m/u, and

C_ PS.(
falg) = : 2 = C_1\/qPd( (4.16)
q(P—q);+ 7=,
Gy q/P)"
fnlq) = f ,3 , n20, (4.17)
a(P—q),;+75

M2
3e(q1 + @2)w2(q1,q2) = <?+P§ac>l//0, (4.12)
P=q dq'y,(q.q' M?
; 2 ) - :71//1(‘1)7 (4.13)
VadP-q)(P-q-q)
V4192
l/’l(%) M?
=—y2(q1,92)- (4.14)
\/q] n)P-q—q)) P
|
D_jpV'P P5.(q, + q2)
9-10(41.92) = P 1
Va1a:(P = a1 = q2) -+ -+ 5=
3e(q) + q2)
=D_,yP , 4.18
PV ) (4.15)
D,VP  (glgy ™ +4" g}/ P
9nj(41-92) = b T mz :
Vaia(P—q1-q>) I S
n>0, j=0,...,n/2. (4.19)

These have the desired small-momentum behavior shown
in (1.3). The negative index n = —1 is reserved for the
ephemeral-mode contributions. The normalization condi-
tion (4.9) reduces to

1= |l// |2 +2Bnma ap + ZBn/ml ml!

nj,ml

(4.20)
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where the overlaps between the nonorthogonal basis
functions are the symmetric matrices

1 1
g2 1 dg,d 421
njml = p2 gnj(q17LI2)gml(QI’Q2) q1dq,.  (4.21)

The normalization coefficients C,, and D,; are fixed by

requiring B,(m) =1 and BSL j)” = 1, and one can show that
the n = —1 basis functions are orthogonal to the others,

making B(_11>’” =0 and B(_21>0’n ;=0 forn>0.
The system of equations (4.12)—(4.14) becomes, with
A= g/\Aru? and M = M/p,

P -
mZWO - ?P\Tacwo + /IZVEL())an + ZUEI(;)b’U =
n nj

(4.22)

MZZBE,I,,)lam,
m

(4.23)

> Tt + 2V wo + 23V b =
m ml

2 0 1 v 2
S+ 0D 4Vt = BB
ml m mn

(4.24)
The various matrix elements are defined by
(n 1, _m
1
T = P / dq1dq>9,(q1. 92)
11 in? )
+—t 5|9l q2). (426
<qlq Pogy —qp) om0 a2) (426)
o 1 dQ1d6]2
U,; VG N Se(qr + 92)91j(q15 92)> (4.27)
VELO) _ dq_fn (Q)
VaP(P -
/
\[/ dqdqfn )9mi(4: ') (4.28)
Vi P—q)(P-q—4q)

Details of matrix element computations are left to
Appendix A. These include the definition of a factor f =
1/[f&° gdgqé.(q)?] which enters the normalization for

ephemeral modes.® With these matrix elements, the system
of equations can be written as

P
ﬁ12W0 - PV«J.CI//O + /1@(1 1 + AZV
/’t n>0
P\/ 12 Dy
PVIR ) o PO g = iy, 4.29
10 Z\f 00 Yo ( )
2P 1 1
n= =l =P+ V/BCoao + 5 /B
+ W12g_y9 = M?a_,, (4.30)
n= fCOa 1—|—ZT0ma —|—/1V0 Vo
m>0
+ 23 Vi b = 12> B a,. (4.31)
ml>0 m>0
n>0: ZTﬁln)lam + AV + ﬂzvﬁzl,znzbml
m>0 mi>0
= iy "B, (4.32)
m>0
12P 1
n=-1: — 7ﬁp\7acb—10 + ED—IODOObOO
/ P
\/_Pvacl//0+j'\/ 12a_y = M?b_y,  (4.33)
0: 1D Doob_10+ > Togyibmi +
n = . = m
5 P-10D00b-10 2 00,m1Pmi 2\[‘//0
+ AZVEJ.)OOam = M2ZB(()%)?mlbml’ (434)
m>0 ml>0

n>0: Y T b+ 23 Vi a, =02 B by

ml>0 m>0 ml>0

(4.35)

Cancellation of the infinite vacuum energy P,,. in
(4.29), (4.30), and (4.33) is achieved if a_; =0 and
b_io = —wy//12p. These values correspond to the struc-
ture of the vacuum; in other words, as a part of solving the
dressed particle state, we have reconstituted the vacuum
as the foundation of the physical eigenstate and thereby
canceled the (infinite) vacuum energy. The projection
onto f_;, which is Eq. (4.30), is no longer needed or used.
The factor f disappears in the eigenstate by canceling in
the product b_of_19 « b_19D_,o with D_;y = /6.

¥The value of 8 depends on the model used for J,; it is not zero
because the integral is over only half the real line. Physical results
are independent of /.
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This leaves a finite matrix problem with finite correc-
tions due to nonzero matrix elements of vacuum transitions.
In particular, there is a finite matrix element (Dy/2v/2)
coupling the three-particle sector (by) to the one-particle
sector () between (4.29) and (4.34). The two extra
particles are ephemeral modes.

In this severe Fock-space truncation, the matrix elements
are simple enough to invoke ¢ — 0 explicitly. A more
general calculation would require a model for §, and
extrapolation of the limit ¢ — 0 numerically, in addition
to consideration of several §, models to confirm model
independence.

V. SUMMARY

We have developed a formalism by which vacuum
transitions can be included in light-front calculations and
have argued that they must be included to have full
equivalence with equal-time quantization and to be con-
sistent with the perturbative equivalence of the two quan-
tizations. The latter equivalence follows, at least on a formal
level, as a choice of coordinates for evaluation of Feynman
diagrams, with proper care as emphasized in [19,20]. In that
context, contributions such as nonzero vacuum bubbles and
tadpoles are recovered. These have been missing from
nonperturbative calculations due to the neglect of vacuum
transitions in light-front Hamiltonians. The inclusion of
such transitions means that the light-front vacuum is not
trivial and instead can be characterized as a generalized
coherent state of ephemeral modes, even for a free theory.

The inclusion of vacuum transitions is not important for
weakly coupled theories without symmetry breaking. If
included, the only impact is to shift P~ by the vacuum
energy Py,. and to require a simultaneous solution of
Pran/phys) = (M72 + Plc)|phys) and Py [vac) = Pyyc|vac),
where Py, includes vacuum transitions, instead of solving
the traditional light-front problem of P~ |phys) = M72 |phys).
This has been the case for most light-front calculations and is
illustrated here for quenched scalar Yukawa theory in Sec. IV,
where the extra work of including the vacuum transitions
simply disappears in the vacuum subtraction.

For strong coupling, when physical momentum-space
wave functions become broad enough to overlap with the
near-zero ephemeral modes, and certainly for cases with
symmetry breaking, the vacuum transitions need to be kept.
Thus, all of the earlier nonperturbative light-front calcu-
lations for ¢3 theory need to be revised, as some had
anticipated or approximated, to properly include zero mode
contributions that, among other improvements, should
resolve the difference in the critical coupling between their
results and those from equal-time quantization [1-13]. Our
previous work in [5,38], as for many other light-front
calculations, suffered from the neglect of vacuum-transition
terms in the light-front Hamiltonian. The developments in
[38] treated a different aspect of zero modes associated with

the DLCQ approximation, but did not address restoration of
vacuum transitions. The work in [5] is also based on a
Hamiltonian that does not include vacuum transitions but
does reintroduce their effects by computing the missing
mass renormalization. The focus in this present work is to
include vacuum transitions from the beginning of the
calculation. Matrix elements of these transitions are regu-
lated by the introduction of the near-zero ephemeral modes,
and the light-front Hamiltonian is diagonalized. Vacuum
bubbles and tadpoles then contribute to the energies of the
eigenstates.

Our approach is based on the realization that vacuum
transition matrix elements are nonzero with respect to
Fock-state wave functions with the correct small-momen-
tum behavior. These matrix elements lead to tadpole
contributions as well as disconnected vacuum bubbles.
The vacuum bubbles are regulated by the introduction of a
finite width € in momentum-conserving delta functions, so
that a bubble’s proportionality to §(0) is replaced by
6.(0) = L/4zm, where L is the light-front spatial volume.
The width € is taken to zero (and L to infinity) after the
(infinite) vacuum energy is subtracted. The modes with
momentum of order e that are removed in this limit are the
ephemeral modes. They represent the accumulation of
contributions at zero momentum.

The use of proper basis functions is critical. A standard
DLCQ approximation [29,35] cannot capture these effects,
partly because the zero-mode contributions form sets of
measure zero and partly because the DLCQ grid provides a
poor approximation to integral operators with modes of
order ¢ < P, for either periodic or antiperiodic boundary
conditions.

There is, of course, an increase in the computational load
for any calculation that includes ephemeral modes. The
vacuum eigenstate must be computed, which requires a
separate matrix diagonalization, though significantly
smaller than for physical states. The limit of ¢ — 0 must
be taken by repeating the vacuum and physical-sector
calculations several times. In addition, the size of the basis
for the physical states must be increased to include
ephemeral modes. If N is the maximum number of identical
particles in the calculation, we estimate (see Appendix B)
that the basis size must increase by a factor of ~N/2 and
consequently the matrix size by N?/4.

We have considered several applications of these ideas for
inclusion of vacuum transitions. The most basic was to
show that the vacuum bubbles and tadpoles expected in ¢3
theory are in fact reproduced. We next considered the free
scalar case in detail, constructing the vacuum state as a
generalized coherent state of ephemeral modes and extend-
ing this to include the shifted scalar, with recovery of the
correct vacuum expectation value. The shifted case can, of
course, be handled in DLCQ by inclusion of the constraint
equation for the spatial average of the field [36-38]. Here,
however, we have an exact analytic solution with no
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discretization. Also, the analytic solution contains the one-
loop vacuum bubble discussed by Collins [22] as a prime
example of light-front vacuum structure in perturbation
theory.

To illustrate how the approach functions in an interacting
theory, we considered the charge-one sector of quenched
scalar Yukawa theory. There we have shown how the
vacuum subtraction can be implemented and how strong
coupling can result in residual effects from ephemeral
modes, which in the limit translate to zero-mode effects.

This work was done in two dimensions. The extension to
three and four dimensions should be straightforward. The
transverse momenta have the full range of —co to co and
therefore can be balanced without being individually zero.
The coherent state for the free scalar vacuum would be built
from an operator such as

dpidpidp, f(py.p3.P1)
\/pl p2 ++ 1+

x 8.(p} + p3)d' (pl.p1)a’ (p3

At =

(5.1)

that creates two ephemeral modes with opposite transverse
momenta.

The ideal demonstration that our approach is useful
would be to compute the critical coupling in ¢* theory. The
tadpole contributions that were absent previously [5] would
now be included. Such a calculation is a natural next step.

,~D1)
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APPENDIX A: MATRIX ELEMENTS FOR
SCALAR YUKAWA THEORY

We compute the matrix elements needed to resolve the
system of Fock-space equations for scalar Yukawa theory.
The matrices are defined in (4.21) through (4.28). With the
definition of the model-dependent’ factor f,

1 [+
5= [ daastay (A1)
g Jo
the basis function overlaps (4.21) are, for n, m > 0,
n o (cy)? (C1)?
B = /dqu(Se(Q)2 = ﬂl . (A2)

°For any 6, model that scales properly with €, f is independent
of e.

p) — CaCu [, VaPo(a) (a/P)"
I R g
C_,C,
= [ daata/Pysita) o, (A3)
P Jo q(P-q) L+
1 yn+m+1 1-=x)d
Cce, [Eians
o (1 —x4mx)
@ 2 Se(q1+42)°
B =(D_ dg,d
-10,-10 (D_yo) / 9144929192 (q1+q2)2
D 2
~ (0 [axs(1-x) [ 0as(0p =0k
(A5)
D_ Dn' 55
B2, === ’/dqldqz (61 +9) 919
P 9 +492 91+
J =i n—j _j
quqQ +ql qZ_)O7 (A6)
Pn
e

1
njml — D D / dxl

1—x;
X dX2
0

The normalization conditions, that diagonal elements of
B and B be unity, yield C_; = /B and D_,, = /6p.
The matrix elements for kinetic energy are, with Py,

defined in (3.11),

(el oy ™ 4 ) (k! X))
XX (1 —x; — x2)(x. —|— b XI_xz)z

(A7)

1 m?
T<—11)—1 = (C_1)2/dqu6€(q)2 {_‘F_}
q q
2P
= (Capr [l =~ orPa (49
1
1 n
18, = C1C,y [ dgbi(a)(a/P)" =5 C1Cibia. (A9)
( ) dxxn+m
Tw=0C,_C, | ——————, A10
/l—x—i-r?ﬂx (A10)
@) (D_ 10)2/ ) Sc(q1 + q2)?
T = dg,dg, P _
-10,-10 P Q149289192 41+ 0)?
(1 1 > >
X =+t
a9 9 P-q—q
2P
= —(D_yp)? 2 P (A11)
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@ d(q1 + 1) ald5” + 41 g}
T_l(),nj :D—IODnj/d‘hd‘h a+ o pn
1
= ED—IODO()&}'LO? (A12)
(2)
T =2D,D,,

X/dx dx lexz (x x2 l+‘xm ! l)
! 2(x1+x2)(1—x1—x2)+m X1Xy
(A13)

In 7U') and T(_zl)o.nj we have used [ dqd.(q)

in 1, which

follows from integrating only over positive q.
The potential terms have the following matrix elements:

) dg,dq; 5.(q1 + 92)
U- +@)PVa g ——————
0= f Nz o1+ Q)P a1+ q

D_;o2P
B Uty (A14)
V2
U(o) 1 d%d% 5.(q, an\/_
’ \/_ \/QIq \/611612 P—q,—q)
gl +q"q})/P" D
x ( l12 1 ,7122 - 2\;%5@1 (AIS)
E+£+P—ql—qz
d 1
vO—c_vpP 7‘]\/411)55(61):5&1, (A16)
qP(P—q)
d n
v — ¢, / 7 (A17)
1—x+mx

V(—ll),—lo = \ﬁc—lD—m/dC]Cﬁe(CI)z

2
= %c_lD_lo = V12, (A18)
I q\"" (g +4q)
Vi,)—lo = \/ECHD—IO/dqdq/ (F) W
q n+1
=V2C,D_ / dgq <;> 5:(q) = 0, (A19)

dqdq'5.(q) ¢'q" 7 +q"q"
—\/EC_anj/ ,P_(,)q P -0,
q(P-q)

(A20)

1

dx,dx,x""
nmlfCDml/ 1dXxpx,

1 —x; + ’x,

x1x2 l—l—xm ! l
X 5 .
(X1 +x2)(1 —x1 —x7) + m=x1x;

(A21)

In V( ) Z 10 We have used a representation of the Dirac delta
function

8(q) = / dq’iégq:;/), (A22)

which follows from
[ dar@aq ™D — [ 0aa0p0)"2 o).
(A23)

APPENDIX B: ESTIMATE OF BASIS SIZE

The inclusion of ephemeral modes does increase the
basis size required for any numerical calculation. To
estimate the increase, we consider the number of basis
functions needed in each Fock sector. Let b,, be the number
of basis functions used in the nth Fock sector of n particles
but with no ephemeral modes, and let e represent the
number of particles in an ephemeral mode, for which there
would be one basis function proportional to 6.(> ¢ p;).
Because each basis function for the entire Fock sector is a
product of a basis function for n — e physical particles and
this one basis function for the e ephemeral modes, the total
number of basis functions for the Fock sectoris ) 2 b,_,.
Summed over all Fock sectors up to a truncation of n < N,
we have > | (N — j + 1)b; basis functions. This is to be
compared to a calculation without ephemeral modes which
would use Y ) b; basis functions.

To estimate the ratio, we assume that b,, is approximately
constant. In any practical calculation, higher Fock states
need to be less important; otherwise, the chosen truncation
makes no sense. Being less important they can be assigned
fewer basis functions in comparison to the number of
particles involved. The lowest Fock sectors need detailed
representation in a collection of basis functions which is
large in comparison to the number of particles. With b,
constant, the ratio of the two sums reduces to (N + 1)/2,
which for large N we take as simply N/2 as discussed in the
Summary.
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