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We study the modular symmetry anomaly in magnetized orbifold models. The nonperturbative effects
such as D-brane instanton effects can break tree-level symmetry. We study which part of the modular
symmetry is broken explicitly by Majorana mass terms with three generations of neutrinos. The modular
weight of neutrino mass terms does not match with other coupling terms in the tree-level Lagrangian. In
addition, the Zy symmetry of the modular flavor symmetry is broken and a certain normal subgroup of the

modular flavor symmetry remains in neutrino mass terms.
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I. INTRODUCTION

Superstring theory predicts extra six-dimensional (6D)
compact space in addition to our four-dimensional (4D)
spacetime. Certain compactifications such as the torus and
some orbifold compactifications have a kind of geometrical
symmetries, called modular symmetry. Then, the modular
symmetry appears in 4D low-energy effective field theory
[1]. Furthermore, the modular symmetry transforms zero-
modes with each other, e.g., in heterotic orbifold models
[2-4] and magnetized D-brane models [5—11]. (See also
[12—15].) That is, the modular symmetry can include a
flavor symmetry among three generations of quarks and
leptons in particle physics.1

Inspired by the above aspects, the modular flavor
symmetric models have recently been studied intensively
in the bottom-up approach. (See for early works [20].)*
Indeed, the modular symmetry includes S5, A4, S4, and As
as finite modular groups [22], and these non-Abelian
discrete symmetries are often used for the model building
for quark and lepton flavor models in the bottom-up
approach [23-28].

Symmetries at tree level are broken by quantum effects,
that is an anomaly. Then, symmetry breaking terms appear
by nonperturbative-instanton effects in field theory. The
modular symmetry can also be anomalous. Indeed, the

'Calabi-Yau compactifications have many moduli, and they
have larger symplectic-modular symmetries [16—19].
See (for more recent list) references e.g., in Ref. [21].

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2022/105(11)/116002(19)

116002-1

modular symmetry anomaly, which is relevant to the
automorphy factor except in flavor symmetry, were studied
in 4D low-energy effective field theory derived from
heterotic string theory [29,30]. Such anomalies can be
canceled by the 4D Green-Schwarz mechanism due to the
axionic shift of the dilaton multiplet. That leads to
important aspects. The moduli and dilaton mix in one-
loop effective field theory. Furthermore, mixed anomalies
between the modular symmetry and gauge symmetries
should be universal for all of the gauge symmetries in
heterotic models. This universality condition on mixed
anomalies constrains massless spectra. Several phenom-
enological applications were carried out, e.g., the gauge-
coupling unification, Yukawa couplings, and the hidden
sector [30-32]. Moreover, the modular symmetry anomaly
relevant to the automorphy factor was studied in intersect-
ing and magnetized D-brane models [33]. Similar to
heterotic models, moduli mixing in one-loop effective field
theory is required to cancel the anomaly by the 4D Green-
Schwarz mechanism.

In addition to the automorphy factor, anomalies of
the modular flavor symmetries were studied in 4D effec-
tive field theory of magnetized D-brane models [34].
Anomalous subsymmetries in the modular flavor symmetry
correspond to discrete symmetries of U(1) gauge groups.
Thus, those anomalies can be canceled by the same Green-
Schwarz mechanism to cancel the U(1) anomalies.

Anomalies of the flavor symmetries are important. If
they are anomalous, the tree-level flavor symmetries are not
exact at quantum level, but symmetry-breaking terms
appear nonperturbatively and affect the flavor structure.
In this paper, we study more about anomalies of the
modular symmetries and nonperturbative symmetry-
breaking terms in the 4D effective field theory of magnet-
ized D-brane models.
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Magnetized D-brane models lead to quite interesting
low-energy effective field theory [35-47]. Yukawa cou-
plings as well as higher-dimensional couplings can be
calculated by the overlap integrations of wave functions on
the compact space [39,48,49]. Actually, from such com-
pactifications, realistic quark masses and mixing angles as
well as charged lepton masses have been studied [49-52].
In D-brane models, D-brane instanton effects induce new
terms such as right-handed Majorana neutrino mass terms
[53-55], and explicit forms were also studied in magnet-
ized models [56,57]. We study the modular symmetry
anomaly and breaking symmetries due to neutrino mass
terms induced by D-brane instanton effects. Such studies
have implications on 4D modular flavor symmetric models.

This paper is organized as follows. In Sec. II we briefly
review the modular symmetry and its anomaly. In Sec. III
we review Majorana neutrino masses generated by D-brane
instanton effects in magnetized orbifold models. In Sec. IV
we study the modular symmetry anomaly of the Majorana
mass terms, generally. In particular, in Sec. V we study
modular flavor symmetry anomalies of Majorana mass
terms for four types of three generations of right-handed
neutrinos with modular symmetry on magnetized 7%/Z,
orbifold, explicitly. In Sec. VI we discuss more on possible
corrections due to D-brane instanton effects. We conclude
this study in Sec. VIL

II. MODULAR SYMMETRY AND ANOMALY

In this section we give a brief review on the modular
symmetry and its anomalies.

A. Modular symmetry
The modular group I' = SL(2, Z) is the group of (2 x 2)

Illa'[Il.CeS,
c d '

where a, b, ¢, and d are integers satisfying ad — bc = 1.
The generators of I' are given by

() ) e

and they satisfy the following algebraic relations,

§? = I, §* = (ST)* =1, (3)
where I denotes the unit matrix.

Under the modular symmetry, the modulus 7z trans-
forms as

4)

The modular forms are holomorphic functions of z, which
transform as

fi(T) - fi(?’T) = Jk(}’a T)pij(7>fj(7)7 (5)

where J;(y,7) = (¢t + d)* denotes the automorphy factor
with the modular weight k and p;;(y) is unitary matrix. The
modular forms transform as

fi@) = fi(r'7) = Ly’ 2)fi(2), (6)

for ' in a certain subgroup such as congruence subgroups.

B. Matter fields and anomalies

Here, we give a brief review on the modular symmetry
anomaly in string-derived low-energy effective field theory.
In 4D effective field theory, chiral matter fields ¢; have the
following Kihler metric,

1

@imoys (7)

i

and also transform [1]

i = J_i, (v, 0)pi; (1) ;s (8)

under the modular symmetry. The matrix p;;(y) represents
the flavor symmetry.

In Refs. [29,30], the modular symmetry anomalies,
which are relevant to the automorphy factor J_; (7.7),
were studied, i.e., for y’ satisfying p;;(y') = 6;;. The
anomaly coefficients of mixed anomalies with the G,
gauge symmetry are written by [29],

Ay = =C(Gy) + Y T(R)(1+2Kk).  (9)

where C(G,) is the quadratic Casimir of G, and T(R)
denotes the Dynkin index of the representation R/, of the
chiral matter field ¢; under G,.

This anomaly can be canceled by the 4D Green-Schwarz
mechanism, where other moduli 7', in the gauge kinetic
function f,(T,) of the gauge group G, transform under the
modular symmetry [29,30],

1
T(l - Ta + W&%S hl(CT —+ d) (10)
T

A one-loop correction on the gauge kinetic function, which
depends on 7z, may also contribute partly to the anomaly
cancellation. In heterotic string theory on orbifolds, the
dilaton corresponds to the Green-Schwarz field.
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The tree-level Kéhler potential of moduli,
—In(2Imz) = > " In(T, + T,). (11)

is not invariant under modular symmetry because of the
above transformation (10). The modular-invariant Kéhler
potential is written by

- 1
—In(2Imz) — Z In <Ta +T,+ F(S"‘GS In Imr) . (12)
b3

a

Thus, at this level, the modulus 7 and other moduli 7, mix
each other in the Kihler potential. This study was extended
to 4D low-energy effective field theory derived from
intersecting and magnetized D-brane models [33].
Furthermore, the anomalies corresponding to p;;(y) were
studied in Ref. [34]. The matrix p;;(y) represents the flavor
symmetry corresponding to a non-Abelian discrete group.
In field theory with a non-Abelian discrete group, the
anomaly-free condition for the mixed anomaly with the
non-Abelian gauge group G, is written by [58-61],

(detpy(y)) 22T = 1, (13)

The subsymmetry corresponding to the element y with
detp;;(y) = 1 is always anomaly free. The other part of
symmetry corresponding to the element with detp;;(y) # 1
can be anomalous, although it depends on >_,2T,(RY).
Following this criteria, the anomalies were studied in
Ref. [34] in magnetized D-brane models. It was found
that the anomalous part can be embedded in discrete part of
anomalous U(1) gauge symmetry.

The U(1) anomaly can be canceled by the 4D Green-
Schwarz mechanism [62-67], which requires the shift of
the moduli 7',

T, — T, + A%A, (14)

under the gauge transformation of the U(1) vector
multiplet V,

Vo V+A+A, (15)

where A denotes the gauge transformation parameter. Since
the anomalous symmetries corresponding to detp;;(y) # 1
is embedded in a discrete part of anomalous U(1) gauge
symmetry, anomalies of the modular flavor symmetries are
also canceled by the same mechanism.

The flavor symmetry is quite important in low-energy
effective field theory. In what follows, we study more about
its anomalies. Nonperturbative effects such as D-brane
instanton effects break the tree-level symmetry and induce
breaking terms in low-energy effective field theory. One of
the important terms in low-energy effective field theory is

the right-handed Majorana neutrino mass term, which can
be induced by D-brane instanton effects. In the following
sections we study which part of modular flavor symmetry is
broken by neutrino mass terms by D-brane instanton effects
in magnetized orbifold models.

III. MAJORANA NEUTRINO MASS TERMS IN
MAGNETIZED ORBIFOLD MODELS

In this section we review magnetized orbifold models
and Majorana neutrino masses generated by D-brane
instanton effects in magnetized orbifold models.

A. Neutrinos in magnetized T2/Z, orbifold
compactifications

First, we consider My x (T? x X,)/Z, as 10D space-
time in IIB superstring theory, where M, is our 4D
spacetime and X, is a 4D compact space. The action of
Z, for T? is given by the Z, twist of the T2 coordinate; thus,
it includes toroidal orbifold, 72 /Z,. We also introduce
D-branes wrapping p-cycles on the compact space,
(T? x X,4)/Z,. The low-energy effective theory of the open
strings stretching between D-branes is given by super-
symmetric gauge theory, and magnetic fluxes can be turned
on. Suppose that neutrinos N, correspond to zero modes of
open strings between two stacks of D-branes, Dy; and Dy,
with different quantized magnetic fluxes denoted as My,
and M y,, respectively. For simplicity, we assume that they
are D9-branes spreading the whole 10D spacetime. We
denote the difference of their magnetic fluxes on 72 as
My = My, — My,, which appears in the zero-mode equa-
tion of neutrinos. The generation number of the neutrinos,
N,, is determined by this My as well as boundary
conditions on 7?/Z, such as the Z, parity m € {0, 1}
and the Scherk-Schwarz (SS) phases a;, a, € {0,1/2} as
will be shown. Note that although the total generation
number is also affected by degeneracy on X, and the Z,
action on X,, we assume that the degeneracy on X, is just
one and the action of Z, for the wave function on the X} is
trivial; hence, the generation number is given by the
degeneracy on 72/Z,. In this case, the contribution from
X4 to the neutrino sector is just a flavor-independent overall
factor in Yukawa couplings and neutrino masses. Hereafter,
we concentrate on the 6D M, x T?/Z,, where we denote
the real coordinate of M, and the complex coordinate of
T?/Z, as x and z, respectively.

Now, we briefly review magnetized 72/Z, orbifold
compactifications [40,41]. the T?/Z, orbifold is con-
structed by the identification, z~z+1~z+7~—2,
where 7 is the complex structure modulus of 72 as well
as T>/Z,. A two-dimensional (2D) spinor on T?/Z, with
U(1) unit charge ¢ = 1 under the magnetic flux M, the SS
phases (a;,a,), and Z, parity m,
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(ay.a.;m) .M

lraam). M () — (w (z) ) , (16)

l//(_a] a.;m),M (Z)

should satisfy the following boundary conditions,

ay,a;;m),M i vz (aq.om) M
l//(il ) (Z ]) _ 627[1(11 emMI""WEtI ) (Z),
m),M . . Am(7z) agm),M
(im a,;m) (Z T) — p2mia, priM= l//(ia] a.;m) (Z),

ay,a;;m),M m.. (ay,a,;m) M
p s (—g) = (e ), (17)

When M is positive (negative), only w, (y_) has zero-
mode solutions of the Dirac equation iPy(z) = 0, where
the covariant derivative includes the background U(1)
gauge potential which induces the magnetic flux M.
Hereafter, we consider only the case with the positive
magnetic flux for simplicity and we omit the notation of the
chirality, “+”. The ath zero-mode solution can be
expressed as

w(a+al,a,;m),M(Z)

ata
— N apriMa: (eZ”i%&[ " :| (Mz, M)
i) 2 M—(atay) M_(L+al)
+ (= 1)m2a g2mi (Mz,Mz) ),  (18)

L) (a+a =0.|M|/2)
Na: Z(A) a * , (19)

1
% (%) *  (otherwise)

where A denotes the area of 72 and 9 denotes the Jacobi
theta function given by

a
9 U, T) = eﬂi(a+1)2162m’(a+l)(b+b). 20
N> (20)

lez

The normalization factor, A%, is determined by

- (a+ay,a;m),M d'+ay,a;m),M *
L, s g e )
= (2Imz) 738, 4. (21)

Then, the number of zero modes is shown in Table I.
Therefore, we can obtain such numbers of chiral fermions
from the magnetized T?/Z, orbifold. The ath generation
of the neutrinos in the 4D space-time, N,(x), comes
from the ath zero mode on the magnetized T2/Z,,
ylatanasmy My (7) In particular, in the following calcu-
lations, we study models with three generations of
neutrinos.

TABLE I. The number of zero modes.

(ay, a;;m) Me?27 Me2Z +1
z

Vs 2 2

(1/2,0:0) u Ml
(1/2,0;1) % @
(0,1/2;0) % MTH
(0,1/251) % @
(1/2.1/2:0) i i
(1/2.1/2;1) % MTH

B. Majorana neutrino masses induced
by D-brane instanton effects

Next, let us review the flavor structure of the Majorana
neutrino masses generated by D-brane instanton effects in
the magnetized orbifold models [57]. The D-brane instan-
ton is an instanton-like solution of string theory. It is
localized at a point in 4D spacetime, but wrapping a cycle
on the compact space. When a D-brane instanton Dj,
with a magnetic flux M, exists, zero-modes f3; ;)
appear between Dy; (Dp,) and Dj,,. We denote the
difference of their magnetic fluxes on 7°/Z, as M 5=
My — My (M, = My, — M), which appears in the
zero-mode equation of f; (y;). The number of the zero
modes is determined by the magnetic flux My (M,) as
well as the boundary conditions on 72/Z,; the Z, parity
and the SS phases. Hereafter, we consider that the ith
instanton zero mode in the 4D spacetime, f;(x) (y;(x)),
which is localized at the point x in 4D space-time,
comes from the ith zero mode on the magnetized
Tz/Zz, l//<i+al’a’;m)/"M/’(Z) (l//(Hal'ar;m)V’MV(Z))-

We give a comment on U(l) gauge symmetries.
Each D-brane has a U(1) gauge symmetry. That is, Dy,
and Dy, have U(1), and U(1), gauge symmetries, respec-
tively. Then, neutrinos have (1,—1) charges under
U(1), x U(1),, while g; and y; would have (—1,0) and
(0,1) charges, respectively. Both of U(1), x U(1), or their
linear combination can be anomalous. Such anomalies
could be canceled by the 4D Green-Schwarz mechanism
as will be shown.

There appears three point couplings of their zero modes
and neutrinos,

dd Bi(x)r; (x)No(x), (22)

where d9 denotes the coupling coefficients. Due to the
three point couplings, Majorana neutrino mass terms,
M ,N,(x)Ny(x), can be induced [53,54] as
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MabNa(x)Nb(_x) f— e_Scl<TavMins() / dzﬁdzye_dgﬂ[<x)7,/(X)Nlt(x)

_ . ik 7i¢
—e Sa(To-Ming) (gijekfdﬁlkdé )Na(x)Nb(X)

= ST N, (ON,(0). (23)

Here, we give several comments. First, Sy (T, M)
denotes the classical action of the D-brane instanton which
depends on the moduli 7, through D-brane instanton
volume and magnetic flux in the compact space. Note that
there appears the axion of 7,, to which the D-brane
instanton couples in the imaginary part of S.;(Ty, Ming).
Second, both f;(x) and y;(x) are two numbers of
Grassmann zero modes (i, j = 1,2). Here, the Grassmann
integration for the Grassmann field w(y = f;,7;) satisfies

/dl//l// =1. (24)

Thus, the Majorana mass terms can be generated in the only
case that the numbers of both zero modes, ;(x) and y;(x),
are two. In order to obtain Majorana masses of three
neutrinos from three point couplings, dj; (X)7;(x)N,(x),
their magnetic fluxes and SS phases as well as Z, parities
should satisfy

MN:M/j+M7,

(alfar;m>NE(al»ar;m)ﬁ_l_(al’a‘r;m) (mOdl) (25)

4

Otherwise, the coupling vanishes, di = 0. When the above

condition is satisfied, the coupling coefficients di can be
calculated from

di = / dzdzy e asmpMy (7)y e acm), My (7)
T%/Z,
X (glerenaimty (). (26)

This comes from the following decomposition of 6D fields,
B2, /5P and NP

ZﬁMma m/,

Z Mala,m
J

j :NMa]arm

® % (i+ar.a:m) .My (Z),
® W (j+ay,a:m), M, (Z),
) ® (w2 (27)

. (Miay,a,;m
If each number of instanton zero-modes, ;' o

and
ﬁM 1 m)y , is two and satisfy the above condition (25), all

combinations of such zero-modes can contribute to gen-
erating the Majorana neutrino masses. Thus, the total
Majorana mass terms can be written as

ahN(M @p.am)y (X)NZM;al aim)y (x)

<§ : o=Sa(Ta, M) } :mgﬂ;a)msl)

Mipng it

" NEIM,QI )y ()C)NE,M;QI i)y (x), (28)

where we denote ay = (@), a;)x, ®iny = (a4, a,), and
M = (Mg, M,). Hereafter, we denote (ay,a;) = (0,0),
(1/2,0), (0, 1/2) and (1/2,1/2) as A, B, C, and D,
respectively.

In addition to these zero modes, we have neutral zero
modes which correspond to the gauge multiplets on the D-
brane instanton. The number of the neutral zero modes is
also crucial since extra Grassmann integral can eliminate
the nonperuturbative superpotential. These neutral zero
modes must be absorbed by interaction terms to obtain
nonzero nonperturbative effects. On the other hand, the
integration of the neutral zero modes does not affect the
modular symmetry anomaly since the wave function of
gauge multiplets is constant on the compact space and does
not transform under the modular group. Thus, we inves-
tigate the flavor structure of the nonperturbative Majorana
mass term, assuming the integration of the neutral zero
modes is properly absorbed by interaction terms in the
present paper.

IV. MODULAR SYMMETRY ANOMALY OF
MAJORANA NEUTRINO MASS TERMS

In this section let us study modular symmetry anomaly of
the Majorana-neutrino mass terms in Eq. (23). First, we
briefly review the modular transformation of the wave
functions and the coupling coefficients. Under y €I’
transformation, the modulus as well as the coordinate,
(z,7), transforms as

(29)

yi(e.7) > (£.7) = < z ar+b>

ct+d er+d)’

We call this transformation the modular transformation. In
particular, under the S and 7 transformations defined in
Eq. (2), (z,7) transform as

Si(z,7) = (Z.7) = <—§,—l>,

T T

T:(z,1) > (2.7) = (.7 + 1), (30)
respectively. Thus, this modular transformation also sat-
isfies Eq. (3).

Now, let us investigate the modular transformation for
the wave functions on magnetized T?/Z, in Eq. (18) [8,10].
For this purpose, we introduce the double covering group
of I, T'. (See e.g., Ref. [68] and references therein.) The

generators of [, Sand T, satisfy
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SZ — Z 7:W(a+al,a,;m),M(Z, T) N l//(aJral.a,;m).M( < ’ art + b)
St=8TP =27 ct+d ct+d
3= (3T =7 =1, =Jin(7. T)Z Z,0(}7)‘;3//1//(“/+“/1"’/f;m)’M(Z, 7), (32)
d o
2T-77, (31)
where Z expands the center of I'. § and T transformations .
of (z, ) are the same as S and T transformation in Eq. (30). ~ where J;, and p denote the automorphy factor with
Hence, under 7 € T transformation, the wave functions in modular weight 1/2 and the unitary matrix, respectively.
Eq. (18) transform as For § and T transformations, they can be expressed as
./\/'a./\/.a/ 4emil* 2n(a+ay)(d'+a)) 5 —0
o o T COS(ar ) @0y (m=0)
J1/2<S’ T) = (_7>1/2’ /)(S)ZZ’ = ! diemilt . R2r(a+ay)(d+d)) ’ (33)
NaNa 1\2‘7 s1n( M ! )5(0{1 a). (a’ ) (m = 1)
S, 48 (M €22)
~ ~ ~ / a,a' Oy a.—ay),(a).ar)
JI/Z(Tv T) = 17 p(T)ZZ’ = rila+ar)? ] s (34)

M 5(1.(1/5((11.a,—(llJr%),(rfl L) (M €27+ 1)

respectively.” Thus, under the modular transformation, in general SS phases transform and then the fields such as
pMsarazm)y o (Manazm),y conyert into other fields such as gV @) (,(Mid.@m), ) However, wave functions with M € 2Z
and (a1, a,) = (0,0) and ones with M € 2Z + 1 and (a;,a,) = (1/2,1/2) are closed under the modular transformation.
Then, we consider the models, that the three generations of neutrinos come from such wave functions with the modular
symmetry. Namely, from Table I, there are four cases with three generations of neutrinos: (M;ay, a;;m)y = (4;0,0;0),
(8;0,0;1), (5;1/2,1/2;1), and (7;1/2,1/2;0). In these cases, the unitary matrices become unitary representations of
A(96) ~ A(48) x Zg, A(384) =~ A(192) x Zg, As x Zg, and PSL(2,Z;) x Zg, respectively [10].
From Egs. (27) and (32), the 4D fields, f;(x), 7;(x), and N,(x), transform under the modular transformation as

7:ﬁEM;a1.af im)g ( N J U },’ ZZP a/;a Ma ak; m),;(x)’
~. (Miayazm), (Mo, asm),
pirp () = T p(FT ZZP Yy (),

PINGT N () > (T (7w ZpN N ), (35)

respectively. Note that Eq. (34) satisfies p(7)” = p(7). Therefore, in this case, the 4D three generations of neutrinos, N, gx)
transform nontrivially as triplets under the above discrete modular flavor transformation with the modular weight —1/2." In
the following section we discuss their modular flavor symmetry anomalies individually.

On the other hand, from the modular transformation for wave functions in Eq. (32), we can find the modular
transformation for the three point coupling coefficients, d;/ (M )i (7), in Eq. (26) [47],

~. gij,(M, inst M inst T+b 1"3‘ mat J(M, /inst
prdd MO () > M (CTM) TGO PTpG) S0 pa@) s, o dl M (),
l/j/a/ /

msl

P, = ) o, (75 (o (7)), (36)

3Since the definition of wave functions in Eq. (18) is modified from ones in Ref. [10], the matrix forms are also modified from ones in
Ref. [10].
*This is consistent with the Kihler metric in Eq. (7), obtained from Eq. (21) in Refs. [8,21].
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where the term, #1)) = , comes from the factor, (ZImT)‘%, obtained by integration in Eq. (26). Thus, by
combining Egs. (35) and (36), the three point coupling terms transform under the modular transformation as

}7:d2j,(M,a)ins‘ (T)ﬂw[;al ), (x)}/;M ay.agim) ( )N (Msay,a.5m)y ( ) —>dl j.(M.a) um( )ﬁ/ (M 1,0 sm) (x)y(M;a’l_a/T;m)y (x)Nfll}l;al.a,;m)N(x).

i J

(37)

In particular, if instanton zero modes, f and y, also come from wave functions consistent with the modular
symmetry, the above three point couplings are modular invariant. Even if the above term transforms under the modular
dz] (M) (T)ﬁ(-M;a] 0sm) g ()C)

transformation, the total three point couplings which can generate Majorana masses, Z Ma) ;

(M:ay,az3m),
J

inst
"(X)Nag (M0 m>”(x) are modular invariant.

Now, let us see the modular transformation for the Majorana mass terms in Eq! (23) Since we obtain the modular
transformation for dy M )‘“*‘, we can find that the mass matrix elements, m st (7), transform under the modular
transformation as

B @) a),, (at+b ~ .
7 (g) e ( ) 5T " (q),

¢ ct+d

M/
SO

(llb’ /

alnﬁla

()55 — et ()55 (o (PN ) (o ()" (38)
where we denote det[pj, (7)%m %] = det[pﬂ(}7)“/"f/’} det(p, (7)%%]. Thus, by combining Eqs. (35) and (38), the mass terms
transform under the modular transformation as

7: m(fb"lu)anm (T)N(aMzal arim)y (X)NéM:al aim)y (x) = I»(7.7) detmmt(?)"im‘“i’ns‘]m%;a/)‘““ (T)ai/“stN((j/W;al azim)y (x)N[(){V[;al am)y (x).
(39)

a

This means that even if we consider instanton zero modes consistent with the modular symmetry, the Majorana mass
terms are generally not invariant under the modular transformation. In other words, there appears modular symmetry
anomaly, in general, in the Majorana mass terms generated by D-brane instanton effects. Indeed, the anomalous factor,

J5(7.7) det[ping (7)%m%n], comes from transformation for measures of instanton zero modes in the path integral

in Eq. (23),

i e asmy @2y M@ — 7, (7, ) det i (7)o d2 U5 S Py M cim), (40)

This transformation can be obtained by Egs. (24) and (35).
Namely, the modular symmetry anomalies of Majorana
neutrino mass terms are caused by integration of the
instanton zero-modes appeared by D-brane instantons. In
the following section we discuss the detail structure of the
modular symmetry anomaly of Majorana mass terms for
individual types of models with three generations of
neutrinos.

We comment on the automorphy factor J,(7,7) in the
anomaly. As reviewed in Sec. II B, such an anomaly of the
automorphy factor can be canceled by the Green-Schwarz
mechanism due to other moduli 7,. The neutrino mass

terms in Eq. (23) include the factor e=Sa(Te-Min), and this
factor does not depend on the complex structure modulus 7
but depends on other moduli 7,, which correspond to

I

Kihler moduli and the dilaton in type IIB string theory. In
the Green-Schwarz mechanism, these moduli 7', transform
as Eq. (10) to cancel the anomaly of the automorphy factor.
Then, it is expected that the modular transformation for
e~Sa(Te:Mins) may cancel the modular weight anomaly, i.e.,
the factor J,(7,7) in Eq. (39). In fact, Eq. (10) implies the
shift of the Chern-Simons term in S, and a part of
automorphy factor can be canceled. At any rate, our
purpose is not to show that the 4D Green-Schwarz
mechanism works, but to show which part of the modular
symmetry is anomalous and is broken by nonperturbative
neutrino mass terms. The modular weight of m . (7)N Ny
without ¢ does not match with other terms in the tree-
level Lagrangian. This point is important for 4D modular
flavor models.
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Furthermore, the factor det p;,y (7)%=%m in Eq. (39) can
break the flavor symmetry. As discussed in Ref. [60], the
anomalous part in any non-Abelian discrete group corre-
sponds to Z, symmetry. In Ref. [34] it was found that such
anomalous Z, symmetry can be embedded in U(1) gauge
symmetry. Note that the neutrino mass terms have (2, —2)
charge under U(1); x U(1),. That means the D-brane
instanton effect breaks U(1), x U(1),. As a result, the
symmetry U(1) = U(1), — U(1), is broken, while the
neutrino mass terms are invariant under U” = U(1), +
U(1), and this U(1)” symmetry remains. The Green-
Schwarz mechanism requires the moduli 7, in

e=Sa(TeMin) (o shift as Eq. (14) in order to cancel the

U(1) anomaly. When the anomalous part of the modular
flavor symmetry pinq(7)%%ss corresponds to a discrete
subgroup Zy of U(1)" as found in Ref. [34], the modular
flavor anomaly can be canceled by the same Green-
Schwarz mechanism as U(1)’. As said above, our purpose
is not to show that the 4D Green-Schwarz mechanism
works, but to show which part of the modular symmetry is
anomalous and is broken by nonperturbative neutrino mass
terms. Obviously, after the moduli 7, are stabilized, the

factor e=5(TeMus) js just a constant. Then, U(1)" is broken

and the subsymmetry of the modular flavor symmetry
corresponding to det p;,g (7)%@m in Eq. (39) is broken.
Which part is broken in the modular flavor symmetry is
important. We will study it explicitly by use of concrete
models in the following section.

V.MODULAR FLAVOR SYMMETRY ANOMALIES
OF MAJORANA MASS TERMS FOR THREE-
GENERATION NEUTRINOS

In this section we study modular flavor symmetry
anomalies of Majorana mass terms for four types of models
with three generations of neutrinos; the neutrinos with
(M, a,,m)y = (4,0,0;0), (8;0,0;1), (5:1/2,1/2;1),
and (7;1/2,1/2;0). Here, in these models we study
nonperturbative neutrino mass terms induced by instanton
zero modes consistent with the modular symmetries, i.e.,
the zero-mode wave functions, which transform ones with
the same boundary conditions under the modular trans-
formation. Hereafter, we use the following notations,

M.-M. 1/2
cMpM,) = (ZImr)_lA_l(L) ’
My
N
’75VM> =9 [1‘(’;] (0, Mr),
M M M
CEV.L);i = ’71(V = ’71(V+)L’
M M M
ﬂEN,)L;iI)deZz = CEV,L);il :l:2 CI(V+)K,L§i] (41)

and we use the following relation,

g-1

(M) — M ?)
277 n+(M/gk = ' " (42)
=0

=

where M/g> € Z for 3g € Z.

A. Three generations of neutrinos with
(M9 ay, 0 m)N = (4; 070; 0)

Here, we study three generations of neutrinos with
(M;ay,a;;m)y = (4;0,0;0). In this case, the modular
transformation matrices for the neutrinos, py are given as

ezzi/4 1 \/i 1

pn(8) = 5 V20 =2 .
1 -2 1
1 0 0
py(T)=10 e* 0 |, (43)
0 0 -1

pr(8)? =i,
PN(S) = LON(S),ON(T)P =-L
PN(S) = [PN(S)PN(T)]() = PN(T)S =1L (44)

and also
on(8) " on(T) " o (S (TP =T (45)

They are the unitary representation of A(96) =~ A(48) x
Zg ~ (Z4 x Z})) X Z3 » Zg [10], where the generators of Z,,
Z,, Z5, and Zg are given by

pn(a) :PN(S)PN( )2 (S)’pn(T)*,

p(d) = pn($)on(T)py(8) ' py(T) 2,

pr(b) = pu(T)>p (8)*on (T)*,

pv(e) = pn(S)on(T) oy (S)pn(T)?, (46)

respectively.
Their Majorana masses can be generated by only one
pair of the instanton zero modes [57], (8,7)7, with

(e ) = (oo )

Here, we denote (M, a);, = ((2,2),(A,A)). Then, the

mass matrix can be written as
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((22).(A4.4))
ab ’

X, 0 X
= ST | 0 _ax, 0 |, (47)
X, 0 X

(22)
Mab — e_Sd(T“’Minsl )m

where X;(I = 1,2,3) are given by

Xi =2+ 2 x=2v2(M)2,
X5 =2, (48)

The modular transformation matrices for the mass matrix
elements (X, X,, X3)T = X7, p,,, are given as

(1 V2 1 100
pm(f?):% V2 0 =2 |. pu(D=|01i 0 |[.
1 —V2 1 00 -1
(49)

which satisfy

At
SN—

pm( P = -

Pn(8)* = [pw(8)pu (D) = pu(T)* =L (50)
They are the unitary representation of S ~ A’(24) =~
A(12) x Zy =~ (Zy x Z)) X Z3 x Z4 [57], where the gener-
ators of Z,, Z’z, Z5, and Z, are the same as Eq. (46),

respectively, by considering Eq. (50) instead of Eq. (44).
On the other hand, since we obtain

det[pinsxs)m'A)(A’A)] = det[pinst(T>(A’A><A’A)] = _17 (51)
from Eq. (34), we can find that

detwinst(a)M'A)(A’A)] = detMinst(a/)(A’A)(A’A)]
=det[pjng (b) AN =1,
det[ping () A AA] = —1(det[ping (7)) AV AN =1). (52)

Thus, the term Mab(r)N£,4;0’0;O)
()N (x) is invariant under a, o', b, and ¢? trans-

formation, while it transforms as

Majorana  mass

Mab(T)N((:L;O,O;O) (X)N(b4;0,0;0) (x)

= =My (@N NG (),

under c¢ transformation. As a result, among the
neutrino flavor symmetry A(96) ~ A(48) x Zg, there
remains A(48) x Z, flavor symmetry in the neutrino mass

terms, while Z, part of Zg symmetry is broken.” Here,

the direct product comes from the reason that
py(€)2 = py(85)® = —il® commutes all of the generators,
a, a', and b.

B. Three generations of neutrinos with
(M;0y,a,;m)y=(8;0,0;1)
Here, we study three generations of neutrinos with
(M;ay,a;m)y = (8;0,0;1). In this case, the modular
transformation matrices for the neutrinos, p, are given as

. 1 V21
B iem/4
1 -2 1
1 0 0
PN(T) — ™8| 0 37/ , (53)
0 0 -1

which satisfy

and also
lon(8) ™ on(T) " on (S)pn(T)) = 1. (55)
They are the unitary representation of A(384) ~ A(192)

Zg ~ (Zg x Zy) x Z3 x Zg [10], where the generators of Zg,
Zs, Z3, and Zg are given by

pn(a) :PN(S)PN(~)2PN(S)5PN(~)47

pn(a) = pn(S)on(T)pn(8) ' on(T) 2,

pn(b) = py(T) pn(5)" pu(T),

pv(e) = pn(S)on (1) pn(8)pn(T) >, (56)

respectively.

Note that wave functions with M € 2Z and (a;,a,) =
(0,0) and ones with M e€2Z+1 and (aj,a,) =
(1/2,1/2) are consistent with the modular symmetry,
because they transform to ones with the same boundary
conditions. The Majorana masses can be generated by two
pairs of the instanton zero modes [57], (f,7)7, with

5Actually, according to the analysis in Ref. [60], we can find
that A(48) transformation is automatically anomaly free.
°See Ref. [10].
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(M; ey, asm)sN - 7(2;0,050) (3;1/2,1/2;1)
<(M;a1,ar;m) ) - ((6;0,0;1))’ ((5;1/2,1/2;0))’

4

which are consistent with the modular transformation.
However, the latter case includes some complexity. In
this section we study only the former, but we will study
the latter in the next section. Here, we denote
(M,a);, = ((2,6),(A,A)). The mass matrix can be
written as

Mo = eSall Mfm,))mflf-@»(A,A))
X3 0 X,

X 0 X5

— o=SaTaMid) 26) |

where X; are given by
24 24 24
= (C(l,();)—)z + (62,6;)—)2’ = ﬁ(cng);—)Z’
Xy =26 (g (58)

As discussed in Ref. [57], the modular transformation for

the matrix the elements (X, X,,X3)" =X, p, e, is
given as
(1 V2
pmavs)(s’):% V20 =2,
1 =v2 1
1 0 0
pm(z,o)(T) —em/12| o emi/4 , (59)
0 0 -1
detlpigie (@) ] = detlpygen (@) A = detlp;
e ppgon (d) AAN)] = 413 (et o () AAIAN] =

Thus, the Majorana mass term generated by instanton
zero modes with (My M,) = (2,6), be )() {8000

(x)Né&O’O;l)(x) is invariant under a, @', b, ¢, and d°

transformation, while it transforms as

8;0,0;1 8:0,0;1
MG @NFOOD ()NEOD (x)

N e4m/3M ( )NSOOI)( )NIES;O.O;I)(X),

under d transformation. As a result, the full A(384) flavor
symmetry of neutrinos remains, although Z5 transformation

for Mizb’ﬁ) (7) becomes meaningless in the Lagrangian.

and they satisfy

pm(z‘é)(T)g = eZ”i/S]I,
0 (a0 (DI = peo (T =1, (60)

and also satisfy

e ($)7'p e (T)7!

They are the unitary representation of A’(96) x Z3 ~
(A(48) X Zy) X Z3 ~ ((Zy x Z)) M Z3 X Z,) X Z3, where
the generators of Zy, Z), Z;, and Z, are the same as
Eq. (56), respectively, by considering Eq. (60) instead of
Eq. (54), while the generator of the last Z5 is given by

Pt (d) = pye0 (T)'°. (62)

Note that this transformation for the neutrinos is triv-

ial: py(d) =1L
On the other hand, since we obtain

det[pimt 2.6) (S)(A A>(A‘A)] = 1’
det[pmst” ( )(A A>(A‘A)] = e4ﬂi/3’ (63)

from Eq. (34), we can find that

insi20 (0) AV = detlpy e () AVAA] = 1,
1). (64)

inst(2:6)

C. Three generations of neutrinos with
(M;ay.a;m)y=(5;1/2,1/251)

Here, we study three generations of neutrinos with
(M ay,a,;m)y = (5;1/2,1/2;1). In this case, the modular
transformation matrices for the neutrinos, p, are given as

_— 25(1) 2s(3) V2
- leﬂ'l
pn(8) = 25(3) 2s(1) —v2 |,
V5
V2 V2
em’/ZO 0 0
on(T) = 0 /20 0 . (65)
0 0 eZSlri/ZO
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and they satisfy

py(T)F = el

pn(8)? = =il py(T)'° = i,

PN(§)4 = [PN(S')PN(T)P =pn(T)?° =1L,

px(8)* = [pn(S)pn (D)) = py(T)* =1, (66)

where s(n) = sin(nz/10). They are the unitary repre-
sentation of A5 x Zg [10], where the generators of A5 are
given by

Their Majorana masses can be generated by only one
pair of the instanton zero-modes, (8,7)7, with
(2;0,0;0) )

<<M;a1,a,;m>y) B ((3;1/2, 1/2:1)
Here, we denote (M,a);, = ((2,3),(A,D)). Then, the
mass matrix can be written as

(M;ay, a;5m),

Mgb =e SC](T Ml(ns())ml(lf"?’)’(A'D))’

V2X, Xy Xs
. . o @3)
pn(S) = pn(S)pn(T)® pn(T') = py(T)™2*,  (67) = e SaTalig) 23 X, V2X, X¢ |, (69)
and the generator of Zg is given by Xs  Xo V2X
where X;(I =1,2,3,4,5,6) are given b
(€)= pu(T)5. (68) it ) are given by
|
30) 30
= 2(‘:5 10; +’76 C410 +’7£ )>’
30) 30 30
= 2@5 10.41 12 Y - §<—2.)10;+’7§ >)’
30) 30) (30
=2(n E) ’755 )’7<10 )),
30) 30) (30
Xy = \/_( -2,10; +’7§ 57 10+’76 +‘:4 10 +’73 ) C(1_1(>);+77(12 ))’
0 (30) 0) (30
=(¢ 5 10 ( §4 10; +’715 i + 2’ig )Wé - 2’7(0 )’15 )),
0 (30 30
=(¢ (—2 o+”15) 57 10+’7(() )+2’7g )’7(10) 2’7(12) ( ))- (70)

The modular transformation matrices for the mass matrix elements (X, X, X3, X4, X5, X4)T = X7, p,,, are given as

4s2(1)  4s*(3) 2
45%(3)  4s5%(1) 2
- [ 2 2 1
pm(S) =z
S vz V2 2v2
4s(1) —4s(3) 2
4S(3) —4S(1) -2
e—23m’/30 0 0
0 el3m’/30 0
B 0 0 e25m’/30
m(T) =
p(T) 0 0 0
0 0 0
0 0 0

V2 4s(1) 45(3)
V2 —4s(1) —45(3)
-2V2 2 -2
3 V2 -2 |
V2 2+2s(1) 2+42s(3)
V2 —2+425(3) 2+2s(1)
0 0 0
0 0 0
625?1'/30 8 8 . (71)
0 o7i/30 0
0 0 e—117i/30
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which satisfy

pu(T) = €™/°L
pm(Sv)Z = pm(T)30 = -1,
pn(S)* = [pw(S)pw(DF = pu(D)C =1 (72)

These are the unitary representation of As x Z;,, where
the generators of As and Z;, are the same as Eqs. (67) and
(68), respectively, by considering Eq. (72) instead of
Eq. (66).

On the other hand, since we obtain

det[pinst<g)<A'D)(A’D)] = 1’ det[pinst(T>(A’D)(A’D>] = e4ﬂi/37

(73)
from Eq. (34), we can find that

detwinst(sl)(AyD)m'D)] = det[pinst(T/)(A’D)(A’Dn = 17
detlping (€) APV AL = 213 (det[pipg (¢?) APV AP = 1),
(74)

Thus, the Majorana mass term M., ()N /> (x)

Nés;l/z'l/z;l)(x) is invariant under S’, 7”, and ¢ trans-
formation, while it transforms as

5:1/2,1/2;1 5:1/2,1/2:1
My (1) NGV () N2 ()
23y b(T>N515;1/2J/2;1)(x)Nés;uz,l/z;l)(x)
a )

under the ¢ transformation. Note that the anomaly free 3
transformation becomes the generator of Zg symmetry for
neutrinos. As a result, the full A5 x Zg flavor symmetry
of neutrinos remain, although Z; transformation of Z;, for
the mass matrix elements becomes meaningless in the
Lagrangian.7

D. Three generations of neutrinos with
(M;oy.a,;m)y=(7;1/2,1/2;0)

Here, we study three generations of neutrinos
with (M;ay,a;;m)y = (7;1/2,1/2;0). In this case, the
modular transformation matrix for the neutrinos, py is
given as

7Actually, according to the analysis in Ref. [60], we can find
that the As transformation is automatically anomaly free.

o2l o e
pn(S) = c c —c ,
V7 ¢(5) —c(l)  «(3)
em’/28 0 0
pv(M)=1 0 7% 0 |, (75)
0 0 eZSm’/ZS
where ¢(n) = cos(nz/14). They satisfy
PN(T)7 — o™i/
PN(~§)2 :PN(T)14 = il
pn(8)* = [on(S)pn(T)] = pu(T)? = -,
PN(S)S = VN(S')PN(?)]6 =pn(T)° =1, (76)
and also satisfy
on (8) ™' on (1)~ o (S)pw(T)]* =L (77)

They are the unitary representation of PSL(2,Z;) X Zg
[10], where the generators of PSL(2,Z;) are
given by

pn(S) = /’N(S)PN(T)ZI’
pn(T") = pn(T)*, (78)

and the generator of Zg is given by

pu(c) = pn(T)'. (79)

Their Majorana masses can be generated by one pair of
the instanton zero-modes, (3,7)7, with

<(M;a1,af;m)ﬂ> ( (2;0,0;0) >
(M;al,a,;m)y N (5:1/2,1/2;0) '

which is consistent with the modular transformation. Then,
the mass matrix can be written as

—1(2,5)
M2 = o=SalTuby )y

((2.5),(A.D)) (80)

ab

V2X, X, Xs

25)

— e_Scl(TavMin;; )0(2’5) X4 \/§X2 X6 N (81)
Xs Xe V2X;3

where X; are given by

116002-12



MODULAR SYMMETRY ANOMALY AND NONPERTURBATIVE ...

PHYS. REV. D 105, 116002 (2022)

70 70 70 70 70 70 70
,)30;—8-:58,%0;— + C(—S,)30;—§(11,%0;— - Z-7’<13,3)0;—6-:4(1,2(%;— - élé,S(%;—él(—&)ZO;—)’

70 70 70 70
- 4/53,;0;—2-:(16,20;— - Cé,33;—gé3,l)0;—)’

X1 = V20 ¢ = Ca0-Con )
X, = \/i(é_,’ 171(20;— g@o;— - (_730,)20;_55333;_),
X3 = V2(cd 0 a0 = & ciho)-
Xy = (C(_710

Xs = ((Wh0 080 + a0,

Xe = (&)

70 70 70 70 70 70) (70
,20;-C<2,1(>);- + ‘:(18.%0;—55.1());— - C(—3.)20;—Z:(16,1)0;— - 55,2());-5(23,30;-)'

(82)

The modular transformation matrix for the mass matrix elements (X, X,, X3, X4, X5, Xg)! = X7, Pms), 1S given as

o 4 S S,
pes® =% (g )
eBm/ 0 0 0 0 0
0 0 0 0 0
o177/ 14
= e o | (83)
0 0 0 0 ™/ 0
0 0 0 0 0 ¥/l
where S; (i = 1,2, 3) denote
(1) ¢(3) *(5)
Si=|c3) (65) )
(1) (1) *(3)
V2e(De(3)  V2e(D)e(5)  V2c¢(3)c(5)
Sy = | =v2e¢(3)c(5) —vV2e¢()e(3)  V2e(1)e(5) |-
—V2c(1)e(5)  V2c(3)e(5)  —v2c(1)s(3)
A2(3)—c(1)e(5)  =c*(1) +c(3)c(5) —c*(5) —c(1)c(3)
S;=1 =c2(1) +c(3)c(5) A(5)+c(1)c(B)  2(3)—c(1)c(5) (84)
—c2(5) —c(D)e(3)  (3)—c(De(5) (1) —c(3)e(5)

They satisfy

They are the unitary representation of PSL(2,Z;) X Z,,
where the generators of PSL(2,Z;) and Z, are the same as
Egs. (78) and (79), respectively, by considering Eq. (85)
instead of Eq. (76).

I
On the other hand, since we obtain

det]p, 0 (5)APAD)] = det]p (T)ADAD)] = _1

’

(86)

inst(25)

from Eq. (34), we can find that

(2.5) (S/)(A‘D)(A’D>] :det[p (2.5) (T’)<A’D)<A'D)] = 1,

inst'=

25) (C)(A'D)(A’D>] =-1 (det[pinst(z_s) (Cz)(A’D)(A’D)] = 1).
(87)

det[pinst
det[p

inst
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Thus, the Majorana mass term MEZZI,’S)(T)N,(J;I/ 2172:0)

(x)N(;;l/z'l/z;O)(x) is invariant under the §', 7', and c?

transformations, while it transforms as
25 7:1/2.1/2:0 7:1/2,1/2;0
MG QNGO N ()
25 7:1/2,1/2;0 7:1/2.1/2:0
= =MD @NE PO ONT O ),

under ¢ transformation. As a result, among the neutrino
flavor symmetry PSL(2,Z;) x Zg, there remains
PSL(2,Z;) x Z, flavor symmetry in neutrmo mass terms,
while the Z, part of Zg symmetry is broken.®

E. Results and implications to phenomenology

Here, we examine our results and implications to particle
phenomenology. First, the modular weight of neutrino
masses terms does not match with other terms in the
tree-level Lagrangian. We consider the following super-
potential in supersymmetric model,

W= AYuh (T)LaHuNh + Bmab(T)NaNb’ (88)

where L,, N,, H, denote superfields of left-handed
leptons, right-handed neutrinos, and Higgs field, Y (1)
and m,,(7) are modular forms corresponding to Yukawa
couplings and neutrino masses, respectively. Here, A and B
are just constants, which are written following the con-
vention of recent 4D modular flavor models [20], although
A and B may depend on other moduli 7, in string-derived
low-energy effective field theory. Supoose that the first
Yukawa terms are tree-level terms, while the second
neutrino masses terms are induced by nonperturbative
effects. In global supersymmetric models, we require the
modular invariance of tree-level terms. That is, the Yukawa
terms Y,,(t)L,H;N, have totally vanishing modular
weight. However, our analysis shows that the neutrino
mass terms m,,(7)N,N, have nonvanishing modular
weight. In our 7?/Z, orbifold models, its modular weight
is two. In general, the modular weight of the neutrino mass
terms m,,(t)N,N, would depend on compactification,

|

()= () (o
((3;1/2,1/2;1)) ( (4:1/2,0;0
"\ (4;1/2,0;1

(5:1/2,1/2;0)
Here, we denote

(M, @) = ((2,6),(4,4)),((3,5). (4,
((3.5), (D, D)), ((4.4), (B,

)

e.g., the sum of modular weights of zero modes, f; and
i, which is (—2) times the modular weight of N,N,.
Next, the tree-level flavor symmetry can break to its
normal subgroup in the neutrino mass terms, although there
is the example, where the full tree-level flavor symmetry
remains. Suppose that there is the flavor symmetry G x Zy
at tree level. Nonperturbative effects may break Z,, and
only the flavor symmetry G may remain in the neutrino
mass terms. For example, suppose that the tree-level flavor
symmetry is S4. It may break to A, in neutrino mass terms.’

VI. MORE CORRECTIONS

In the previous section, we studied the neutrino mass
terms induced by the D-brane instanton whose zero-modes
transform the ones with the same boundary conditions
under the modular symmetry. Note that wave functions
with M € 2Z and (a;,a,) = (0,0) and ones with M €
2Z + 1 and (ay,a,) = (1/2,1/2), are consistent with the
modular symmetry because they transform to ones with the
same boundary conditions. Wave functions with other SS
phases transform to ones with different SS phases. Such D-
brane instanton zero modes are allowed by requiring only
the condition (25), although consistency with the modular
symmetry may forbid such zero modes. Here, we attempt to
investigate contributions due to such zero modes.

For the neutrinos with (M; a;, a,; m)y = (4;0,0;0), and
(5;1/2,1/2;1), all the possible D-brane instanton zero
modes satisfying the condition (25) have been studied in
the previous section, and all of them are consistent with the
modular transformation. On the other hand, the neutrinos
with (M;ay,a;;m)y = (8;0,0;1), and (7;1/2,1/2;0)
have other possibilities for D-brane instanton zero-modes
satisfying the condition (25). Here, we study them.

A. Three generations of neutrinos with
(M;0ty,a;m)y=(8;0,0;1)

The possible instanton zero modes satisfying the con-
dition (25) are (3,7)" with [57],

1/2,0;0)
1/2,0; 1)) ( 5:0,1/2;1)

3;
5;

(4:0,1/2;0 (4:1/2,1/2;0)
) (om0 ) (rrmaan )

A)).((3,5). (B, B)),((3,5).(C,C)),
B)),((4,4).(C.C)),((4.4), (D, D)),

3:0,1/2; 0)>

—_ — —~
—_ — —~

8Actually, according to the analysis in Ref. [60], we can find that PSL(2,Z) transformation is automatically anomaly free.
°A similar scenario was studied in Refs. [69,70], although such breaking effects were included in the Yukawa sector.
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respectively. Then, the matrix can be written as

Moy =My + My + My (89)

MS;S) o—Sa(Ta N7INRD
@ing=(A.A).(B.B).(C.C).(D.D)
Y; 0 Y,
-2y, 0 |,
Y, 0 Y3

((3.5).etins0)
map ’

— oSaTuMi) 335) |

(90)

MY — =Sa(T, D)

<(4*4) *ainsl)
= e inst m
ab

ab
®ing=(B.B).(C.C).(D.D)

Z, 0  Z

(120) (120) (120) ,(120) (120)
Y, —2\/_(‘:930 3730 )4o++5333o AC1130- )40++C 330 4130, )4o++5213o 4730 40:+)

(120) (120)

(120)
Y, = 4(¢! 660 S2.60-)40:4+ ~ &

4(120)

. (120) ,(120) (120) ,(120) (120) ,(120) (120)  ,(120)
2f(¢930 4730 )40++C3330 ’1(1,30 )40++C2130 ’1(37,30 )40++€ 330 ’1( 11,30;—),40;+)’

Zi= P+ Rz = g+ ()
=g+l 28 = V2P )),
zy=o"ny, Z5 =205, (93)

respectively. Note that ME,ZI,'())

previous section.

is already obtained in the

det[pmst“( )AA AA] —detLo
det[p, 5 (T)AACEC)] = detp,

IHSt

from Eq. (34), and then we find

detLDinst 55) (S') (total)(total)] =1,

det[/)lnbt35 (T) (total)(total)] _ 647:[/37 (95)
which are the same as Eq. (64) Note that this is the reason
why the elements of M bs)’ Y7?, are closed under the
modular transformation. Thus, the results is the same as the

case of (M4, M,) = (2,6), and the full A(384) flavor
symmetry of neutrinos.

2. (M4, M,)=(4.4) case

Next, let us consider the case of the igstanton zero modes
with (Mg, M,) = (4,4). In this case, S transformation for
the matrix elements (21,25, Z3)T =77, p,, 4, is the same

as P35 and P 26) 5 i.e., P44) (S) = pm(z.s)(g) = P26 (S)

insi5 (8) PNEA] = detlpy 0 (8) COBP)] = detp,
insies) (T) PP E] = det[py e (T) O] = detp,

—18,60;—""(-14,60;— )40'+)’

— STl e@h | 0 2z, 0 |, (91)
Z, 0 Z;
where Y;, Z; = Z; + Z] (I = 1,2,3) are given by
(1200 ,(120) (120)
(92)

|
1. (Mg, M,)=(3.5) case
Let us study the case of the instanton zero-modes with
(Mg, M,) = (3,5). In this case, the modular transformation
for the matrix elements (Y, Y,, Y3)T =Y, P35, 1s the
same as p,,ce), 1.€., p,,65 = p,,e0. Then, this also becomes
the unitary representation of A’(96) x Z;.
On the other hand, we obtain

inst® ( )<D D)(D‘D)] = 1’
( )(DD)(DD)] — e4m’/3’ (94)

ll'lS[

However, T transformation is not closed in the elements
2" =7'" + Z"7 but closed in each of Z'T = (Z}, 7}, Z})"
and Z'T = (Z!.74.7%)T. Their unitary matrices of T
transformation, p . (T) and p . (T), are given as

1 0 0
Pm<44)’(T) =emt 0 et 0 |, pm(“)'(T)8 =L
0 0 -1
1 0 O
Py (T) =10 i 0 [, v (T) (96)
0 0 -1
respectively.

On the other hand, we obtain
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det[pmqt” (S‘)(B BEC) ] det[pmst ( )(C OB ] det[plmt ( >(D D)(D’D)] =1,
det[plmt ( )(B B)(D. ] de t[pmqt” ( )<D D)<B'B>] = 65”1/4’
det[pyen (1)) = e77/2, 97)
from Eq. (34), and then we find pn(p) = pn(T),
det[p ) (S )(total)(total)] -1, pn(q) = PN(S)pN(TS)ZpN(S) 1
det[ﬂmst“)’ (T)<Z/)(Z/)] = 657”./47 PN<V) - pN(S)’ (100)
L(TVZNZY — —xif2
detlpyygisar (1) J =% (98) respectively, and they satisfy
This is the reason why the elements of MS,A), 77, are
closed under S transformation, while 7 transformation is PN (P)2 = PN(Q)z = pn(r )8,
: T : I
nc/)/tT closed in the.elements V/ bl:lt closed in each of Z'* and on(P)on(q) = pn(@)pn(p).
7" . Thus, in this case, the Majorana mass term generated . »
by instanton zero modes with (M4 M,) = (4.4), pn(r)en(P)pn(r)™ = pn(a). pn(r)on(@)pn(r)™" = pu(p).
M< D () N0 )Négom)(x) is invariant under S and (101)

T8 transformation, while T transformation fully breaks this
term unless 7% for Vn € Z. Here, since S and 7%
transformations for neutrinos satisfy

pn (T8 = py(T8)? =1, (99)

unitary ~ representation of X(8)=
where the generators of Z,, Z), and

they are the
(Zy x Zy) % Zg,"°
Zg are given by

Therefore, there remains £(8) flavor symmetry among the
neutrino flavor symmetry A(384).

This result may be obvious because the instanton zero
modes, f;/,717> in the integral Egs, (23), and (37) are not
consistent with the modular symmetry.

B. Three generations of neutrinos with
(M ay, a‘nm) ( 1/2’ 1/2 0)

The possible instanton zero modes satisfying the con-
dition (25) are (f,y)T with,

(oenacm) = (isiimam ) (o rmor ) (o) ('rm o)

Then, the matrix can be written as

_ 29 (34
Mab_Mab +Mab . (102)
The first term M <azb'5> is the contribution due to the instanton
zero mode consistent with the modular symmetry and it has
been obtained in the previous section. The second term

thA) includes the contributes due to the instanton zero
modes, which transform to others with different boundary
conditions under the modular symmetry. Similar to the
previous case with (M;ay,a;;m)y = (8;0,0;1), we can

(3.4)

compute M, and investigate its flavor symmetry. As a

Lt becomes the
2(8) ~ (Z2 X Zz) X Zz.

quadruple  covering group of

result, when we include Mfth), only Z; x Z, symmetry,

whose generators are 7> in Eq. (78) and ¢? in Eq. (79),
respectively, remains among the neutrino flavor symmetry
PSL(2,7Z7) x Zg.

C. Comment

As we have studied in the previous section, the D-brane
instanton with zero modes whose boundary conditions are
consistent with the modular symmetry breaks a single Zy
subgroup of the modular flavor symmetry, and a certain
normal subgroup is unbroken. On the other hand, the D-
brane instantons with zero modes, which have the boundary
condition inconsistent the modular symmetry, can violate
the modular symmetry more severely. That is, for the flavor
symmetry G x Zy, the above instantons break not only Zy
but also G to a smaller group, although G may be anomaly
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free through the discussion in Sec. II. That may be obvious
because the zero modes,  and y, in Eq. (23) are not linear
representations of the modular group in fixed boundary
conditions but they transform into the wave functions
with different boundary conditions, as shown in
Eq. (37). One exception would be the neutrino mass for
(M;ay,a,;m)y = (8;0,0;1) due to the instanton with
(M, M,) = (3,5), ie., M(a3b'5>. It includes the instanton
zero modes which are inconsistent with the modular
symmetry in terms of the boundary condition. However,
the full A(384) remains. Its reason is unclear but may be
because it is the summation over all of four SS phases,
while the other cases are partial summation over SS phases.
Alternatively, this result may be just accidental.

The condition (25) does not prohibit the appearance of
instanton zero modes which transform into others with
different boundary conditions under the modular symmetry.
However, if we require the consistency with the modular
symmetry, such instanton zero modes would be forbidden.
It is unclear whether such instanton zero modes can appear
or not. It may be concerned with the consistency condition
with the string theory. Throughout this paper, we have
investigated the low-energy field theory aspects of the
D-brane models. We have not severely taken into account
of the stringy consistency conditions of D-brane instantons
such as the number of the neutral zero modes. They may
restrict the possible configurations of D-brane instantons
which can contribute to the superpotential, and a part of the
nonperurbative Majorana mass matrices proposed in
Secs. Vand VI would be prohibited in full stringy models,
and anomaly free part of the modular symmetry may be
recovered. Investigating full string model is interesting, but
it is beyond our scope in the present work. We would study
this issue more elsewhere from the viewpoint of string
theory.

VII. CONCLUSION

We have studied the modular symmetry anomaly in
magnetized orbifold models. Nonperturbative effects can
break the tree level symmetry. The neutrino mass terms are
important in particle physics, and can be induced by
D-brane instanton effects. They can break the modular
symmetry. Thus, we have studied the modular flavor

symmetry anomalies of Majorana neutrino mass terms in
concrete models with three generations of neutrinos on
magnetized T?/Z, orbifold explicitly.

It is found that the modular weight of neutrino mass
terms does not match with other terms in the tree-level
Lagrangian. The sum over weights of the instanton zero
modes 15,717, is the origin of this difference. This has
significant meaning in model building of 4D modular
flavor models although it would be canceled by the shift
of the axions through the generalized GS mechanism.

In addition, the neutrino mass terms can break the tree-
level modular flavor symmetry to its normal subgroup and a
single Zy symmetry is broken, although there is an
example that the full tree-level flavor symmetry remains.
This point is also important in model building of 4D
modular flavor models. Among the tree-level flavor sym-
metry in the Yukawa coupling terms, its anomaly-free
subgroup may remain in the neutrino mass terms.

When we include the effects due to the instanton zero
modes, which transform ones with different boundary
conditions, the neutirno mass terms break the flavor
symmetry to much smaller groups. It is unclear whether
we must include such effects or not. That is beyond our
scope, and we would study this issue more elsewhere from
the viewpoint of string theory.

It is also important to extend our analysis to active
neutrino mass terms through the see-saw mechanism by
combining Yukawa couplings as well as charged lepton
mass terms. We will study elsewhere those lepton mass
terms, related to their masses and lepton flavor mixing, in
terms of the modular symmetry."’
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