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In the massive chiral Gross-Neveu model, a phase boundary separates a homogeneous from an
inhomogeneous phase. It consists of two parts, a second order line and a first order line, joined at a tricritical
point. Whereas the first order phase boundary requires a full, numerical Hartree-Fock calculation, the
second order phase boundary can be determined exactly and with less effort by a perturbative stability
analysis. We extend this stability analysis to higher order perturbation theory. This enables us to locate the
tricritical point exactly, without need to perform a Hartree-Fock calculation. Divergencies due to the
emergence of spectral gaps in a spatially periodic perturbation are handled using well established tools from
many body theory.
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I. INTRODUCTION

The present paper is about the phase diagram of the
massive chiral Gross-Neveu (χGN) model [1]. This model
can be regarded as a (1þ 1)-dimensional version of the
Nambu–Jona-Lasinio (NJL) model [2] with Uð1Þ × Uð1Þ
chiral symmetry, explicitly broken by a bare mass term. The
Lagrangian reads

L ¼ ψ̄ði=∂ −mbÞψ þ g2

2
½ðψ̄ψÞ2 þ ðψ̄iγ5ψÞ2�: ð1Þ

Flavor indices are suppressed as usual, and we are working
in the ’t Hooft limit [3] (N → ∞, Ng2 ¼ const) with
semiclassical methods.
The phase diagrams of GN type models have proven to be

quite instructive. On the one hand, they have led to exact
results which could be used as a testing ground for new
numerical methods [4,5] and other ideas [6,7] related to
quantum chromodynamics (QCD). On the other hand, by
exhibiting a variety of inhomogeneous phases in some
regions of the phase diagram, they have triggered some
activity for looking for similar phenomena in higher dimen-
sional theories [8–10]. This interest has been reinforced
recently by the observation that some of the results do not
seem to be an artifact of the large N limit, but leave their
traces in models with a finite number of flavors [11,12],
even down to N ¼ 2 [13,14]. From a theoretical point of

view, model (1) is more challenging than the massive GN
model with discrete chiral symmetry [15]. With the excep-
tion of the chiral limit with its “chiral spiral” phase [16,17],
it does not seem possible to study the full phase diagram of
the χGN model analytically. We think that such studies are
nevertheless worthwhile to guide our intuition and help us
develop techniques useful in more realistic situations.
To explain our goal, we show in Fig. 1 a typical phase

boundary for one particular bare fermion mass [18]. To the
right and below the curve, there is an inhomogeneous
crystal phase. To the left and above the curve, the system is
in a homogeneous phase of massive fermions. The phase
boundary comprises two distinct parts. The solid line
corresponds to a second order transition. When crossing
it, the homogeneous phase becomes unstable against
developing a spatial oscillation with finite wave number
and infinitesimal amplitude. This part can be computed
rather easily by a straightforward stability analysis, based on
a leading order (LO) perturbative treatment of the inhomo-
geneous mean field. The dots belong to a first order phase
boundary. When crossing this boundary, the system jumps
from the homogeneous phase to a crystal phase with finite
wave number and finite amplitude. Here perturbation theory
(PT) cannot be used, but one needs to do a full, numerical
Hartree-Fock (HF) calculation and find the points where
two distinct solutions are degenerate. These two parts of the
phase boundary must be joined at a tricritical point not
shown in Fig. 1. Here, the situation is somewhat frustrating.
If one approaches the tricritical point following the second
order phase boundary (“top down”), there is no signal
whatsoever and one simply crosses the tricritical point,
continuing into an unphysical curve. If one approaches it
from the first order phase boundary (“bottom up”), compu-
tations get more and more delicate since one has to
minimize a function with several nearby, shallow, almost
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degenerate minima. This is actually the way the tricritical
point has been determined in Ref. [18], using some
extrapolation of unknown accuracy.
The LO stability analysis underlying the solid line is a

standard tool in such investigations. Several recent studies
are dedicated to this type of stability analysis, using
alternative techniques and trying to extend its range of
applicability [19,20]. In our case, it has proven to be an
efficient way of determining the exact phase boundary. The
fact that we call it perturbative does not mean that it is
completely trivial though. Indeed, it is well known that
naive PT breaks down near the gaps generated by a
periodic potential. This difficulty can be overcome by
“almost degenerate perturbation theory” (ADPT) [21].
The tricritical point lies on the perturbative phase

boundary, so that only one additional condition is needed
to pin it down. It is hard to believe that the only way out is a
full HF calculation, minimizing a large number of param-
eters in a region where it is most difficult. In this work, we
will try to formulate this missing condition and work out a
top down approach to the tricritical point, independent of
the HF calculation and hopefully exact. In the same way as
one can characterize stationary points of an ordinary
function only by looking at the second derivative, it is
clear that we have to extend PT to next-to-leading order
(NLO). This immediately raises questions about divergen-
cies in higher order PTwith periodic potentials which need
to be addressed here.
Everything we will discuss is directly applicable to a

generalized version of the χGN model with isospin, where
the pseudoscalar interaction term is replaced by ðψ̄iγ5τ⃗ψÞ2
and chiral symmetry gets promoted to the group SUð2Þ ×
SUð2Þ [22–24]. Here, nothing is known yet about the
tricritical points. This part of our study will be left to a
forthcoming paper.
This paper is organized as follows: In Sec. II we

reconsider the Ginzburg-Landau (GL) approach in a region

where the condensates are weak and slowly varying. This
“warm-up” problem is useful for understanding how to find
the tricritical point using a perturbative approach. Section III
deals with the spectrum of massive fermions, perturbed by a
spatially periodic potential. The main focus will be on the
issue how to avoid divergencies arising at the spectral gaps in
this type of potential. Section IV is the central part of this
investigation, showing how to locate the tricritical point
without a full HF calculation. Our results will be presented
both in tabular form and in figures and compared to previous
results. We end with a short summary and conclusions,
Sec. V.

II. GINZBURG-LANDAU APPROACH

We first recall some basic facts about the (large N) χGN
model in 1þ 1 dimensions. In the chiral limit, a semi-
classical analysis shows that the fermions acquire a mass
dynamically in the vacuum. If one heats up the system, the
mass decreases until it vanishes at a critical temperature
Tc ¼ eC=π ≈ 0.567 (C is the Euler constant). If one now
switches on a bare fermion mass (confinement parameter
γ ¼ πmb=Ng2) and the chemical potential μ, there is a
region in (γ, μ, T) space around the point (0, 0, Tc) where
scalar and pseudoscalar condensates are both weak and
slowly varying. As discussed in Ref. [25], this region is
accessible via a GL approach derived from a gradient
expansion [26] of the grand canonical potential. The GL
effective action density can be expressed in terms of a
complex scalar field Φ ¼ S − iP as

Ψeff ¼ α0 þ α1ðjΦj2 − 2ReΦÞ þ α2jΦj2 þ α3ImΦðΦ0Þ�
þ α4ðjΦj4 þ jΦ0j2Þ: ð2Þ

We have only written down the terms up to the order at
which one first “sees” the tricritical point. The coefficients
αn are analytically calculable functions of (μ, T). In the
region where

γ ∼ ϵ3; μ ∼ ϵ; τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc − T

p
∼ ϵ; ð3Þ

they can be approximated by

α1 ¼
γ

2π
;

α2 ¼
2

πa
μ2 −

1

2πTc
τ2 þ Oðϵ4Þ;

α3 ¼
2

πa
μþ Oðϵ3Þ;

α4 ¼
1

2πa
þ Oðϵ2Þ; ð4Þ

with
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FIG. 1. Phase boundary between homogeneous and inhomo-
geneous phases of a massive χGN model at γ ¼ 1.0 [18]. Solid
line: second order transition, stability analysis. Dots: first order
transition, Hartree-Fock calculation. The two branches should
meet at a tricritical point.
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a ¼ 16e2C

7ζð3Þ ≈ 6.032: ð5Þ

By introducing a rescaled scalar field φ through

ΦðxÞ ¼ γ1=3φðξÞ; ξ ¼ γ1=3x; ð6Þ

as well as rescaled parameters for chemical potential and
temperature,

ν ¼ 2γ−1=3μ; σ ¼
ffiffiffiffiffi
a
Tc

r
γ−1=3τ; ð7Þ

the γ dependence of the effective action disappears up to an
overall factor,

Ψeff ¼
γ

2πa
ð−2aReφþ ðν2 − σ2Þjφj2 þ 2νImφð _φÞ�

þ jφj4 þ j _φj2Þ: ð8Þ

(A dot denotes the derivative with respect to ξ.) This
behavior under scaling allows one to draw a “universal”
phase boundary independent of γ in the (ν, σ) plane, as
opposed to a family of strongly γ dependent curves in the
ðμ; TÞ plane.

This GL model was already largely solved in Ref. [25] to
which we refer the reader for figures and more details. Here
we shall use it as a warm-up to understand how to locate the
exact tricritical curve in (γ, μ, T) space. In [25] the
perturbative phase boundary between the homogeneous
and inhomogeneous phases was found analytically with the
help of a stability analysis. By contrast, the nonperturba-
tive, first order phase boundary could only be constructed at
the cost of solving the Euler-Lagrange equations derived
from the effective action (8) numerically. The tricritical
point was then also determined numerically, approaching it
from the nonperturbative side (bottom up). Here we are
looking for an alternative method for finding the exact
tricritical point. The idea is to approach it from the
perturbative side (top down), thus avoiding numerical
computations in a region where they are most difficult.
We will be careful to develop the method in such a way that
it can also be applied to a full HF calculation, beyond the
region of validity of GL theory.
A sufficiently general ansatz for a stability analysis in the

GL model is

φ ¼ mþ A cosðqξÞ þ iB sinðqξÞ: ð9Þ

Inserting it into (8) and averaging over one period, we find

Ψeff ¼
γ

2πa
ψ eff ;

ψ eff ¼ ψ eff jhom þ ψ eff jinhom;
ψ eff jhom ¼ −2amþ ðν2 − σ2Þm2 þm4;

ψ eff jinhom ¼ ð6m2 þ q2 þ ν2 − σ2ÞA
2

2
þ ð2m2 þ q2 þ ν2 − σ2ÞB

2

2

− 2νqABþ 1

8
ð3A4 þ 3B4 þ 2A2B2Þ: ð10Þ

Here, ψ eff jhom is the zeroth order term, whereas quadratic
(quartic) contributions to ψ eff jinhom in (A, B) will be referred
to as LO (NLO) terms.
We first construct the perturbative phase boundary

between homogeneous and inhomogeneous phases via a
LO stability analysis. We need to keep zeroth and LO terms
only,

ψ eff jLO ¼ −2amþ ðν2 − σ2Þm2 þm4

þ ð6m2 þ q2 þ ν2 − σ2ÞA
2

2

þ ð2m2 þ q2 þ ν2 − σ2ÞB
2

2
− 2νqAB: ð11Þ

This has to be minimized with respect to m, A, B, q.
Variation with respect to m on the phase boundary

(A ¼ B ¼ 0) is the same as in the homogeneous
calculation,

∂mψ eff ¼ 0 ¼ −2aþ 2ðν2 − σ2Þmþ 4m3: ð12Þ

Variation with respect to A, B, q yields

∂Aψ eff ¼ 0 ¼ −2νBqþ Að6m2 þ q2 þ ν2 − σ2Þ; ð13Þ

∂Bψ eff ¼ 0 ¼ −2νAqþ Bð2m2 þ q2 þ ν2 − σ2Þ; ð14Þ

∂qψ eff ¼ 0 ¼ qðA2 þ B2Þ − 2νAB: ð15Þ

Here, m should be identified with the solution of (12) on
the phase boundary. Mimicking the procedure used in the
full HF calculation of the χGN model, we write the LO
inhomogeneous action density as the quadratic form
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ψ eff jinhom ¼ M11A2 þ 2M12ABþM22B2: ð16Þ

The condition for the existence of a nontrivial solution of
Eqs. (13) and (14) is

detM ¼ 0: ð17Þ

Besides, the homogeneous linear system yields the ratio

R ¼ A
B
¼ −

M12

M11

: ð18Þ

Condition (15) can then be shown to be equivalent to

∂q detM ¼ 0: ð19Þ

In the full HF calculation, one would determine the
perturbative phase boundary as follows: choose a chemical
potential and follow detM as a function of q, T up to the
point where detM and ∂q detM vanish simultaneously.
This yields the critical temperature at this value of μ, the
ratio R, and the wave number q characterizing the insta-
bility. The GL case is simple enough so that everything can
be done analytically. Solve Eq. (14) for q,

q ¼ 2νR
R2 þ 1

; ð20Þ

and insert the result into Eqs. (13) and (14),

R2 ¼ ν2 þ σ2 − 4m2

ν2 − σ2 þ 6m2
; ð21Þ

0 ¼ 4m2ν2 −m4 − ν2σ2: ð22Þ

Equation (20) then yields

q2 ¼ ν2ðν2 þ σ2 − 4m2Þðν2 − σ2 þ 6m2Þ
ðν2 þm2Þ2 : ð23Þ

The preferred strategy would be to solve the mass equa-
tion (12) for m ¼ m0, plug m0 into the other equations, and
get the phase boundary, R and q as a function of ν, σ. As this
is not possible explicitly, it is better to use m0 as the curve
parameter of the phase boundary. To this end, one solves
Eqs. (12) and (22) for ν2, σ2. This yields a parametric
representation of the phase boundary

2m0ν
2 ¼ aþ 2m3

0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ 4m3

0Þ
q

;

2m0σ
2 ¼ −aþ 6m3

0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ 4m3

0Þ
q

: ð24Þ

Inserting ν2, σ2 on the phase boundary into R2, q2 from
Eqs. (21) and (23), we find

q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ 4m3

0Þ
q

m0

;

R2 ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ 4m3

0Þ
q : ð25Þ

This completes the LO stability analysis. We have obtained
the curve where the instability sets in, Eq. (24), but also
some useful information about the mode responsible for the
instability. It is characterized by R and q. By contrast, the
overall strength parameter B of the perturbation remains
undetermined to LO.
It is known from numerical computations of the phase

diagrams of massive χGN models that the perturbative
phase boundary (second order transition) ends at a tricritical
point where a nonperturbative, first order transition sets in.
Although we know that the tricritical point lies on the
perturbative phase boundary, there is clearly no way of
determining its position to LO. In Ref. [25] as well as in
previous full HF calculations [18], it was determined by
pushing the numerical computation of the first order phase
boundary toward the end point. Even within this GL toy
model, there has been no exact determination of the
tricritical point so far. The numerical values obtained in
Ref. [25] by extrapolation from the first order side are

mtri ≈ 0.78; νtri ≈ 2.99; σtri ≈ 1.54: ð26Þ

These numbers have been challenged by a full numerical HF
solution of the χGN model, reporting the values νtri ≈ 3.039
and σtri ≈ 1.464 [18]. This discrepancy already indicates
difficulties in locating the tricritical point. Our goal here is to
develop an alternative, potentially exact method for deter-
mining the tricritical point, independently of the numerical
solution of Euler-Lagrange or HF equations.
Let us go back to the full effective action, but keeping

q, R at the LO values (25). We are not yet allowed to
replace m by m0 though. We push the stability analysis to
next order, but only in the direction of the unstable mode. It
is advantageous to use the variable ω ¼ B2 for this purpose,

Veff ¼ Veff jhom þ Veff jinhom;
Veff jhom ¼ −2amþ ðν2 − σ2Þm2 þm4;

Veff jinhom ¼ ð6m2 þ q2 þ ν2 − σ2ÞR
2ω

2

þ ð2m2 þ q2 þ ν2 − σ2Þω
2

− 2νqRωþ 1

8
ð3R4 þ 2R2 þ 3Þω2Þ: ð27Þ

Only two out of the four original variables are left,m and ω.
Consider the Hesse matrix
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H ¼
�

∂
2
mVeff ∂m∂ωVeff

∂ω∂mVeff ∂
2
ωVeff

�
: ð28Þ

Taking the required partial derivatives at the point m ¼ m0,
ω ¼ 0 on the perturbative phase boundary yields

H ¼
�
2ðν2 − σ2Þ þ 12m2

0 2m0ð3R2 þ 1Þ
2m0ð3R2 þ 1Þ 1

4
ð3R4 þ 2R2 þ 1Þ

�
: ð29Þ

Notice that H11 depends only on the zeroth order, and H12

only on the LO effective action. H22 is the only entry
requiring the NLO effective action. The tricritical point can
now be found by demanding that the Hesse determinant
vanishes,

detH ¼ 0 ¼ R2ð3R2 þ 2Þð20m3
0 − aÞ − 4m3

0 − 3a; ð30Þ

where we have used ν2 and σ2 from (24). Inserting our
result for R (25) and expanding the equation such that the
square roots disappear leads to the quartic equation

0¼ 16z4 − 488z3 þ 73z2 − 24zþ 2; z¼ 1

a
m3

tri: ð31Þ

We have to pick the lower real solution of this equation
(z ¼ 0.09334907), since the upper one is an artifact of
making the original equation (30) rational. It gives the exact
tricritical point of the present GL model

mtri¼0.825765; νtri¼2.935050; σtri¼1.635108; ð32Þ

superseding the previous numerical values (26). Undoing
the scale transformation, the asymptotic behavior of the
tricritical line in (γ, μ, T) space for γ → 0 is then given by

μtri ¼
1

2
νtriγ

1=3; T tri ¼ Tc

�
1 −

1

a
σ2triγ

2=3

�
: ð33Þ

An important step in the above derivation is to use q, R from
the LO calculation, thereby reducing the NLO problem to
one with two parameters only. Since this will be crucial for
applications of a similar method beyond the regime of GL
theory, we have verified carefully that it is indeed correct. In
the present model one can eliminate all three parameters
A, B, q exactly by minimizing the full effective potential. It
is necessary to solve a cubic equation on the way, so that the
steps toward finding the tricritical point are more involved.
Nevertheless, we could fully confirm the result of the
simpler calculation presented above so that we are confident
that the basic idea is correct.
In the practical application of this method to a HF

calculation, the use of the Hesse matrix (28) has turned
out to be problematic. Alternatively one can first minimize
the effective action with respect to B. Then one looks for the
vanishing of the second derivative with respect to m of the

remaining effective potential, now a function of one variable
only. This is the way we shall implement the NLO stability
analysis in the HF framework below. In the GL case, this is
perhaps less elegant but again reproduces the above result
exactly.
Finally, let us have a look at the values of R and q

characterizing the unstable mode. At the tricritical point,
we find

q ¼ 0.997ν; R ¼ 0.924: ð34Þ

q=ν and R both approach 1 monotonically for m → 0 or
ν → ∞, the values characteristic for the chiral spiral. The
deviation from these limiting values is remarkably small, in
particular for q=ν.
Summarizing what we have learned from the GL model,

we have found a way to locate the tricritical point by
approaching it from the perturbative side. As one might
have expected, it is necessary to push PT to NLO, but only
in the direction of the LO unstable mode. In the next
section, we therefore turn to NLO PT of the fermion
spectrum as needed for a full HF calculation.

III. PERTURBATIVE FERMION SPECTRUM
FOR HARTREE-FOCK CALCULATION

The perturbative phase boundary can be found by a
stability analysis. To this end, it is sufficient to compute the
fermion spectrum for massive Dirac fermions subject to a
complex, harmonic perturbation to LO, i.e., to second order
in the strength of the inhomogeneous potential. For the
present study of the tricritical point, it is mandatory to extend
this calculation to NLO (fourth order PT). Naive PT
invariably breaks down near the gaps characteristic for
periodic potentials. This problem shows up already in
LO, and we shall review the manner in which it has been
solved there. NLO PT presents additional challenges to be
addressed in the present section.
The unperturbed Hamiltonian is the free, massive Dirac

Hamiltonian with the familiar spectrum of positive (η ¼ 1)
and negative (η ¼ −1) energy states,

H0 ¼ −iγ5∂x þ γ0m;

H0jη; pi ¼ η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
jη; pi: ð35Þ

With the choice of γ matrices

γ0 ¼ σ1; γ1 ¼ iσ2; γ5 ¼ γ0γ1 ¼ −σ3; ð36Þ

the free spinors read

hxjη;pi¼ 1ffiffiffiffiffiffi
2E

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

E−ηp
p

η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþηp

p
�
eipx; E¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2

q
: ð37Þ
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A perturbation appropriate for the stability analysis of the χGN model is

V ¼ γ02S1 cosð2QxÞ − iγ12P1 sinð2QxÞ: ð38Þ

Matrix elements of V in the unperturbed basis can be evaluated analytically,

hη0; p0jVjη; pi ¼ 1

2
ffiffiffiffiffiffiffiffi
EE0p ðAðþÞδðþÞS1 þAð−Þδð−ÞP1Þ;

Að�Þ ¼ η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ ηp

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 − η0p0p

� η0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − ηp

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 þ η0p0p

;

δð�Þ ¼ δp0;p−2Q � δp0;pþ2Q; E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
; E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðp0Þ2

q
: ð39Þ

The perturbing potential connects only states with mo-
menta differing by�2Q, having the same or the opposite η.
Thus, when dealing with PT, the relevant momenta can be
considered as discrete, and the δ0s in (39) as Kronecker
deltas.

A. Fourth order nondegenerate perturbation theory

Sufficiently far away from the gaps in the spectrum, we
may use standard nondegenerate PT. Since this is covered
in any textbook on quantum mechanics, we can be very
brief. As V acts only between states with momenta differing
by�2Q, only even powers of V lead back to the same state.
We exploit this fact in order to simplify the formulas in the
present subsection. We multiply V by a formal parameter λ
and consider the energy eigenvalues to LO (λ2Þ and
NLO (λ4).
The simplest derivation of Rayleigh-Schrödinger PT

starts from Brillouin-Wigner PT for the wave function,

jψni ¼ ½1þ λGð0Þ
n ðEnÞV þ λ2ðGð0Þ

n ðEnÞVÞ2

þ λ3ðGð0Þ
n ðEnÞVÞ3�jψ ð0Þ

n i ð40Þ

with

Gð0Þ
n ðEÞ ¼ Qn

E−H0

; Qn ¼ 1−Pn; Pn ¼ jψ ð0Þ
n ihψ ð0Þ

n j:

ð41Þ

The exact energy eigenvalue En has the expansion

En − Eð0Þ
n ¼ λhψ ð0Þ

n jVjψni ¼ λ2Eð2Þ
n þ λ4Eð4Þ

n : ð42Þ

Here, Eð0Þ
n denotes the unperturbed energies, and jψ ð0Þ

n i the
unperturbed state vector. The Rayleigh-Schrödinger result
can then be obtained by expanding Green’s functions up to
the required order

Gð0Þ
n ðEnÞ ¼ gn − λ2Eð2Þ

n g2n; gn ¼ Gð0Þ
n ðEð0Þ

n Þ: ð43Þ

Up to fourth order, one finds

Eð2Þ
n ¼ hψ ð0Þ

n jVgnVjψ ð0Þ
n i;

Eð4Þ
n ¼ hψ ð0Þ

n jVgnVgnVgnVjψ ð0Þ
n i − Eð2Þ

n hψ ð0Þ
n jVg2nVjψ ð0Þ

n i:
ð44Þ

If one would insert the spectral decomposition of Green’s
functions, one would generate a large number of individual
contributions (4 LO and 48 NLO terms). We did not evaluate
each contribution separately and sum them up, but used
computer algebra (Maple) to generate the result automati-
cally. The method used will be explained in Sec. III C.
Without calculation, it is clear that there are singular terms.
Let us label the unperturbed state jη; pi by (η, 0) and an
excited state jη0; pþ 2nQi by (η0, n). Then the state ðη; 0Þ is
(nearly) degenerate with ðη;�1Þ near p ¼ ∓ Q and with
ðη;�2Þ near p ¼ ∓ 2Q, the positions of the lowest two
gaps. Accordingly there is a first order pole in Eð2Þ
corresponding to the transitions ðη; 0Þ → ðη;�1Þ → ðη; 0Þ.
In Eð4Þ, a similar pole shows up in the four-step processes
ðη; 0Þ → ðη0;�1Þ → ðη;�2Þ → ðη00;�1Þ → ðη; 0Þ. In addi-
tion, there are second order and even third order poles coming
either from the process ðη; 0Þ → ðη0;�1Þ → ð−η; 0Þ →
ðη00;�1Þ → ðη; 0Þ or from the last term in (44) with the
squared Green’s function g2n. The resulting spectrum will be
illustrated below, but evidently cannot be trusted in the
vicinity of the gaps at p ¼ �Q, �2Q. If we would proceed
to an even higher order, additional singularities would arise as
further gaps open up at p ¼ �nQ, n > 2.
This problem is of course well known and has already

been met in the case of a standard stability analysis. The
cure is also known—ADPT. Actually, in the LO case there
is a cheap way out: as noted in [18], for the purpose of
finding the phase boundary, nondegenerate LO PT can be
used on the condition that one treats the singularity at the
gap by the principal value prescription. We shall explain
intuitively why this works in the next section. When trying
to find the tricritical point using a NLO stability analysis, we
do not expect any such shortcut as there is no principal value
prescription for second or third order poles. This forces us to
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consider seriously higher order ADPT. Nondegenerate PT
to NLO is still useful sufficiently far away from the gaps
where it has actually been used in the final computations.

B. Fourth order almost degenerate perturbation theory

We now turn to higher order ADPT. Beyond LO, various
systematic methods are available, less widely known than
lowest order ADPT. We choose a convenient scheme due to
Lindgren [27], originally developed for many body calcu-
lations in chemistry and nuclear physics. It has the advan-
tage of being based on Rayleigh-Schrödinger PT and can be
described as follows: Those states which mix strongly with
a given state are said to belong to a subspace of Hilbert
space called P-space (or model space). All other states
define the Q-space. The number of states in P-space is not
limited a priori. In the present application, P-space is
always two-dimensional since only one pair of states is
degenerate at the gap positions. Thus near the lower gap, P-
space will be chosen as the pair of states jη; pi, jη; p� 2Qi
near p ¼ ∓ Q, respectively. Near the upper gap, it will
contain the states jη; pi, jη; p� 4Qi near p ¼ ∓ 2Q. Then
the formalism allows one to construct an effective
Hamiltonian in P-space whose eigenvalues approach the
exact energies of two states in the full Hilbert space as one
increases the order of perturbation. Since the effective
Hamiltonian can be diagonalized exactly, the divergences
of naive PT are avoided.
We only state the necessary steps up to fourth order PT,

referring to the original work [27] for the derivation and
background. Let us label unperturbed states in P-space by
Latin letters and states in Q-space by Greek letters, where
the labels include the momentum p and the sign of the
energy η. Then the effective Hamiltonian can be written
down concisely as

Heff ¼ PH0Pþ λPVΩ ð45Þ
with

Ω¼PþλΩð1Þ þλ2Ωð2Þ þλ3Ωð3Þ;

Ωð1Þ
αj ¼

Vαj

ej−eα
;

Ωð2Þ
αj ¼

P
βVαβΩ

ð1Þ
βj −

P
kΩ

ð1Þ
αk Vkj

ej−eα
;

Ωð3Þ
αj ¼

P
βVαβΩ

ð2Þ
βj −

P
k;βΩ

ð1Þ
αk VkβΩ

ð1Þ
βj −

P
kΩ

ð2Þ
αk Vkj

ej−eα
: ð46Þ

P is the projector onto P-space. TheΩðnÞ are a kind of wave
operators leading from P- to Q-space ðΩαjÞ, defined
iteratively. V acts within P-space (Vkj), within Q-space
(Vαβ), and betweenP- andQ-space (Vαj, Vkβ). Inserting the
lower Ω’s successively into the hierarchy (46), we arrive at
the effective Hamiltonian

ðHeffÞij ¼ δijei þ λVij þ λ2
X
α

ViαVαj

ej − eα

þ λ3
X
αβ

λ3
ViαVαβVβj

ðej − eαÞðej − eβÞ

− λ3
X
αk

ViαVαkVkj

ðej − eαÞðek − eαÞ

þ λ4
X
αβγ

ViαVαβVβγVγj

ðej − eαÞðej − eβÞðej − eγÞ

− λ4
X
αβk

ViαVαβVβkVkj

ðej − eαÞðej − eβÞðek − eβÞ

− λ4
X
αβk

ViαVαkVkβVβj

ðej − eαÞðek − eαÞðej − eβÞ

− λ4
X
αβk

ViαVαβVβkVkj

ðej − eαÞðek − eαÞðek − eβÞ

þ λ4
X
αkl

ViαVαlVlkVkj

ðej − eαÞðek − eαÞðel − eαÞ
: ð47Þ

There are no vanishing energy denominators anymore
(terms with two Latin labels in the same energy denom-
inator). Each pair of strongly mixed states is treated
nonperturbatively by diagonalizing the 2 × 2 matrix Heff .
Before turning to the actual calculation, it is worth

pointing out some simplifications. For the lower gap region
where the potential can connect the two states in P-space,
only even terms survive (λ2, λ4) in diagonal matrix
elements, with odd terms (λ, λ3) in off-diagonal elements.
This is a direct consequence of the fact that the potential
acts as a ladder operator in momentum space. For the upper
gap, all terms with Vij can be dropped because the potential
does not connect directly the two states in P-space. Here,
all matrix elements of Heff are even in λ.

C. Calculational method and illustration
of the spectrum

As pointed out above, the LO stability analysis requires
only second order naive PT and the principal value
prescription for divergent integrals. This is so simple that
one can write down the resulting spectrum in closed
analytical form [18]. By contrast, inspection of the fourth
order ADPT formalism is quite sobering at first sight. Due
to the presence of positive and negative energies and the
complexity of the formalism, one finds a huge number of
individual contributions to the effective Hamiltonian. For
both gaps together one needs a total of 18 second order
terms, 16 third order terms, and 242 fourth order terms.
Here, an nth order term consists of a product of n matrix
elements of V as given in Eq. (39), divided by a product of
n − 1 energy denominators. Clearly, one cannot expect any
presentable closed form result, although the calculation is
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fully analytical. We have found a simple way of generating
all these many terms automatically with Maple. Starting
from the state jη; pi and restricting ourselves to p < 0 (the
spectrum is symmetric in p), this state is connected to six
other states at most in a NLO ADPT calculation, namely
jη0; pþ 2nQi, n ¼ −2, −1, 1, 2, 3, 4. Taking into account
positive and negative energy states, this implies that a fourth
order ADPT calculation of the base state jη; pi always stays
within a 14-dimensional subspace of Hilbert space. We
have therefore set up the matrix V in this subspace, using
the matrix elements given above, in algebraic form.
Likewise, the projection operators and free Green’s func-
tions entering the construction of Heff can be set up
analytically as matrices. We then literally perform the steps
in Lindgren’s iterative method (46) with Maple, generating
the effective Hamiltonian automatically. Since only matrix
multiplications are required, there is no problem in getting
the result algebraically. Likewise, diagonalization of Heff
can be done exactly since this is only a 2 × 2 matrix. It
would be impossible to print the resulting formulas here, but
they can be used within Maple for exact numerical
computations by just plugging in numbers when needed
and performing one-dimensional integrations numerically.
There is no loss of accuracy as compared to a LO
calculation. In a similar manner we have generated all
the terms in nondegenerate fourth order PTwith little effort
and a greatly reduced risk of mistakes.
We now illustrate results for the spectrum in a few cases.

Consider first the LO calculation needed to find the phase
boundary between homogeneous and inhomogeneous
phases. In this case, only the terms of order λ; λ2 are kept
in Eq. (47). In Fig. 2, we show the spectrum for positive
energy states in the vicinity of the first gap, for p < 0. The
parameters chosen are in the range used in our calculations,
with Q ¼ 0.72. Naive PT exhibits the expected singularity
at the gap, whereas ADPT produces a finite gap non-
perturbatively. In spite of the drastic failure of naive PT
seen in this figure, it is worth noting that previous LO

stability analyses were carried out using the spectrum from
naive PT together with the principal value prescription. The
reason why this is allowed is the following. A LO stability
analysis amounts to doing second order PT, but only the
limit λ → 0 is actually used. The example shown in Fig. 2
corresponds to the choice λ ¼ 0.1. What happens if we start
to decrease λ? The region where naive PT differs signifi-
cantly from ADPT shrinks and the gap tends to 0. This is
illustrated in Fig. 3 for the values λ ¼ 0.1=2n; n ¼ 0…5.
The curves show the correction to the unperturbed spec-
trum and are strictly antisymmetric with respect to the gap
position −Q, as one can verify by inspection of the
underlying formulas. They have been normalized to �1
at the gap (p ¼ −Q) so as to show more clearly how the
width of the gap region gets contracted as λ → 0. In the
limit λ → 0, multiplying such a function by a smooth
function and integrating over it is nothing but a principal
value integral. There is thus no loss of accuracy using this
trick. Since we now have at our disposition the possibility
to do a LO ADPT computation explicitly for finite λ, we
have checked this intuitive reasoning numerically to high
accuracy.
Let us now turn to an example of the full NLO spectrum

in the regions where naive PT fails. In Figs. 4 and 5 we
show the spectrum for E > 0 in the vicinity of the lower
gap (p ¼ −Q) and the upper gap (p ¼ −2Q). We do not
show the corresponding LO calculation which does not
even produce the upper gap. Near the lower gap, the
corrections are actually rather small.
Finally, we remark that our method of generating all

perturbative contributions automatically with Maple can also
be used for an additional test. To check whether the NLO
calculation really improves the LO calculation, one would
ideally need the exact eigenvalues of the Hamiltonian. What
we have done instead is to diagonalize numerically the 14-
dimensional Hamiltonian submatrix used in the computer
algebra calculations. The perturbative expressions should
converge to two of the exact eigenvalues of this matrix in the
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–1.4 –1.2 –1 –0.8 –0.6 –0.4 –0.2

FIG. 2. Typical fermion spectrum in the region of the lower gap
at p ¼ −Q, E > 0. Thin solid line: unperturbed energy. Dashed
line: naive LO PT. Fat solid line: ADPT using Lindgren’s method
to LO.
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FIG. 3. Correction to unperturbed spectrum near lower gap in
LO ADPT, normalized to �1 at p ¼ −Q. The different curves
show the effect of decreasing λ; see main text. In the limit λ → 0,
the region where the gap is being felt shrinks to 0.
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limit λ → 0. These are not the same as the eigenvalues in the
full Hilbert space, but provide the means to test the
perturbative scheme in a simple manner. In the region of
parameters needed here, the results are very good indeed. In
Figs. 6 and 7, we show two examples, plotting the difference
of exact eigenvalues and unperturbed energies as a function
of λ in comparison with perturbative results. The crosses are
from the numerical diagonalization, the dashed lines LO
ADPT, and the solid lines NLO ADPT. The important point
here is that the NLO calculation really improves the LO
result. The differences may seem small, but we should not
forget that the determination of the tricritical point depends
critically just on this difference. Together with many similar
plots, Figs. 6 and 7 give us confidence that Lindgren’s
method works well in the regime we are interested in.

IV. LOCATING THE TRICRITICAL POINT

We now come to the central part of this work. Given that
we are able to compute the spectrum of the HF Hamiltonian
in LO and NLO reliably, how do we find the tricritical
point? We shall use the experience with the GL model as the
guideline. We first have to determine the grand canonical

potential perturbatively as a function of (μ, γ, T). In HF
approximation, it is given by a single particle contribution
plus a double counting correction,

Ψ ¼ −
2

β

Z
Λ=2

0

dp
2π

ln ½ð1þ e−βðE1;p−μÞÞð1þ e−βðE−1;p−μÞÞ�

þ ðm −mbÞ2 þ 2ðS21 þ P2
1Þ

2Ng2
: ð48Þ

E�1;p are positive and negative single particle energies
belonging to the potential (38). The bare coupling constant
will be eliminated with the help of the vacuum gap equation

π

Ng2
¼ γ þ lnΛ: ð49Þ

To isolate the UV divergence of the integral, we separate the
vacuum from the matter contributions,
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FIG. 4. Example of spectrum obtained with Lindgren’s method
to LO and NLO. The thin line is the unperturbed energy. The
positive energy region around the lower gap is shown for typical
values of the parameters.
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FIG. 5. As Fig. 4, but for the region around the upper gap.
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FIG. 6. Test of Lindgren’s analytical approach to LO (dashed
curve) and NLO (solid curve) against exact numerical eigenval-
ues (crosses) of the Hamiltonian, truncated to a a 14-dimensional
subspace of Hilbert space. One particular eigenstate is chosen,
and all parameters including p are fixed except for the strength
parameter λ.
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FIG. 7. Same as Fig. 6, but for another eigenstate.
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Ψ ¼ Ψvac þΨmatt þ
ðm −mbÞ2 þ 2ðS21 þ P2

1Þ
2Ng2

;

Ψvac ¼ 2

Z
Λ=2

0

dp
2π

E−1;p;

Ψmatt ¼ −
2

β

Z
Λ=2

0

dp
2π

ln ½ð1þ e−βðE1;p−μÞÞð1þ eβðE−1;p−μÞÞ�:

ð50Þ

The single particle energies are expanded into a perturbation
series up to NLO,

Eη;p ¼ Eð0Þ
η;p þ ϵEð1Þ

η;p þ ϵ2Eð2Þ
η;p: ð51Þ

In the double counting correction, S21 þ P2
1 has to be

treated as being of order ϵ. One then expands the grand
canonical potential into a Taylor series in ϵ. The zeroth
order term reproduces what one would write down for
the homogeneous phase diagram. The linear terms are
(E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
)

Ψð1Þ
vac ¼ 2

Z
Λ=2

0

dp
2π

Eð1Þ
−1;p;

Ψð1Þ
matt ¼

Z
∞

0

dp
π

�
Eð1Þ
1;p

eβðE−μÞ þ 1
−

Eð1Þ
−1;p

eβðEþμÞ þ 1

�
: ð52Þ

This part is used to find the perturbative phase boundary in
a standard LO stability analysis [18]. The vacuum term has
to be renormalized with the help of the OðϵÞ double
counting correction,

Ψð1Þ
vac þ S21 þ P2

1

Ng2
¼ S21 þ P2

1

π
½γ þ lnð2KÞ� þ 2

Z
K

0

dp
2π

Eð1Þ
−1;p:

ð53Þ

Here, K is a momentum chosen such that the integrand can
be approximated by the leading asymptotic term (∼1=p)
for momenta p ≥ K. The cutoff Λ and the bare coupling
constant have disappeared owing to the gap equation. In
NLO, we obtain the novel terms crucial for the search of
the tricritical point,

Ψð2Þ
vac ¼ 2

Z
∞

0

dp
2π

Eð2Þ
−1;p;

Ψð2Þ
matt ¼

Z
∞

0

dp
π

�
Eð2Þ
1;p−βðEð1Þ

1;pÞ2=2
eβðE−μÞ þ1

−
Eð2Þ
−1;pþβðEð1Þ

−1;pÞ2=2
eβðEþμÞ þ1

�

þβ

Z
∞

0

dp
2π

��
Eð1Þ
1;p

eβðE−μÞ þ1

�2

þ
�

Eð1Þ
−1;p

eβðEþμÞ þ1

�2�
:

ð54Þ

Since all integrands are analytically known and free of
singularities and the integrals are UV convergent, these
expressions can readily be computed with Maple with the
desired accuracy.
We now proceed as follows. In the first step, we have to

determine the perturbative sheet as in Ref. [18], using naive
LO PT with the principal value prescription. These com-
putations have already been done in [18] but had to be
repeated because the results for R ¼ S1=P1 and Q char-
acterizing the unstable mode had not been stored at that
time. This gives the critical curves in the (μ, T) plane for a
number of γ values. In the next step, we choose a point near
the (low μ) end of such a critical curve and evaluate the full
grand canonical potential including the zeroth order term,
as well as LO and NLO corrections. The parameters (μ, T,
R, Q) are taken over from the LO calculation of the critical
line. The only undetermined parameters in the potential are
P1 and m. Denote by m0 the fermion mass on the
perturbative sheet, i.e., the fermion mass in the homo-
geneous phase. Consider three neighboring values for m,
m ¼ m0 − Δm, m0, m0 þ Δm with Δm ≪ m0. For each of
these three mass values, perform the calculation of Ψ for a
range of P1 values and find the minimum,

Ψ̃ðmÞ ≔ min
P1

Ψðm;P1Þ: ð55Þ

Then the discretization of the second derivative of
the effective potential with respect to m at the point
considered is

∂
2
mΨ̃ðmÞjm0

¼ Ψ̃ðm0 þ ΔmÞ − 2Ψ̃ðm0Þ þ Ψ̃ðm0 − ΔmÞ
Δm2

:

ð56Þ

This is the quantity that must vanish at the tricritical
point. In practice, it is sufficient to compute (56) for
several equidistant points near the end of the perturbative
phase boundary and determine the zero crossing by
interpolation.
We have done the calculation for all values of γ listed in

Table I. We integrate only over the negative p axis (the
integrands are symmetric). Naive fourth order PT has been
used for p < −5=2Q and −1=2Q < p < 0, away from the
gaps. In the interval −3Q=2 < p < −Q=2 containing the
lower gap, we use Lindgren’s method with the states jη; pi,
jη; pþ 2Qi in P-space. In the interval −5=2Q < p <
−3=2Q containing the upper gap, the model space consists
of jη; pi, jη; pþ 4Qi. Minimization with respect to P1

presented no difficulty, and the zero of the second deriva-
tive (56) could easily be found in all cases.
Figure 8 shows all perturbative phase boundaries and the

tricritical line thus obtained. The calculated tricritical points
are the end points of the phase boundaries. They have been
connected by straight line segments to guide the eye. The
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numerical values of the tricritical points are listed in Table I,
since this is the main result of the present work. It is
interesting to compare the tricritical points obtained with
the present top down NLO stability analysis to the bottom
up results obtained in Ref. [18] by a numerical HF
calculation and some extrapolation. The result is shown
in Figs. 9 and 10. The agreement is surprisingly good,
given the fact that the two calculations are completely
independent. The points from the numerical HF calculation
show small fluctuations around the smooth, perturbative
curve. This supports the claim that it is indeed possible to
find the tricritical curves by an exact perturbative calcu-
lation, taking into account some nonperturbative aspects
related to the gaps. Finally, in Fig. 11 we summarize
everything known about the phase diagram of the massive
χGN model to date. We have added to the new data from
Fig. 8 the asymptotic curve andthe first order sheet from
Ref. [18]. The T ¼ 0 line is the baryon mass taken from
Ref. [28], and in the vicinity of the point (γ ¼ 0, μ ¼ 0,
T ¼ Tc) we have also included the GL prediction of the

present work (the short line segment near T ¼ Tc,
μ ¼ γ ¼ 0). The lowest order GL approach is only valid
at much smaller values of γ and then is used here
(γ ≤ 0.001; see [25]). If one applies it nevertheless to
the first entry of Table I at γ ¼ 0.0125, one finds only
qualitative agreement (μ ¼ 0.341, T ¼ 0.553). In any case,
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FIG. 8. Result for perturbative sheet and tricritical line obtained
in this work using LO and NLO stability analysis, respectively.
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FIG. 9. Comparison of tricritical points obtained from numeri-
cal HF calculation (crosses, Ref. [18]) and analytical NLO
perturbative calculation (solid line), in the (γ, μ) plane.
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FIG. 10. As in Fig. 9 but (γ, T) plane shown.
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FIG. 11. Summary of everything known about the phase
diagram of the massive χGN model to date; see main text.

TABLE I. Numerical values for tricritical points determined in
this work.

γ μ T

0.0125 0.321 0.543
0.025 0.393 0.528
0.05 0.509 0.501
0.1 0.629 0.460
0.2 0.757 0.393
0.3 0.826 0.339
0.4 0.869 0.293
0.5 0.896 0.253
0.6 0.914 0.219
0.7 0.925 0.189
0.8 0.932 0.163
0.9 0.938 0.142
1.0 0.939 0.121
1.1 0.941 0.104
1.2 0.941 0.089
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Fig. 8 underlines that a comprehensive and consistent
picture of the phase structure has now been reached.

V. SUMMARY AND CONCLUSIONS

Given a phase boundary between a homogeneous and an
inhomogeneous phase, how can one find a tricritical point
separating first from second order transitions? This is the
main question addressed in the present work. The specific
example which we have studied is the massive χGN model,
but the basic idea should be applicable to mean field theories
in higher dimensions as well. The second order phase
boundary can be found in a straightforward manner using
a stability analysis. This standard tool is based on LO PT in a
spatially periodic (“harmonic”) perturbing potential. It is easy
to implement and gives exact results. PT leads to divergencies
at the position of a gap, unavoidable for periodic perturba-
tions, but these can be handled with well established ADPT
methods. The first order phase boundary requires full,
numerical HF calculations and a careful search for the points
where two different solutions are degenerate. So far, the
tricritical point could only be determined by pushing the full
HF calculation toward the end point of the first order line.
This is a lengthy and difficult endeavor, since a weak first
order transition is hard to distinguish from a second order
transition numerically. Some ingenuity and a certain amount

of extrapolation is needed, so that the question about a more
efficient location of the tricritical point arises naturally. In the
present work, we advocate approaching the tricritical point
from the perturbative, second order side in a way which is
independent of the HF calculation and potentially exact. This
requires one to extend the standard LO stability analysis to
NLO PT. Due to the periodic perturbation, pushing PT to
higher order will invariably give rise to new divergencies due
to vanishing energy denominators. Fortunately, this problem
has been solved a long time ago in the context of perturbative
many body calculations. We have used a systematic scheme
due to Lindgren which is well suited to the present problem
and can be implemented in Maple without much pain.
Guided by an exactly solvable warm-up problem, the GL
approach to the χGN model, we found that it is sufficient to
push PT to NLO in the direction dictated by the unstable
mode of the stability analysis. In this way, it was possible to
go all the way to locate the tricritical point precisely. In the
present case, the difference between the results from HF and
ADPT are rather small, but fluctuations and small systematic
errors of the previously determined tricritical points have
been eliminated. The method should be immediately appli-
cable to the χGN model with isospin, where the tricritical
lines are still completely undetermined. This will be the
subject of a forthcoming paper.
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