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We argue that neutrino oscillations at JUNO offer a unique opportunity to study Sorkin’s triple path
interference, which is predicted to be zero in canonical quantum mechanics by virtue of the Born rule. In
particular, we compute the expected bounds on triple path interference at JUNO and demonstrate that they
are comparable to those already available from electromagnetic probes. Furthermore, the neutrino probe of
the Born rule is much more direct due to an intrinsic independence from any boundary conditions, whereas
such dependence on boundary conditions is always present in the case of electromagnetic probes. Thus,
neutrino oscillations present an ideal probe of this aspect of the foundations of quantum mechanics.
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I. INTRODUCTION

Obtaining a deeper understanding of quantum mechan-
ics (QM) is homework leftover from the 20th century. The
question is becoming more acute with the development of
QM-based technologies already impacting our everyday
lives (semiconductors, superconductors, etc.), as well as
the promise of various quantum information technologies
that may be realized in the not too distant future [1]. In this
paper, we emphasize the relevance of neutrino physics to
address various foundational questions in QM. In par-
ticular, we consider the potential of neutrino oscillations
to probe the triple path interference of Sorkin [2] as a
direct test of the Born rule and compare the expected
bound to those currently available from electromagnetic
experiments.
There are many features that distinguish QM from

classical mechanics (CM). Though the statistical nature
of QM as opposed to the deterministic nature of CM is
often emphasized in textbooks, many other differences
exist as well, for instance, in correlations [3–5] and in the
presence or absence of interference. However, it has been
noted that not only do QM correlations go beyond those of
CM, but are themselves restricted [6,7] and are not as large

as that allowed by logic and relativity [8]. QM interference
is also restricted in that the Born rule only allows for
pairwise interference between paths, but not for triple path
interference or higher [2].
The fact that canonical QM itself is restricted, with no

apparent physical or logical reason, points to the possible
existence of consistent theories that go beyond QM
boundaries, perhaps at the expense of some of our
cherished principles that we currently hold to be funda-
mental. It is up to experiments to determine whether nature
always stays within those QM boundaries or occasionally
ventures outside, and under what conditions. Indeed, it has
been argued that it would (or should) in the context of
quantum gravity and cosmology [9,10], in the realm of
quantum measurement [11], or in the domain of macro-
scopic quantum systems [12].
The celebrated Bell’s inequality [3,4] and its generali-

zation by Clauser et al., the CHSH inequality [5], provide
bounds that CM correlations cannot violate. That exper-
imental correlations violate these bounds has been con-
firmed by various groups using photons [13], ions, and
atoms, Josephson junctions, and NV centers in diamond
(see Fig. 1 of [14]). However, Cirelson has shown that the
CHSH correlator is bounded from above for QM as well
[6,7], and while this bound is naturally larger than that of
CM, it does not saturate the logically allowed maximum,
despite the fact that such a saturation does not contradict
relativistic causality as demonstrated by Popescu and
Rohrlich [8]. Whether experimental correlations violate
the QM Cirelson bound or not is being checked using
photons [14,15].
TheBell/CHSH inequalities involve correlations between

entangled pairs of spatially separated observables. In con-
trast, the Leggett-Garg inequalities (LGIs) [16] involve
correlations between temporary separated measurements
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of a single observable and are expected to hold for “macro-
scopic” systems. Since QM satisfies neither of the two
assumptions underlying the LGIs, namely, macroscopic
realism and noninvasive measurability, QM correlations
can be expected to violate them, though there is some
subtlety in how those correlations should be defined in QM
to reflect the setup of each experiment. Nevertheless,
experimental checks that demonstrate the violation of some
form of the LGIs have been performed using a variety of
systems, including superconducting qubits, nuclear spins,
and photons (seeTable 1 ofRefs. [17,18]), andmore recently
using the neutrino oscillation data from MINOS [19] and
Daya-Bay [20].
Neutrino experiments are, in many respects, ideal labo-

ratories for foundational quantum research given the long
coherence times that neutrino states have and the funda-
mental role of interference in neutrino oscillation phenom-
ena. In addition to probing the LGIs [19,20], the violation
of which is not surprising, the potential of neutrino
oscillations to constrain models that generalize and go
beyond canonical QM has also been explored. For instance,
Refs. [21,22] investigate whether neutrino oscillations can
constrain the continuous spontaneous localization model
[23] (expected effect is too small to be observed), while
Ref. [24] argues that atmospheric neutrino data can con-
strain Nambu QM extensions [25]. The possibility of
utilizing Mössbauer neutrinos to probe the time-energy
uncertainty relation has been discussed in Ref. [26].
In this paper, we explore the potential of the neutrino

oscillation experiment JUNO [27] to look for the triple path
interference of Sorkin [2]. Sorkin provides a classification
scheme for theories that go beyond CM in terms of the
existence of multipath interferences. Only double path
interferences exist in QM due to the Born rule; though,
in principle, triple and higher-order interferences are
possible. Experimental bounds have been placed on the
presence of triple path interference using photons [28] and
liquid state NMR [29]. Both experiments report upper
bounds on the ratio of triple path to double path interfer-
ences of order 10−2. Improving the photon bound requires
controlling the sensitivity of multislit interference to the
change in the boundary condition due to the opening and
closing of slits [30–34]. Neutrino oscillation, on the other
hand, does not involve any slits and always has three mass
eigenstates interfering with each other. However, at differ-
ent baselines, neutrino energies, and neutrino energy
resolutions, it effectively becomes a double path interfer-
ence experiment due to the large separation in scale
between δm2

21 and δm2
31. Indeed, JUNO [27] is expected

to be the first experiment in which the interference between
the atmospheric and solar oscillation amplitudes is clearly
visible [35].
In the following, we first review Sorkin’s definition of

multipath interference and the classification of theories
based on their presence or absence [2]. We then review our

previous work from Ref. [35], which looked at the potential
of JUNO to detect deviations of the neutrino oscillation
probabilities from their QM predictions. This is effectively
the same problem as we are considering in this paper, albeit
imposing a particular normalization for the possible triple
path interference. The expected bounds on triple path
interference at JUNO for several other normalization/
parametrization choices with details of the analyses are
presented next. The parametrizations are chosen under the
caveat that the contribution of the triple path interference
should be invisible to pre-JUNO experiments and includes
the one that facilitates comparison of the bound with the
photon/NMR results. We conclude with a discussion on the
necessity of a concrete model that predicts triple path
interference to derive a more physically meaningful bound.

II. THE BORN RULE AND SORKIN’S MULTIPATH
INTERFERENCE

We follow the discussion of Sorkin in Ref. [2]. Let

PnðA; B;C; � � �Þ ð1Þ

denote the probability of a system to go from an initial state
jαi to a final state jβi when n pathways A;B;C;…
connecting the two are available. Classically, we have

PnðA;B;C; � � �Þ ¼ P1ðAÞ þ P1ðBÞ þ P1ðCÞ þ � � � ð2Þ

for any number of paths. Quantum mechanically, we have
for two paths

P2ðA;BÞ ¼ jψA þ ψBj2
¼ jψAj2|ffl{zffl}

P1ðAÞ

þ jψBj2|ffl{zffl}
P1ðBÞ

þ ðψ�
AψB þ ψ�

BψAÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
I2ðA;BÞ

: ð3Þ

The extra term

I2ðA;BÞ ¼ P2ðA;BÞ − P1ðAÞ − P1ðBÞ ð4Þ

is the “interference” of the two paths A and B. The non-
vanishing of this double path interference, I2ðA;BÞ ≠ 0,
distinguishes QM from CM.
In QM the superposition principle allow us to super-

impose an arbitrary number of “paths” on top of each other.
Indeed, in the path integral approach we superimpose an
infinite number of them [36]. However, the Born rule
dictates that all the superimposed paths only interfere with
each other in a pairwise manner. For instance, for three
paths we have
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P3ðA;B;CÞ ¼ jψA þ ψB þ ψCj2
¼ jψAj2|ffl{zffl}

P1ðAÞ

þ jψBj2|ffl{zffl}
P1ðBÞ

þ jψCj2|ffl{zffl}
P1ðCÞ

þ ðψ�
AψB þ ψ�

BψAÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
I2ðA;BÞ

þ ðψ�
BψC þ ψ�

CψBÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
I2ðB;CÞ

þ ðψ�
CψA þ ψ�

AψCÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
I2ðC;AÞ

¼ P2ðA;BÞ þ P2ðB;CÞ þ P2ðC;AÞ
− P1ðAÞ − P1ðBÞ − P1ðCÞ: ð5Þ

Only pairwise interferences between the pairs ðA;BÞ,
ðB;CÞ, and ðC;AÞ appear. Therefore, it makes sense to
define any deviation from this relation as the triple path
interference,

I3ðA;B;CÞ
¼ P3ðA; B;CÞ − P2ðA;BÞ − P2ðB;CÞ − P2ðC;AÞ
þ P1ðAÞ þ P1ðBÞ þ P1ðCÞ: ð6Þ

For both CM and QM, this triple path interference is zero
for any triplet of paths.
In a similar fashion, the n-path interference for n ≥ 4 can

be defined as

InðA1; A2;…; AnÞ
¼ PnðA1; A2;…; AnÞ −

X
Pn−1ðAi; Aj; � � �Þ

þ
X

Pn−2ðAi; � � �Þ − � � � − ð−1Þn
X

P1ðAiÞ; ð7Þ

which are always zero for both CM and QM. Therefore,
CM and QM can be characterized by

CM∶ In ¼ 0 for n ≥ 2;

QM∶ I2 ≠ 0; In ¼ 0 for n ≥ 3: ð8Þ

Experimental confirmation of I3 ¼ 0 would be a confir-
mation of the Born rule. In Refs. [28,29], bounds were
placed on the parameter

κ ¼ ε

δ
; ð9Þ

where

ε ¼ I3ðA;B;CÞ;
δ ¼ jI2ðA;BÞj þ jI2ðB;CÞj þ jI2ðC;AÞj: ð10Þ

Reference [28] reports κ ¼ 0.0064� 0.0119 for a multislit
experiment with a single photon source, while Ref. [29]
reports κ ¼ 0.007� 0.003 based on a liquid state NMR
experiment. Thus, the 1σ deviation of κ from zero allowed
by these experiments is jκj < 0.01 ∼ 0.02.

III. HUBER ET AL.

Here, we review the analysis of Ref. [35]. According to
canonical QM, the neutrino oscillation amplitude for νβ →
να at distance x from the source is given by the super-
position of the contributions of the three mass eigenstates,

Sð123Þαβ ¼ Uα1U�
β1 þ Uα2U�

β2e
−iΔ21x þ Uα3U�

β3e
−iΔ31x

¼ ðUα1U�
β1 þ Uα2U�

β2 þ Uα3U�
β3Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

δαβ

þUα2U�
β2ðe−iΔ21x − 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ssolαβ

þ Uα3U�
β3ðe−iΔ31x − 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Satmαβ

¼ δαβ þ Ssolαβ þ Satmαβ ; ð11Þ

where

Δij ¼
δm2

ij

2E
: ð12Þ

The Born rule gives the QM oscillation probability for
νβ → να as

PQMðνβ → ναÞ¼ jSð123Þαβ j2
¼ δαβþjSsolαβ j2þjSatmαβ j2þ2δαβℜðSsolαβ þSatmαβ Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pnon-int-fer
βα

þðSsol�αβ Satmαβ þSatm�
αβ Satmαβ Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pint-fer
βα

¼Pnon-int-fer
βα þPint-fer

βα : ð13Þ

This is the QM prediction. To check this relation, Ref. [35]
introduces the parameter q as

Pexpðνβ → ναÞ ¼ Pnon-int-fer
βα þ qPint-fer

βα ð14Þ

and discusses the bounds that can be placed on q by the
JUNO experiment [27]; that is, the expected Pexpðνβ → ναÞ
at JUNO assuming canonical QM is simulated using
GLoBES [37,38] to which the right-hand side of Eq. (14)
is fit to calculate the expected bound on q. Since the
Pnon-int-fer
βα term includes interference effects between the

1–2 and 1–3 mass eigenstates, the parameter q checks for
2–3 interference. However, any deviation of Pexpðνβ → ναÞ
from the QM prediction can also be interpreted as due to
Sorkin’s triple path interference. Indeed, Eq. (14) effec-
tively parametrizes the size of triple path interference as

ε ¼ Pexpðνβ → ναÞ − PQMðνβ → ναÞ
¼ ðq − 1ÞPint-fer

βα : ð15Þ
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Note that this parametrization of the triple path interference
renders it invisible to all pre-JUNO experiments. Thus, the
bound on q − 1 can be reinterpreted as a bound on ε
normalized to Pint-fer

βα . Using Wilks’s theorem [39], we find
that the analysis of Ref. [35] imposes a 1σ allowed range on
q − 1 given by

−0.17 < ðq − 1Þ < 0.12: ð16Þ

Note that, in the absence of an actual theory with triple path
interference that predicts the energy and baseline depend-
ence of ε, we must make a somewhat arbitrary choice as in
Eq. (15). By fitting the data with constant κ ¼ ε=δ,
Refs. [28,29] are assuming that ε ∝ δ, cf. Eq. (10), which
is another arbitrary choice. However, δ does have the
advantage over Pint-fer

βα in that all three paths are treated
equally. Because of this, and also for the ease of compari-
son with the photon and NMR results, we redo the analysis
of [35] with this normalization.

IV. POSSIBLE JUNO BOUND ON κ

The parameter κ is introduced as

ε ¼ Pexpðνβ → ναÞ − PQMðνβ → ναÞ
¼ κðjIαβð1; 2Þj þ jIαβð1; 3Þj þ jIαβð2; 3ÞjÞ; ð17Þ

where

Iαβði; jÞ ¼ 2ℜðUαiU�
βiU

�
αjUβje−iΔijxÞ ð18Þ

is the interference between the ith and jth mass eigenstates.
Strictly speaking, one should perform a global fit to all
neutrino oscillation experiments to bound κ. However,
jIαβð2; 3Þj was invisible to all pre-JUNO experiments
and would have averaged to a small constant, while the
other terms would have been absorbed into the uncertain-
ties in the mixing angles. This justifies our JUNO-only
analysis.
We use GLoBES [37,38] to simulate the JUNO experi-

ment as detailed in Ref. [35]. The simulation is set up with
two detectors: a JUNO-like far detector, with a fiducial
mass of 20 kt and an energy resolution of 3%=

ffiffiffiffi
E

p
at a

distance of 53 km from a nuclear reactor source with a
total power of 36 GWth, and a TAO-like [40] near
detector, with a fiducial mass of 1 ton and an energy
resolution of 1.7%=

ffiffiffiffi
E

p
at a distance of 30 m from a

4.6 GWth nuclear reactor core; we assume a total data
taking time of six years.
For the purpose of producing the simulated data

Pexpðνβ → ναÞ, we assume canonical QM with normal
ordering to be the true mass ordering and the relevant
oscillation parameters to be Δm2

21 ¼ 7.54 × 10−5 eV2,
Δm2

31 ¼ 2.43 × 10−3 eV2, θ12 ¼ 33.6°, and θ13 ¼ 8.9°

[41]. The theoretical QM rates PQMðνβ → ναÞ are calcu-
lated with the same inputs and the difference between
Pexpðνβ → ναÞ and PQMðνβ → ναÞ is fit with Eq. (17). The
results of our simulation are shown in Fig. 1 for the
following three analyses:

(i) Solid line: For each detector, we use a model for
nonlinear effects in the reconstruction of the positron
energy as described in Ref. [42], which includes
terms up to the cubic in the positron energy. To
account for the uncertainties in the reactor antineu-
trino flux prediction, we conservatively introduce a
nuisance parameter to each of our 100 energy bins
with the spectrum computed before applying the
energy resolution function. This is equivalent to the
assumption of no prior knowledge of fluxes, as
in Ref. [42].

(ii) Dashed line: The same analysis is repeated except
assuming that the energy calibration error for each
detector is linear.

(iii) Dotted line: Simulation without a near detector
while assuming perfect knowledge of detector and
source systematics.

An interesting feature of Fig. 1 is that analysis (iii) with
no systematic uncertainties provides a weaker constraint for
κ than analyses (i) and (ii) with systematic uncertainties and
a near detector. This demonstrates that the presence of a
near detector not only constrains the neutrino flux, but also
provides extra constraints on possible deviations of the
neutrino oscillation probabilities from canonical QM.

FIG. 1. χ2 curves for κ as defined in Eq. (17). The (i) solid,
(ii) dashed, and (iii) dotted curves correspond to simulations in
which the uncertainties are treated differently as detailed in the
main text.
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Using Wilks’s theorem, the 1σ allowed range of κ for
analysis (i) is found to be

−0.017 < κ < 0.015: ð19Þ

V. CONSTRAINING OTHER FORMS OF THE
INTERFERENCE TERM

In addition to Eq. (17), which we will refer to as case (1),
we consider two other forms for the triple path interference
ε: (2) constant ε, i.e., ε independent of L=E, and (3) ε
proportional 1 − PQMðνβ → ναÞ, that is,

ε ¼ Pexpðνβ → ναÞ − PQMðνβ → ναÞ
¼ kð1 − PQMðνβ → ναÞÞ; ð20Þ

where k is a constant. In case (2), we are considering the
possibility that triple interference is hidden in the uncer-
tainty of the overall count rate, while in case (3) we are
assuming

Pexpðνβ → ναÞ ¼ kþ ð1 − kÞPQMðνβ → ναÞ: ð21Þ

For each case, we perform the same three analyses as in the
previous section and plot the results in Figs. 2 and 3,
respectively. For case (2), the 1σ allowed range for ε from
analysis (i) is

−0.065 < ε < 0.042; ð22Þ

while for case (3), the bound on k from analysis (i) is

−0.040 < k < 0.069: ð23Þ

In order to compare the constraints for cases (1)–(3), we
define

q1 ≡ κhδðEÞi; q2 ≡ ε; and

q3 ≡ kh1 − PQMðνα → νβÞi; ð24Þ

FIG. 2. χ2 curves for ε as a constant. The (i) solid, (ii) dashed,
and (iii) dotted curves correspond to simulations in which the
uncertainties are treated differently, as detailed in the main text.

FIG. 3. χ2 curves for k as defined in Eq. (20). The (i) solid,
(ii) dashed, and (iii) dotted curves correspond to simulations in
which the uncertainties are treated differently, as detailed in the
main text.

FIG. 4. χ2 curves for qi as defined in Eq. (24) with all the
systematic uncertainties listed in Ref. [35].
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where hfðEÞi is the average of fðEÞ over the interval 1.8 ≤
E ≤ 8.0 MeV using the oscillation parameters that mini-
mized the χ2 at each point. The results for analysis (i)
including all systematic uncertainties are shown in Fig. 4.

VI. DISCUSSION

In this paper, we point out the relevance of neutrino
physics for addressing foundational questions in QM. In
particular, we have examined the potential of the JUNO
experiment to probe for the triple path interference among
the three neutrino mass eigenstates and thereby test the
Born rule. The potential JUNO 1σ bound of −0.017 < κ <
0.015 is competitive with those available from electromag-
netic probes [28,29]. Moreover, the prospects of electro-
magnetic probes to improve their bounds is limited due to
the sensitivity of the interference pattern on the change in
boundary condition caused by the opening and closing of
slits [30–34], whereas neutrino oscillations are independent
of such considerations.
One drawback of our analysis is that we currently lack a

theory that can model departures from the Born rule and
predict how triple path interferences would depend on
experimental parameters. This is reflected in the arbitrary
choices we must make to normalize the triple path
interference ε in our fits. We are also assuming that triple
path interference is introduced while the existing double
path interferences remain unmodified, which may not be
the case for a complete theory. Without such a theory, we
also cannot disentangle or distinguish triple path interfer-
ence from other effects, such as the presence of nonstand-
ard interactions of the neutrino [43–45], small matter
effects [46,47], superlight sterile neutrinos [48], quasi-
Dirac neutrino oscillations [49], and CPT violation [50].
However, since we expect the triple path interferences in a
consistent extension of QM to maintain unitarity, it may be
distinguishable from neutrino decay [51,52] or the effect of

randomly fluctuating matter [53], which both involve
nonunitary time evolution, or Lorentz violation [50], which
could lead to sidereal modulation in the oscillation
spectrum.
A promising candidate theory that could potentially

incorporate triple path interferences within its framework
is Nambu QM [25]. This theory generalizes the time
evolution of QM states in a way that is noncanonical yet
unitary. In essence, Nambu QM generalizes the space in
which the “phase” (in the sense of the phase of a complex
number) of a state is allowed to evolve, leading to
noncanonical time evolution as well as noncanonical
double path interference. Indeed, we have recently dis-
cussed how the vanilla version of the theory can be
constrained using atmospheric neutrinos by looking at
interference effects [24]. Given the larger freedom that
the phase is allowed in Nambu QM, we envision gener-
alizations (most probably a nonassociative one) in which
the triple path interference and the departure from the Born
rule could be precisely modeled.
We close this discussion by recalling that neutrinos can

also probe the Leggett-Garg inequalities [19,20], sponta-
neous collapse models of quantum measurement [21,22],
nonstandard time evolution of quantum states [24], and, if
Mössbauer neutrinos can be realized, the time-energy
uncertainty relation [26]. Further studies will indubitably
lead to other ways to utilize neutrinos for foundational QM
studies.
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Kurtsiefer, Phys. Rev. Lett. 115, 180408 (2015).
[15] Z. Tian, Y.-Y. Zhao, H. Wu, Z. Wang, and L. Luo, Sci. China

Inf. Sci. 63, 180506 (2020).
[16] A. Leggett and A. Garg, Phys. Rev. Lett. 54, 857 (1985).
[17] C. Emary, N. Lambert, and F. Nori, Rep. Prog. Phys. 77,

016001 (2014).
[18] C. Emary, N. Lambert, and F. Nori, Rep. Prog. Phys. 77,

039501 (2014).
[19] J. Formaggio, D. Kaiser, M. Murskyj, and T. Weiss, Phys.

Rev. Lett. 117, 050402 (2016).

HUBER, MINAKATA, MINIC, PESTES, and TAKEUCHI PHYS. REV. D 105, 115013 (2022)

115013-6

https://doi.org/10.1103/PRXQuantum.1.020101
https://doi.org/10.1142/S021773239400294X
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1007/BF00417500
https://doi.org/10.1016/0375-9601(87)90075-2
https://doi.org/10.1007/BF02058098
https://doi.org/10.1007/s10701-013-9770-0
https://doi.org/10.1103/PhysRevA.89.052125
https://doi.org/10.1103/PhysRevA.89.052125
https://doi.org/10.1103/PhysRevA.93.032124
https://doi.org/10.1143/PTPS.170.100
https://doi.org/10.1103/PhysRevLett.47.460
https://doi.org/10.1103/PhysRevLett.47.460
https://doi.org/10.1103/PhysRevLett.115.180408
https://doi.org/10.1007/s11432-020-2901-0
https://doi.org/10.1007/s11432-020-2901-0
https://doi.org/10.1103/PhysRevLett.54.857
https://doi.org/10.1088/0034-4885/77/1/016001
https://doi.org/10.1088/0034-4885/77/1/016001
https://doi.org/10.1088/0034-4885/77/3/039501
https://doi.org/10.1088/0034-4885/77/3/039501
https://doi.org/10.1103/PhysRevLett.117.050402
https://doi.org/10.1103/PhysRevLett.117.050402


[20] Q. Fu and X. Chen, Eur. Phys. J. C 77, 775 (2017).
[21] S. Donadi, A. Bassi, L. Ferialdi, and C. Curceanu, Found.

Phys. 43, 1066 (2013).
[22] M. Bahrami, S. Donadi, L. Ferialdi, A. Bassi, C. Curceanu,

A. Di Domenico, and B. Hiesmayr, Sci. Rep. 3, 1952
(2013).

[23] G. C. Ghirardi, P. M. Pearle, and A. Rimini, Phys. Rev. A
42, 78 (1990).

[24] D. Minic, T. Takeuchi, and C. H. Tze, Phys. Rev. D 104,
L051301 (2021).

[25] D. Minic and C. H. Tze, Phys. Lett. B 536, 305 (2002).
[26] R. S. Raghavan, D. Minic, T. Takeuchi, and C. H. Tze,

arXiv:1210.5639.
[27] F. An et al. (JUNO Collaboration), J. Phys. G 43, 030401

(2016).
[28] U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, and G.

Weihs, Science 329, 418 (2010).
[29] D. K. Park, O. Moussa, and R. Laflamme, New J. Phys. 14,

113025 (2012).
[30] H. Yabuki, Int. J. Theor. Phys. 25, 159 (1986).
[31] H. De Raedt, K. Michielsen, and K. Hess, Phys. Rev. A 85,

012101 (2012).
[32] R. Sawant, J. Samuel, A. Sinha, S. Sinha, and U. Sinha,

Phys. Rev. Lett. 113, 120406 (2014).
[33] A. Sinha, A. H. Vijay, and U. Sinha, Sci. Rep. 5, 10304

(2015).
[34] G. Rengaraj, U. Prathwiraj, S. N. Sahoo, R. Somashekhar,

and U. Sinha, New J. Phys. 20, 063049 (2018).
[35] P. Huber, H. Minakata, and R. Pestes, Phys. Rev. D 101,

093002 (2020).
[36] R. P. Feynman and A. R. Hibbs, Quantum Mechanics

and Path Integrals: Emended Edition (Dover Publications,
New York, 2010); 1st ed. (McGraw-Hill, New York, 1965).

[37] P. Huber, M. Lindner, and W. Winter, Comput. Phys.
Commun. 167, 195 (2005).

[38] P. Huber, J. Kopp, M. Lindner, M. Rolinec, and W. Winter,
Comput. Phys. Commun. 177, 432 (2007).

[39] S. S. Wilks, Ann. Math. Stat. 9, 60 (1938).
[40] M. Sisti (JUNO Collaboration), J. Phys. Conf. Ser. 1468,

012150 (2020).
[41] P. F. de Salas, D. V. Forero, S. Gariazzo, P. Martínez-Miravé,
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