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According to quantum electrodynamics (QED), a strong electromagnetic field can make the vacuum
state decay via the production of electron-positron pairs. Here we investigate the emission of soft photons
which accompanies a nonperturbative process of pair production. Our analysis is carried out within the
Furry picture to first order in the fine-structure constant. Also, it is shown that the presence of photons in the
initial state gives rise to an additional (stimulated) channel of photon emission besides the pure vacuum
one. On the other hand, the number of final (signal) photons includes also a negative contribution due to
photon absorption within the pair production process. These contributions are evaluated and compared. To
obtain quantitative predictions in the domain of realistic field parameters, we employ the Wentzel-Kramers-
Brillouin approach. We propose using an optical-probe photon beam, whose intensity changes as it
traverses a spatial region where a strong electric component of a background laser field is present. It is
demonstrated that relative intensity changes on the level of 1% can be experimentally observed once
the intensity of the strong background field exceeds 1027 W=cm2 within a large laser-wavelength interval.
This finding is expected to significantly support possible experimental investigations of nonlinear QED
phenomena in the nonperturbative regime.
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I. INTRODUCTION

As early as the 1930s [1–3], it became evident that the
quantum nature of the electromagnetic interaction mani-
fests itself in an effective violation of the superposition
principle taking place in the classical theory based on
Maxwell’s equations in vacuum. It was found that
Maxwell’s Lagrangian gains additional quantum correc-
tions which lead to remarkable nonlinear phenomena such
as light-by-light scattering [1–4] and Sauter-Schwinger
electron-positron pair production [2,5,6] (for review, see,
e.g., Refs. [7–15]). To galvanize the quantum fluctuations,
one basically strives to make them interact with a strong
background field. In this context, the rapid developments of
the technology for generating high-power laser pulses has
continuously encouraged active theoretical and experimen-
tal research. Although some of the nonlinear phenomena of
strong-field quantum electrodynamics (QED) were already

practically observed [16–19], the nonperturbative process of
electron-positron pair production, i.e., the Sauter-Schwinger
effect, is still experimentally unexplored. Whereas one can
investigate analogous phenomena in condensed matter
systems (see, e.g., Refs. [20–27]), in standard QED the
Sauter-Schwinger mechanism is exponentially suppressed
unless the electric-field strength approaches the critical
value Ec¼m2c3=ðjejℏÞ≈1.3×1016V=cm (m and e < 0
are the electron mass and charge, respectively). This
corresponds to an intensity of 2.3 × 1029 W=cm2, while
the maximum intensity achieved so far amounts to
1023 W=cm2 [28].
As was proposed in Ref. [29], one can attempt to

experimentally study the process of vacuum photon emis-
sion accompanying the Sauter-Schwinger mechanism as
illustrated in Fig. 1. Measuring this additional radiation
would allow one to indirectly probe nonperturbative pair
production. This vertex diagram exactly incorporates the
interaction with the classical electromagnetic background,
which is reflected by the double fermionic lines. The
process described by the diagram is of the first order in
the fine-structure constant α ¼ e2=ð4πℏcÞ and predicts
emission of a huge number of soft photons [29–31]. In
the present study, we revisit the quantitative features of this
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phenomenon providing closed-form expressions and
numerical estimates describing the number density of
photons emitted in the domain of realistic field parameters.
Furthermore, we propose another experimental scenario
which is closely related to vacuum photon emission but
involves additional (probe) photons already in the initial
state. It turns out that the presence of these photons induces
two additional contributions besides the purely vacuum one
discussed above. One of them is exactly the same diagram
as that displayed in Fig. 1 with the outgoing-photon state
coinciding with that of the initial (probe) photon. The other
contribution is negative and describes the absorption of the
initial photon with the production of an electron-positron
pair. As will be shown in what follows, the sum of these
two photon-induced terms can lead to notable change of the
probe beam intensity. Measuring this change is another tool
for investigating the Sauter-Schwinger mechanism in the
experiment. In this paper, we argue that this scenario proves
to be more favorable than measuring the vacuum radiation
itself or detecting pairs directly since the probe-beam
technique corresponds to a lower threshold with respect
to the laser intensity.
Since we are interested in the nonperturbative regime, the

interaction with the classical external field is taken into
account exactly, i.e., we work within the Furry picture.
The quantized part of the electromagnetic field is treated
within perturbation theory (PT). To compute the Feynman
diagrams,we first employ our numerical technique developed
previously in the context of pair production [32–34] and
subsequently generalized for studying radiative processes
[31]. Second,we also perform calculations using perturbation
theory with respect to the classical background in order to
benchmark our nonperturbative numerical procedures.
Finally, to obtain quantitative predictions in the domain of
realistic field parameters, we construct the necessary wave
functions by means of the Wentzel-Kramers-Brillouin
(WKB) approach and complete the evaluation of the diagrams
analytically. The closed-form final expressions are then used
to examine the experimental feasibility of our proposal.
The paper has the following structure. In Sec. II we recap

the main general features of vacuum photon emission.

In Sec. III we discuss the photon-induced contributions in
the case of one initial photon or many identical photons.
Moving on to specific calculations, in Sec. IV we first
describe our nonperturbative procedure in more detail and
then employ PT to benchmark our technique. In Sec. V we
examine the photon emission process within the framework
of scalar QED. In Sec. VI we perform WKB calculations
and obtain closed-form expressions for the necessary
quantities. The experimental prospects of our proposal as
well as the feasibility of measuring the vacuum radiation
and Sauter-Schwinger mechanism itself are discussed in
Sec. VII. Finally, we conclude in Sec. VIII. We will employ
the units ℏ ¼ c ¼ 1.

II. VACUUM PHOTON EMISSION WITHIN
THE FURRY PICTURE

In our study, the external classical field is treated
nonperturbatively, i.e., within the Furry picture. The quan-
tized electron-positron field ψ interacts with both the
classical background Aμ and quantized part of the electro-
magnetic field Âμ. The photons emitted, as well as the
probe photons, are quanta of the latter. The quantized part is
incorporated by PT within the interaction picture [35]. The
corresponding S operator has the form

S ¼ T exp

�
−i

Z
d4xjμðxÞÂμðxÞ

�
; ð1Þ

where x ¼ ðt; xÞ, T is the time-ordering operator, and jμ is a
current operator in the presence of the external background
Aμ. The external field strength is assumed to vanish outside
the interval t ∈ ½tin; tout�, and in Eq. (1) one integrates over
this temporal region. In our case the field is switched on and
off adiabatically, so we will imply tin=out →∓ ∞.
The quantized part of the electromagnetic field has the

following standard decomposition in terms of the photon
mode functions,

ÂμðxÞ ¼
X3
λ¼0

Z
dk½ck;λfk;λ;μðxÞ þ c†k;λf

�
k;λ;μðxÞ�; ð2Þ

where c†k;λ and ck;λ are the photon creation and annihilation
operators, respectively, and fk;λ;μðxÞ¼ð2πÞ−3=2ð2k0Þ−1=2×
e−ikxεμðk;λÞ is the photon wave function corresponding to
momentum k (k0 ¼ jkj) and polarization λ. The electron-
positron field operator ψ can be decomposed either in terms
of the so-called in one-particle solutions �φnðxÞ or in terms
of the out solutions �φnðxÞ. The in (out) wave functions are
determined by their asymptotic form for t ≤ tin (t ≥ tout),
where they have a well-defined sign of energy denoted
by �. The quantum number n incorporates momentum and
spin. In what follows, we will need the expansion of the

FIG. 1. Vertex diagram describing vacuum emission of soft
photons accompanying the Sauter-Schwinger effect. The double
lines represent the exact electron wave function in the presence of
the external field, i.e., the external classical background is treated
nonperturbatively.
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electron-positron field operator in terms of the in solutions
of the Dirac equation,

ψðxÞ ¼
X
n

½anþφnðxÞ þ b†n−φnðxÞ�; ð3Þ

where we have introduced the electron (positron) creation
and annihilation operators a†n (b

†
n) and an (bn), respectively.

These operators obey the usual anticommutation relations.
The vacuum state will be denoted by j0; ini. The current
operator involved in Eq. (1) can now be constructed
via jμðxÞ ¼ ðe=2Þ½ψ̄ðxÞγμ;ψðxÞ�.
In this section we assume that the initial state is a pure

vacuum one, i.e., we do not introduce any additional
photons, jini ¼ j0; ini. To describe the process of photon
emission, we will evaluate the number density of photons
in the final state, which can be obtained by evolving j0; ini
with the aid of the S operator (1),

nðvacÞk;λ ¼ h0; injS†c†k;λck;λSj0; ini: ð4Þ

Note that this quantity is an inclusive observable, i.e., the
final state is not specified here and it may contain an

arbitrary number of pairs. The “mean number” nðvacÞk;λ

represents the number density of photons in the momentum

space, nðvacÞk;λ ¼ dNðvacÞ
k;λ =dk. In the present study, we evalu-

ate Eq. (4) to first order in the fine-structure constant using
the series expansion of the exponential (1). Straightforward
calculations yield [31]

nðvacÞk;λ ¼
����
Z

d4xjμinðxÞf�k;λ;μðxÞ
����2

þ e2
X
n;m

����
Z

d4xþφ̄nðxÞγμf�k;λ;μðxÞ−φmðxÞ
����2; ð5Þ

where jμinðxÞ ¼ h0; injjμðxÞj0; ini is the vacuum current.
This expression can also be derived by computing transition
amplitudes and summing over the possible final states
containing various numbers of electrons and positrons.
This alternative, if tedious, scheme is presented in Ref. [35].
The first term in Eq. (5) corresponds to the so-called

tadpole (reducible) contribution explored in numerous stud-
ies (see, e.g., Refs. [30,31,35–45]). It predicts the emission
of photons similar to those constituting the external field or
higher harmonics. The most robust technique for computing
this term is based on the locally-constant field approximation
(LCFA) [38–41,43,44]. This technique is expected to be
accurate once the external-field frequency ω is much less
than m, which was evidently confirmed in our recent
investigation [31], where it was also shown that the
LCFA prediction may considerably differ from the exact
values of the photon yield if ðω=mÞ2 ≳ 0.3. Recently, it was
also shown that high harmonic generation can be addressed
by inspecting the conduction and polarization currents

within the kinetic approach [45] (see also Ref. [46], where
most general kinetic equations were obtained starting from
nonequilibrium QED).
In this study, we focus on the process of soft photon

emission accompanying the Sauter-Schwinger mechanism
of pair production. This process is described by the second
term in Eq. (5), which can be illustrated by the vertex
diagram in Fig. 1. Since it is responsible for the low-energy
part of the radiation spectrum, we refrain from discussing the
tadpole contributions in what follows. In Ref. [29] the vertex
diagram was examined in the case of a spatially uniform
external background. Recently [31], it was demonstrated that
taking into account the spatiotemporal inhomogeneities of
the external field in the case of a standing electromagnetic
wave leads to a notable anisotropy of the emitted photons
providing additional signatures that can be, in principle,
measured in the experiment.
Here we will also assume that the external field does not

depend on the spatial coordinates, Aμ ¼ AμðtÞ. This will
allow us to obtain relatively simple estimates approximat-
ing a combination of two counterpropagating (high-
intensity) laser pulses in the vicinity of a maximal electric
field amplitude by a uniform background. As was shown in
Refs. [29,31], the photon number density for low energies
k0 ≪ m is proportional to 1=k30. In the case of a spatially
homogeneous field, Eq. (5) yields factor V, the volume of
the system, so we isolate it and present the photon number
density in the following form,

nðvacÞk;λ

V
¼ An;λ

k30
þ Bn;λ

k20
þ � � � ; ð6Þ

where n ¼ k=k0, i.e., the coefficients An;λ and Bn;λ depend
on the photon polarization λ and the propagation direction.
Note that although the photon number density diverges as
k0 → 0, the energy emitted is finite. The function fγðkÞ
introduced in Ref. [29] corresponds to the sum of Eq. (6)
over λ. In quantitative estimates, the interaction volume V is
treated as a volume of the focal spot of laser radiation. The
experimental prospects will be discussed in detail in
Sec. VII.
One might also ask whether it is necessary to take into

account the vertex diagram in Fig. 1 when computing the
number of electron-positron pairs. In this case, one has to
integrate over the photon momentum k, which leads to an
infrared divergence. However, according to Ref. [47], the
divergent higher-order contributions, in fact, do not affect
the leading-order result (see also Ref. [48]; this issue was
examined in the context of other nonperturbative processes
in, e.g., Refs. [49–51]). The same holds true with regard to
radiative corrections to the process of soft-photon emission
considered in the present study. As we always specify the
signal photon energy k0 > 0, the leading contribution (6) is
finite, whereas the higher-order infrared divergences are
irrelevant. On the other hand, the number of photons can be
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affected by higher-order diagrams where multiple k0-
quanta are emitted simultaneously. Nevertheless, these
corrections are small since they are suppressed by powers
of α lnðm=k0Þ [47,48]. In what follows, we will assume
that k0 ≥ 10−6m, which leads to α lnðm=k0Þ < 0.1, so the
higher-order terms will be disregarded.

III. ADDITIONAL PHOTONS
IN THE INITIAL STATE

In this section we will analyze the process of photon
emission in the presence of additional (probe) photons in
the initial state, which were absent in the vacuum state
j0; ini considered previously.

A. One-photon state

Consider now a one-photon state jini ¼ c†q;ϰj0; ini.
Calculating the photon number density to first order in α via

nð1Þk;λ ¼ h0; injcq;ϰS†c†k;λck;λSc†q;ϰj0; ini; ð7Þ

one obtains a sum of two contributions. The first one is

exactly nðvacÞk;λ given in Eq. (5). Note that this part does not
involve the quantum numbers of the probe photon. The
second contribution to nk;λ appears due to the presence of
the additional photon and represents the difference shown
in Fig. 2. The photon wave functions correspond to the
quantum numbers q and ϰ of the initial photon, so these
terms contribute only when k, λ coincide with q, ϰ.
Together with the process without additional quanta, the
three parts can be interpreted as spontaneous emission,
stimulated emission, and photon absorption, respectively,
similar to the atomic physics notions. To properly treat the
“resonance” character of the photon-induced terms, one
should introduce a smearing function for the initial photon
state. We assume that it is localized in a small vicinity
of q which has volume Vq (in momentum space). Another
important point is the fact that the difference between the
two diagrams in Fig. 2 appears due to complex conjugation
of the photon wave function, which is equivalent to the
substitution kμ → −kμ. It means that the second diagram in

Fig. 2 (photon absorption) has the same behavior (6) with
the opposite sign of the 1=k20 term. One factor 1=k0 relates to
the normalization of the photon wave functions, so one
should change the sign of the even powers. Whereas the
difference in Fig. 2 no longer has the 1=k30 term, the next-to-
leading-order term doubles. Note that there are no stimulated
tadpole contributions, which is no surprise as the vacuum
current is real, so conjugating the photon wave function, one
does not change the absolute value of the diagram.
We assume that the probe photons will be measured

within the whole Vq region, i.e., we integrate the photon
number density over the small momentum volume, where
the initial photon was localized. It brings us to the
following number of photons (l ¼ q=q0),

Nð1Þ ¼ 1þ
�
Al;ϰ

q30
þ Bl;ϰ

q20
þ � � �

�
VVq þ

2ð2πÞ3Bl;ϰ

q20
þ � � � :

ð8Þ

Here the first term corresponds to the trivial zeroth-order
contribution and merely indicates that the initial state
contains one photon. The second vacuum term is enhanced
by the large factor V since the vacuum emission takes part
in the whole interaction region. On the other hand, it is
suppressed by Vq since we have integrated only over this
small momentum region. In the quantitative estimates
concerning this vacuum term, we will take into account
that this radiation is emitted at all the other directions (see
Sec. VII). The vacuum contribution is essentially deter-
mined by the first term in parentheses in Eq. (8). Finally, the
last term in Eq. (8) comes from the difference in Fig. 2 and
governs the photon-induced contribution. Here the factor 2
appears since the B term doubles in the difference of the
two Feynman diagrams. Let us briefly discuss the origin of
the factor ð2πÞ3. When introducing a photon smearing
function, one has to perform two additional integrations in
Eq. (7). Assuming that the smearing function is equal to
some constant C in a small vicinity of momentum q, one
can simply multiply the integrand by factor V2

q and replace
the smearing function withC. This leads to an overall factor
C2V2

q. Since the initial state contains one quantum, the
zeroth-order photon number density integrated over Vq

yields unity, i.e., C2Vq ¼ 1. The external field is homo-
geneous in space, so the number density will be propor-
tional to the volume V as in Eq. (6). However, here
V is determined by the spatial volume occupied by the
initial photon, i.e., V should be replaced with ð2πÞ3=Vq.
Accordingly, we arrive at the factor ð2πÞ3 in the last term in
Eq. (8). Note that unlike the vacuum contribution, this one
is enhanced once the initial state contains many probe
photons. This will be discussed next.

FIG. 2. Two additional contributions which appear in the case
of a one-photon initial state. The sum over the final fermionic
states involves integration over momentum and summation over
spin. The photon lines correspond to the quantum numbers q and
ϰ of the initial photon.
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B. N-photon state

The stimulated emission and absorption parts give rise to
the number of signal photons corresponding to the third
term in Eq. (8). It is not enhanced by V since the probe
photon does not “feel” the boundaries of the interaction
region. However, the crucial point is that in the case of N
photons in the initial state, this term will be proportional
to N, which can be verified by direct calculations of the
mean number density of photons as was discussed above.
Accordingly, the photon-induced contribution yields

NðphÞ ¼ 2ð2πÞ3jBl;ϰj
q20

N: ð9Þ

As will be seen later, the coefficient Bl;ϰ can be positive
or negative depending on the field configuration, i.e., the
dominant contribution can arise from either the process of
stimulated emission or from the absorption channel.
Here we propose to measure the relative change of the

optical probe beam intensity given by the ratio NðphÞ=N. In
Sec. VII we will assess this scenario together with the
proposal to detect the vacuum radiation and with possible
observations of the pair production process. In order to
provide quantitative estimates and discuss the feasibility of
measuring the signal experimentally, one should evaluate
the coefficients An;λ and Bn;λ. This will be a subject of the
following sections.

IV. FURRY-PICTURE CALCULATIONS VERSUS
PERTURBATION THEORY

In this section we will perform numerical calculations of
the coefficients An;λ and Bn;λ and benchmark the results by
means of PT. In what follows, the external background is
assumed to be a Sauter pulse

EzðtÞ ¼
E0

cosh2ðt=τÞ ; ð10Þ

so the classical potential reads

A3ðtÞ ¼ −E0τ tanhðt=τÞ: ð11Þ

The other components vanish. We also introduce A0 ≡
A3ðþ∞Þ ¼ −E0τ and A0 ¼ A0ez.

A. Nonperturbative calculations

To calculate the coefficients An;λ and Bn;λ, one has to
compute the second term in Eq. (5). Since the external field
does not depend on the spatial coordinates, the in solutions
involved in Eq. (5) can be represented as

ζφp;s
ðxÞ ¼ ð2πÞ−3=2eiζpxζχp;sðtÞ; ð12Þ

where ζ ¼ � and s ¼ �1 defines the spin state. Then the
vacuum contribution to the number density of soft photons
takes the following form [29,31],

ð2πÞ3
V

nðvacÞk;λ ¼ α

4π2
1

k0

X
s;s0

Z
dp

����
Z

dtþχ̄p;sðtÞγμε�μðk; λÞ−χ−p−k;s0 ðtÞeik0t
����2: ð13Þ

When integrating over t ∈ ð−∞; tin� and t ∈ ½tout;þ∞Þ,
one has to introduce a factor e−εjtj (ε → 0). In fact, the
leading contribution An;λ=k30 arises from the region
½tout;þ∞Þ [29], so one does not need to perform numerical
integration over the intermediate time domain. Moreover,
the coefficient An;λ can be evaluated analytically (see
Appendix A),

An;λ ¼
α

4π5

Z
dp

ðP; eλÞ2p2
0ðPÞ

½p2
0ðPÞ − ðP; nÞ2�2 npð1 − npÞ; ð14Þ

where P≡ p − eA0, p0ðpÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, and eλ is a three-

dimensional photon polarization vector. To derive expres-
sion (14), we have employed the explicit formulas for
the one-particle transitions, which can be obtained in the
case of the Sauter pulse (10) since the Dirac equation can
be solved analytically [35,52]. The number density np of
the electrons produced is also known exactly [35,52,53].

Note that this quantity does not depend on spin s and never
exceeds unity.
To evaluate the coefficient Bn;λ, we use the general

expression (13) and subtract the term with the opposite sign
of kμ from the p integrand and then divide the result by 2.

B. Perturbation theory

We also employ a PT approach to test our nonperturba-
tive procedure. The leading contribution of the vertex
diagram can be evaluated as displayed in Fig. 3. The
ordinary thin lines correspond here to the free solutions of

FIG. 3. Perturbative expansion of the vertex diagram.
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the Dirac equation or to the free propagator in the case of
the internal line. The crosses denote the interaction with the
classical background Aμ.
Computing directly the Feynman diagrams in Fig. 3, we

arrive at

AðPTÞ
n;λ ¼ α

4π3
ðeE0τ

2Þ2
Z

dp
1

sinh2ðπτp0Þ
ðp; eλÞ2ðp2

0 − p2
zÞ

½p2
0 − ðp; nÞ2�2 ;

ð15Þ

where p0 ¼ p0ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
. This expression coin-

cides with the leading term of the perturbative expansion
of Eq. (14), as it should. To calculate Bn;λ, we utilize the
subtraction procedure as described in the previous section.
The PT approach is only accurate if jeE0jτ ≪ m, i.e., the
so-called Keldysh parameter γ ¼ m=ðjeE0jτÞ is sufficiently
large, which is obviously not a realistic condition. For this
reason, one has to perform nonperturbative calculations as
was stated above.
However, to benchmark our exact numerical approach,

we compare the results with the PT predictions. As an
example, in Fig. 4 we display the coefficients An;λ and Bn;λ

for n ¼ ey and photon polarization along the z axis, eλ ¼ ez
(we use index yz). The coefficients are presented as
functions of E0 for τ ¼ 1.0m−1. We observe that the PT
approach provides quite accurate predictions for suffi-
ciently weak pulses.
Finally, we point out that unlike the PT approach, one

cannot employ the LCFA as it is not suitable for computing
the number density of soft photons. In fact, one usually
utilizes the LCFA, for instance, to describe the nonlinear
Breit-Wheeler mechanism of high-energy photon decay in
strong external fields. Note that according to Refs. [54,55],
in the case of a plane wave background the second diagram
in Fig. 2 is exponentially suppressed. The first diagram in

Fig. 2 does not even contribute in a planewave in accordance
with the fact that plane waves do not produce pairs. Our
direct nonperturbative calculations, taking into account the
temporal dependence of the external field, capture the effect
of interest unlike the LCFA. To incorporate spatial inho-
mogeneities, one should either evaluate diagrams in the
presence of spacetime-dependent fields, which is a formi-
dable task, or sum the results over the spatial profile
according to the local approximation employed in
Ref. [31] (see also Ref. [56]). However, here we assume
the field to be spatially uniform to save computational time
and obtain the necessary estimates. The spatial finiteness of
the interaction region is taken into account by the volume
factor V as will be discussed in Sec. VII.

V. PHOTON EMISSION IN SCALAR QED

Since we are interested in computing the coefficients
An;λ and Bn;λ for more realistic parameters of the external
field, it is possible to simplify calculations by using the
WKB approach. This is particularly important for calcu-
lating Bn;λ as in this case, we do not have a closed-form
expression like Eq. (14). As we assume that the external
field is linearly polarized and spatially homogeneous,
the spin effects should be insignificant, which allows
one to consider scalar QED, where the calculations are
simpler. The result will be multiplied by a factor of 2.
Note that the total particle yield in spinor and scalar QED
can possess different quantitative patterns also due to
effects of statistics [57] if the number density of particles
produced is sufficiently large. However, these effects
come into play only for E0 ≳ Ec, so here they can be
completely disregarded (the number density np in the
results presented below is always less than 10−6). Let us
now rigorously compute the coefficients An;λ within
scalar QED.

FIG. 4. Coefficients Ayz and Byz as functions of the field amplitude E0 of the Sauter pulse (10) for τ ¼ 1.0m−1. The results were
obtained by means of the nonperturbative expression (13) and within perturbation theory to second order in E0.
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It turns out that in scalar QED the general expression for
the vertex contribution is similar to the second term in
Eq. (5). It reads

nðscÞk;λ ¼ e2
X
n;m

����
Z

d4xf�k;λ;μðxÞþφ�
nðxÞ∂μ

↔

−φmðxÞ
����2; ð16Þ

where φ1∂μ
↔
φ2 ≡ φ1ð∂μφ2Þ − ð∂μφ1Þφ2. The quantum

numbers n and m correspond to momentum only. In the
case of a spatially homogeneous background, the solutions
of the Klein-Fock-Gordon equation can be represented as

ζφn
ðxÞ ¼ ζφp

ðxÞ ¼ 1

ð2πÞ3=2 e
ζipx

ζχpðtÞ: ð17Þ

Then Eq. (16) takes the following form,

ð2πÞ3
V

nðscÞk;λ

¼ α

4π2
1

k0

Z
dp

����
Z

dtþχ�pðtÞe�λð2pþ kÞ−χ−p−kðtÞeik0t
����2;
ð18Þ

which represents a scalar-QED version of Eq. (13). We
assume that ðeλ; kÞ ¼ 0. The leading 1=k30 contribution can
be evaluated exactly similarly to the spinor-QED calcu-
lations outlined in Appendix A [see also Eqs. (B1)–(B3)].
One obtains

AðscÞ
n;λ ¼ α

8π5

Z
dp

ðp; eλÞ2p2
0ðPÞ

½p2
0ðPÞ − ðP; nÞ2�2 n

ðscÞ
p ð1þ nðscÞp Þ; ð19Þ

where nðscÞp is a number density of bosons produced. One
observes that in the spinor case, there is also an additional
factor of 2 corresponding to the spin degeneracy and the
integrand involves ðP; eλÞ instead of ðp; eλÞ. The latter point
will not be important as we will focus on the case
ðA0; eλÞ ¼ 0. Note that the number density of particles
becomes identical in spinor and scalar QED in the realistic
regime E0 ≪ Ec, τ ≫ m−1, jeE0jτ ≫ m [53]. The factor

1þ nðscÞp reflects the statistics of Bose particles, cf. Eq. (14).
In what follows, this factor will be completely inessential as
the number density of particles is much smaller than unity
in the regime of interest. We underline that Eqs. (14)
and (19) were derived independently without any ad hoc
prescriptions.
Although Bn;λ can be obtained numerically by the

subtraction scheme, we will need the results in the realistic
domain, where our direct computations become very time
consuming. To overcome this obstacle, we will obtain
closed-form expressions for An;λ and Bn;λ within the WKB
approach. Since the spin effects are unimportant here, it is

sufficient to carry out the WKB calculations in the case of
scalar QED, which is a subject of the next section.

VI. WKB ANALYSIS

As was stated above, we focus on the realistic domain
of the field parameters E0 ≪ Ec, τ ≫ m−1, jeE0jτ ≫ m,
where the WKB approximation is well justified. As we
know the asymptotic behavior of the in solutions for t ≤ tin,
we can easily calculate the contribution from the region
ð−∞; tin�. The wave functions for t > tin can be constructed
approximately. The leading 1=k30 term comes from the
region ½tout;þ∞Þ. To evaluate it, one should decompose the
in solutions in Eq. (18) in terms of the out solutions and use
the asymptotic behavior of the latter. Within the WKB
approach, one has to combine the functions with different
signs of the energy when crossing the Stokes line since it is
the Stokes phenomenon that gives rise to nonzero particle
yield and also governs photon emission and absorption
examined in this study (see, e.g., Refs. [58,59]). It turns out
that both An;λ and Bn;λ are proportional to jαpj2, where αp is
the WKB transition amplitude between the positive-energy
state with momentum p and the corresponding negative-
energy state (see Appendix B for more details). Obviously,

jαpj2 coincides with np from Eq. (14) and with nðscÞp from
Eq. (19) once the WKB approach is applicable. The
coefficients An;λ can be calculated quite straightforwardly
and read

AðWKBÞ
n;λ ¼ α

8π5

Z
dp

ðp; eλÞ2p2
0ðPÞ

½p2
0ðPÞ − ðP; nÞ2�2 jαpj

2: ð20Þ

This expression immediately follows from Eq. (19) and it is
very accurate in the case of realistic field parameters. For
instance, if E0 ¼ 0.1Ec, then expression (20) deviates from
Eq. (19) on the level of 1% already for τ ≳ 30m−1.
Although one can directly evaluate the exact formula (19)
instead of using semiclassical approximations, it is the
WKB technique that allows us to obtain a closed-form
expression for Bn;λ. We arrive at (see Appendix B)

BðWKBÞ
n;λ ¼ α

8π5

Z
dp

ðp; eλÞ2ðP; nÞ
½p2

0ðPÞ − ðP; nÞ2�2 jαpj
2: ð21Þ

The explicit form of jαpj2 in the domain of interest reads

jαpj2 ¼ e−πτðωþþω−þ2eE0τÞ; ð22Þ

where ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

x þ p2
y þ ðpz � eE0τÞ2

q
.

Note that the integrands in Eqs. (20) and (21) contain
the difference p2

0ðPÞ − ðP; nÞ2 in the denominator. Since
jeE0jτ ≫ m, one has to cancel the term ðpz þ eE0τÞ2
in this difference in order to maximize the coefficients
An;λ and Bn;λ. Accordingly, we will assume n ¼ ez.
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Furthermore, due to the presence of the factor ðP; nÞ,
expression (21) vanishes if one chooses n ¼ ex or
n ¼ ey. The polarization vector eλ can now point at any
direction in the xy plane as the external background is
symmetric, so we choose eλ ¼ ex.
To calculate Azx and Bzx, one can perform integration

in Eqs. (20) and (21) numerically. Nevertheless, in the
realistic regime, one can also evaluate the integrals approx-
imately by means of Laplace’s method since the main
contribution arises from a small vicinity of p ¼ 0 due to the
exponential suppression of jαpj2. One obtains

Azx ≈
α

16π6
m3ðmτÞ3

�
E0

Ec

�
11=2

e−πEc=E0 ; ð23Þ

Bzx ≈ −
α

16π6
m2ðmτÞ2

�
E0

Ec

�
9=2

e−πEc=E0 : ð24Þ

Although these formulas contain the exponential factor
which arises in the quantitative analysis of the Sauter-
Schwinger mechanism, the factors τ3 and τ2 substantially
enhance the coefficients. Note that measuring photons
emitted along the y axis is a completely unfavorable scenario
since Ayx≈ðm=jeE0τjÞ4Azx¼ γ4Azx≪Azx. Accordingly, for
more realistic field parameters, the process of vacuum
photon emission predicts a huge number of photons trav-
eling parallel to the electric field. This means that almost
isotropic radiation revealed in Ref. [29] can be observed only
outside the domain considered here. Finally, we note that the
coefficient (24) changes its sign if the probe photon travels in
the opposite direction.
As an illustration, we present the coefficient Azx as a

function of τ for E0 ¼ 0.05Ec (see Fig. 5). One observes
that the approximate expression (23), which predicts the

scaling Azx ∼ τ3, is in good agreement with the full WKB
calculation.
In what follows, we will examine the experimental

scenarios based on measuring either vacuum photon
emission or changes in the optical probe beam intensity.
We will employ Eqs. (23) and (24) multiplied by a factor of
2. Both these proposals will also be compared with a direct
observation of pairs produced, i.e., the Sauter-Schwinger
effect itself. To estimate the total particle yield, one can
integrate jαpj2 over p taking into account the factor
V=ð2πÞ3. This integration can also be carried out by means
of Laplace’s method. One finds

NðpairsÞ ≈
1

ð2πÞ3 ðm
3VÞðmτÞ

�
E0

Ec

�
5=2

e−πEc=E0 : ð25Þ

VII. DISCUSSION AND EXPERIMENTAL
PROSPECTS

Having evaluated the coefficients An;λ and Bn;λ, we
can now assess the experimental feasibility of the three
following scenarios: (a) direct observation of the Sauter-
Schwinger pairs, (b) measuring vacuum radiation, (c) meas-
uring changes in the probe beam intensity. Let us discuss
each of these in more detail.

A. Pair production

The total particle yield can be obtained by means of
Eq. (25). Let us introduce a laser wavelength and approxi-
mate it by λ ≈ 2τ. Assuming that the laser radiation is
tightly focused, we note that the volume factor V is
proportional to λ3. However, taking into account the spatial
profile of the external field will definitely reduce the
number of pairs since the external field does not have a
maximal amplitude in the whole interaction region. To
estimate the effect of the spatial inhomogeneities, one can
examine the local values of the particle yield since the
realistic laser wavelength is very large [57]. Moreover,
the pair-production process in the nonperturbative regime
is mainly governed by the exponential function
exp½−πEc=jEðxÞj�. One can easily verify that for a profile
EðxÞ ¼ E0 cosð2πx=λÞ, this exponential contributes only
within the vicinity jxj≲ 0.08λ once E0 ≲ 0.1Ec.
Accordingly, in what follows, we will assume that the
effective interaction volume amounts to V ¼ ð0.1λÞ3.
Computing now the number of pairs (25), we will

identify the threshold value of the field amplitude E0

depending on τ by the condition NðpairsÞ ¼ 10. Finally,
we point out that expression (25) is quite universal with
respect to the choice of the temporal profile of the external
field. For instance, in the case of an oscillating background
with duration T ¼ τ, one obtains a similar expression
which differs from Eq. (25) only by factor 23=2=π ≈ 0.9
(see, e.g., Refs. [57,60–63]).

FIG. 5. Coefficient Azx as a function of the pulse duration τ in
the case of scalar QED for E0 ¼ 0.05Ec. The asymptotic behavior
(dashed line) is given by Eq. (23).
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B. Vacuum emission of soft photons

As was demonstrated above, the major part of the soft
photons emitted from vacuum travels parallel to the z axis.
The number of photons can be obtained by integrating
Eq. (6). Here dk ¼ k20 sin θdk0dθdφ, so the number of
signal photons in this scenario reads

NðvacÞ ¼ 2πV
X
λ

Zπ=2
0

dθ sin θ
Zk0max

k0min

dk0
An;λ

k0
; ð26Þ

where we imply n ¼ sin θex þ cos θez replacing the inte-
gration over φ with the factor 2π. The upper limit regarding
the θ integration is inessential as the main contribution
arises from a small vicinity of θ ¼ 0. For this reason, we
also assume eλ ¼ ex in the expression for An;λ and take into
account the second polarization by multiplying the results
by a factor of 2. This brings us to the following result,

NðvacÞ ≈
α

4π5
ðm3VÞðmτÞ ln

�
k0max

k0min

��
E0

Ec

�
7=2

e−πEc=E0 : ð27Þ

The interval ½k0min; k
0
max�, where one measures the signal

photons, is assumed to obey lnðk0max=k0minÞ ¼ ln 4, which
corresponds to, e.g., a frequency interval twice as large as
the full width of the visible spectrum. The threshold of the
process is defined via NðvacÞ ¼ 10, i.e., one has to be able to
detect at least ten signal photons. It is already seen that the
number of soft photons is suppressed by additional factor
E0=Ec compared to the particle yield (25). In what follows,
we will find out how this affects the experimental prospects
of this scenario.

C. Probe beam intensity

Here we propose to measure a relative change in
the intensity of the probe photon beam, which can be
evaluated via

η≡ NðphÞ

N
¼ 2ð2πÞ3jBzxj

q20
; ð28Þ

where we will employ Eq. (24). Note that the probe beam is
orthogonal to the propagation direction of the lasers that we
treat here as a classical background, so the primary laser
beams as well as the photons emitted via the tadpole
diagram will not obscure the probe quanta. Moreover, the
vacuum term (27) is many orders of magnitude smaller than
the initial number of probe photons N even if we sum over
all spatial directions.
The ratio (28) can be enhanced by choosing a low

frequency of the probe photons. We will assume
q0 ¼ 10−6m, which corresponds to a wavelength of
2.4 μm. The realistic threshold of this scenario is set to

η ¼ 0.01, i.e., the relative intensity change should amount
to at least one percent. It is reasonable since the uncertainty

is proportional to 1=
ffiffiffiffiffiffiffiffiffiffi
NðphÞp

while the number of photons
can easily be very large.

D. Comparison

In Fig. 6 we present the threshold values of the external
field amplitude in terms of the laser intensity for various
values of the laser wavelength. As in each of the three
scenarios, the signal is proportional to expð−πEc=E0Þ, the
curves were found to be stable with respect to the changes
of the parameters involved in the pre-exponential factors
and threshold values of NðpairsÞ, NðvacÞ, and η, respectively.
First, one observes that although the peak intensity corre-
sponding to the field strength Ec is 2.3 × 1029 W=cm2, the
real threshold of the pair-production process is about two
orders of magnitude lower due to the presence of a large
preexponential factor (it was examined also, e.g., in
Ref. [64]). Second, it turns out that measuring vacuum
photon emission is not that promising compared to a direct
detection of the Sauter-Schwinger pairs. Note that both of
these contributions are proportional to τ4, so the threshold
values of the laser intensity decrease rather rapidly with
increasing λ. Nevertheless, the probe-photon technique
turns out to be more advantageous, especially for smaller
values of λ. Note that from the experimental point of view,
it is sufficient to confirm that the intensity of the probe
beam changes once it traverses a strong background field,
whereas one does not have to determine the actual absolute
value of the intensity.
Finally, let us provide several additional remarks con-

cerning the experimental implementation of the three
setups. If the external field contains several cycles for a

FIG. 6. Threshold values of the laser peak intensity that are
necessary for measuring vacuum photon emission (upper curve),
the Sauter-Schwinger effect itself (middle curve), and changes in
the intensity of the probe photon beam (lower curve).
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given half period τ ¼ λ=2, the particle yield as well as the
number of soft photons will be enhanced by the corre-
sponding factor, which will also slightly lower the position
of the curves in Fig. 6. On the other hand, it is crucial to
have a unipolar laser background to achieve notable
changes in the intensity of the probe photon beam.
Further developments in the practical generation of such
unipolar pulses (see Ref. [65]), especially in the domain
λ≲ 0.1 μm should make the probe-beam technique an
efficient tool for measuring nonperturbative strong-field
QED effects. More complex field configurations and the
significance of the laser pulse unipolarity will be examined
in our future studies.

VIII. CONCLUSION

In this study, we computed the number density of soft
photons emitted in the presence of a strong electric back-
ground. The main goals were (a) to examine the role of
additional (probe) photons in the initial state and (b) to assess
the experimental prospects of two proposals with regard to
measuring electromagnetic radiation instead of detecting
electron-positron pairs. To perform the necessary computa-
tions, we employed the Furry picture formalism together
with the WKB approach allowing one to investigate a
realistic regime of the field parameters. It was demonstrated
that the technique which was proposed here and is based on
using an additional optical probe photon beam can be
utilized in order to lower the pair production threshold
although the pure vacuum radiation is unlikely to be detected
prior to the onset of the Sauter-Schwinger effect.
Although in the present paper we obtained general

closed-form expressions describing stimulated emission
and photon absorption in strong external backgrounds
and made first quantitative estimates, there are several
important aspects which require further research. First, it is
highly desirable to analyze the process in more complex
external fields incorporating spatial inhomogeneities. Such
field configurations may give rise to additional signatures
and alter some of the patterns revealed in this study due to
the more involved geometry of the setup itself as well as the
presence of the magnetic field component. Second, it is
very important to more thoroughly inspect the role of the
electric-field area of the laser pulses in such backgrounds.
These issues are beyond the scope of the present paper and
will be explore in future investigations.
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APPENDIX A: CALCULATION
OF An;λ IN SPINOR QED

Let us first represent expression (13) in the following
form

ð2πÞ3
V

nðvacÞk;λ ¼ α

4π2
1

k0

X
s;s0

Z
dp

���� as;s0k0
þ bs;s0 þ � � �

����2: ðA1Þ

Then the coefficient An;λ reads

An;λ ¼
α

32π5
X
s;s0

Z
dpjas;s0 j2: ðA2Þ

As was stated in the text, the leading contribution as;s0=k0
arises from integrating over t ∈ ½tout;þ∞Þ in Eq. (13). To
perform this integration, one has to express the in solutions
in terms of the out ones and make use of the asymptotic
behavior of the latter. Here we will need the following
scalar products,

GðζjκÞp;s;p0;s0 ¼ ðζφp;s
; κφp0;s0 Þ; ðA3Þ

where ζ; κ ¼ �. In the case of a spatially homogeneous
external background, the one-particle solutions have the
form (12) and correspond to conserved values of the spin
quantum number s. So the G matrices read

GðζjκÞp;s;p0;s0 ¼ δs;s0δðζp − κp0ÞgðζjκÞp;s: ðA4Þ

The leading-order contribution involving as;s0 comes from
the integral over t ∈ ½tout;þ∞Þ in Eq. (13), which was also
indicated in Ref. [29]. One obtains

as;s0 ¼
iðūP;sγμε�μuP;s0 Þ
1 − ðP; nÞ=p0ðPÞ

gðþjþÞp;sg�ð−jþÞ−p;s0

þ iðv̄P;sγμε�μvP;s0 Þ
1þ ðP; nÞ=p0ðPÞ

gðþj−Þp;sg�ð−j−Þ−p;s0 ; ðA5Þ

where P ¼ p − eA0 and up;s (vp;s) are constant bispinors
corresponding to the positive (negative) energy solutions of
the free Dirac equation [cf. Eq. (B2) in Ref. [29] ]. Taking
the mod-square of Eq. (A5), one has to compute standard
traces involving bispinors and the gamma matrices. The
crucial point here is that in the case of a Sauter profile (10),
the g coefficients are known explicitly [35]. For instance,
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gðþjþÞp;s ¼
ffiffiffiffiffiffiffi
ω−

ωþ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ þ pz þ eE0τ

ω− þ pz − eE0τ

s

×
Γð1þ iωþτÞΓðiω−τÞ

Γðiξ−τ=2ÞΓð1þ iξþτ=2Þ
; ðA6Þ

where ξ� ≡ ωþ þ ω− � 2eE0τ. The coefficients with
opposite signs yield the number density np of the electrons
(positrons) produced

np ¼ jgðþj−Þp;sj2 ¼ jgð−jþÞ−p;sj2: ðA7Þ

The coefficients with only positive (negative) signs obey

jgðþjþÞp;sj2 ¼ jgð−j−Þ−p;sj2 ¼ 1 − np: ðA8Þ

Then straightforward calculations bring us to Eq. (14).
For completeness, we present the explicit form of np,

np ¼
sinhðπσþτ=2Þ sinhðπσ−τ=2Þ
sinhðπωþτÞ sinhðπω−τÞ

; ðA9Þ

where σ� ≡ 2eE0τ � ðωþ − ω−Þ.

APPENDIX B: WKB CALCULATION OF Bn;λ

As was done in Appendix A, it is again convenient to
represent the photon number density (18) in the following
form,

ð2πÞ3
V

nðscÞk;λ ¼ α

π2
1

k0

Z
dpðp; eλÞ2

���� ak0 þ bþ � � �
����2; ðB1Þ

where a and b depend on p. Instead of Eq. (A5), here we
have the following exact expression for a,

a ¼ i=2
p0ðPÞ − ðP; nÞ gðþj

þÞpg�ð−jþÞ−p

þ i=2
p0ðPÞ þ ðP; nÞ gðþj

−Þpg�ð−j−Þ−p; ðB2Þ

where the g matrices are defined analogously to Eqs. (A3)
and (A4). Performing calculations similar to those outlined
in Appendix A, one can first derive expression (19) for An;λ,

An;λ ¼
α

8π5

Z
dpðp; eλÞ2jaj2: ðB3Þ

In fact, these computations are easier as one deals only with
scalar functions instead of matrices. The coefficient Bn;λ
should be evaluated via

Bn;λ ¼
α

4π5

Z
dpðp; eλÞ2Reða�bÞ: ðB4Þ

Within the WKB approximation, one can explicitly con-
struct the solutions ζχpðtÞ. Note that it is the Stokes

phenomenon which gives rise to nonzero transition ampli-
tudes between the positive-energy continuum and the
negative-energy continuum, i.e., to nonzero elements of
g matrices with different signs involved in Eq. (B2). Let tp
be the time instant where the Stokes line intersects the real
axis (see, e.g., Ref. [66]). Then for t > tp, the in solutions

ζχpðtÞ represent linear combinations of the out solutions

determined by the corresponding asymptotic behavior for
t > tout. These combinations read

þχp ¼ wþ;p
þχp þ α�pw−;p

−χ−p; ðB5Þ

−χp ¼ w−;p
−χp þ αpwþ;p

þχ−p; ðB6Þ

where

w�;p ¼ exp

�
∓ i

Ztout
tin

p0ðp − eAÞdt
�
; ðB7Þ

αp ¼ −i exp
�
2i
Ztp
tin

p0ðp − eAÞdt
�
coshðπβpτ=2Þ
sinhðπγpτÞ

; ðB8Þ

βp ¼ðωþ − ω−Þsgnpz − 2eE0τ; ðB9Þ

γp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

x þ p2
y þ ðjpzj þ eE0τÞ2

q
: ðB10Þ

The coefficients in Eqs. (B5) and (B6) correspond to the g
matrices, so the products of the g matrices in Eq. (B2)
contain the amplitude αp. Combining the terms in Eq. (B2),
one obtains

a ¼ i
p0ðPÞ

αp
1 − ðP;nÞ2=p2

0ðPÞ
: ðB11Þ

To evaluate b [see Eq. (B1)], one has to take into account
integrals over four temporal intervals in Eq. (18); ð−∞; tin�,
ðtin; tp�, ðtp; toutÞ, and ½tout;þ∞Þ. Accordingly, b contains
numerous contributions. However, the real part in Eq. (B4)
leaves only one of them given in Eq. (21). In the semi-
classical approximation, the absolute value of Eq. (B8)
coincides with Eq. (22).
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