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Several dark matter models allow for the intriguing possibility of exotic compact object formation.
These objects might have unique characteristics that set them apart from their baryonic counterparts.
Furthermore, gravitational wave observations of their mergers may provide the only direct window on a
potentially entirely hidden sector. Here, we discuss dark white dwarfs, starting with an overview of the
microphysical model and analytic scaling relations of macroscopic properties derived from the
nonrelativistic limit. We use the full relativistic formalism to confirm these scaling relations and
demonstrate that dark white dwarfs, if they exist, would have masses and tidal deformabilities that are
very different from those of baryonic compact objects. Further, and most importantly, we demonstrate
that dark white dwarf mergers would be detectable by current or planned gravitational observatories
across several orders of magnitude in the particle-mass parameter space. Lastly, we find universal
relations analogous to the compactness-Love and binary Love relations in neutron star literature. Using
these results, we show that gravitational wave observations would constrain the properties of the dark
matter particles constituting these objects.
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I. INTRODUCTION

Current dark matter search techniques focus on two
primary channels: large-scale structure constraints (e.g.,
[1,2]) and direct and indirect detection experiments (e.g.,
[3–7]). While these have constrained several of the bulk
properties of dark matter, i.e., that dark matter is cold,
particulate, and effectively collisionless on large scales, the
current lack of dark matter detection or production has not
helped to narrow the space of models. Likewise, the field of
astroparticle indirect detection (e.g., [8–10]), while show-
ing possible signals of interest [11], has also not yet
produced results. On the other hand, the advent of
gravitational wave observations has opened a new window
on the Universe that could illuminate the dark sector in a
completely novel manner.
Several promising alternative dark matter models have a

“complex” (two or more massive particles) particle zoo,
and dissipative interactions create the potential for gravi-
tationally bound macroscopic structures. Many of these
models even form exotic compact objects, with both “dark”
black holes (a normal black hole formed from dark matter
instead of baryonic matter) [12–19] and dark (neutron) stars

[20–23] having been proposed. The merger of these exotic
compact objects with each other or with astrophysical
compact objects could be revealed by gravitational wave
detectors, such as LIGO. Alternatively, dark matter capture
by ordinary compact objects could result in the formation
of compact, dark matter cores in their interior [24–29],
creating hybrid dark/baryonic objects ranging from plan-
etary to stellar masses.
While dark black holes and neutron stars are the obvious

counterparts to ordinary black holes and neutron stars, little
attention has been paid to the dark equivalent of the third
member of the ordinary compact object trio: the (dark)
white dwarf (DWD). In the simplest sense, a white dwarf is
a compact object predominantly composed of degenerate
light electrons and massive nuclei. In white dwarfs, a
balance is struck between gravitational and (electron-
dominated) fermion degeneracy pressure forces. This
balance sets many of their macroscopic properties, like
the radius and compactness. Above a certain mass (the
well-known Chandrasekhar limit), this balance is broken
and no static configurations exist. Likewise, above a certain
density (the onset of neutronization), these objects again
become dynamically unstable to collapse. Here, we con-
sider the dark matter analogs to white dwarfs. These would
be compact objects, predominantly composed of two or
more fermion species of dark matter, where the pressure
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support is primarily provided by fermion degeneracy
pressure. Importantly, in hidden, multiparticle dark matter
models that lack “nuclear” reactions, DWDsmay be the only
sub-Chandrasekhar-mass compact objects that can form.
Also note that, with this definition, in the limit where the
particle species contribute equally to the pressure and mass
(the single particle limit), these objects may be macroscop-
ically indistinguishable from dark neutron stars in models
with weak or no nuclear interactions (e.g., [22,30]).
The literature on objects fitting the definition above is

sparse, with few articles discussing objects that fit all three
criteria. For example, Narain et al. [30] describe a general,
particle-mass-independent framework for dark, fermionic
compact objects, assuming single species composition,
even studying the effects of a generic interaction term.
Gross et al. [31] studied DWD-like objects as a possible
final state of collapsed dark quark pockets (assuming
multiple species, but identical masses) in an analogue of
primordial black holes, computing their mass, radii, and
long-term stability with that method. Using a less general
approach, we extend these analyses to a two-particle,
fermionic gas with potentially varying masses, and include
a brief examination of additional binary properties, like the
tidal deformability and potential universal relations.
Hippert et al. [21] mentions the high plausibility of dark
white dwarf formation in the twin Higgs mirror model, but
focuses on neutron stars instead. Brandt et al. [32] consider
the stability of a multispecies model for what they refer to
as a pion star, focusing on using lattice QCD methods to
obtain a precise equation of state. Meanwhile, the dis-
cussion on dark planets and similar low-mass, multi-
component objects ([24,25,27]) requires the mixing of
ordinary matter with dark matter. Consequently, the
DWD space has remained unexplored.
We hasten to mention that, like most dark, nonprimordial

black hole and neutron star models, these objects do not
necessarily constitute the entirety of dark matter. While the
formation of these objects is outside the scope of this work,
we note that regardless of the pathway, the population must
obey the constraints imposed by microlensing and similar
primordial black hole and massive, compact halo object
searches (e.g., [33,34]). These searches impose constraints
on the fraction of dark matter contained in compact objects
versus all dark matter. For the masses considered here, this
corresponds to less thanOð0.01Þ for subsolar mass DWDs,
decreasing toOð10−4Þ for objects above 10 M⊙. Given that
ordinary white dwarfs in the Milky Way correspond to a
similarOð0.01Þ fraction of the ordinary matter [35,36], this
constraint seems reasonable for models that predict a dark
astrophysical formation like [21].
In the following sections, we examine the properties of

the most basic DWD model following our definition
above: two particle species forming a compact object,

with fermion degeneracy pressure providing the dominant
support against gravitational collapse. We start with a
discussion of the basic properties of DWD that can be
inferred analytically in Sec. II, including the calculation of
an equation of state and scaling relations for the mass,
radius, and compactness in the nonrelativistic limit. We
then discuss the results of the fully relativistic hydrostatic-
equilibrium calculations across the particle-mass param-
eter space, highlighting four example parameter cases in
Sec. III and examining several of the macroscopic attrib-
utes, potential universal relations, and implications for
DWD merger observations. Importantly, we demonstrate
that DWD mergers should be detectable by current and
planned gravitational wave observatories across much of
the dark parameter space and observations can be used to
constrain the dark microphysics. Lastly, we conclude
in Sec. IV.

II. ANALYTIC SCALING RELATIONS

A. Equation of state

We consider a simplified, cold compact object comprised
of a cloud of degenerate, fundamental fermionic particles,
L, and H. The particles have masses mH and mL, defined
such that mH ≥ mL, analogous to the Standard Model
proton and electron. We will use the notation,

rH ¼ mH

mp
; and rL ¼ mL

me
; ð1Þ

throughout this and following sections, where mp and me

are the proton and electron masses. We will assume
approximately neutral “charge” in bulk, i.e., an equal
numbers of L and H particles.
The basic thermodynamic properties of such a cloud are

well known ([37,38]), with the number density, pressure,
and energy density of a single fermionic particle f given by

nf ¼
8π

3h3
p3
fermi ¼

x3

3π2λ3f
ð2Þ

Pf ¼ 8πm4
fc

5

3h3

Z
x

0

y4

ð1þ y2Þ1=2 dy

¼ mfc2

λ3f

�
1

8π2

�
xð1þ x2Þ1=2

�
2

3
x2 − 1

�

þ lnðxþ ð1þ x2Þ1=2Þ
��

¼ mfc2

λ3f
ϕðxÞ ð3Þ
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εf ¼ 4πc5m4
f

Z
x

0

y2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

q
dy

¼ mfc2

λ3f

�
1

8π2
ðxð1þ x2Þ1=2ð1þ 2x2Þ

− ln ðxþ ð1þ x2Þ1=2ÞÞ
�

¼ mfc2

λ3f
χðxÞ: ð4Þ

Here, λf ¼ ℏ=ðmfcÞ is the Compton wavelength, x is the
dimensionless Fermi momentum, defined using Eq. (2),
and y ¼ ðpcÞ=ðmfc2Þ. The total pressure in a two-compo-
nent gas is then just Ptot ¼ PH þ PL, while the total energy
density is ϵtot ¼ ϵH þ ϵL.
We will assume that interparticle interactions contribute

at most a small correction to the energy density and will
not include their effects here. This follows the standard
white dwarf model, where the electrostatic interaction
contributes the dominant term, at least at high densities,
with a correction to the pressure on the order of the
fine structure constant, ðPþ PcorrectionÞ=P ≈ 0.4% for
a hydrogen white dwarf [38]. We have chosen this
path to preserve the generalizability of these results, since
the type of interaction changes between dark matter
models.

B. Polytropic approximation

Since the full equation of state (EoS) is complicated,
especially when considered across the mL −mH parameter
space, it is convenient to expand the EoS as a power series
in x, keeping only the dominant term. Then the EoS can be
approximated as a polytropic function, PðxÞ ¼ KxΓ=3,
where K and Γ are the polytropic constants. Commonly,
this is rewritten in terms of the rest mass density
(ρ0 ¼

P
mfnf ≈mHnH ≈mHnL) and the polytropic index

n, as Pðρ0Þ ¼ Kρ1þ1=n
0 .

The polytropic approximation then falls into one of four
limiting cases, depending on whether the particles are
highly relativistic (xf ≫ 1) or nonrelativistic (xf ≪ 1),
and whether the particle masses are substantially different
(mL ≪ mH) or similar (mL ≈mH). Generally, the heavy
particles are nonrelativistic except in the similar-mass,
relativistic electron limit, and the similar mass limit can
also be thought of as the single particle limit, approx-
imately obtainable with the replacement L → H. From
Eq. (2), the relativity condition can be written as a
condition on ρ0, with the nonrelativistic (light particle)
limit as ρ0 ≪ 106 g cm−3r3

LrH and the highly relativistic
limit ρ0 ≫ 106 g cm−3r3

LrH.
Using the notation from above and defining KWDðnÞ as

the n-dependent polytropic constant for the ordinary white
dwarf, the four cases can be written as

Ptot ≈

8>>>>><
>>>>>:

r−1
L r−5=3

H KWDð32Þρ5=30 ðaÞ
r−4=3
H KWDð3Þρ4=30 ðbÞ

2r−8=3
H KWDð32Þρ5=30 ðcÞ

2r−4=3
H KWDð3Þρ4=30 ðdÞ

; ð5Þ

with (a) being ρ0 ≪ 106 g cm−3r3
LrH, mL ≪ mH, (b)

being ρ0 ≫ 106 g cm−3r3
LrH, mL ≪ mH, (c) being ρ0 ≪

106 g cm−3r4
H, mL ≈mH, and (d) being ρ0 ≫

106 g cm−3r4
H, mL ≈mH. Of note, the (a) and (b) cases

correspond to the ordinary white dwarf when
rH ¼ rL ¼ 1.

C. Newtonian hydrostatic approximation

Next, we examine the parametric dependencies of the
DWD mass, radius, and compactness. This can be accom-
plished by solving the Newtonian hydrostatic equilibrium
equations. DefiningmðrÞ as the total mass contained within
radius r, pðrÞ as the net outward pressure, and gravitational
constant G, we have

dp
dr

¼ −
Gm
r2

ρðrÞ; ð6aÞ

dm
dr

¼ 4πr2ρðrÞ: ð6bÞ

With the inclusion of a polytropic EoS and the definitions,
ρc ¼ ρðr ¼ 0Þ, ρ¼ρcθ

n, r¼aξ, and a ¼ ½ðnþ 1ÞKρ1=n−1c =
ð4πGÞ�1=2, Eqs. (6a) and (6b) can be combined into the
Lane-Emden equation,

1

ξ2
d
dξ

ξ2
dθ
dξ

¼ −θn: ð7Þ

Note that the only remaining polytropic parameter is the
index; this equation is otherwise independent of the EoS
and thus mass dependencies. Numeric integration of Eq. (7)
with the boundary conditions θð0Þ ¼ 1, θ0ð0Þ ¼ 0, gives
the point θðξ1Þ ¼ 0, which corresponds to the surface of the
object. Undoing the previous transformations provides
solutions for the final radius (R) and mass (M) of the DWD,

RDWD ¼
�ðnþ 1ÞK

4πG

�
1=2

ρð1−nÞ=2nc ξ1

MDWD ¼ 4π

�ðnþ 1ÞK
4πG

�
3=2

ρð3−nÞ=2nc ξ21jθ0ðξ1Þj: ð8Þ

These equations can be rewritten in terms of the ordinary
white dwarf mass and radius using the density scaling
ρDWD ¼ r3

LrHρWD and polytropic constant scaling,
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rK ¼ KDWDðnÞ
KWDðnÞ

; ð9Þ

with KDWD from Eq. (5), giving

RDWD ¼ ðr3
LrHÞð1−nÞ=2nr1=2

K RWDðρcÞ
¼ r−1

L r−1
H RWDðρcÞ ð10Þ

MDWD ¼ ðr3
LrHÞð3−nÞ=2nr3=2

K MWDðρcÞ
¼ r−2

H MWDðρcÞ: ð11Þ

Unsurprisingly, we recover the classic Chandrasekhar
mass limit scaling, Eq. (11), commonly seen in the
literature on exotic compact objects (e.g., [17,18,20]) as
either a lower mass bound, when discussing black holes, or
an upper mass bound when discussing other types of
objects. Lastly, the compactness is given by

CDWDðρcÞ ¼
MðρcÞ
RðρcÞ

����
DWD

¼ rL

rH
CWDðρcÞ: ð12Þ

As expected, when mL → mH, we recover the single-
particle limit,

RDWD ∝ r−2
H RSPðρcÞ ð13aÞ

MDWD ∝ r−2
H MSPðρcÞ ð13bÞ

CDWD ∝ CSPðρcÞ; ð13cÞ

with the m−2
L ¼ m−2

H scaling seen in the literature [39].
Note that while Eqs. (13a)–(13c) display the scaling for
dark neutron stars, whose Fermi pressure and energy
density are dominated by the neutron terms, they
would only be useful for order of magnitude estimation,
because the properties of dark neutron stars, like ordinary
neutron stars, are heavily influenced by interparticle
interactions that are lacking in this model (see, e.g.,
[15,16,21,22]).

III. NUMERICAL RESULTS

Now that we have established approximate scaling
relations for DWDs, we proceed to compute their
properties using a fully relativistic treatment. In
particular, the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions [38,39],

dp
dr

¼−
Gm
r2

�
ϵ

c2

��
1þp

ϵ

��
1þ4πr3p

mc2

��
1−

2Gm
c2r

�
−1
; ð14aÞ

dm
dr

¼ 4πr2
�
ϵ

c2

�
; ð14bÞ

update the Newtonian hydrostatic equilibrium
equations [Eqs. (6a)–(6b)] to add corrections due to
general relativity (square brackets), necessary to describe
the gravitational field of compact objects. We have
suppressed the r-dependence of ϵ and p for clarity.
Like the Newtonian approximation, the TOV equation
can be nondimensionalized and solved numerically to
obtain the approximate scaling relations from Sec. II C,
given the corresponding polytrope [40]. As the matter
density in an actual DWD could fall anywhere between
the non- and highly relativistic limiting cases, we need to
use the full EoS and so a numerical TOV solver. To this
aim, we use a modified version of the TOVL solver
developed by [41,42].
Solving either the Newtonian approximation or the TOV

equation across a range of central densities [i.e.,
ρc ¼ ρðr ¼ 0Þ, as before] for a givenmL and mH generates
a relationship in the M − R space known as a mass-radius
relation. In Fig. 1, we plot some of these mass-radius
relations in the slice of the mL −mH parameter space
specified by mL ¼ 4.1 MeV c−2 and mH ¼ 4.1 × 10−3 −
94 GeV c−2 on logarithmic R −M axes. Clearly visible are
the wide ranges inM and R, even over a small range in the
mH parameter space. Conversely, the overall shape of the
M − R curve remains similar over that same range. There
is a noticeable plateau that appears in the mH ≫ mL
regime and disappears as mH → mL. The plateau is due to
the fact that the light particle becomes ultrarelativistic in
the core of these DWDs, and the equation of state
becomes a polytrope with Γ ¼ 4=3 (see Sec. II B). As
mH → mL, the maximum mass is achieved before the
particles enter the highly relativistic regime. For example,
the maximum mass for fmL;mHg ¼ f4.8; 5.6g MeV
(solid blue line) occurs at x ≈ 1.1, well within the
transition regime. The transition to the single particle
limit can be seen in the behavior of the radius scaling in
Fig. 1(b). As mH → mL, the radii begins changing by a
factor approaching 22=3.
The dimensionless, gravitoelectric quadrupolar tidal

deformability (Λ2; [43]) is also of interest for comparison
with gravitational wave observations. The calculation of Λ2

requires the numeric solution of the reduced, relativistic,
quadrupole gravitational potential (y) differential equation
from [41,44,45]

dy
dr

¼ −
y2

r
−
rþ 4πr3ðp − ϵÞ

rðr − 2mÞ yþ 4ðmþ 4πr3pÞ2
rðr − 2mÞ2

þ 6

r − 2m
−

4πr2

r − 2m

�
5ϵþ 9pþ ðϵþ pÞ

ðdp=dϵÞ2
�
: ð15Þ

This is solved in parallel with the TOVequation to find the
value of y at the surface of the object, Y ¼ yðRÞ.
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The quantity Λ2 is then defined by

Λ2 ¼
2

3

k2
C5

; ð16Þ

where k2 is the tidal apsidal constant,

k2 ¼
8C5

5
½ð1 − 2CÞ2ð2CðY − 1Þ − Y þ 2Þ�

× ½6Cð2 − Y þ Cð5Y − 8ÞÞ
þ 4C3½13 − 11Y þ Cð3Y − 2Þ þ 2C2ð1þ YÞ�
þ 3ð1 − 2CÞ2½2 − Y þ 2CðY − 1Þ� logð1 − 2CÞ�−1:

ð17Þ

The Λ2 parameter specifies how much the object
deforms in the tidal field of a companion star and is
directly related to the compactness. Black holes, for
example, have Λ2 ¼ 0, LIGO-detectable neutron stars
in binaries are in the range 1–104, and white dwarfs are
> 1010 [43,46]. The usage of Λ2 in regards to observations
is explained in Sec. III C.
Note that we have included two modifications to the

TOVL solver from [41,42]. First, the TOVL solver, as
written, computes the solution to the second-order
Regge-Wheeler equation, instead of Eq. (15). As the
numerical solver had difficulty converging on a solution
in parts of the parameter space, and for improved numerical
efficiency, we use the equivalent, first-order Eq. (15)

instead [44,45]. Second, Eq. (17) runs into numerical
precision difficulties when the compactness is small, with,
for instance, terms in the denominator (not) canceling as
they should, leading to negative values of k2. We replaced
the analytic form of Eq. (17) with a series expansion around
both C ¼ 0 and Y ¼ 1 out to fifth order. This introduces an
error of < 1% into the calculations across the entire
parameter space defined below.

A. Parameter space

In Fig. 2, we plot the dark white dwarf mass, compact-
ness, and tidal deformability computed by solving the TOV
and Λ2 equations across the values mL ¼ 0.511 keV c−2 to
5.11 GeV c−2 and mH ¼ 93.8 keV c−2 to 93.8 GeV c−2
(corresponding to rL ¼ 10−3 − 104, rH ¼ 10−4 − 102),
with the restriction mL ≤ mH (the behavior is symmetric
across themL ¼ mH line). At each sampledmH −mL point
in the parameter space, the TOV and Λ2 equations are
solved for ρc ranging from 10−5–1025 g cm−3. Figure 2(a)
shows the mass-radius relations for three parameter
cases, somewhat representative of the three parameter
space corners: light-light (yellow), heavy-light (blue),
and heavy-heavy (purple), and the Standard Model
(SM) relation (red), where light (heavy) corresponds to
significantly below (above) the Standard Model value. In
Fig. 2(b), we plot the maximum mass obtained for each
mass-radius relation, while in Figs. 2(c)–2(d), we plot C
and Λ2 at the value of ρc corresponding to said maxi-
mum mass.

FIG. 1. Example mass-radius relations for varying parameter values. Each line in Fig. 1(a) corresponds to the mass-radius relation for a
single value of mH and the fixed value 4.8 MeV c−2 resulting from solving the Tolman-Oppenheimer-Volkoff equation over a range of
central densities. The blue, solid, markerless line is 5.6 × 10−3 GeV c−2, with increasing mH shifting the relation’s maximum mass
down and to the left. Note that the maximum mass clearly scales as described in Eq. (11), and theM − R curves exhibit the classic white
dwarf shape, even when approaching the single-particle limit, 5.6 × 10−3 GeV c−2 (solid blue, no marker). Above the densities
corresponding to the maximum mass (to the left on the plot), the DWD is gravitationally unstable. The cutoffs on the right simply
correspond to the minimum density plotted. Figure 1(b) is identical to Fig. 1(a), but with radius rescaled as R → rLrHR and mass
rescaled as M → r2

HM.
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Of note, the maximum mass scales predominantly with
mH, as seen by comparing the light-light and SM cases
and SM and heavy-heavy cases, and ranges from
3 × 10−4–5 × 108 M⊙. The compactness also scales approx-
imately with the ratio mL=mH, as shown by comparing the
light-light and heavy-heavy cases and predicted in the
Newtonian approximation, ranging from 10−6–0.09. The
scaling with the ratio generally holds for Λ2 as well, due to
the strong dependence on C, leading to a minimum of ∼500
near the mL ≈mH line and a maximum of 4 × 1026 in the
upper right corner. The maximum mass configuration is
attained at a density that depends on thevalues ofmH andmL,
corresponding to a central Fermi momentum of x ∼mH=mL,
rather than a fixed value. This additional factor corresponds

to a change in the central density scaling used in Eqs. (10)–
(12) from ρc ∝ r3LrH to ρc ∝ r2Lr

2
H. Substitution gives

CDWD ∝ ðrL=rHÞ2=3, which is what we see in Fig. 2(c)
for mL ≪ mH. For mL → mH, C approaches the single
particle limit, C ¼ 0.114 [30].

B. Implications for gravitational wave observations

In many of the dark matter models, the dark sector is
mostly or entirely hidden, only observable through gravi-
tational interactions. Thus, DWD observations may be
limited to purely gravitational techniques, like, for exam-
ple, the detection of gravitational waves from the merger of
a DWD and some other compact object. As a first step, and

FIG. 2. Tollman-Oppenheimer-Volkoff and electric quadrupolar tidal deformability (Λ2) solution results for the parameter range
mL ¼ 0.511 KeV c−2 to 5.11 GeV c−2 and mH ¼ 93.8 keV c−2 to 93.8 GeV c−2, with values for mL > mH ignored. In Fig. 2(a), we
display the mass-radius relations near the three “corners” of the mH −mL parameter space (with corresponding points in the parameter
space subfigure) as well as (approximately) the Standard Model white dwarf (thick, solid/largest). Notably, the masses and radii of these
objects span many orders of magnitude. Panels (a)–(d) show the maximum mass, compactness and tidal deformability found. The C and
Λ2 values were plotted at the central density corresponding to the maximum mass achieved at that value of ðmH;mLÞ, and are the
maximum (minimum) possible compactness (tidal deformability) for that parameter set.
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since the DWDs span a large range in both mass and
compactness, it is worthwhile to determine the detectability
across the microphysical parameter space. A gravitational
wave observation is detected if the signal-to-noise ratio
(SNR), defined as [47]

hSNR2i ¼ 4

Z
∞

0

jh̃ðfÞj2
SnðfÞ

df; ð18Þ

for a signal with strain hðtÞ and Fourier transform h̃ðfÞ
observed by detector with sensitivity curve SnðfÞ, achieves
a specified detection threshold. As the choice of threshold
is somewhat arbitrary, SNR ≥ 8 is used here to match
recent LIGO usage [48,49].
With the assumption that the strain can be approximated

as originated from a quadrupole source and truncated to
Newtonian order, its Fourier transform can be written as

h̃ðfÞ ≈
ffiffiffiffiffiffiffiffiffiffi
5=24

p
π2=3DL

M5=6
C f−7=6; ð19Þ

where MC ¼ ðM1M2Þ3=5=ðM1 þM2Þ1=5 is the chirp mass
and DL is the luminosity distance of the merger. We will
restrict the analysis to the in-spiral phase of the merger;
postmerger components, especially for high mass objects,
will require numerical relativity simulations. This reduces
the integral bounds to 0 < f < fcontact, where fcontact is the
contact frequency, i.e., the binary orbital frequency at the
termination of the in-spiral period. Using fcontact will
possibly overestimate the final SNR, since it does not,
for example, account for tidal effects (see, e.g., [50] for
other choices), but it does provide a reasonable, simple
estimate [51]. In Fig. 3, we consider two identical,
maximum-mass DWDs, and plot the contact frequency
given by [41,42]

fcontact ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G
4π2

2Mmax

ð2RMmax
Þ3

s
: ð20Þ

Using identical, maximum-mass DWDs to calculate fcontact
provides an optimistic estimate of the maximum frequency
emitted during the merger. As real DWDs are not likely to
be at the maximum mass, actual contact frequencies will be
lower. From Fig. 3, we can see that the contact frequency in
the optimistic case ranges from 8 × 10−8 Hz, for the most
massive DWDs in the top right corner, to 600 kHz, for the
least massive DWDs in the bottom left.
Figure 4 demonstrates the application of Eqs. (18)–(20)

using the current sensitivity curves for Advanced LIGO,
and the design sensitivity curves for LISA and DECIGO
[52–54]. We compute the SNR at a luminosity distance of
f100; 250; 450g Mpc, multiplied by a factor 4=25 to
include an averaging over sky position, inclination, and
polarization and assuming a source dominated by quad-
rupolar radiation [55], and shade the region satisfying the
condition SNR > 8. The contact frequency was computed
in the same manner as in Fig. 3, i.e., assuming two,
identical, maximum-mass DWDs. As hinted at in Fig. 3,
since the different gravitational wave observatories are
sensitive over different frequency ranges, the different
parameter cases will be visible by different observatories.
While LIGO can observe only the mL ∈ 0.01–1 GeV,
mH ∈ 0.1–3 GeV region, corresponding to ordinary-
neutron-star-like DWDs and the heavy-heavy case, LISA

FIG. 3. Frequency at merger contact in Hz for two identical,
maximum-mass dark white dwarfs as a function of mH and mL.

FIG. 4. Gravitational wave detectability (SNR) of identical,
maximum-mass DWD mergers. Shaded regions correspond to
SNR ≥ 8. SNR contours are derived from Eqs. (18) and (19) with
a frequency cutoff of fcontact [Eq. (20)] and plotted at three
luminosity distances, DL ¼ f100; 250; 450g Mpc (lighter to
darker) using design sensitivity curves for LIGO, LISA, and
DECIGO [52–54]. Clearly, the different detectors will probe
different regions of the parameter space in a complementary
fashion and combined, LIGO and LISA will probe much of the
mL ∼ 10−3–1 GeV, mH ∼ 10−4–3 GeV parameter space.
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and especially DECIGO should be able to explore a
much wider range of parameter space. LISA can probe
the mL ∼ 10−6–0.01 GeV, mH ∼ 10−4–1 GeV regime,
encompassing the light-light and SM cases, and nicely
complimenting the LIGO region. Finally, DECIGO would
be able to explore below 10−6 GeVð10−4 GeVÞ and up to
1 GeVð30 GeVÞ in mLðmHÞ space, verifying LIGO/LISA
results and even including the light-heavy cases.

C. Universal relations

Potential universal relations, especially those of the
electric quadrupolar tidal deformability, are of further
interest for potential gravitational wave observations. A
universal relation is a relation between two or more
macrophysical properties that is generally independent of
the equation of state, and, more importantly in our case,
allows the breaking of observational degeneracies.
Consider an example DWD merger, with DWD 1 having
macroscopic parameters fM1; C1;Λ2;1g and DWD 2 hav-
ing fM2; C2;Λ2;2g (assumeM2 < M1). The corresponding
gravitational wave detection would observe the chirp mass,
M ¼ ðM1M2Þ3=5=ðM1 þM2Þ1=5, mass ratio, q ¼ M2=M1,
and reduced tidal deformability [56],

Λ̃ ¼ 16

13

1

ð1þ qÞ5 ½ðq
4ðqþ 12Þ − ð1þ 12qÞÞΛA

þ ðq4ð12þ qÞ þ ð1þ 12qÞÞΛS�; ð21Þ

whereΛS andΛA are the symmetric and antisymmetric tidal
deformabilities,

ΛS;A ¼ 1

2
ðΛ2;2 � Λ2;1Þ: ð22Þ

While the mass ratio can be measured directly from the
gravitational wave signal, the tidal deformability enters at
leading order in the phasing only through Λ̃. Further, the
radii and compactness of the two objects do not directly
enter into the phasing or magnitude of the signal. This is
where universal relations are useful: breaking the ΛA, ΛS
degeneracy in Eq. (21) and calculating C and R from the Λ2

of the individual DWDs. First, the binary love relation,
discovered by Yagi and Yunes in 2015 while examining
binary neutron star properties [57], with the form,

ΛAðq;ΛSÞ ¼ FnðqÞ
1þP

3
i¼1

P
2
j¼1 bijq

jΛi=5
S

1þP
3
i¼1

P
2
j¼1 cijq

jΛi=5
S

ΛS; ð23Þ

where bij and cij are numerical fitting coefficients and
FnðqÞ ¼ ð1 − q10=ð3−nÞÞ=ð1þ q10=ð3−nÞÞ is a polytropic-
index-dependent controlling factor, lets Eq. (21) be rewrit-
ten as a function of q and ΛS only. From this, one can solve
for ΛS and then ΛA. Then the individual Λ2;1, Λ2;2 can be
computed using the definitions of ΛS, ΛA.
Second, in 2013, Yagi and Yunes [58] and Maselli et al.

[59] demonstrated that the relation between C and Λ2 was
also universal. This relation, which follows mostly from
Eq. (16) provides an estimate of C1 and C2 from Λ2;1 and
Λ2;2. The radii then follow directly from the definition of C.
In Fig. 5(a), we demonstrate that the ΛAðq;ΛSÞ function

from Eq. (23) also applies to DWDs. Here, we considered
2025 mL −mH pairs in the ranges mL ∈ f5.11 ×
10−7; 5.11g GeV and mH ∈ f9.38 × 10−3; 93.8g GeV.
For each mL −mH pair, we picked 20 random pairs of

FIG. 5. DWD universal relations. Panel (a) shows that the binary Love relation, ΛA ¼ ΛAðq;ΛSÞ, is reasonably approximated by a
functional form from the neutron star literature [46,57,60], using the new coefficients from Table I, whereas (b) demonstrates that for
DWDs Λ2 can be well approximated by the fit given in Eq. (24), effectively Λ2 ∝ C5.1.
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central densities and computed fM1;M2;Λ2;1;Λ2;2; q;ΛS;
ΛAg aswell asΛA;fit. The fit is computed using the functional
form from Eq. (23) with new bij and cij coefficients given in
Table I. Note that for our basic model the FnðqÞ controlling
factor is ≈1 and has been dropped.
In Fig. 5(b), we plot Λ2 versus C for the 2025 mL −mH

pairs mentioned previously, at logrithmically spaced central
densities from 10−5 g cm−3 to the density corresponding to
the maximum mass (approximately 56 000 DWDs).
Comparing with the simple linear log fit,

log10C ¼ −0.1958log10ðΛ2Þ − 0.3931; ð24Þ

which provides an excellent fit over the entire range, we see
that Λ2 ∝ C−5.1 to good approximation. This should not be
surprising; even though Eq. (17) appears to show k2 has a
strong (C5) dependence on C, in reality, the dependence is
actually relatively weak,1 functionally leaving Λ ∼ C−5. It
is important to point out this relationship is effectively
independent of the dark parameters for this simple model
and thus also “universal.”
With these relations, we can substitute some numbers and

see what sort of constraints we might be able to place on the
dark parameters from an observation. For example, let us
consider an hypothetical scenario in which a binary DWD is
detected with q ¼ 0.705� 0.04, M ¼ ð19� 4Þ M⊙, and
Λ̃ ¼ ð9.09� 0.90Þ × 104. Using Eqs. (21) and (23), and
simply propagating the bounds, we would obtain ΛS ¼
ð1.6� 0.3Þ × 105 and ΛA ¼ 1.5þ0.4

−0.3 × 105. By definition,
we would then have Λ2;1 ¼ 9.52þ6

−10 × 103 and Λ2;2 ¼
3.1þ0.8

−0.6 × 105, which, using our C − Λ2 relation would give
C1 ¼ 0.0887� 0.02 and C2 ¼ 0.0443þ0.01

−0.009. Using m1 ¼
q−3=5ð1þ qÞ1=5M and m2 ¼ q2=5ð1þ qÞ1=5M, the chirp
mass and mass ratio would give m1 ¼ ð26� 6Þ M⊙ and
m2 ¼ ð18.3� 4.0Þ M⊙. From this, the maximum mass
would be at least 20 M⊙, and we could constrain the heavy
particle mass, mH < 0.45 GeV c−2. Further, while the
conservative compactness of Cmax < 0.1087 would provide
a minimal constraint on the heavy to light particle mass ratio
(mH=mL > 2), the other end would suggest a not dissimilar
constraint of mH=mL > 5, so mL would likely be
90–200 MeV c−2 (assuming mH ¼ 0.45 GeV c−2).

IV. CONCLUSION

We present a first look at the DWD, using a basicmodel of
two, different-mass fundamental fermions to explore some of
the possibilities of this exotic compact object. We determine
analytic scaling relations for the mass, radius, and compact-
ness of the DWD as function of the Standard Model white
dwarf and the fermionmasses [Eqs. (2)–(4) and (11)–(12)] in
the nonrelativistic limit. We accomplish this by solving the
Newtonian hydrostatic-equilibrium approximation using the
well-known equation of state of fermionic ideal gasses. As
expected, we recover the scaling relations found in the
literature upon approaching the single-particle limit.
We then solve the Tollman-Oppenheimer-Volkoff and

tidal-deformability differential equations numerically to
obtain fully relativistic versions of the Newtonian approx-
imations. Using the relativistic formalism confirms the
approximate Newtonian scaling as well as highlights the
large span of the macrophysical and even binary attributes
(Figs. 1–3).
We further find universal relations between macroscopic

properties of DWDs that are analogous to those found for
neutron stars. In particular, we investigate the C vs Λ2 and
binary love universal relations, with the net result that the
Λ2-C relationship can be well approximated by a simple
power law and that binary love relation can be well
approximated by fits from the neutron star literature
(Fig. 5). These relations could be used to determine the
radii of DWD from gravitational wave observations of their
mergers, thus directly constraining the masses of the dark
particles.
Lastly, we discuss the detectability of DWD binary

mergers across the fermion mass parameter space. We show
that not only are DWDmergers detectable but that, assuming
design sensitivity, different gravitational wave observatories
would probe different regions of the space (Fig. 4). For
example, LIGO should be able to detect mergers of high-
compactness, lower-mass DWDs corresponding to a dark
light particle in the mass range 0.01–1 GeVand dark heavy
particle in the range0.1–3GeV,whileLISAcould detect both
higher-mass, high-compactness and lower-mass, lower-
compactness DWDs, corresponding to light particles that
are 10−6–0.01 GeV and heavy particles that are
10−4–1 GeV. Later-generation space-based detectors like
DECIGOmay be able to detect mergers across an even larger
part of the parameter space.
We have left four significant topics to future work,

though two of those are interrelated. First, is the effect of
interparticle interactions, both those that do and do not

TABLE I. Fitting coefficients for the binary love relation given in Eq. (23).

□1;1 □1;2 □2;1 □2;2 □3;1 □3;2

bij 1.73 −1.57 5.48 × 10−2 −5.10 × 10−2 1.27 × 10−6 −7.15 × 10−7
cij 1.68 −1.42 5.47 × 10−2 −5.01 × 10−2 1.27 × 10−6 −6.80 × 10−7

1The lower order terms in the denominator cancel, leaving C5

as the lowest surviving term. This then cancels with the C5 in the
numerator, and k2 approaches a nonzero constant as C → 0.
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change particle type, on the equation of state. While it is
reasonable to ignore particle-conversion interactions, as
many dark matter models do not contain them, interactions
such as the dark electromagnetism of atomic dark matter
[61] or the Yukawa interactions of the model in [62] should
also be studied. The lack of such an interaction term is not
fatal; after all, the model presented here works quite well
for estimating ordinary white dwarf properties and should
also work well in cases with weak dark interactions.
Conversely, dissipative interactions are the entire point
of dissipative dark matter models, necessitating their
inclusion in follow-up work. Doing so in a general fashion
is nontrivial, but including additional polynomial terms into
the total pressure and energy equations as in [30], similar to
the electrostatic correction in ordinary white dwarfs [38] or
the Yukawa term in Kouvaris and Nielsen [22] would likely
be a good first step.
Second, we have restricted our gravitational wave signal

analysis to the detectability of the in-spiral portion only. As
demonstrated in Fig. 2(d), the tidal deformability of these
DWDs can be significantly larger than that of ordinary
neutron stars and black holes. As such, general template
bank searches based on ordinary binary black hole or
binary neutron star mergers may not find these objects.
Additionally, the postmerger portion of the signal may
contain various features that could be strongly dependent
on the equation of state and the dark microphysics.
Computing the full merger and postmerger signal using
numerical relativity simulations at several points in the
parameter space would help resolve both of these issues,
providing data for both a more targeted search and
demonstrating any potential microphysical dependence.
The remaining two issues concern the formation and

populations of these objects and using gravitational wave
observations to constrain their properties. Just as there are a
number of dark matter models that have the particle types to
create DWDs, so are there a number of possible formation
mechanisms, ranging from primordial direct collapse, as in

[31], to astrophysical direct collapse, analogous to the dark
black hole formation or asymmetric stars in, e.g.,
[12,17,63], to the astrophysical remnant of a dark star,
suggested in [21]. This makes estimating the DWD
population highly model dependent. The possibility that
such binaries might not be able to form naturally at all also
cannot be excluded. On the other hand, determining the
current constraints on the merger rates from LIGO obser-
vations should be tractable, assuming the current state of
nondetection holds. Likewise, identifying a particular
merger as a possible DWD merger (as opposed to an
ordinary object merger) should not be difficult, given the
significant discrepancies between DWD and ordinary
compact object characteristics across the majority of
the parameter space. Distinguishing between a DWD
and a dark neutron star, or determining the dark compo-
sition pose a much higher level of difficulty, however,
given the potential overlap in macroscopic traits, and may
require population analysis, circling back to the formation
problem.
While there are several major questions left to be

resolved, the potential for DWDs and their mergers to
shine a light on the dark sector strongly motivates the
development of targeted search strategies in gravitational
wave detectors data.

ACKNOWLEDGMENTS

Funding for this work was provided by the Charles E.
Kaufman Foundation of the Pittsburgh Foundation. The
authors also thank Rahul Kashyap and Daniel Godzieba for
their input on the TOVL and Λ2 calculations. D. R.
acknowledges funding from the U.S. Department of
Energy, Office of Science, Division of Nuclear Physics
under Award No. DE-SC0021177 and from the National
Science Foundation under Grants No. PHY-2011725,
No. PHY-2020275, No. PHY-2116686, and No. AST-
2108467.

[1] N. Aghanim et al. (Planck Collaboration), Planck2018
results, Astron. Astrophys. 641, A1 (2020).

[2] M. Markevitch, A. H. Gonzalez, D. Clowe, A. Vikhlinin, L.
David, W. Forman, C. Jones, S. Murray, and W. Tucker,
Direct constraints on the dark matter self-interaction cross-
section from the merging galaxy cluster 1E0657-56, As-
trophys. J. 606, 819 (2004).

[3] M. Clark, A. Depoian, B. Elshimy, A. Kopec, R. F. Lang,
and J. Qin, Direct detection limits on heavy dark matter,
Phys. Rev. D 102, 123026 (2020).

[4] D. S. Akerib et al. (LUX Collaboration), First direct
detection constraint on mirror dark matter kinetic

mixing using lux 2013 data, Phys. Rev. D 101, 012003
(2020).

[5] A. Berlin and F. Kling, Inelastic dark matter at the LHC
lifetime frontier: ATLAS, CMS, LHCb, CODEX-b, FASER,
and MATHUSLA, Phys. Rev. D 99, 015021 (2019).

[6] T. M. Undagoitia and L. Rauch, Dark matter direct-
detection experiments, J. Phys. G Nucl. Part. 43, 013001
(2015).

[7] V. A. Mitsou, Overview of searches for dark matter at the
LHC, J. Phys. Conf. Ser. 651, 012023 (2015).
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