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We investigate the potential for searching and identifying the leptoquark (LQ) effects in the charm sector
through the low-energy polarized scattering processes, e⃗−p → e−Λc, e−p⃗ → e−Λc, and e⃗−p⃗ → e−Λc.
Considering only the longitudinally polarized processes, we show that the different LQ models can be
disentangled from each other by measuring the four spin asymmetries, Ae

L, A
p
L, A

ep
L3, and A

ep
L6, constructed in

terms of the polarized cross sections. Although it is challenging to accomplish the same goal with
transversely polarized processes, we find that investing them in future experiments is especially beneficial
since they can directly probe into the imaginary part of the Wilson coefficients in the general low-energy
effective Lagrangian. With our properly designed experimental setups, it is also demonstrated that
promising event rates can be expected for all these processes and, even in the worst-case scenario—no LQ
signals observed at all—they can still provide a competitive potential for constraining the new physics,
compared with those from the conventional charmed-hadron weak decays and the high-pT dilepton
invariant mass tails at high-energy colliders.
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I. INTRODUCTION

Many extensions of the Standard Model (SM), such as the
grand unified theories [1–10], predict the existence of a
particular type of bosons named leptoquarks (LQs). These
hypothetical particles can convert a quark into a lepton and
vice versa and, due to such a distinctive character, have a very
rich phenomenology in precision experiments and at particle
colliders [11,12]. Particularly, several anomalies observed
recently in the semileptonic charged- and neutral-current
B-meson decays [13–16], as well as in the muon anomalous
magneticmoment [17], have attracted extensive studies of the
LQ interactions, due to their abilities to address the anomalies
simultaneously (see, e.g., Refs. [18–44]). Often these analy-
ses focus on the LQ couplings to the heavy quarks, but
growing interest in the LQ interactions involving the light
quarks has also been ignited (see, e.g., Refs. [45–57]).

Among the various processes used to probe the LQ
interactions, the flavor-changing neutral-current (FCNC)
ones in the charm sector are the ideal searching ground,
due to their absence at tree level and strong suppression by
the Glashow-Iliopoulos-Maiani (GIM) [58] mechanism at
the loop level in the SM. The known FCNC processes in the
charm sector consist of the rare weak decays of the charmed
hadrons [59–79], the high-pT dilepton invariant mass tails of
the processes pp → llð0Þ at high-energy colliders [80,81]
as well as the low-energy scattering processes e−p →
e−ðμ−ÞΛc we proposed recently [82]. Interestingly enough,
we found that, based on a set of a high-intensity electron
beam and a liquid hydrogen target—both have been used to
search for sub-GeV dark vector bosons [83–86]—and taking
into account the most stringent constraints on the corre-
sponding LQ interactions from other processes, very prom-
ising event rates can be expected for both the scattering
processes in some specific LQ models [82]. Motivated by
such a promising prospect of the LQ searches at the low-
energy scattering processes (as well as the tenacious hunting
for the LQs at the Large Hadron Collider (LHC) [87–94] and
other future facilities [95,96]), we will address in this paper
another interesting question: can the different LQs be
systematically disentangled from each other through the
low-energy scattering processes?
A partial answer has been provided in Ref. [82], where

we have demonstrated that a combined analysis of the
experimental signals of the low-energy scattering processes
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and the semileptonic D-meson decays can distinguish
certain scalar LQs from the vector ones. Unfortunately,
only the LQs that would not induce tree-level proton decays
have been considered there, and the vector LQs are found to
be unable to be disentangled from each other [82]. Such a
deficiency, as will be shown in this work, can be amended
by considering the low-energy polarized scattering proc-
esses e−p → e−Λc. To be specific, we will consider the
FCNC production of Λc baryons through the low-energy
ep scattering processes with only the electron beam
polarized (e⃗−p → e−Λc), with only the proton target
polarized (e−p⃗ → e−Λc), and with both of them polarized
(e⃗−p⃗ → e−Λc). Performing a simple analysis of the four
spin asymmetries, Ae

L, A
p
L, A

ep
L3, and Aep

L6, constructed in
terms of the polarized cross sections, we will show that the
different LQs mediating these processes at tree level can be
distinguished from each other.
It is also interesting to note that a comprehensive study

that worked in a different regime and with a much stricter
condition already exists [97]. In particular, focusing on
the polarized ep deep inelastic scatterings mediated by the
LQs that couple only to the first-generation fermions, the
authors of Ref. [97] have shown that the commonly
discussed LQ models [12] can be disentangled from each
other through the precise measurements of some observ-
ables, such as the polarized cross sections and spin
asymmetries, provided that the high-intensity polarized
lepton (both electron and positron) and proton beams are
available. By contrast, our proposal will involve much less
observables (with the desired measurement precision less
demanding), include the case where the LQ couples to
quarks belonging to more than a single generation in the
mass eigenstate, and is easily adapted to other kinds of new
physics (NP) models beyond the SM.
Of course, all the proposals above cannot be carried out

if no LQ signals are observed at all. In this paper, we will
show that, thanks to recent advances in the technologies
of polarized electron beams and proton targets—both have
been resourcefully exploited for studying the nucleon struc-
ture (see, e.g., Refs. [98–100] and references therein)—
promising event rates can be expected for the polarized ep
scattering processes, if they are measured with properly
designed experimental setups, together with the constraints
from the rare charmed-hadron weak decays and the high-
pT dilepton invariant mass tails as input. On the other
hand, even in the worst-case scenario—no LQ signals are
observed at all—the polarized ep scattering processes can
still yield competitive constraints with respect to those
obtained from the rare charmed-hadron weak decays and
the high-pT dilepton invariant mass tails. In particular,
direct access to the chiral structure of the lepton current in
the effective four-fermion operators offers these polarized
scattering processes a unique advantage in constraining
individually the effective Wilson coefficients (WCs) of the
LQ models, which is, otherwise, not available from other
conventional FCNC processes in the charm sector.

The paper is organized as follows. InSec. II,we startwith a
brief introduction of our theoretical framework, including
the most general effective Lagrangian (also the LQ models),
the polarized cross sections, and the various spin asymme-
tries for the polarized scattering processes e−p → e−Λc. In
such a framework, we first consider in Sec. III the longitu-
dinally polarized scattering processes and then in Sec. IV, the
transversely polarized ones, focusing mainly on their pos-
sible applications—the identification of LQ models in
particular. With the properly designed experimental setups
and the currently existing constraints, we evaluate in Sec. V
the prospect for discovering the LQ effects in these low-
energy polarized scattering processes. Our conclusions are
finally made in Sec. VI. For convenience, the helicity-based
definitions of the Λc → p from factors are given in
Appendix A, and the polarized cross sections, together with
their relations to the experimentally measurable quantities,
are discussed in Appendix B, while explicit expressions of
the amplitudes squared for both the longitudinally and
transversely polarized scattering processes are given in
Appendixes C and D, respectively.

II. THEORETICAL FRAMEWORK

A. Effective Lagrangian

The most general effective Lagrangian responsible for
the polarized scattering processes lp → lΛc (or lu → lc
at the partonic level) can be written as

Leff ¼ LSM
eff þ LLQ

eff ; ð1Þ

where LSM
eff and LLQ

eff represent the SM and the LQ
contribution, respectively. The SM long-distance effects
do not contribute to the scattering processes [82],
while the SM short-distance contributions are strongly
GIM suppressed [59–75]; here, we can safely neglect
the contribution from LSM

eff .
The most general low-energy effective Lagrangian LLQ

eff
induced by tree-level exchanges of LQs is given by [53]

LLQ
eff ¼

X
i;j;m;n

f½gLLV �ij;mnðjLVÞijðJLVÞmnþ½gLRV �ij;mnðjLVÞijðJRVÞmn

þ½gRLV �ij;mnðjRVÞijðJLVÞmnþ½gRRV �ij;mnðjRVÞijðJRVÞmn

þ½gLT �ij;mnðjLTÞijðJLTÞmnþ½gRT �ij;mnðjRTÞijðJRTÞmn

þ½gLS �ij;mnðjLS ÞijðJLS Þmnþ½gRS �ij;mnðjRS ÞijðJRS Þmng;
ð2Þ

with

ðjR;LS Þij ¼ l̄iPR;Llj; ðJR;LS Þij ¼ q̄iPR;Lqj;

ðjR;LV Þij ¼ l̄iγμPR;Llj; ðJR;LV Þij ¼ q̄iγμPR;Lqj;

ðjR;LT Þij ¼ l̄iσμνPR;Llj; ðJR;LT Þij ¼ q̄iσμνPR;Lqj;
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where PR;L ¼ ð1� γ5Þ=2, and i, j and m, n represent
the flavor indices of leptons and quarks, respectively.
The effective WCs g, with their explicit expressions given
in terms of the masses and the couplings of the LQs to the
SM fermions in a specific model, are obtained by integrat-
ing out the heavy LQs, together with proper chiral Fierz
transformations (see, e.g., Ref. [101]) of the resulting four-
fermion operators to the ones given by Eq. (2).
There are seven LQs (three scalar and four vector ones)

that can mediate the polarized scattering processes at tree
level. Following the same notation as used commonly in
literature [11,12], we present in Table I their interactionswith
the SM fermions, where the left-handed lepton (quark)
doublets are denoted by Li

L ¼ ðνiL;li
LÞT (Qi

L ¼ ðuiL; diLÞT),
while the right-handed up-(down-)type quark and lepton
singlets by uiR (diR) and eiR, respectively. Note that, for sim-
plicity, their Hermitian conjugation is not shown explicitly.
Following the aforementioned procedure, we obtain the

effective WCs for each LQ model in Table I as follows:

½gLLðLRÞV �ij;mn ¼ kLLðLRÞV

ðλIÞinðλIÞ�jm
M2

;

½gRRðRLÞV �ij;mn ¼ kRRðRLÞV

ðλJÞinðλJÞ�jm
M2

;

½gLS �ij;mn ¼ kLS
ðλIÞinðλJÞ�jm

M2
;

½gRS �ij;mn ¼ kRS
ðλJÞinðλIÞ�jm

M2
;

½gLT �ij;mn ¼ kLT
ðλIÞinðλJÞ�jm

M2
;

½gRT �ij;mn ¼ kRT
ðλJÞinðλIÞ�jm

M2
; ð4Þ

where, as done in Ref. [82], we have coincided the mass-
eigenstate basis of the left-handed up-type quarks and

charged leptons with their flavor basis, and uniformly
denoted the LQ masses by M, but bearing in mind that
they can differ from each other in general. The coefficients
k can be directly read out from Table II, and so are the
handy relations,

½gL;RS �ij;mn ¼∓ 4½gL;RT �ij;mn; ð5Þ

where the − andþ signs apply to the LQ models S1 and R2,
respectively. It is important to note that the WCs in Eq. (4)
are all given at the matching scale μ ¼ M. To connect the
LQ coupling constants λI and λJ to the low-energy
polarized scattering processes e−p → e−Λc, they must
be evolved to the corresponding low-energy scale through
the renormalization group (RG) equation. Moreover, since
large mixings of the tensor operators into the scalar ones
can arise due to QED and electroweak (EW) one-loop
effects [102,103], both the QCD and EW/QED effects must
be taken into account. Taking M ¼ 1 TeV as the bench-
mark for the LQ mass,1 and performing the RG running
from the benchmark scale down to the characteristic scale
μ ¼ 2 GeV (we refer to Ref. [82] for more details), we
eventually obtain

gχSð2 GeVÞ ≈ 2.0gχSð1 TeVÞ − 0.5gχTð1 TeVÞ;
gχTð2 GeVÞ ≈ 0.8gχTð1 TeVÞ;
gVð2 GeVÞ ≃ gVð1 TeVÞ; ð6Þ

where χ ¼ L, R, and the RG running effects of the vector
operators have been neglected, since these operators do not
get renormalized under QCD while their RG running
effects under EW/QED are only at a percent level. With
the results in Eq. (6), the scalar-tensor WC relations,
gχSð1 TeVÞ ¼ ∓4gχTð1 TeVÞ, in Eq. (5) are modified as

gχSð2 GeVÞ ≈∓9.4gχTð2 GeVÞ; ð7Þ

at the scale μ ¼ 2 GeV for the LQ models S1 and R2,
respectively. Note that, for convenience, we will denote the
WCs gð2 GeVÞ simply by g hereafter.

B. Cross section, kinematics, and beam energy

The differential cross section of the polarized scattering
process e⃗−ðkÞþ p⃗ðPÞ→e−ðk0ÞþΛcðP0Þ, with P¼ ðmp;0Þ,
P0 ¼ ðEΛc

; p0Þ, k ¼ ðE; kÞ, and k0 ¼ ðE0; k0Þ, is given by

TABLE I. Scalar and vector LQ interactions with the SM
fermions, together with their representations under the SM gauge
group SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY , where τa, with a ¼ 1, 2, 3,
denote the Pauli matrices, and the hypercharge Y is given by
Qem ¼ T3 þ Y.

Model ⊂ LLQ SM representation

S1 ðλS1ÞijQ̄Ci
L iτ2L

j
LS1 ð3̄; 1; 1=3Þ

ðλ0S1 ÞijūCiR ejRS1
R2 −ðλR2 ÞijūiRiτ2Lj

LR2
ð3; 2; 7=6Þ

ðλ0R2 ÞijQ̄i
Le

j
RR2

S3 ðλS3ÞijQ̄Ci
L iτ2τ⃗L

j
L · S⃗3 ð3̄; 3; 1=3Þ

U3 ðλU3 ÞijQ̄i
Lγμτ⃗L

j
L · U⃗μ

3
ð3; 3; 2=3Þ

Ũ1 ðλŨ1 ÞijūiRγμejRŨμ
1

ð3; 1; 5=3Þ
V2 ðλV2 ÞijQ̄Ci

L γμiτ2e
j
RV

μ
2

ð3̄; 2; 5=6Þ
Ṽ2 ðλṼ2 ÞijūCiR γμiτ2L

j
LṼ

μ
2

ð3̄; 2;−1=6Þ

1Such a choice is motivated by the direct searches for the LQs
at LHC, which have already pushed the lower bounds to such an
energy scale [90–94]. Note that the lower bounds for the vector
LQ masses have been pushed roughly up to 1.8 TeV [93,94].
Nonetheless, we here choose 1 TeV for both scalar and vector
LQs for a simple demonstration.
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dσ ¼ 1

4½ðP · kÞ2 −m2
em2

p�1=2
d3k0

ð2πÞ3
1

2E0
d3p0

ð2πÞ3
1

2EΛc

× jMj2ð2πÞ4δ4ðPþ k − P0 − k0Þ; ð8Þ

where the amplitude M can be written as

M ¼
X

gαhe−ðk0; r0Þjjαje⃗−ðk; rÞihΛcðP0; s0ÞjJαjp⃗ðP; sÞi;
ð9Þ

with r and s (r0 and s0) denoting the spins of initial (final)
electron and baryon, respectively. And the amplitude
squared jMj2 is obtained by summing up the initial-
and final-state spins; more details are elaborated in
Appendixes B, C, and D.
The hadronic matrix elements hΛcðP0; s0ÞjJαjp⃗ðP; sÞi
in Eq. (9) are given by the complex conjugate of

hp⃗ðP; sÞjJ†αjΛcðP0; s0Þi, which are further parametrized
by the Λc → p transition form factors [65,104,105].
However, since a scattering process generally occupies a
different kinematic region from that of a decay, to extend
the form factors that are commonly convenient for studying
the Λc weak decays to the scattering process, their para-
metrization must be analytic in the proper q2 region.
Interestingly, there already exists such a parametrization
scheme, which was initially proposed to parametrize the
B → π vector form factor [106], and has been recently
utilized in the lattice QCD calculation of the Λc → N
(nucleon) form factors [65]. We thus adopt the latest lattice
QCD results [65], given that they provide also an error
estimation; for details, we refer the readers to Appendix A. It
might be also interesting to note that the same approach has
been adopted to explore the quasielastic weak production of
Λc hadron induced by ν̄ scattering off nuclei [107].
The spinor of the polarized electron or proton is given by

ð1þ γ5=ξÞuðk; sÞ=2, where ξμ denotes the spin (or polari-
zation) four-vector. For the longitudinally polarized elec-
tron beam, the polarization four-vector ξμe in the proton
target rest frame (lab frame) is given by [108]

ξμe ¼ �
�jkj
me

;
k0k
mejkj

�
; ð10Þ

where the þ (−) sign corresponds to the case when the
electron beam is right-handed (left-handed) polarized. The
spin four-vector ξμp for a longitudinally polarized proton
target in the lab frame is given by ξμp ¼ �ð0; 0; 0; 1Þ, while
ξμp ¼ ð0; cos β; sin β; 0Þ for a transversely polarized proton
target, where β is the azimuthal angle between the proton
spin directon and the x axis [108].
Same as the unpolarized scattering process e−p → e−Λc,

kinematics of the polarized ones is bounded by [82]

2Eðm2
Λc

−m2
p − 2mpEÞ

mp þ 2E
≤ q2 ≤ 0: ð11Þ

This condition indicates that the electron beam energy E
determines the maximal Q2 (Q2 ¼ −q2), which, in turn,
implies that constraints on Q2

max restrict the E selection. An
explicit example is that a minimal requirement for E of the
scattering process can be obtained by using the condition
Q2

max ¼ Q2
min ¼ 0; this can also be visualized in Fig. 1 by

noting the intersection point of the E axis and the red line
that represents the E-Q2

max relation. Besides the kinematic
constraint on Q2

max, we also consider the limit from our
theoretical framework. As indicated in the previous sub-
section, our analysis will be carried out in the framework of
Leff given by Eq. (2) at the scale μ ¼ 2 GeV; to ensure the
validity of our results, we require Q2

max to not exceed
μ2 ¼ 4 GeV2. Such a requirement, depicted by the blue
line in Fig. 1, indicates an upper bound E≲ 4.65 GeV,
provided that the observables one is interested in, such as

TABLE II. Coefficient matrix for the effective WCs in Eq. (4)
for the seven LQs in Table I. The entries with “n” mean that λI;J
does not appear for the LQ models in the first column.

LQ λI λJ kLLV kRRV kLRV kRLV kLS kRS kLT kRT

S1 λS1 λ0S1
1
2

1
2

0 0 − 1
2

− 1
2

1
8

1
8

S3 λS3 n 1
2

0 0 0 0 0 0 0
R2 λR2 λ0R2 0 0 − 1

2
− 1

2
1
2

1
2

1
8

1
8

U3 λU3 n 2 0 0 0 0 0 0 0
Ũ1 n λŨ1 0 1 0 0 0 0 0 0
V2 λV2 n 0 0 0 −1 0 0 0 0
Ṽ2 n λṼ2 0 0 −1 0 0 0 0 0

0 1 2 3 4 5
0

1

2

3

4

5

FIG. 1. Criteria for selecting the electron beam energy E, where
the red line denotes the E −Q2

max relation given by Eq. (11), the
blue line represents the condition Q2 ≤ 4 GeV2 required by our
theoretical framework, while the green line corresponds to our
benchmark scenario with Q2 ¼ 1 GeV2. The yellow region
indicates the eligible E with its corresponding ½Q2

min; Q
2
max�.
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the total cross section, involve Q2
max. Otherwise, E is not

bounded as above, since one can always concentrate on the
lower Q2 region, even though a high Q2

max is available due
to a high E.

C. Spin asymmetries

In terms of the polarized (differential) cross sections,
several spin asymmetries can be defined; some of which, as
will be shown later, play an important role in disentangling
the NP models.
If only the incoming electron beam is polarized, we can

define the single-spin parity-violating (PV) longitudinal
asymmetry,

Ae
L ¼ σ−e − σþe

σ−e þ σþe
; ð12Þ

where σ−e and σþe denote the scattering cross sections with
the incoming electron beam being right-handed (eþL ) and
left-handed (e−L) polarized, respectively. Here, the cross
sections can be the total (σ�e ) or the differential (dσ�e =dQ2)
ones. Similarly, we can also define the single-spin PV
asymmetries,

Ap
L ¼ σ−p − σþp

σ−p þ σþp
; Ap

T ¼ σ̃−p − σ̃þp
σ̃−p þ σ̃þp

; ð13Þ

when only the proton target is longitudinally (pL) and
transversely (pT) polarized, respectively. Here, σp and σ̃p
are the corresponding scattering cross sections.
Concerning the case when the incoming electron beam

and the proton target are both longitudinally polarized, we
can construct six double-spin asymmetries [97,109].
Among them, two PV double-spin asymmetries are given,
respectively, by

Aep
L1 ¼

σ−− − σþþ

σ−− þ σþþ ; Aep
L2 ¼

σ−þ − σþ−

σ−þ þ σþ− ; ð14Þ

while four parity-conserving (PC) ones are defined, respec-
tively, as

Aep
L3 ¼

σ−− − σ−þ

σ−− þ σ−þ
; Aep

L4 ¼
σ−− − σþ−

σ−− þ σþ− ;

Aep
L5 ¼

σþþ − σ−þ

σþþ þ σ−þ
; Aep

L6 ¼
σþþ − σþ−

σþþ þ σþ− ; ð15Þ

where the first superscript of σ indicates the polarization
direction of the incoming electron beam, whereas the
second one denotes that of the proton target. Concerning
the case when the proton target is transversely polarized, on
the other hand, we can also build six double-spin asym-
metries in the same way [97,109], with the PV double-spin
asymmetries given, respectively, by

Aep
T1 ¼

σ̃−− − σ̃þþ

σ̃−− þ σ̃þþ ; Aep
T2 ¼

σ̃−þ − σ̃þ−

σ̃−þ þ σ̃þ− ; ð16Þ

and the PC double-spin asymmetries by

Aep
T3 ¼

σ̃−− − σ̃−þ

σ̃−− þ σ̃−þ
; Aep

T4 ¼
σ̃−− − σ̃þ−

σ̃−− þ σ̃þ− ;

Aep
T5 ¼

σ̃þþ − σ̃−þ

σ̃þþ þ σ̃−þ
; Aep

T6 ¼
σ̃þþ − σ̃þ−

σ̃þþ þ σ̃þ− ; ð17Þ

where σ̃ represents the scattering cross section with the
proton target being transversely polarized.

III. LONGITUDINALLY POLARIZED
SCATTERING PROCESSES e− p → e−Λc

A. Observable analyses

The first observable associated with the longitudinally
polarized scattering processes e−p → e−Λc is the single-
spin PV asymmetry Ae

L, which is defined in terms of the
polarized cross sections σ�e [cf. Eq. (12)]. Since multiple
operators in Eq. (2) can contribute to the polarized
scattering processes, we can generally write σ�e as

dσ�e ¼
X

dσ�α−β ∝
X

gαg�βjMj2α−β; ð18Þ

where gα and g�β go through all the WCs in Eq. (2), and
jMj2α−β with a subscript, e.g., VRL − VRR, represents the
reduced amplitude squared that is induced by the interfer-
ence between the operators jRVJ

L
V and jRVJ

R
V .

Now a few comments about the reduced amplitude
squared jMj2α−β in Eq. (18) are in order. First, as shown
in Table III, the polarization direction of the electron beam
selects the proper (α, β) combinations. This can be verified
by noting that, for the scattering processes with e−L, only the
operators with left-handed lepton current jL are at work,
since the projection operator ð1þ γ5=ξeÞ=2 becomes PL in
the relativistic limit me=E → 0. The same conclusion also
holds for the operators with jR when the electron beam is
right-handed polarized. Second, the amplitude squared
jMj2α−β is obtained by averaging over the initial electron
spins, while jMj2α−β is not—hence differing from the
former by a factor of 2. Third, with our convention in
Eq. (18), the reduced amplitudes squared are all real, and
thus, jMj2α−β is identical to jMj2β−α. Finally, due to the chiral
structures of the lepton and quark currents involved, certain
reduced amplitudes squared with different subscripts are
identical to each other, e.g., jMj2VLL−VLR

¼ jMj2VRR−VRL
. In

this case, only one of them is preserved. It is now clear from
Table III that, if only one operator (or more in certain cases)
contributes to the scatteringprocesses, as commonlyhappens
in several LQ models in Table I, its associated Ae

L is always
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equal to either þ1 or −1. Such a feature, as will be shown
later, can help to disentangle the different LQ models.
Features of other spin asymmetries, like Ap

L in Eq. (13)
and Aep

L1−L6 in Eqs. (14) and (15), are even richer. Given that
they are all defined in terms of the double-spin polarized
cross sections [note that σ�p ¼ ðσþ� þ σ−�Þ=2], it is more
convenient to focus on these cross sections. In the frame-
work of the general effective Lagrangian Leff , we can
schematically write the double-spin polarized cross section
σab, with a; b ¼ �, as

dσab ¼
X

dσabα−β ∝
X

gαg�βð2jMj2α−β þ cjM0j2α−βÞ; ð19Þ

where the coefficient c ¼ � depends on the subscripts α

and β, as well as the superscripts a and b. Here, jMj2α−β and
jM0j2α−β represent, respectively, the ξp-independent and
ξp-dependent reduced amplitudes squared—we refer the

readers to Appendix C for further details. Note that jMj2α−β
is identical to that in σ�e due to the fact that
σ�e ¼ ðσ�þ þ σ�−Þ=2. The possible (α, β) combinations,
together with the nonzero reduced amplitudes squared
associated with σ�−, are shown in Table IV. Clearly, more
(α, β) combinations are now available for σ�p in comparison
with σ�e , but σ�þ and σ�− still share the same set of (α, β)
combinations as for σ�e . It is also interesting to observe that,
if certain ξp-independent reduced amplitudes squared with
different subscripts are identical to each other, so are the
ξp-dependent ones accordingly—as an example, we have

jMj2VLL−VLR
¼jMj2VRR−VRL

and jM0j2VLL−VLR
¼jM0j2VRR−VRL

.
This leads to another interesting observation that the overall
reduced amplitude squared associated with σ∓þ

α−β is identical
to that with σ�−

α0−β0 , where the indices α
0 (β0) and α (β) must

be matched so that their associated operators have opposite
chiral structures in both the lepton and quark currents.

TABLE IV. Nonzero reduced amplitudes squared of the polarized scattering processes with e−Lp
−
L (the upper two

tables) and eþLp
−
L (the lower two tables). For the processes with e−Lp

þ
L and eþLp

þ
L , one simply flips the sign of the ξp-

dependent jM0j2α−β.

ðgLLV Þ� ðgLRV Þ�
gLLV 2jMj2VLL−VLL

þ jM0j2VLL−VLL
2jMj2VLL−VLR

þ jM0j2VLL−VLR

gLRV 2jMj2VLL−VLR
þ jM0j2VLL−VLR

2jMj2VLR−VLR
þ jM0j2VLR−VLR

ðgLS Þ� ðgLTÞ�
gLS 2jMj2SL−SL þ jM0j2SL−SL 2jMj2SL−TL

þ jM0j2SL−TL

gLT 2jMj2SL−TL
þ jM0j2SL−TL

2jMj2TL−TL
þ jM0j2TL−TL

ðgRRV Þ� ðgRLV Þ�
gRRV 2jMj2VLL−VLL

− jM0j2VLL−VLL
2jMj2VLL−VLR

− jM0j2VLL−VLR

gRLV 2jMj2VLL−VLR
− jM0j2VLL−VLR

2jMj2VLR−VLR
− jM0j2VLR−VLR

ðgRS Þ� ðgRTÞ�
gRS 2jMj2SL−SL − jM0j2SL−SL 2jMj2SL−TL

− jM0j2SL−TL

gRT 2jMj2SL−TL
− jM0j2SL−TL

2jMj2TL−TL
− jM0j2TL−TL

TABLE III. Nonzero reduced amplitudes squared of the scattering process with only the electron beam left-handed
(left tables) or right-handed (right tables) polarized, where jMj2α−β has been averaged over the spins of the initial
electron and proton.

ðgLLV Þ� ðgLRV Þ� ðgRRV Þ� ðgRLV Þ�
gLLV 2jMj2VLL−VLL

2jMj2VLL−VLR
gRRV 2jMj2VLL−VLL

2jMj2VLL−VLR

gLRV 2jMj2VLL−VLR
2jMj2VLR−VLR

gRLV 2jMj2VLL−VLR
2jMj2VLR−VLR

ðgLS Þ� ðgLTÞ� ðgRS Þ� ðgRTÞ�
gLS 2jMj2SL−SL 2jMj2SL−TL

gRS 2jMj2SL−SL 2jMj2SL−TL

gLT 2jMj2SL−TL
2jMj2TL−TL

gRT 2jMj2SL−TL
2jMj2SL−SL
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Let us take VLL − VLR again as a demonstration. As can be
seen from Table IV, the overall reduced amplitude squared
for σ−þVLL−VLR

is 2 ¯jMj2VLL−VLR
− jM0j2VLL−VLR

, which is found
to be identical to that for σþ−

VRR−VRL
.

The presence of ξp-dependent jM0j2α−β indicates that,
contrary to Ae

L, A
p
L will not take a trivial form, even if only

one operator contributes to the scattering processes. It is,
however, by no means useless in distinguishing the LQ
models. Note that the observations above also lead to some
interesting relations between Aep

L3 and Aep
L6 for certain

operators. For instance, Aep
L3 for the operator jLVJ

L
V is

identical to Aep
L6 for the operator j

R
VJ

R
V. These relations will

be very handy in disentangling the LQmodels later. Finally,
it is easy to check that if only one operator is at work, Aep

L1,
Aep
L2, A

ep
L4, and Aep

L5 can only be �1, just like Ae
L, making

them less interesting to this work.

B. NP model identification

In this subsection, we will use the four spin asymmetries,
Ae
L, A

p
L, A

ep
L3, and A

ep
L6, to identify the various NP models. To

make our following analyses as general as possible, we will
consider all the four vector operators jLVJ

L
V , j

L
VJ

R
V , j

R
VJ

L
V , and

jRVJ
R
V , as well as their possible combinations:

(1) cases with one vector operator: (I) jLVJ
L
V , (II) j

L
VJ

R
V ,

(III) jRVJ
L
V , and (IV) jRVJ

R
V ;

(2) cases with two vector operators: (V) jLVJ
L
V and jLVJ

R
V ,

(VI) jLVJ
L
V and jRVJ

L
V , (VII) j

L
VJ

L
V and jRVJ

R
V , (VIII)

jLVJ
R
V and jRVJ

L
V , (IX) j

L
VJ

R
V and jRVJ

R
V , and (X) jRVJ

L
V

and jRVJ
R
V ;

(3) cases with three vector operators: (XI) jLVJ
L
V , j

L
VJ

R
V ,

and jRVJ
L
V , (XII) j

L
VJ

L
V , j

L
VJ

R
V , and jRVJ

R
V , (XIII) j

L
VJ

L
V ,

jRVJ
L
V , and jRVJ

R
V , and (XIV) jLVJ

R
V , j

R
VJ

L
V , and jRVJ

R
V ;

(4) cases with four vector operators: (XV) jLVJ
L
V , j

L
VJ

R
V ,

jRVJ
L
V , and jRVJ

R
V .

In addition, we will neglect contributions from the scalar
and tensor operators in these NP models, due to the
stringent constraints on them from the leptonic D-meson
decays [82,110]. Note that we here have made an implicit
assumption that the WCs of the scalar and tensor operators
are connected in the NP models through, say, Eq. (5) as in
the LQ models S1 and R2. Otherwise, only contributions
from the scalar operators can be neglected, and our analyses
must be modified accordingly.
For a simple demonstration, let us consider as a bench-

mark the beam energy E ¼ 3 GeV (see the green line in
Fig. 1 for the corresponding Q2

max) and compute Ae
L, A

p
L,

Aep
L3, and A

ep
L6 in these different cases. Clearly, A

e
L and Ap

L in
the cases I–IV are independent of the WCs, since only one
operator is involved, whereas those in other cases involving
multiple vector operators do depend on their associated
WCs. We present in Table V the resulting Ae

L and Ap
L for the

cases I–IV. By contrast, Ae
L and Ap

L in other cases can take
any number within the range ½−1; 1�. Here, we expect that

they should not be close to �1 in general—an exception
can happen if an extreme hierarchy exists among the WCs.
Thus, one can separate the four cases I–IV from others by
measuring Ae

L and Ap
L. Meanwhile, based on the combined

results of Ae
L and Ap

L, these four cases are already disen-
tangled from each other as well.
To further disentangle the remaining 11 cases, one can

exploit Aep
L3 and Aep

L6. The complete results for the cases V–
XV are presented in Table VI, where the constant c1,
depending on jgLLV j2, jgLRV j2, and Re½gLLV gLR�V �, is within
½−1; 1�, but not expected to be close to�1 or 0 in general. It
is now clear from Table VI that measurements of Aep

L3 ¼
1; 0;−1; c1 can divide the remaining 11 cases into four
subgroups, i.e., (VIII, IX, XIV), (X), (VI, VII, XIII), and
(V, XI, XII, XV), accordingly. Except the already distin-
guished case X with Aep

L3 ¼ 0, all the other subgroups
consist of at least three cases, which can be further
disentangled by measurements of Aep

L6 ¼ 1; 0;−1; c1.
Thus, all the 15 scenarios are fully identified by measuring
the four spin asymmetries, Ae

L, A
p
L, A

ep
L3, and Aep

L6. It is also
interesting to note that certain repeated entries appear in
both Tables VI and V. This is because the electron
polarization in Aep

L3 (Aep
L6) remains intact, so that the

operators it automatically selects in the cases V–XV can
be identical to the ones in the cases I–IV. Let us illustrate
this point with the case VI. Although the two operators
jLVJ

L
V and jRVJ

L
V emerge in this case, only the former

contributes to Aep
L3, rendering Aep

L3 to be equivalent to Ap
L

in the case I.
We are now ready to apply the model-independent

results to the seven concrete LQ models listed in
Table I, S1, R2, S3, U3, Ṽ2, Ũ1, and V2, which correspond
to the cases VII, VIII, I, I, II, IV, and III, respectively.
Obviously, all the LQ models can be fully identified by the
four spin asymmetries, except S3 and U3 since they
generate the same effective operator (see Table II). Thus,
other distinct features between them are necessary to
distinguish S3 from U3. To this end, an interesting feature
is that S3 can mediate proton decays at tree level while U3

does not [111–113]. Given the strong constraints from
proton stability (or generally, the jΔBj ¼ 1 processes) [94],
the LQ model S3 could be, therefore, severely constrained,
if no additional symmetry is invoked.
Thus far, our analyses have been carried out with the

polarized total cross sections. It may be, however, more
convenient to work with the polarized differential cross
sections. As can be inferred from the discussions above, Ae

L

TABLE V. Spin asymmetries Ae
L and Ap

L in the cases I–IV.

I II III IV

Ae
L 1 1 −1 −1

Ap
L −0.998 0.975 −0.975 0.998
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in the cases I–IV is always equal to �1, irrespective of
whether it is formulated in terms of the total or the
differential cross sections. Besides, the repeated entries
in Tables V and VI can be actually understood from Ap

L,
which in turn indicates that only Ap

L in the cases I–IV needs
a special attention—certainly, c1 changes as well, but is
expected to be still not too close to 0 or�1. In what follows,
we will thus explore how Ap

L and its associated polarized
differential cross sections vary within the available kin-
ematic region in the cases I–IV.
As shown in the left two panels of Fig. 2, when the

proton target is left-handed polarized [blue (dashed)
curves], the longitudinally polarized differential cross
section dσ0=ðdQ2jgj2Þ is severely suppressed in the cases
I and III. When the proton target is right-handed polarized
[red (solid) curves], on the other hand, dσ0=ðdQ2jgj2Þ is
roughly a constant in the case I but decreases rapidly in the
case III asQ2 approachesQ2

max. The same observations also
hold for the cases II and IV but with the polarization
direction of the proton target flipped, as shown in the right
two panels of Fig. 2. Based on these observations, two
conclusions can be drawn immediately. First, Ap

L in the case
I (IV) remains −1 (þ1) within the whole available
kinematic region ½Q2

min; Q
2
max�. Second, Ap

L in the case II
(III) remains þ1 (−1) within all the available kinematic

regions except that close to Q2
max. Thus, to avoid any

misidentification, measuring Ap
L at the low-Q2 region is

more favored; besides, more events are expected in the very
same region.
Finally, we explore the dependence of Ap

L on the electron
beam energy E. To this end, let us take here the case II as an
example, due to the distinct feature of its longitudinally
polarized differential cross sections (cf. the upper-right plot
of Fig. 2). As shown in the upper plot of Fig. 3, the
differential cross section dσ̄=ðdQ2jgLRV j2Þ, though being
enhanced by a small amount with the increase of E, still
remains severely suppressed, when the proton target is
right-handed polarized (pþ

L ). For the scattering process
with a left-handed polarized proton target (p−

L), on the other
hand, its longitudinally polarized differential cross section
is enhanced as well along with the increase of E, but its
characteristically decreasing trend with the increase of Q2

persists (see the lower plot of Fig. 3). As a consequence, the
conclusions drawn above about the behaviors of the
observable Ap

L in the case II, as well as in the cases I,
III, and IV, always hold.

TABLE VI. Spin asymmetries Aep
L3 and Aep

L6 in the cases V–XV, where the constant c1 takes any value within the
range ½−1; 1�, but is not expected to be close to �1 or 0 in general; see text for details.

V VI VII VIII IX X XI XII XIII XIV XV

Aep
L3 c1 −0.998 −0.998 0.975 0.975 0 c1 c1 −0.998 0.975 c1

Aep
L6 0 0.975 −0.998 0.975 −0.998 c1 0.975 −0.998 c1 c1 c1

FIG. 2. Longitudinally polarized differential cross sections
dσ0=ðdQ2jgj2Þ in the cases I–IV, with dσ0 ¼ ð256πm2

pE2Þdσ�p .
Red (solid) and blue (dashed) curves are obtained with a right-
and a left-handed polarized proton target, respectively.

FIG. 3. Longitudinally polarized differential cross sections
dσ̄=ðdQ2jgLLV j2Þ in the case II, with three different electron beam
energies, where dσ̄ ¼ ð256πm2

pÞdσ�p ¼ dσ0=E2.
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C. Identification of the scalar and vector
contributions in the LQ models

In the analyses above, we have neglected contributions to
the polarized scattering processes from the scalar and
tensor operators because they are severely constrained
by the leptonic D-meson decays [82,110]. Nevertheless,
it is still interesting to ask if the constraints on both the
vector and scalar contributions reach a similar level in the
future—so that both matter—is it possible to fully distin-
guish them through the low-energy polarized scattering
processes e−p → e−Λc in the LQ models? In what follows,
we will demonstrate explicitly that the answer is yes for
certain LQ models.
As shown in Table II, there are only two LQ models, S1

and R2, that can generate both scalar and vector operators—
since contributions from the tensor and scalar operators
are connected through Eq. (5) at high energy or through
Eq. (7) at low energy, we will present them universally in
terms of the scalar ones. Let us start with the model R2. The
resulting differential cross sections dσ0=ðdQ2jgj2Þ of the
longitudinally polarized scattering processes mediated by
the operators jLVJ

R
V , j

R
VJ

L
V , j

L
SJ

L
S (jLTJ

L
T), and j

R
SJ

R
S (jRTJ

R
T ) are

shown in Fig. 4. It can be seen that if the electron beam is
left-handed polarized, only the operators jLVJ

R
V and jLSJ

L
S

(jLTJ
L
T) contribute to the polarized scattering processes, with

the corresponding differential cross sections dσ0=ðdQ2jgj2Þ
depicted by the two plots on the left; if the electron beam
is right-handed polarized, on the other hand, only the
operators jRVJ

L
V and jRSJ

R
S (jRTJ

R
T ) are at work, whose

dσ0=ðdQ2jgj2Þ are presented by the two plots on the right.
From the two plots on the left of Fig. 4, one can see that if

the proton target is left-handed polarized [blue (dashed)
curves], contribution from the operator jLSJ

L
S (jLTJ

L
T ) can be

neglected, and thus, one actually probes the contribution
from the operator jLVJ

R
V. Then, flipping the polarization

direction of the proton target but keeping the electron beam
intact, one probes the contribution from the operator jLSJ

L
S

(jLTJ
L
T) since the contribution from the operator, jLVJ

R
V in this

case, becomes trivial. In this way, the contributions from
the two operators jLSJ

L
S (jLTJ

L
T) and jLVJ

R
V are distinguished

from each other. Following the same procedure but with the
polarization direction of the electron beam flipped, one can
also identify the contributions from the other two operators
jRSJ

R
S (jRTJ

R
T ) and jRVJ

L
V efficiently.

Such a scheme, however, cannot be applied to the LQ
model S1. This is due to the observation that both the
operators jLVJ

L
V and jLSJ

L
S (jLTJ

L
T ) contribute significantly to

the longitudinally polarized scattering process with e−Lp
þ
L

[red (solid) curves], as can be inferred from Figs. 2 and 4.
On the other hand, both of their contributions become
trivial, when the electron beam and proton target are both
left-handed polarized [blue (dashed) curves].
Clearly, this scheme also fails if an extreme hierarchy

arises between the scalar (tensor) and vector contributions.
Unfortunately, the current experimental constraints on them
seem to imply this [82]. Thus, to ensure this procedure to be
at work, it would be better that the constraints on both the
vector and scalar contributions can reach a similar level in
the future.

IV. TRANSVERSELY POLARIZED SCATTERING
PROCESSES e− p → e −Λc

We now turn to discussing the low-energy scattering
processes e−p → e−Λc with the proton target trans-
versely polarized—the electron beam will always be
assumed to be longitudinally polarized throughout this
work. As explained already in Sec. II, the polarization
vector ξμp of the transversely polarized proton depends on β,
the azimuthal angle between the proton spin direction and
the x axis. In what follows, we will, for simplicity, set that
the proton target is polarized along the x axis, so that
β ¼ 0; π, and ξμp ¼ �ð0; 1; 0; 0Þ accordingly.

A. Observable analyses

Similar to the longitudinally polarized case presented in
the previous section, it is also more convenient to discuss the
double-spin polarized cross sections σ̃ab with a; b ¼ �,
since Ap

T in Eq. (13) and Aep
T1−T6 in Eqs. (16) and (17) are

all built in terms of them. In the framework of the general
low-energy effective Lagrangian Leff , σ̃ab can be conven-
iently defined in the same way as for σab in Eq. (19), except

that jM0j2 should be now replaced by jfMj2, where the latter
represents the ξp-dependent reduced amplitude squared.
Thus, we will dive into the reduced amplitudes squared
immediately.
Compared with the reduced amplitudes squared in

Table IV, these in Table VII exhibit certain similarities.
For instance, the ξp-independent parts of the reduced

FIG. 4. Longitudinally polarized differential cross sections
dσ0=ðdQ2jgj2Þ mediated by the four effective operators in the
LQ model R2, with dσ0 ¼ ð256πm2

pE2Þdσ�p .
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amplitudes squared induced by the operators jLVJ
L
V and

jRVJ
R
V are the same, whereas the ξp-dependent parts are

opposite in sign, rendering that the observable Ap
T induced

by the operator jLVJ
L
V is opposite in sign to that by the

operator jRVJ
R
V. The same conclusion also applies to other

pairs, like (jLVJ
R
V , j

R
VJ

L
V), (j

L
SJ

L
S , j

R
SJ

R
S ), and (jLTJ

L
T , j

R
TJ

R
T ).

Besides, the ξp-independent parts induced by the same
operators in both cases are identical to each other, due to
σae ¼ ðσaþ þ σa−Þ=2 ¼ ðσ̃aþ þ σ̃a−Þ=2, with a ¼ �:
Of course, there exist some differences between the two

cases. In contrast to the longitudinally polarized case, the ξp-
dependent reduced amplitudes squared induced by the
interference between two different operators, e.g., (jLVJ

L
V ,

jLVJ
R
V), (j

R
VJ

R
V , j

R
VJ

L
V), (j

L
SJ

L
S , j

L
TJ

L
T ), and (jRSJ

R
S , j

R
TJ

R
T ), are

complex—though the ξp-independent ones are still real.
Such a distinct feature leads to an interesting application, as
will be shown later. Another difference is that jM̃j2 depends
explicitly on the trigonometric functions of ϕ, the azimuthal
angle between the direction of the scattered electrons and the
x axis in the lab frame, whereas jM0j2 does not. This means
that Ap

T and the other six spin asymmetries, as well as their
associated transversely polarized differential cross sections,
all depend on ϕ as well—here, we have implicitly concen-
trated on the differential cross sections, since integrating over
ϕ will obliterate the polarization effects.
With the reduced amplitudes squared (or the differential

cross sections) at hand, we can now explore the prospect for
identifying NP models by using the low-energy trans-
versely polarized ep scattering processes. Following the
same procedure as in the longitudinally polarized case,

we first compute Ap
T induced by the vector operators jLVJ

L
V ,

jLVJ
R
V , j

R
VJ

L
V , and jRVJ

R
V (i.e., the cases I–IV) with the bench-

mark E ¼ 3 GeV. Due to the interesting relations among Ap
T

induced by the four vector operators, only two spin asym-
metries are independent. Inwhat follows,wewill thus take the
operators jLVJ

L
V (case I) and j

L
VJ

R
V (case II) for an illustration. It

should be noted that contributions from the scalar and tensor
operators will not be considered due to the same reason as
explained in the longitudinally polarized case.
The variations of Ap

T in the cases I and II with respect to
Q2 are shown, respectively, by the upper and the lower plot
in the left panel of Fig. 5. From these two figures, one can

TABLE VII. Nonzero reduced amplitudes squared of the polarized scattering processes with e−Lp
−
T (the upper two

tables) and eþLp
−
T (the lower two tables). Flipping the sign of the ξp-dependent jfMj2α−β yields the corresponding

amplitudes squared for the processes with e−Lp
þ
T and eþLp

þ
T .

ðgLLV Þ� ðgLRV Þ�
gLLV jMj2VLL−VLL

þ jfMj2VLL−VLL
jMj2VLL−VLR

þ jfMj2VLL−VLR

gLRV jMj2VLL−VLR
þ jfMj2�VLL−VLR

jMj2VLR−VLR
þ jfMj2VLR−VLR

ðgLS Þ� ðgLTÞ�
gLS jMj2SL−SL þ jfMj2SL−SL jMj2SL−TL

þ jfMj2SL−TL

gLT jMj2SL−TL
þ jfMj2�SL−TL

jMj2TL−TL
þ jfMj2TL−TL

ðgRRV Þ� ðgRLV Þ�
gRRV jMj2VLL−VLL

− jfMj2VLL−VLL
jMj2VLL−VLR

− jfMj2�VLL−VLR

gRLV jMj2VLL−VLR
− jfMj2VLL−VLR

jMj2VLR−VLR
− jfMj2VLR−VLR

ðgRS Þ� ðgRTÞ�
gRS jMj2SL−SL − jfMj2SL−SL jMj2SL−TL

− jfMj2�SL−TL

gRT jMj2SL−TL
− jfMj2SL−TL

jMj2TL−TL
− jfMj2TL−TL

FIG. 5. Transversely polarized spin asymmetry Ap
T (the left

panel) and differential cross sections dσ̃=ðdQ2jgj2Þ (the right
panel) for the operators jLVJ

L
V (the upper plots) and jLVJ

R
V (the

lower plots), with dσ̃ ¼ ð256πm2
pE2Þdσ̃�p .
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immediately make two interesting observations. First, Ap
T in

both cases exhibits a periodic pattern with respect to ϕ. This
is because the ξp-dependent jM̃j2 is proportional to cosϕ,
as shown in Appendix D. Such a periodic characteristic
indicates that one cannot explore Ap

T by exploiting the
polarized total cross sections, as already pointed out above.
Second, Ap

T in both cases are generally suppressed, par-
ticularly in the former. It can be seen that jAp

T j is always
trivial, practically irrespective of ϕ and Q2 in the case I,
while is below 0.5 in most of the available kinematic region
in the case II, even with ϕ ¼ 0; π where the polarization
effects are maximal.
Given that the polarization effects are far less prominent

in the transversely polarized ep scattering processes in the
cases I–IV, the mechanism previously used to distinguish
the NP models (the cases I–XV) becomes less applicable
now. One may argue about this by pointing out that jAp

T j in
the case II can reach a relatively high value in the high-Q2

region. However, such a region could easily exceed the
upper limit of Q2, where the theoretical framework fails—
particularly for the high electron beam energy E [82].
Indeed, as shown in Fig. 6, high jAp

T j can no longer be
reached in the available Q2 region as E increases.
Furthermore, the transversely polarized differential cross
sections dσ̃0 decrease rapidly as Q2 increases, as explicitly
demonstrated (especially the lower plot) in the right panel
of Fig. 5. Thus, measuring a nonzero Ap

T becomes very
demanding, which, nevertheless, makes the mechanism less
appealing to this work.

B. Direct probe of the imaginary part of the WCs

Although the transversely polarized ep scattering proc-
esses may be less convenient to distinguish the NP models,
they can directly probe into the imaginary part of the WCs,
which is currently not possible (or at least not optimal) for
the rare FCNC decays of charmed hadrons, the resonant

searches in the high-pT dilepton invariant mass tails as well
as the low-energy unpolarized (and longitudinally polar-
ized) ep scattering processes, since their associated
reduced amplitudes squared are all real.
As mentioned before and also explicitly shown in

Appendix D, the ξp-dependent reduced amplitudes squared
in Table VII induced by the interference between a pair
of different operators, (jLVJ

L
V , j

L
VJ

R
V), (j

R
VJ

R
V , j

R
VJ

L
V), (j

L
SJ

L
S ,

jLTJ
L
T ), and (jRSJ

R
S , jRTJ

R
T ), consist of both the real and

imaginary parts, with the former proportional to cosϕ,
while the latter to sinϕ. To be as general as possible, we
will consider the transversely polarized ep scattering
processes in the framework of the general low-energy
effective Lagrangian Leff but with contributions from the
scalar operators neglected due to the stringent constraints
from the leptonic D-meson decays [82,110].
We will first consider the polarized ep scattering process

with e−Lp
−
T . Its amplitude squared jMj2 can be written as

jMj2 ¼ jMVLL
j2 þ jMVLR

j2 þ jMTL
j2

þMVLL
M�

VLR
þM�

VLL
MVLR

; ð20Þ

where the first three noninterference terms are given,
respectively, by

jMVLL
j2 ¼ jgLLV j2ð2jMj2VLL−VLL

þ jM̃j2VLL−VLL
Þ;

jMVLR
j2 ¼ jgLRV j2ð2jMj2VLR−VLR

þ jM̃j2VLR−VLR
Þ;

jMTL
j2 ¼ jgLT j2ð2jMj2TL−TL

þ jM̃j2TL−TL
Þ; ð21Þ

which depend on q2 and cosϕ. The last two interference
terms, on the other hand, can be written as

MVLL
M�

VLR
þM�

VLL
MVLR

¼ 2Re½gLLV gLR�V �A − 2Im½gLLV gLR�V �A0 sinϕ; ð22Þ

where A, which consists of 2 ¯jMj2VLL−VLR
and the real part

of jM̃j2VLL−VLR
, is also dependent on q2 and cosϕ, whereas

A0, the imaginary part of jM̃j2VLL−VLR
with sinϕ being

factored out, depends exclusively on q2. Focusing on the
small ϕ region, we can then write the amplitude squared
jMj2 approximately as

jMj2 ≈A1ðq2Þ −A2ðq2Þϕ; ð23Þ

with

A1 ¼ jMVLL
j2 þ jMVLR

j2 þ jMTL
j2 þ 2Re½gLLV gLR�V �A;

A2 ¼ 2Im½gLLV gLR�V �A0; ð24Þ

whereA1;2 depend only on q2 due to cosϕ ≈ 1. Now it can
be seen that measuring A2, the slope of jMj2 in Eq. (23),

FIG. 6. Transversely polarized spin asymmetry Ap
T in the case II

with different electron beam energies.
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directly probes into the imaginary part of gLLV gLR�V .
Similarly, the imaginary part of gRRV gRL�V can be measured
by flipping the polarization direction of the electron beam.
Certainly, the same procedure can be again applied to
gLLV gLR�V and gRRV gRL�V after flipping the polarization direc-
tion of the proton target. This is, however, unnecessary,
since neither A1 norA2 will change too much, as indicated
by Fig. 5, and only the sign before A2 in Eq. (23) will be
flipped.
Given that the differential cross section d2σ̃=dQ2dϕ can

be conveniently connected to jMj2 through d2σ̃=dQ2dϕ ¼
jMj2=ð128π2m2

pE2Þ (see Appendix B), we thus explore in
the following how the slopes A0 and A0=E2 vary with
respect to the kinematics Q2 and the beam energy E. It can
be seen from Fig. 7 that a relatively low Q2 is certainly
favored. In particular, Q2 ≈ 0.4 GeV2 and Q2 ≈ 1 GeV2

are the two best kinematic regimes to measure A0=E2 with
E ¼ 3 GeV and E ¼ 5, 8 GeV, respectively. It is also
interesting to note that increasing E will not be of as much
benefit to A0=E2 as to A0.
Let us finally conclude this section by making the

following comment. Since none of the LQ models, as
shown in Table II, can produce the interference between
two different vector operators, a clear nonzero measure-
ment of A0=E2 will certainly exclude all the LQ models,
unless at least two of them arise simultaneously in a
given model.

V. PROSPECT AND CONSTRAINTS

All the mechanisms proposed in the previous two
sections will be less appealing, if the polarized scattering

processes e−p → e−Λc cannot be observed at all. In this
section, we will show that, with our properly designed
experimental setups, very promising event rates associated
with the polarized scattering processes can be expected in
the LQ models. Even if, unfortunately, no event were
observed with the designed experimental setups in the
future, the polarized ep scattering processes would
still yield competitive constraints, compared with the
charmed-hadron weak decays and high-pT dilepton invari-
ant mass tails.

A. Experimental setups

We will consider the fixed-target polarized scattering
experiments. The event rate of the double-spin polarized
scattering process e⃗−p⃗ → e−Λc is given by [114,115]

dN
dt

¼ Laðσ0 þ hePeσe þ fhpPpσp þ fhehpPpPeσepÞ;
ð25Þ

where σ0 and σe;p;ep denote the spin-independent and the
spin-dependent cross sections of the process, respectively.
The luminosity L is given by L ¼ ILκρT, where I is the
beam intensity, and κ, L, and ρT are the packing factor, the
length, and the number density of the proton target,
respectively.2 For simplicity, the apparatus acceptance a
will be assumed to be 1 in our later analyses. Note that
heðpÞ ¼ �1 represent the right- and left-handed polarized
electron beam (proton target), with PeðpÞ denoting the
corresponding degree of polarization and f the dilution
factor of the target [108,116]. Based on Eq. (25), the event
rates of the single-spin polarized scattering processes,
e⃗−p → e−Λc and e−p⃗ → e−Λc, can be obtained straight-
forwardly; we refer the readers to Appendix B for further
details.
We now introduce the experimental setups designed for

the polarized ep scattering processes. Our desired longi-
tudinally polarized electron beam is required to have a
beam energy E ¼ 3.48 GeV, an intensity up to 100 μA,
and a polarization of 89.4% approximately; such a beam
has been used by the HAPPEX Collaboration at Jefferson
Laboratory (JLab) [99]. For the unpolarized proton target,
we choose a liquid hydrogen (LH) one with a density
ρ ¼ 71.3 × 10−3 g=cm3. Such a target has been utilized in
the Qweak experiment at JLab with a 3-kW cooling power
applied to break the target length limit induced by the
heating problem [86]. Applying the same cooling system to
our case, i.e., exposing the LH target to our desired electron
beam, we find that the maximal LH target length is about
70 cm. For the polarized proton target, on the other hand,
we favor the UVa/JLab polarized solid ammonia (SNH3)

FIG. 7. Slopes A0 and A0=E2 with respect to the kinematics Q2

and beam energy E, where both the electron beam and proton
target are left-handed polarized.

2Note that ρT ¼ ρ=mp, where ρ is the density of the proton
target.
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target, which has been extensively used in many experi-
ments at JLab (see, e.g., Refs. [117,118]). The target can be
polarized both longitudinally and transversely with its
polarization up to 80% [119]. Although it can only tolerate
a polarized beam of 10–100 nA at the moment, potential
upgrades of the Continuous Electron Beam Accelerator
Facility at JLab in the upcoming era indicate that a SNH3

target that can tolerate a much intense beam (I > 100 μA)
will be available [100]. For a simple event-rate estimation
of the polarized ep scattering processes, we here assume
that the same target parameters, i.e., its polarization and
packing factor, can be achieved in the future. We summa-
rize in Table VIII our preferred experimental parameters of
the proton targets for the low-energy polarized ep scatter-
ing processes.
To maximize the chances of observing the polarized ep

scattering processes, we have been thus far collecting proper
electron beams and proton targets that have been or will be
utilized in different experiments. However, it is interesting to
note that certain polarized scattering processes can alreadybe
conducted with the same beam and target as used in some
previous experiments. For instance, the polarized electron
beam and unpolarized LH target utilized by the HAPPEX
Collaboration [99] can also be used to detect the longitudi-
nally polarized e⃗−p → e−Λc process. In addition, if the
expected higher luminosity at JLab can be reached in the
upcoming era [100], it may be possible to explore other
polarized scattering processes at the same facility. There is
nonetheless a caveat here: besides the proper beams and
targets, a sophisticated detecting system for the produced
particles is also necessary. Especially for theΛc baryon, since
it is not easy to keep track of all its decay products, one may
focus only on one of its decay channels, such as Λc →
pK−πþ with its branching fraction of about 6.28% [94]. For
the corresponding detecting system, one may draw inspira-
tion from the recent measurements of the branching fraction
of Λc → pK−πþ through eþe− collisions (see, e.g.,
Refs. [120,121]).

B. Polarized e − p → e−Λc in the LQ models

With the aforementioned experimental setups, let us
first evaluate the modified total cross sections with the
degrees of beam and target polarizations, Pe;p, taken into
account, in the framework of the general low-energy
effective Lagrangian Leff .

We will start with the longitudinally polarized scattering
process e⃗−p → e−Λc. In the eþL case, the modified total
cross section reads

σþe ¼ f82.95jgRRV j2 þ 36.40jgRLV j2 þ 4.68Re½gRRV gRL�V �
þ 4.64jgLLV j2 þ 2.04jgLRV j2 þ 0.26Re½gLLV gLR�V �
þ 16.80jgRS j2 þ 0.94jgLS j2 þ 533.39jgRT j2
þ 29.85jgLT j2 − 109.42Re½gRSgR�T �
− 6.12Re½gLSgL�T �g × 10−4 GeV2; ð26Þ

while in the e−L case,

σ−e ¼ f82.95jgLLV j2 þ 36.40jgLRV j2 þ 4.68Re½gLLV gLR�V �
þ 4.64jgRRV j2 þ 2.04jgRLV j2 þ 0.26Re½gRRV gRL�V �
þ 16.80jgLS j2 þ 0.94jgRS j2 þ 533.39jgLT j2
þ 29.85jgRT j2 − 109.42Re½gLSgL�T �
− 6.12Re½gRSgR�T �g × 10−4 GeV2: ð27Þ

Note that the WCs associated with the operators involving
the lepton current jL (jR) appear in Eq. (26) [Eq. (27)] due
to the imperfect Pe, i.e., Pe ≠ 1.
For the longitudinally polarized scattering process

e−p⃗ → e−Λc, we have the modified total cross sections,

σþp ¼ f49.04jgLLV j2 þ 16.96jgLRV j2 þ 2.35Re½gLLV gLR�V �
þ 38.56jgRRV j2 þ 21.48jgRLV j2 þ 2.60Re½gRRV gRL�V �
þ 9.91jgLS j2 þ 7.83jgRS j2 þ 315.07jgLT j2
þ 248.17jgRT j2 − 64.81Re½gLSgL�T �
− 50.73Re½gRSgR�T �g × 10−4 GeV2;

σ−p ¼ f49.04jgRRV j2 þ 16.96jgRLV j2 þ 2.35Re½gRRV gRL�V �
þ 38.56jgLLV j2 þ 21.48jgLRV j2 þ 2.60Re½gLLV gLR�V �
þ 9.91jgRS j2 þ 7.83jgLS j2 þ 315.07jgRT j2
þ 248.17jgLT j2 − 64.81Re½gRSgR�T �
− 50.73Re½gLSgL�T �g × 10−4 GeV2; ð28Þ

in the cases of pþ
L and p−

L, respectively. It should be noted
that we have, for simplicity, used the experimental param-
eters (E and I) of the polarized electron beam to give a
simple estimation of this process, although an unpolarized
electron beam with similar E and I is already available and
has been utilized in the APEX experiment at JLab for
hunting sub-GeV dark vector bosons [83,84].
We also compute the modified total cross section of the

double-spin polarized scattering process e⃗−p⃗ → e−Λc. As
an illustration, let us consider the two sets of modified cross
sections, (σ−þ, σ−−) and (dσ̃−þ=dϕ, dσ̃−−=dϕ), which are
related to the measured double-spin asymmetries ðAep

L3Þexp

TABLE VIII. Experimental parameters of the proton targets for
the low-energy polarized ep scattering processes.

Packing
factor κ

Length L
(cm)

Density
ρðg=cm3Þ

Dilution
factor f

Polarization
Pp

LH 1 70 71.3 × 10−3 1 0
SNH3 0.5 6 0.917 0.15 80%
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and ðAep
T3Þexp, respectively. Numerically, the former two are

given by

σ−þ ¼ f92.88jgLLV j2 þ 32.13jgLRV j2 þ 4.44Re½gLLV gLR�V �
þ 4.09jgRRV j2 þ 2.28jgRLV j2 þ 0.27Re½gRRV gRL�V �
þ 18.77jgLS j2 þ 0.83jgRS j2 þ 596.74jgLT j2
þ 26.31jgRT j2 − 122.76Re½gLSgL�T �
− 5.38Re½gRSgR�T �g × 10−4 GeV2;

σ−− ¼ f73.03jgLLV j2 þ 40.68jgLRV j2 þ 4.91Re½gLLV gLR�V �
þ 5.20jgRRV j2 þ 1.80jgRLV j2 þ 0.25Re½gRRV gRL�V �
þ 14.83jgLS j2 þ 1.05jgRS j2 þ 470.04jgLT j2
þ 33.40jgRT j2 − 96.09Re½gLSgL�T �
− 6.87Re½gRSgR�T �g × 10−4 GeV2; ð29Þ

while the latter two read

dσ̃−þ

dϕ

����
ϕ¼0

¼ f13.20jgLLV j2 þ 5.73jgLRV j2 þ 0.74jgRRV j2

þ 0.33jgRLV j2 þ 1.76Re½gLLV gLR�V �
− 0.02Re½gRRV gRL�V � þ 2.64jgLS j2 þ 0.15jgRS j2
þ 85.06jgLT j2 þ 4.74jgRT j2 − 17.04Re½gLSgL�T �
− 1.00Re½gRSgR�T �g × 10−4 GeV2;

dσ̃−−

dϕ

����
ϕ¼0

¼ f13.20jgLLV j2 þ 5.86jgLRV j2 þ 0.74jgRRV j2

þ 0.32jgRLV j2 − 0.27Re½gLLV gLR�V �
þ 0.10Re½gRRV gRL�V � þ 2.71jgLS j2 þ 0.15jgRS j2
þ 84.72jgLT j2 þ 4.76jgRT j2 − 17.79Re½gLSgL�T �
− 0.95Re½gRSgR�T �g × 10−4 GeV2; ð30Þ

where the angle ϕ has been set to 0 for simplicity.
Before moving on to the event-rate estimation in differ-

ent LQ models, as we did in Ref. [82], let us briefly
summarize in Table IX the most relevant and stringent
constraints on the effective coefficients ½g�ee;cu from the
charmed-hadron weak decays and the high-pT dilepton
invariant mass tails. It can be seen that contributions from
the scalar operators are stringently constrained by the
measurement of the branching ratio BðD0 → eþe−Þ, which,
through the low-energyWC relation in Eq. (7), in turn leads
to severe constraints on the tensor contributions in the LQ
models S1 and R2, the only two LQ models in Table I that
can generate nonvanishing scalar and tensor effective
operators. We thus neglect these contributions and focus
on the vector ones, whose most severe upper bounds clearly
come from the high-pT dilepton invariant mass tails, as
shown in Table IX.

Taking the upper limits on gV from Table IX, focusing on
the decay channel Λc → pK−πþ, and supposing a run time
of 1 year, we now evaluate the expected event rates of the
various polarized ep scattering processes in units of
number per year (N/yr) in the LQ models. The final results
are presented in Table X, from which the following
interesting observations can be made. First, the expected
ðAe

LÞexp and ðAp
LÞexp in the models S1 and R2 will be equal

to 0, because the same upper limits on gLLV and gRRV have
been taken. Due to the same reason, the expected event rate
of the single-spin polarized scattering process with eþL (pþ

L )
in the model V2 is identical to that with e−L (p−

L) in the
model Ṽ2 [see Eqs. (26), (27), and (28)]. Second, identical
event rates will always be expected in the LQ models S3
and U3 for any polarized scattering processes listed in
Table X, since these two models are indistinguishable from
each other in this work. Third, processes with e−Lp

þ
T and

e−Lp
−
T will have the same (or very close) event rates, mainly

because the ξp-dependent jM̃j2 is much smaller than the

ξp-independent ¯jMj2, as has been explicitly demonstrated
in Fig. 5. Such an observation once again demonstrates that
it becomes less applicable to use the transversely polarized
ep scattering processes to distinguish the NP models.

TABLE IX. Summary of the upper bounds on the WCs ½g�ee;cu
at 90% confidence level from the (semi)leptonicD-meson decays
and the high-pT dilepton invariant mass tails in the framework of
the general low-energy effective Lagrangian (for more details, see
Ref. [82] and references therein). Note that we have factored out
the common factor G2

Fα
2
e=π2. The entries with “n” mean that the

processes in the first column put no constraints on the corre-
sponding WCs.

Processes jgLL;RRV j2 jgLR;RLV j2 jgL;RS j2 jgL;RT j2
D0 → eþe− [110] n n 0.062 n
Dþ → πþeþe− [76] 14 14 6.3 13
ppðqq̄Þ → eþe− [122] 3.6 3.6 22 0.57

TABLE X. Summary of event-rate estimations for the polarized
e−p → e−Λcð→ pK−πþÞ scattering processes in different LQ
models, where the event rate is given in units of N/yr, and Δϕ ¼
1 has been taken for the cases e−Lp

þ
T and e−Lp

−
T .

S1 S3 R2 U3 Ũ1 V2 Ṽ2

eþL 33.41 1.76 14.70 1.76 31.65 13.88 0.75
e−L 33.41 31.65 14.70 31.65 1.76 0.75 13.88
pþ
L 15.00 10.30 8.10 10.30 8.10 4.52 3.58

p−
L 15.00 8.10 8.10 8.10 10.30 3.58 4.52

e−Lp
þ
L 20.41 19.53 7.22 19.53 0.88 0.50 6.78

e−Lp
−
L 16.45 15.39 8.92 15.39 1.07 0.38 8.54

e−Lp
þ
T 2.95 2.76 1.26 2.76 0.13 0.06 1.19

e−Lp
−
T 2.95 2.76 1.32 2.76 0.13 0.06 1.26
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C. Competitive constraints from the polarized
scattering process e⃗− p → e −Λc

The various event rates in Table X are what one can
expect in the best scenario because they are just carried out
with the currently available upper limits of the WCs. Thus,
it is still possible that no event of the polarized ep scattering
processes is observed with our properly designed exper-
imental setups in the future. In what follows, we will show
that, even in such a worst-case scenario, investigating
experimentally the various polarized ep scattering proc-
esses in the future will not be in vain.
From the numerical coefficients of the various WCs g in

Eqs. (26)–(30), one can expect that the polarized scattering
process e⃗−p → e−Λc with the designed experimental set-
ups will set the most severe constraints on them. Thus, let
us concentrate on this process. Assuming that only one WC
contributes to the scattering process at a time and the
produced Λc is solely detected through the decay channel
Λc → pK−πþ, we obtain the resulting constraints on the
WCs g in Table XI with the 100% detecting efficiency of
the final particles and the run time of 1 yr. Note that the
constraints on jgRRV j, jgRLV j, jgRS j, and jgRT j in the e−L case have
not been given, mainly because their contributions are
much smaller in comparison with those from jgLLV j, jgLRV j,
jgLS j, and jgLT j. Besides, the presence of jgRRV j, jgRLV j, jgRS j,
and jgRT j in the e−L case, as has been pointed out before,
results from Pe ≠ 1 and is expected to disappear as Pe → 1.
The same arguments have been applied to the eþL case too.
From the numerical results presented in Tables XI and

IX, it can be seen that, compared with other processes
except the leptonic D-meson decay, significant improve-
ments in constraining the effective WCs can be made
through the low-energy polarized scattering process
e⃗−p → e−Λc, even by assuming one specific decay channel
Λc → pK−πþ. This also indicates that the polarized scat-
tering processes can provide a further complementarity to
the charmed-hadron weak decays and the high-pT dilepton
invariant mass tails. It should be, however, mentioned that
our results can be strengthened, if more decay channels of
the Λc baryon are considered. On the other hand, these
observations would be weakened by the non-100%

detecting efficiency of the final particles and by the various
uncertainties, such as the theoretical (both statistical and
systematic) ones of the Λc → p form factors estimated by
the lattice QCD calculations [65].
Let us conclude this section by pointing out another merit

of the low-energy polarized ep scattering processes. As
shown in Table II, two pairs of effective vector operators,
(jLVJ

L
V , j

R
VJ

R
V) and (jLVJ

R
V , j

R
VJ

L
V), are generated in the LQ

modes S1 and R2, respectively. When setting constraints on
the corresponding effectiveWCs g from the charmed-hadron
weak decays, the high-pT dilepton invariant mass tails, as
well as the unpolarized ep scattering processes [82], one
meets the following constraining formulas:

ajgLLV j2 þ bjgRRV j2 ≤ c; a0jgLRV j2 þ b0jgRLV j2 ≤ c0; ð31Þ

for the LQ models S1 and R2, respectively. Here, contribu-
tions from the scalar and tensor operators have been
neglected, and the nonzero constants a, b, c, a0, b0, and c0
are in general distinct for different processes. It is interesting
to note that a ¼ b and a0 ¼ b0 always hold for the charmed-
hadron weak decays and the high-pT dilepton invariant mass
tails, while a ≠ b and a0 ≠ b0 for the unpolarized ep
scattering processes [82]. Now it is clear from Eq. (31) that
setting constraints on the individual WCs gV from these
processes becomes very nontrivial without adopting any
special treatments—the most common one is probably by
saturating the process with one nonvanishing WC at a time.
For the process e⃗−p → e−Λc, on the other hand, such a
treatment becomes not necessary, since only one gV appears
in each constraining formula in Eq. (31). Certainly, small b
and b0 do appear in practice due to Pe ≠ 1, but can be
reasonably neglected, after taking into account the currently
available high degree of the electron beam polarization [99].

VI. CONCLUSION

In this paper, we have investigated the potential for
searching and identifying the LQ effects in the charm sector
through the low-energy polarized scattering processes
e−p → e−Λc. Specifically, we have considered the single-
spin polarized scattering processes, e⃗−p → e−Λc and
e−p⃗ → e−Λc, as well as the double-spin polarized one
e⃗−p⃗ → e−Λc. Based on these polarized processes, together
with their associated polarized cross sections, we have
defined several spin asymmetries, which are found to be
very efficient in disentangling the different LQ models from
each other.
Focusing firstly on the longitudinal polarized scattering

processes, we have shown in an almost model-independent
way that the 15 NP scenarios, including the seven concrete
LQ models, can be effectively disentangled from each other
by measuring the 4 spin asymmetries, Ae

L, A
p
L, A

ep
L3, and

Aep
L6. To be thorough, we have also examined this mecha-

nism by considering the polarized differential cross sec-
tions and exploring how these spin asymmetries behave
with respect to the electron beam energy E and the

TABLE XI. Constraints on the WCs ½g�ee;cu from the polarized
scattering processes e⃗−p → e−Λcð→ pK−πþÞ in the framework
of the general low-energy effective Lagrangian. The entries with
“n” mean that the processes with the electron beam polarization
specified by the first column set less interesting constraints on the
corresponding WCs than from those with an opposite electron
beam polarization. Same as in Table IX, the common factor
G2

Fα
2
e=π2 has been factored out as well.

jgLLV j2 jgRRV j2 jgLRV j2 jgRLV j2 jgLS j2 jgRS j2 jgLT j2 jgRT j2
e−L 0.111 n 0.255 n 0.557 n 0.016 n
eþL n 0.111 n 0.255 n 0.557 n 0.016
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kinematics Q2. It is found that, to make the procedure most
efficient, both the low Q2 and the high E regime are
favored. Besides this appealing application, we have
discovered that the scalar (tensor) and vector contributions
in the LQ model R2 can be distinguished through the
longitudinally polarized scattering processes as well.
We have then investigated the transversely polarized

scattering processes in various aspects. In contrast to the
longitudinal case, it would be very challenging to identify
the NP models through these transversely polarized scat-
tering processes, mainly because the polarization effects are
far less prominent. Far from being in vain, however,
measurements of these transversely polarized scattering
processes offer us a unique opportunity to probe directly
into the imaginary part of the effective WCs.
Given that all the mechanisms we have proposed are

based on the premise that the LQ signals can be detected,
we have finally performed a simple event-rate estimation
for all the polarized scattering processes with the properly
designed experimental setups, demonstrating that promis-
ing even rates can be expected for these processes. On the
other hand, even in the worst-case scenario—no LQ signals
are observed at all—we have shown in a model-indepen-
dent way that the low-energy polarized scattering processes
can provide more competitive constraints, in comparison
with the charmed-hadron weak decays and the high-pT
dilepton invariant mass tails. Furthermore, we have pointed
out that, by maneuvering the electron beam polarization in
the process e⃗−p → e−Λc, one can directly set constraints
on the WCs gV in the LQ models S1 and R2, which, by
contrast, will be tricky for other processes without taking
any special treatments.
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APPENDIX A: DEFINITIONS AND
PARAMETRIZATION OF THE Λc → p

FORM FACTORS

The form factors for Λc → p transition can be conven-
iently parametrized in the helicity basis [65,104,105].

For the vector and axial-vector currents, their hadronic
matrix elements are defined, respectively, by

hNþðp; sÞjūγμcjΛcðp0; s0Þi

¼ ūNðp; sÞ
�
f0ðq2ÞðmΛc

−mNÞ
qμ

q2

þ fþðq2Þ
mΛc

þmN

sþ

�
p0μ þ pμ − ðm2

Λc
−m2

NÞ
qμ

q2

�

þ f⊥ðq2Þ
�
γμ −

2mN

sþ
p0μ −

2mΛc

sþ
pμ

��
uΛc

ðp0; s0Þ;

ðA1Þ
and

hNþðp; sÞjūγμγ5cjΛcðp0; s0Þi

¼ −ūNðp; sÞγ5
�
g0ðq2ÞðmΛc

þmNÞ
qμ

q2

þ gþðq2Þ
mΛc

−mN

s−

�
p0μ þ pμ − ðm2

Λc
−m2

NÞ
qμ

q2

�

þ g⊥ðq2Þ
�
γμ þ 2mN

s−
p0μ −

2mΛc

s−
pμ

��
uΛc

ðp0; s0Þ;

ðA2Þ
where q ¼ p0 − p and s� ¼ ðmΛc

�mNÞ2 − q2. Note that
we have denoted the proton by Nþ instead of p to avoid
possible confusion with the proton’s momentum. From
Eqs. (A1) and (A2), we can obtain the hadronic matrix
elements of the scalar and pseudoscalar currents through
the equation of motion,

hNþðp; sÞjūcjΛcðp0; s0Þi

¼ ðmΛc
−mNÞ

mc −mu
f0ðq2ÞūNðp; sÞuΛc

ðp0; s0Þ; ðA3Þ

hNþðp; sÞjūγ5cjΛcðp0; s0Þi

¼ ðmΛc
þmNÞ

mc þmu
g0ðq2ÞūNðp; sÞγ5uΛc

ðp0; s0Þ; ðA4Þ

where muðcÞ denotes the uðcÞ-quark running mass. Finally,
the hadronic matrix element for the tensor current is
given by

hNþðp; sÞjūiσμνcjΛcðp0; s0Þi ¼ ūNðp;sÞ
�
2hþ

p0
μpν −p0

νpμ

sþ
þ h⊥

�
mΛc

þmN

q2
ðqμγν − qνγμÞ− 2

�
1

q2
þ 1

sþ

�
ðp0

μpν −p0
νpμÞ

�

þ h̃þ

�
iσμν −

2

s−
½mΛc

ðpμγν −pνγμÞ−mNðp0
μγν −p0

νγμÞ þp0
μpν −p0

νpμ�
�

þ h̃⊥
mΛc

−mN

q2s−
ððm2

Λc
−m2

N − q2Þðγμp0
ν − γνp0

μÞ− ðm2
Λc

−m2
N þ q2Þðγμpν − γνpμÞ

þ 2ðmΛc
−mNÞðp0

μpν −p0
νpμÞÞ�uΛc

ðp0; s0Þ; ðA5Þ
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where σμν ¼ i½γμ; γν�=2. These form factors satisfy the end
point relations,

fþð0Þ ¼ f0ð0Þ; gþð0Þ ¼ g0ð0Þ;
gþðq2maxÞ ¼ g⊥ðq2maxÞ; h̃þðq2maxÞ ¼ h̃⊥ðq2maxÞ; ðA6Þ

with q2max ¼ ðmΛc
−mNÞ2.

The parametrization of the Λc → p form factors takes
the form [65,106],

fðq2Þ ¼ 1

1 − q2=ðmf
poleÞ2

Xnmax

n¼0

afn½zðq2Þ�n; ðA7Þ

with the expansion variable defined by

zðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ; ðA8Þ

where tþ ¼ ðmD þmπÞ2 is set equal to the threshold ofDπ
two-particle states, and t0 ¼ q2max determines which value
of q2 gets mapped to z ¼ 0. In this way, one maps the
complex q2 plane, cut along the real axis for q2 ≥ tþ, onto
the disk jzj < 1. The central values and statistical uncer-
tainties of af0;1;2 in Eq. (A7) for different form factors fðq2Þ
have been evaluated in Ref. [65] by the nominal fit
(nmax ¼ 2), while their systematic uncertainties can be
obtained by a combined analysis of both the nominal
and higher-order (nmax ¼ 3) fits. We refer the readers to
Ref. [65] for further details.

APPENDIX B: POLARIZED CROSS SECTIONS
NAD EXPERIMENTAL QUANTITIES

In this appendix, we clarify the relations among the
polarized cross sections, the spin asymmetries, and the
experimentally measurable quantities relevant to this work.
Starting with the double-spin longitudinally polarized

scattering process e⃗−ðkÞ þ p⃗ðPÞ → e−ðk0Þ þ ΛcðP0Þ medi-
ated by the general low-energy effective Lagrangian Leff ,
we can write its cross section in the lab frame as

dσhehp

dq2
¼ 1

64πm2
pE2

ðA0 þ heAe þ hpAp þ hehpAepÞ

¼ dσ0 þ hedσe þ hpdσp þ hehpdσep
dq2

; ðB1Þ

where he;p ¼ �1 originate from the polarization four-
vectors ξμe;p, such that the latter now take the forms,

ξμe ¼ he

�jkj
me

;
k0k
mejkj

�
; ξμp ¼ hpð0; 0; 0; 1Þ: ðB2Þ

The whole amplitude squared jMj2 in Eq. (B1) is divided
into four pieces, among which A0 denotes the ξμe;p-

independent one, heAe (hpAp) the ξμe (ξμp)-dependent
one, while hehpAep the ξ

μ
eξ

μ
e-dependent one. It is important

to remind the reader that all these amplitudes squared are
not averaged over the spins of initial electron and proton.
Based on the double-spin cross section in Eq. (B1), the

cross sections of other longitudinally polarized scattering
processes can be obtained straightforwardly. For the single-
spin polarized scattering process e⃗−p → e−Λc, its cross
section is given by

dσhee
dq2

¼ 1

2

X
hp

dσhehp

dq2
¼ dσ0 þ hedσe

dq2
; ðB3Þ

where the factor 1=2 arises from the spin average of the
initial proton—since it is unpolarized. Similarly, one can
get the cross section of e−p⃗ → e−Λc,

dσ
hp
p

dq2
¼ 1

2

X
he

dσhehp

dq2
¼ dσ0 þ hpdσp

dq2
: ðB4Þ

It is also easy to verify that the cross section of the
unpolarized scattering process e−p → e−Λc is given by

dσ
dq2

¼ 1

4

X
hehp

dσhehp

dq2
¼ dσ0

dq2
: ðB5Þ

The cross section of the double-spin transversely polar-
ized process can be written in a similar way as

d2σ̃hehp

dq2dϕ
¼ 1

128π2m2
pE2

ðA0 þ heA0
e þ hpA0

p þ hehpA0
epÞ

¼ dσ̃0 þ hedσ̃e þ hpdσ̃p þ hehpdσ̃ep
dq2

: ðB6Þ

Following the same procedure as above, one can easily
obtain the cross sections of other transversely polarized
processes. From Eqs. (B3) and (B4), one can see that

Ae
L ¼ −

dσe
dσ0

; Ap
L ¼ −

dσp
dσ0

; ðB7Þ

which in turn lead to

σhehp ¼ σ0 þ heσe þ hpσp þ hehpσep

¼ σ0ð1 − heAe
L − hpA

p
L þ hehpCepÞ; ðB8Þ

where Cep ¼ σep=σ0 represents the analyzing power of the
reaction [114]. With the replacements L → T and σ → σ̃,
all the formulas above hold for the transversely polarized
processes too.
Thus far, we have been focusing on the theoretical

analyses. In reality, given that neither the degree of the
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electron beam polarization (Pe) nor the degree of the
proton target polarization (Pp) can reach 100%, one must
take such a deficiency into account during the event-rate
estimations or the data analyses in experiment. To this end,
we can conveniently replace the quantities he;p by Pe;phe;p
in the polarized cross sections accordingly (see, e.g.,
Refs. [108,116] for explicit examples).
With the modified cross sections at hand, it can be

clearly seen that the measured single-spin asymmetries
Aexp are related to Ae

L and Ap
L;T through Aexp ¼ PA. For the

measured double-spin asymmetries, on the other hand, no
simple relations are available in general. For example, the
measured ðAep

L3Þexp is given by

ðAep
L3Þexp ¼ Pp

Peσep − σp
σ0 − Peσe

; ðB9Þ

which is nontrivially connected to Aep
L3,

Aep
L3 ¼

σep − σp
σ0 − σe

: ðB10Þ

It can be seen thatAep
exp ¼ PpPeAep, if both σe and σp vanish,

as happens in the polarized deep-inelastic lepton-nucleon
inclusive scattering process in the one-photon-exchange

approximation (see, e.g., Ref. [123] and references
therein). It is also interesting to note that Aep

exp ¼ PpAep in
the limit of Pe ¼ 1, irrespective of whether σe and σp vanish
or not.
Finally, we make a comment about the proton target

polarization. Usually, the proton polarization is realized
through the polarization of nucleus. However, since only a
fraction of the target nucleons can be polarized, a dilution
factor f is often introduced to take account of this fact.
Thus, Pp in various differential cross sections is often
accompanied by the factor f [108,116].

APPENDIX C: AMPLITUDE SQUARED OF THE
LONGITUDINALLY POLARIZED SCATTERING

PROCESS e − p⃗ → e−Λc

For convenience of future discussions, we provide here
the explicit expression of the amplitude squared jMj2 of
the longitudinally polarized scattering process e−ðkÞ þ
p⃗ðPÞ → e−ðk0Þ þ ΛcðP0Þ mediated by the general low-
energy effective Lagrangian Leff ; note that the explicit
expression of the corresponding cross sections can be
obtained from Eq. (B4). With all the operators in Eq. (2)
taken into account, the amplitude squared jMj2 with a left-
handed polarized proton target (p−

L) is given by

jMj2 ¼ ðjgLLV j2 þ jgRRV j2ÞjMj2VLL−VLL
þ 1

2
ðjgLLV j2 − jgRRV j2ÞjM0j2VLL−VLL

þ ðjgLRV j2 þ jgRLV j2ÞjMj2VLR−VLR
þ 1

2
ðjgLRV j2 − jgRLV j2ÞjM0j2VLR−VLR

þ ðjgLS j2 þ jgRS j2ÞjMj2SL−SL þ
1

2
ðjgLS j2 − jgRS j2ÞjM0j2SL−SL

þ ðjgLT j2 þ jgRT j2ÞjMj2TL−TL
þ 1

2
ðjgLT j2 − jgRT j2ÞjM0j2TL−TL

þ 2Re½gLRV gLL�V þ gRLV gRR�V �jMj2VLR−VLL
þ Re½gLRV gLL�V − gRLV gRR�V �jM0j2VLR−VLL

þ 2Re½gLSgL�T þ gRSg
R�
T �jMj2SL−TL

þ Re½gLSgL�T − gRSg
R�
T �jM0j2SL−TL

; ðC1Þ

where a factor 2 accounting for the average over the initial electron spins has been taken care of, and ¯jMj2α−β and jM0j2α−β on
the right-hand side represent the reduced ξp-independent and ξp-dependent amplitudes squared, respectively. One can
easily obtain from Eq. (C1) the amplitude squared jMj2 with a right-handed polarized proton target (pþ

L ) by flipping the
sign of jM0j2α−β, while keeping ¯jMj2α−β intact. Since the explicit expressions of the ξp-independent ¯jMj2α−β have already
been given in Ref. [82], here we only present the ξp-dependent jM0j2α−β, which read, respectively, as

jM0j2VLL−VLL
¼ −

�
q2f2⊥

2E½ðmΛc
þmpÞ2 − q2� þ

q2g2⊥
2E½ðmΛc

−mpÞ2 − q2�
	

× ðm2
p −m2

Λc
þ 4Emp þ q2Þ½mpq2 þ Eðm2

p −m2
Λc

þ q2Þ�

−
mpq2ðm2

p −m2
Λc

þ 4Emp þ q2Þ½4E2mp þmpq2 þ 2Eðm2
p −m2

Λc
þ q2Þ�

E½m4
Λc

þ ðm2
p − q2Þ2 − 2m2

Λc
ðm2

p þ q2Þ�
× ½ðmΛc

−mpÞf⊥gþ − ðmΛc
þmpÞfþg⊥�
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þ
�
q2mpðmΛc

þmpÞfþf⊥
E½ðmΛc

þmpÞ2 − q2� −
q2mpðmΛc

−mpÞgþg⊥
E½ðmΛc

−mpÞ2 − q2�
	

× ½4E2mp þmpq2 þ 2Eðm2
p −m2

Λc
þ q2Þ�

−
Eðm2

Λc
−m2

pÞ − ðEþmpÞq2
E½m4

Λc
þ ðm2

p − q2Þ2 − 2m2
Λc
ðm2

p þ q2Þ� f2mpðm2
Λc

−m2
pÞ

× ½4E2mp þmpq2 þ 2Eðm2
p −m2

Λc
þ q2Þ�fþgþ − q2½m4

Λc
þ 8E2m2

p

þm4
p þ q4 þ 4Empðm2

p þ q2Þ − 2m2
Λc
ð2Emp þm2

p þ q2Þ�f⊥g⊥g; ðC2Þ

jM0j2VLR−VLR
¼ −

�
q2f2⊥

2E½ðmΛc
þmpÞ2 − q2� þ

q2g2⊥
2E½ðmΛc

−mpÞ2 − q2�
	

× ðm2
p −m2

Λc
þ 4Emp þ q2Þ½mpq2 þ Eðm2

p −m2
Λc

þ q2Þ�

þmpq2ðm2
p −m2

Λc
þ 4Emp þ q2Þ½4E2mp þmpq2 þ 2Eðm2

p −m2
Λc

þ q2Þ�
E½m4

Λc
þ ðm2

p − q2Þ2 − 2m2
Λc
ðm2

p þ q2Þ�
× ½ðmΛc

−mpÞf⊥gþ − ðmΛc
þmpÞfþg⊥�

þ
�
q2mpðmΛc

þmpÞfþf⊥
E½ðmΛc

þmpÞ2 − q2� −
q2mpðmΛc

−mpÞgþg⊥
E½ðmΛc

−mpÞ2 − q2�
	

× ½4E2mp þmpq2 þ 2Eðm2
p −m2

Λc
þ q2Þ�

þ Eðm2
Λc

−m2
pÞ − ðEþmpÞq2

E½m4
Λc

þ ðm2
p − q2Þ2 − 2m2

Λc
ðm2

p þ q2Þ� f2mpðm2
Λc

−m2
pÞ

× ½4E2mp þmpq2 þ 2Eðm2
p −m2

Λc
þ q2Þ�fþgþ − q2½m4

Λc
þ 8E2m2

p

þm4
p þ q4 þ 4Empðm2

p þ q2Þ − 2m2
Λc
ð2Emp þm2

p þ q2Þ�f⊥g⊥g; ðC3Þ

jM0j2SL−SL ¼ q2f0g0ðm2
Λc

−m2
pÞ½Eðm2

Λc
−m2

p − q2Þ −mpq2�
2Em2

c
; ðC4Þ

jM0j2TL−TL
¼ −

16mpq2½ðmΛc
þmpÞh⊥h̃þ − ðmΛc

−mpÞhþh̃⊥�
E½ðmΛc

−mpÞ2 − q2�½ðmΛc
þmpÞ2 − q2� ðm2

Λc
− 4Emp −m2

p − q2Þ

× ½4E2mp þmpq2 − 2Eðm2
Λc

−m2
p − q2Þ� − f8h⊥h̃⊥ðm2

Λc
−m2

pÞmp½4E2mp

þmpq2 þ 2Eðm2
p −m2

Λc
þ q2Þ� − 2hþh̃þq2ðm2

p −m2
Λc

þ 4Emp þ q2Þ2g

×
4½Eðm2

Λc
−m2

p − q2Þ −mpq2�
E½ðmΛc

−mpÞ2 − q2�½ðmΛc
þmpÞ2 − q2� ; ðC5Þ

jM0j2VLR−VLL
¼ −

�
q2f2⊥

2E½ðmΛc
þmpÞ2 − q2�−

q2g2⊥
2E½ðmΛc

−mpÞ2 − q2�
	
ðm2

p −m2
Λc

þ 4Emp þ q2Þ½mpq2 þEðm2
p −m2

Λc
þ q2Þ�

þ
�
q2mpðmΛc

þmpÞfþf⊥
E½ðmΛc

þmpÞ2 − q2� þ q2mpðmΛc
−mpÞgþg⊥

E½ðmΛc
−mpÞ2 − q2�

	
½4E2mp þmpq2 þ 2Eðm2

p −m2
Λc

þ q2Þ�; ðC6Þ

jM0j2SL−TL
¼
�

q2ðmΛc
þmpÞg0hþ

Emc½ðmΛc
þmpÞ2 − q2� þ

q2ðmΛc
−mpÞf0h̃þ

Emc½ðmΛc
−mpÞ2 − q2�

	
ðm2

p −m2
Λc

þ 4Emp þ q2Þ½mpq2 þEðm2
p −m2

Λc
þ q2Þ�

− 2

�
q2mpðmΛc

þmpÞ2g0h⊥
Emc½ðmΛc

þmpÞ2 − q2�−
q2mpðmΛc

−mpÞ2f0h̃⊥
Emc½ðmΛc

−mpÞ2 − q2�
	
½4E2mp þmpq2 þ 2Eðm2

p −m2
Λc

þ q2Þ�: ðC7Þ

SEARCHING AND IDENTIFYING LEPTOQUARKS THROUGH LOW- … PHYS. REV. D 105, 115025 (2022)

115025-19



APPENDIX D: AMPLITUDE SQUARED OF THE
TRANSVERSELY POLARIZED SCATTERING

PROCESS e − p⃗ → e−Λc

Let us now present the explicit amplitude squared
jMj2 of the transversely polarized scattering process

e−ðkÞ þ p⃗ðPÞ → e−ðk0Þ þ ΛcðP0Þ in the framework of
the general low-energy effective Lagrangian Leff . Taking
into account of all the operators in Eq. (2), we write the
amplitude squared jMj2 with a left-handed polarized
proton target (p−

T ) as

jMj2 ¼ ðjgLLV j2 þ jgRRV j2ÞjMj2VLL−VLL
þ 1

2
ðjgLLV j2 − jgRRV j2ÞjM̃j2VLL−VLL

þ ðjgLRV j2 þ jgRLV j2ÞjMj2VLR−VLR
þ 1

2
ðjgLRV j2 − jgRLV j2ÞjM̃j2VLR−VLR

þ ðjgLS j2 þ jgRS j2ÞjMj2SL−SL þ
1

2
ðjgLS j2 − jgRS j2ÞjM̃j2SL−SL

þ ðjgLT j2 þ jgRT j2ÞjMj2TL−TL
þ 1

2
ðjgLT j2 − jgRT j2ÞjM̃j2TL−TL

þ 2Re½gLLV gLR�V þ gRLV gRR�V �jMj2VLL−VLR
þ Re½ðgLLV gLR�V − gRLV gRR�V ÞjM̃j2VLL−VLR

�
þ 2Re½gLSgL�T þ gRTg

R�
S �jMj2SL−TL

þ Re½ðgLSgL�T − gRTg
R�
S ÞjM̃j2SL−TL

�; ðD1Þ

where the average over the initial electron spins has been taken into account, and jM̃j2α−β on the right-hand side represents
the reduced ξp-dependent amplitude squared. Same as for the previous case discussed in Appendix C, flipping the sign of
jM̃j2α−β, while keeping ¯jMj2α−β intact in Eq. (D1), yields the amplitude squared jMj2 of the scattering process with a right-
handed polarized proton target (pþ

T ). For convenience, we give the ξp-dependent jM̃j2α−β, respectively, as

jM̃j2VLL−VLL
¼

�
2mpðm2

Λc
−m2

pÞ½4E2mp þ 2Eðm2
p −m2

Λc
þ q2Þ þmpq2�fþgþ

E½ðmΛc
−mpÞ2 − q2�½ðmΛc

þmpÞ2 − q2� −
f2⊥ð4Emp þm2

p −m2
Λc

þ q2Þ
2E½ðmΛc

þmpÞ2 − q2�

þ ½fþg⊥ðmp þmΛc
Þ þ f⊥gþðmp −mΛc

Þ� ð4Emp þm2
p −m2

Λc
þ q2Þ½Eðm2

p −m2
Λc

þ q2Þ þmpq2�
E½ðmΛc

−mpÞ2 − q2�½ðmΛc
þmpÞ2 − q2�

þ
�

fþf⊥ðmp þmΛc
Þ

E½ðmΛc
þmpÞ2 − q2� þ

gþg⊥ðmp −mΛc
Þ

E½ðmΛc
−mpÞ2 − q2�

	
½Eðm2

p −m2
Λc

þ q2Þ þmpq2�

−
q2½8E2m2

p þ 4Empðm2
p −m2

Λc
þ q2Þ þm4

p − 2m2
pm2

Λc
þ ðm2

Λc
− q2Þ2�f⊥g⊥

E½ðmΛc
−mpÞ2 − q2�½ðmΛc

þmpÞ2 − q2�

−
g2⊥ð4Emp þm2

p −m2
Λc

þ q2Þ
2E½ðmΛc

−mpÞ2 − q2�
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−mpq2ð2Eð2Emp þm2
p −m2

Λc
þ q2Þ þmpq2Þ

q
cosðϕÞ; ðD2Þ

jM̃j2VLR−VLR
¼

�
−
2mpðm2

Λc
−m2

pÞ½4E2mp þ 2Eðm2
p −m2

Λc
þ q2Þ þmpq2�fþgþ

E½ðmΛc
−mpÞ2 − q2�½ðmΛc

þmpÞ2 − q2� −
f2⊥ð4Emp þm2

p −m2
Λc

þ q2Þ
2E½ðmΛc

þmpÞ2 − q2�

− ½fþg⊥ðmp þmΛc
Þ þ f⊥gþðmp −mΛc

Þ� ð4Emp þm2
p −m2

Λc
þ q2Þ½Eðm2

p −m2
Λc

þ q2Þ þmpq2�
E½ðmΛc

−mpÞ2 − q2�½ðmΛc
þmpÞ2 − q2�

þ
�

fþf⊥ðmp þmΛc
Þ

E½ðmΛc
þmpÞ2 − q2� þ

gþg⊥ðmp −mΛc
Þ

E½ðmΛc
−mpÞ2 − q2�

	
½Eðm2

p −m2
Λc

þ q2Þ þmpq2�

þ q2½8E2m2
p þ 4Empðm2

p −m2
Λc

þ q2Þ þm4
p − 2m2

pm2
Λc

þ ðm2
Λc

− q2Þ2�f⊥g⊥
E½ðmΛc

−mpÞ2 − q2�½ðmΛc
þmpÞ2 − q2�

−
g2⊥ð4Emp þm2

p −m2
Λc

þ q2Þ
2E½ðmΛc

−mpÞ2 − q2�
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−mpq2ð2Eð2Emp þm2
p −m2

Λc
þ q2Þ þmpq2Þ

q
cosðϕÞ; ðD3Þ
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jM̃j2SL−SL ¼ −
q2f0g0ðm2

Λc
−m2

pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−mpq2½2Eð2Emp þm2

p −m2
Λc

þ q2Þ þmpq2�
q

cosðϕÞ
2Em2

c
; ðD4Þ

jM̃j2TL−TL
¼ 4f8ðm2

Λc
−m2

pÞmp½ð4E2mp þ 2Eðm2
p −m2

Λc
þ q2Þ þmpq2�h⊥h̃⊥

− 2q2ð4Emp þm2
p −m2

Λc
þ q2Þ2h̃þhþ þ 4½hþh̃⊥ðmp −mΛc

Þ þ h⊥h̃þðmp þmΛc
Þ�

× ð4Emp þm2
p −m2

Λc
þ q2Þ½Eðm2

p −m2
Λc

þ q2Þ þmpq2�g

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−mpq2ð2Eð2Emp þm2

p −m2
Λc

þ q2Þ þmpq2Þ
q

cosðϕÞ
E½ðmΛc

−mpÞ2 − q2�½ðmΛc
þmpÞ2 − q2� ; ðD5Þ

jM̃j2VLL−VLR
¼
��

q2g2⊥
2E½ðmΛc

−mpÞ2 − q2�−
q2f2⊥

2E½ðmΛc
þmpÞ2 − q2�

	
ð4Emp þm2

p −m2
Λc

þ q2Þ cosðϕÞ

−
� ðmp −mΛc

Þgþg⊥
E½ðmΛc

−mpÞ2 − q2�−
ðmp þmΛc

Þfpf⊥
E½ðmΛc

þmpÞ2 − q2�
	
½mpq2 þEðm2

p −m2
Λc

þ q2Þ� cosðϕÞ

− i½f⊥gþðmp −mΛc
Þ− fþg⊥ðmp þmΛc

Þ� sinðϕÞ
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−mpq2ð2Eð2Emp þm2
p −m2

Λc
þ q2Þ þmpq2Þ

q
; ðD6Þ

jM̃j2SL−TL
¼

�� ðmΛc
−mpÞf0h̃þ

Emc½ðmΛc
−mpÞ2 − q2� þ

ðmp þmΛc
Þg0hþ

Emc½ðmΛc
þmpÞ2 − q2�

	
q2ð4Emp þm2

p −m2
Λc

þ q2Þ cosðϕÞ

þ 2

� ðmp −mΛc
Þ2f0h̃⊥

Emc½ðmΛc
−mpÞ2 − q2� −

ðmp þmΛc
Þ2g0h⊥

Emc½ðmΛc
þmpÞ2 − q2�

	
½Eðm2

p −m2
Λc

þ tÞ þmpq2� cosðϕÞ

þ 2iðm2
p −m2

Λc
Þðf0h⊥ − g0h̃⊥Þ
mc

sinðϕÞ
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−mpq2ð2Eð2Emp þm2
p −m2

Λc
þ q2Þ þmpq2Þ

q
: ðD7Þ

It can be seen that jM̃j2α−β induced by the interference
between two different operators consists of both the
real and imaginary terms. Moreover, the real terms are

proportional to cosðϕÞ, while the imaginary ones to sinðϕÞ.
By contrast, jM̃j2α−α induced by the same operator only has
the real terms, which are proportional to cosðϕÞ.
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