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We study the potential of deep learning to resolve the combinatorial problem in supersymmetrylike
events with two invisible particles at the LHC. As a concrete example, we focus on dileptonic tt̄ events,
where the combinatorial problem becomes an issue of binary classification: pairing the correct lepton with
each b quark coming from the decays of the tops. We investigate the performance of a number of machine
learning algorithms, including attention-based networks, which have been used for a similar problem in the
fully hadronic channel of tt̄ production, and the Lorentz Boost Network, which is motivated by physics
principles. We then consider the general case when the underlying mass spectrum is unknown, and hence
no kinematic end point information is available. Compared against existing methods based on kinematic
variables, we demonstrate that the efficiency for selecting the correct pairing is greatly improved by
utilizing deep learning techniques.
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I. INTRODUCTION

Signatures with missing transverse momentum (=⃗PT) are
one of the most exciting classes of events at the Large
Hadron Collider and future colliders. They are produced
by well-motivated scenarios of physics beyond the
Standard Model (BSM), including supersymmetry and

dark matter. Unfortunately, events with =⃗PT are difficult to
interpret and analyze due to instrumental effects, unknown

nature of the invisible particles, and incomplete kinematic
information [1].

One common approach to analyzing =⃗PT events is to
hypothesize a certain event topology and design suitable
event variables adapted to this interpretation [2]. Already at
this stage, one faces a combinatorial problem: how to
associate the reconstructed objects in the event with the
elementary particles in the final state of the event topology.
The most common practice in resolving the combinatorial
problem is to choose the “best” assignment event by event.
In this case, one tries to design an algorithm (typically
involving kinematic variables) which will single out one (or
maybe several) among many possible assignments as the
most likely “correct” assignment. Then, the value of the
kinematic variable obtained with this specific choice is used

for further analysis. In the presence of =⃗PT , the combina-
torics problem becomes more severe due to the unknown
momenta of the invisible particles. To address the combi-
natorial problem properly, various strategies have been
proposed, depending on the length of cascade decays. We
refer to Ref. [1] and references therein for existing methods.
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In this paper, we study the combinatorial problem in

events with =⃗PT using supervised machine learning (ML).
As a concrete example, we will consider dileptonic tt̄
production. In this case, the combinatorial ambiguity is
simply twofold: how to correctly pair the two b quarks with
the two leptons in every event. In one sense, the twofold
ambiguity of dileptonic tt̄ is the simplest combinatorial
problem; yet on the other hand, the presence of two missing
neutrinos brings additional challenges in reconstructing the
final state. In any event, the twofold ambiguity can be
mapped to a straightforward binary classification task in
supervised ML.
Supervised ML methods have recently been applied with

much success to many areas of high energy physics (HEP),
including jet and event classification [3]. ML methods—
especially those based on deep neural networks—are able
to learn subtle correlations in a high-dimensional space and
so often outperform more conventional methods based
on physics-motivated high-level features (i.e., specially
designed kinematic variables). However, despite all of this
recent activity, so far, the combinatorial problem has not
received much attention. Only very recently have there
been studies of particular ML methods—those utilizing the
permutation-invariant structure of attention-based neural
networks—for the combinatorial problem in fully hadronic
tt̄ production [4–6]. Also, other final states such as tt̄h [4],
four tops [4,7], HZ [7], and a stop pair with R-Parity
violation (RPV) [8] have been studied in the fully hadronic
channel using ML methods.
There are already many existing, non-ML strategies

developed for the dilepton channel, such as end point
methods [1,2,9–11], the hemisphere method [12–15],
topness [16], the kinematic likelihood fit [17], etc.
Here, we will compare a number of new ML-based
methods, including the attention-based methods explored
in Refs. [4–6], and benchmark them against the existing
methods. We will demonstrate that the new ML
approaches lead to significantly improved ability in
resolving the twofold ambiguity compared to previous
methods. More accurate solutions to the combinatorial
problem of dileptonic tt̄ could have many potential
applications, including the following:
(1) Resolving the twofold ambiguity in dilepton top-

quark pair production is of high importance for
precision measurements of top-quark and Higgs
properties. For example, Refs. [18–20] aim to
measure the Yukawa coupling and the CP phase
in the top-Higgs interaction via tt̄h production in the
dilepton channel, utilizing the kinematic methods
proposed in Refs. [1,21].

(2) Another nontrivial example is double Higgs pro-
duction in the hh → ðbb̄ÞðWW�Þ → ðbb̄Þðlþl−νν̄Þ
final state, where the dominant background is the
dilepton tt̄ production. Recent studies [22,23] adopt
a traditional χ2 method (topness and Higgs-ness) to

enhance the signal sensitivity of double Higgs
production. The method attempts to solve the
combinatorial problem by choosing the smallest
χ2 value of all possible combinations. We expect
that hybrid methods with ML would resolve the
twofold ambiguity better, eventually leading to the
improved signal sensitivity.

(3) The dilepton channel resembles signatures arising in
various BSM scenarios, where the two missing
particles could be dark matter candidates. Therefore,
our results will be valuable in reducing the tt̄
backgrounds in the search for any new physics in
the same final state. Also, we will generalize our
method to arbitrary mass spectra, in order to address
the twofold ambiguity in the new physics scenarios.

This paper is structured as follows. We begin our
discussion by describing the event generation and setup
of ML methods in Sec. II. Our investigation of the
performance of various machine learning algorithms is
contained in Sec. III. In Sec. III F, we summarize our
findings and compare various ML methods against one
another as well as against existing approaches (which are
briefly described in the Appendix). In Sec. IV, we study the
combinatorial problem without the prior knowledge of the
mass information, considering the tt̄-like event topology.
Section V is reserved for discussion.

II. SETUP

A. Details of the simulation

The event topology considered in this article is depicted
in Fig. 1, where Ai, Bi, and Ci (i ¼ 1, 2 to denote two sides
of decays) are top quarks (t), W bosons, and neutrinos (ν),
respectively. (In Sec. IV, we will assume they are particles
in new physics beyond the SM, whose masses are
unknown.) We assume two-body decay at each step, Ai →
biBi and Bi → ciCi, where bi and ci are two visible
particles and Ci is the invisible particle. We further assume
that c1 and c2 (two charged leptons) are distinguishable,

A1 B1 C1

A2 B2 C2

a1 b1

a2 b2

(a)
(b)
(ab)
(c)

(b)

(bc)

b1

b2 c2

c1

FIG. 1. The event topology considered in this paper, together
with the three possible subsystems. The blue dotted, the green
dot-dashed, and the black solid boxes indicate the subsystems (b),
(c), and ðbcÞ, respectively. The figure is taken from Ref. [24].
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while b1 and b2 (two b-tagged jets) are not. Therefore, there
is a twofold ambiguity in pairing bi and ci. Figure 1 shows
three possible subsystems in the blue dotted (b), the green
dot-dashed (c), and the black solid boxes ðbcÞ.
For the numerical studies in this article, we generate a

partonic tt̄ dilepton sample, using the MadGraph5_aMC@NLO

at the 14 TeV LHC with the default parton distribution
functions [25]. All event samples are generated at leading-
order accuracy in QCD. The masses of the top quark and
the W boson are set to 173 GeV and 80.419, respectively.
We take into account the proper finite widths, which often
make the top quarks and the W bosons significantly off
shell. To reduce the background, we apply the same basic
cuts as those used in Refs. [1,11]. We did not include initial
state radiation/final state radiation (ISR/FSR) in our study,
but they should be relatively harmless for our problem,
given the high b-tagging efficiency and small fake rates
expected at the high luminosity (HL)-LHC [26]. This setup
also allows us to make a fair comparison of our findings
against existing results, as most studies in the literature did
not consider ISR/FSR.
To simulate detector effects, we follow the parametriza-

tion used in the ATLAS detector performances report for
the HL-LHC [27]. The energy resolution is parametrized
by three terms, noise (N), stochastic (S), and constant (C)
terms

σ

E
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
N
E

�
2

þ
�

Sffiffiffiffi
E

p
�

2

þ C2;

s
ð2:1Þ

where in our analysis we use N ¼ 5.3, S ¼ 0.74, and C ¼
0.05 for jets; we use N ¼ 0.3, S ¼ 0.1, and C ¼ 0.01 for
electrons [28]; and the energy E is in GeV. The muon
energy resolution is given by the Inner Detector (ID) and
Muon Spectrometer (MS) resolution functions

σ ¼ σIDσMSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ID þ σ2MS

p ; ð2:2Þ

where σID and σMS are defined as

σID ¼ E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α21 þ ðα2EÞ2

q
; ð2:3Þ

σMS ¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
β0
E

�
2

þ β21 þ ðβ2EÞ2
s

: ð2:4Þ

We use α1 ¼ 0.023035, α2 ¼ 0.000347, β0 ¼ 0.12,
β1 ¼ 0.03278, and β2 ¼ 0.00014 in our study. We prepare
one million parton-level events and the corresponding one

million smeared events for the bb̄lþl− þ =⃗PT final state.
We denote those smeared events by “detector-level events”
in the rest of this study.

B. Setup of ML methods

From the one million events we prepared, we take
random selection of 900,000 for the training/validation
of all of the ML methods (with a 90=10 split), and the
remaining 100,000 events for testing.
For all the ML methods in our study, unless otherwise

noted, the dimension of the input data is 18, including
4-momentum of two b-tagged jets, two charged leptons,
and the missing transverse momentum. We order two
b-tagged jets by their pT and label them as b1 and b2
and the corresponding correct lepton pairing as l1 and l2,
respectively. Note that l1 and l2 are not necessarily
ordered by their pT. They are the lepton pairing corre-
sponding to the two pT ordered b jets, b1 and b2.
We prepare two datasets with labels 1 (correct b-l

pairing) and 0 (incorrect pairing), consisting of (pb1 ,

pl1 , pb2 , pl2 , =⃗PT) and (pb1 , pl2 , pb2 , pl1
, =⃗PT), respectively.

In other words, the information about the pairing correct-
ness is encoded in the ordering of the 4-vectors that make
up each event. Note that each event is counted twice, once
in the correct-pairing dataset and once in the incorrect-
pairing dataset. We have checked that this reusing/double-
counting of events does not affect the performance of the
ML methods in any way but helps increase the size of
the dataset.
The ML methods are then formulated as binary classi-

fiers (with the usual binary cross-entropy loss and sigmoid
activation) between the correct and incorrect pairing data-
sets. Unlike usual binary classification problems, however,
here each event actually produces two scores, one for
each ordering of the leptons, i.e., fðpb1 ; pl; pb2 ; pl0 Þ and
fðpb1 ; pl0 ; pb2 ; plÞ, where f represents the sigmoid output
of the ML method. Note that previously, we used l1 and l2

to denote a lepton, which should be paired with b1 and b2,
respectively. However, in practice, this truth information is
not available, and we will have to make an arbitrary pairing
of a lepton and b-tagged jet. For this purpose, we used l
and l0 to denote two leptons. Therefore, one of the two
scores, fðpb1 ; pl; pb2 ; pl0 Þ or fðpb1 ; pl0 ; pb2 ; plÞ, is close
to 1 (correct pairing), and the other will be close to 0
(incorrect pairing). To the extent that the ML method is
optimal, we expect that these two scores contain the
exact same information; i.e., fðpb1 ; pl; pb2 ; pl0 Þ and
1 − fðpb1 ; pl0 ; pb2 ; plÞ are both equal to the probability
that ðb1;lÞ is the correct pairing [29]. Of course, in
practice, owing to the finite training data and ML model
capacity, these two scores will only be approximate
estimates of the true probability. Therefore, going forward,
we define an averaged score in order to incorporate
information from both estimates:

Pb1;l ¼ 1þ fðpb1 ; pl; pb2 ; pl0 Þ − fðpb1 ; pl0 ; pb2 ; plÞ
2

:

ð2:5Þ
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Note that, defined this way, P does have the correct
behavior as a binary probability, Pb1;l þ Pb1;l0 ¼ 1.
To properly compare different methods, we define a

common set of metrics as follows. It is natural to take the
prediction of the ML method to be the pairing ðb1;lÞ or
ðb1;l0Þ that returns the higher value of P; i.e., the ML
predicts ðb1;lÞ when Pb1;l > 0.5. The fraction of correct
predictions provides a baseline measure of the method’s
performance: the purity at 100% efficiency.
The purity can be improved at the expense of efficiency,

by considering a subset of data which passes certain criteria
or selection cuts. For the ML methods, we can accomplish
this by requiring the method to be more confident in its
prediction, i.e., only keeping events for which Pb1;l > Pc

or Pb1;l0 > Pc. Given such a selection, we define the
efficiency (ϵ) and the purity (P) to be [9,10,30]

ϵ¼ Ncuts

Ntotal
;

¼ the number of events which pass the selection
the total number of events

ð2:6Þ

P¼Ncorrect

Ncuts

¼ the number of the correctly identified events
the number of events that passed the selection

: ð2:7Þ

Note that in the machine learning literature the purity is
often referred to as precision ¼ TP

TPþFP, where TP is the
number of true positives and FP is the number of false
positives. In Sec. III, we will produce purity vs efficiency
curves [analogous to receiver operating characteristic
(ROC) curves] by varying this threshold Pc.

C. Existing methods

If the individual momentum of the missing neutrinos
(or dark matter candidates) cannot be uniquely determined,
the next best approach would be to consider some sort of
approximation [31]. For instance, a matrix element method
can be used to find the most likely values of the invisible
momenta (to be discussed in Sec. A 5). However, the
method itself suffers from the combinatorial problem
and is very model dependent as it requires to fully specify
the underlying physics in the consideration (masses, spins,
couplings, etc.).
An alternative approach would be to rely only on

kinematics such as masses and event topology (without
spin or coupling information) and to obtain the invisible
momenta by optimizing a suitable kinematic function. But
what constitutes a good target function for such an
optimization? Several algorithms are proposed depending
on what kind of target function is considered: kinematic
end points (Sec. A 1), hemisphere method/recursive jigsaw
(Sec. A 2), topness (Sec. A 3), kinematic likelihood (KL)

fitter (Sec. A 4), matrix element methods (Sec. A 5), and
analytic reconstruction (Sec. A 6). In general, methods
which invoke fewer assumptions are more robust and
model independent but lead to rather vague conclusions
with poor results, while methods with more assumptions
give better results, but the methods themselves are fragile as
they are not typically applicable to more general cases. This
is one of the main reasons why we want to develop as many
methods as possible. We also understand kinematics better
by comparing how each method works.
In some of these existing kinematic methods, there are

natural ways to select a subset of events with higher purity,
analogous to the cut Pb1;l > Pc or Pb1;l0 > Pc described in
the previous subsection for the ML methods. For example,
in the case of end point methods, it is known that a cut on
Meff orHT reduces the number of samples but can improve
the accuracy of the pairing prediction [11].

III. MACHINE LEARNING APPROACHES

The data collected by high-energy physics experiments
such as the LHC are very complex and very high dimen-
sional. Collider physics analyses could be considered as a
series of dimensional reduction processes at several stages.
The last stage is likely to involve the reconstructed objects.
Even then, the dimension of the input data is still quite
large—proportional to the number of reconstructed par-
ticles. It is a difficult task to understand the full correlations
of the high-dimensional data; this has motivated the
consideration of suitable kinematic variables that capture
the salient features of the initial data, and it also motivates
the study of ML-based methods where this kind of feature
engineering is automated directly from the initial data.
In the following subsections, we will explore various

algorithms such as tree-based methods (Sec. III A), deep
neural networks (Sec. III B), recurrent neural networks
(Sec. III C), attention-based networks (Sec. III D), and the
Lorentz boost network (Sec. III E). We discuss each
method very briefly without going into details. We refer
to Refs. [3,32–34] for more details of various machine
learning algorithms and Refs. [3,34,35] for machine learn-
ing in high-energy physics. All codes used in this paper are
publicly available in Ref. [36].

A. Tree-based methods

As a rudimentary ML baseline, we consider two
common tree-based methods: Random Forest and boosted
decision trees. These are shallow ML methods that are
popular in HEP and can handle a modest number of inputs.
For more about these methods, we refer the reader to
Refs. [37,38].
First, we tried the tree-based methods with 4-momentum

information only (18-dimensional input). In our analysis,
the forest includes 2000 trees, with each leaf having at most
0.01% of the entire training data. The fraction of training
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set used to train each tree does not have a significant impact
in our result. The Random Forest algorithm is implemented
using the SCIKIT-learn PYTHON library [38]. By taking the
combination which returns the higher score as the correct
combination, we find that the Random Forest classifies
83.4% of the data correctly for the parton-level events and
81.2% for the detector-level events (for 100% efficiency).
In general, boosted decision trees (BDT) outperformmost

other tree-based methods. In our analysis, the implementa-
tion of the algorithm is done using the XGBoost library in
PYTHON [39]. We find that the BDT classifies 86.1% of the
data correctly for the parton-level events and 82.4% for
the detector-level events. This is comparable to or better than
the existing methods discussed in Appendix. Good perfor-
mance with the detector-level data is especially notable.
We repeated the same analysis, with boosted trees and a

Random Forest, including the kinematic variables (mbl,
M2Ct, M2CW , ΔRbl, topness) defined in the Appendix and
obtained a higher purity 90.4% and 90.1% for parton-level
events and 84.1% and 84% for detector-level events,

respectively. The fact that including kinematic variables
improved the performance of these algorithms indicates
that the Random Forest and BDT did not catch important
kinematic features during the training—possibly a sign that
shallow ML methods are insufficiently expressive to fully
automate feature learning.
Finally, we also tried training Random Forests and BDTs

on kinematic variables only (without four momenta). The
results do not change significantly; we obtained 89.5% and
83.4% purity using boosted trees and 89.7% and 83.7%
purity using a Random Forest, respectively. Evidently, the
4-vectors are not adding much to the performance beyond
the kinematic variables, for these shallow ML methods.

B. Deep neural networks

Next, we consider a fully connected deep neural network
(DNN). The input layer is followed by three hidden layers
of 512 neurons each, with rectified linear unit (ReLU)
activation functions in between. The last hidden layer is

FIG. 2. DNN loss (left) and accuracy (right) for the parton-level (top) and the detector-level (bottom) events.
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connected to a single output neuron with the sigmoid
activation function, to match the target binary label of 0 (for
the incorrect pair) or 1 (for the correct pair).
To prevent overfitting during training, we consider a

25% dropout after each hidden [DNN, Long Short-Term
Memory (LSTM), and Lorentz Boost Network (LBN)]
layer. We find this dropout value makes the training and
validation accuracy converge relatively well as shown in
Fig. 2. (As is generally the case, dropout is only used
during training and not during validation/testing, which
causes the training accuracy/loss to appear worse than the
validation accuracy/loss over the training history.) Batch
normalization is applied before each dropout. We used the
Adam optimizer with a learning rate of 10−3 to minimize
the binary cross-entropy loss function for all neural
networks (NNs) that are considered in this paper. The
whole network structure is implemented using the KERAS

library [40], and the best model is selected based on the
validation loss.
Figure 3 shows the score distributions [Pb1;l in black for

all events, Pb1;l in blue for which ðb1;lÞ is the correct
pairing, and Pb1;l in red for which ðb1;lÞ is the incorrect

pairing] in the left and the sum of two raw DNN outputs
[fðpb1 ;pl;pb2 ;pl0 Þþfðpb1 ;pl0 ;pb2 ;plÞ] in the right panel
for parton-level (top) and detector-level events (bottom). As
expected, the sum of the two DNN outputs is approx-
imately (but not exactly) equal to 1, and the Pb1;l score
for which ðb1;lÞ is the correct (incorrect) pairing peaks
near 1 (0). We find the DNN predicts correctly 89.5% of the
time at parton level and 84.5% at the detector level, which
are are very similar to the accuracy (right panel) in Fig. 2.
As a cross-check, we have tried a different approach.

Instead of taking both correct and incorrect combinations
(i.e., instead of using the same event twice) and producing
two scores Pb1;l and Pb1;l0 for each event, we have tried to
produce a single score by pT ordering the leptons in event
and labeling each event according to whether this pT
ordering produced the correct pairing or not. With the
single score, we find a minor difference for the parton-level
purity (88% for 100% efficiency), while the detector-level
purity (84%) remains very similar to the case with the two
scores (Pb1;l and Pb1;l0 ). Since our first method gives a
slightly better outcome, we use the two-score scheme for
the remaining NNs.

FIG. 3. Distributions of the DNN scores (left) and the sum of two scores [fðpb1 ; pl; pb2 ; pl0 Þ þ fðpb1 ; pl0 ; pb2 ; plÞ] (right) for
parton-level events (top) and detector-level events (bottom). The score Pb1;l for all events is shown in black, while Pb1;l for which b1;l
is the correct (incorrect) pairing is in blue (red) and peaked close to 1 (0).
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We also find that the result remains approximately the

same when we exclude =⃗PT information in the input,
keeping the 4-momentum of the visible particles only.

This is to be expected since the =⃗PT in our simulation is
simply negative of the sum of the transverse momentum of

all visible particles, implying that the =⃗PT does not add new
information. We also notice that, unlike the tree-based
methods, including more inputs such as the kinematic
variables or topness value does not change the result of
neural networks significantly. This observation indicates
that NN learns the (high-level) kinematic features effi-
ciently from the low-level features (four momenta), unlike
tree-based methods. NN with kinematic variables only
(without four momenta) leads to slightly lower but com-
parable purity 89.75% and 83.98% for the parton-level and
the detector-level events, respectively. Finally, one can
improve the purity at the cost of statistics. For example,
we can cut on the value of Pb1;l (keeping the events
for which Pb1;l > Pc or Pb1;l0 > Pc) targeting 99% purity,
which leads to the efficiency of 76.2% and 54.3% for
parton-level and detector-level events, respectively. More
details will be discussed in Sec. III F.

C. Long Short-Term Memory

Next, we consider whether the NN can extract more
information from the data by treating it as a sequence. We
focus on the LSTM architecture [41], which was originally
developed to overcome the vanishing gradient problem that
often arises when training more traditional recurrent neural
networks (RNNs). In collider physics, RNNs have been
applied to study jet tagging problems, where the input is a
sequence of jet kinematic information [34,42]. In dileptonic
tt̄ production, one can consider the time ordering of the
final-state particles. Two b quarks would appear before two
leptons or two neutrinos. Although the decay is somewhat
short, it is worth investigating the performance of the
LSTM and comparing against that of the DNN.
We implement the LSTM using TensorFlow [43]. The

16-dimensional input vector (without the missing trans-
verse momentum) made up of four momenta of four
particles (four sequences) is fed into two LSTM layers
of 256 dimensions of the output space, followed by one
DNN layer with 128 neurons. We use the same optimizer,
loss function, and dropout used for DNN in Sec. III B. The
number of trainable weights in the LSTM network is
1 million, which is comparable to the size of the DNN
considered in the previous subsection. We obtain the purity
of 89.27% and 83.95% for the parton-level and detector-
level events, which are similar to those with DNN.

D. Attention-based network

Neural networks with attention are a technique that
imitates cognitive attention. Attention is the ability to choose
and concentrate on relevant stimuli, and respond accordingly

[44]. The effect of attention module enhances the important
parts of the input data and fades out the less important parts
such that the network devotes more computing power on a
more relevant part of the data. Which part of the data is more
important than the others depends on the problem and is
learned via training. Attention-based networks are used in a
wide variety of machine learning models, including in
natural language processing and computer vision.
Recently, the combinatorial problem in tt̄ production

with fully hadronic top decays has been examined in detail
using attention-based neural networks [4–6]. The authors
showed that the performance significantly improved over
the traditional kinematic methods. In this section, we apply
an attention-based network to the twofold ambiguity in the
dilepton production. Our NN is based on the standard self-
Attention Network, which is relatively simpler than the
architecture used in Refs. [4–6]. There are two reasons for
this: both our input and output are simpler. For input, we
only need to consider the two b-tagged jets without
worrying about all the extra jets, which makes our input
fixed length, compared to the variable lengths in the fully
hadronic final state. As for the output, the fully hadronic
channel is more complicated because one needs to identify
which jets are selected as well as which jets form the top
quark=W boson, while in our case, whatever label we
obtain is essentially a twofold ambiguity, and it is math-
ematically equivalent to using a binary label.
We implemented the self-attention mechanism in our

study by using the transformer encoder layer from
PYTORCH [45]. The schematic diagram of the Attention
Network is provided in Fig. 4. The input to this network
is similar to that of the LSTM network, which is the
4-momentum of the four visible particles. Each particle
momentum is first fed into dense embedding layers of
dimensions 8, 32, and 64, consecutively. The embedded
vectors are fed into three transformer encoder layers, where
the inputs first flow through a multihead self-attention layer
with four heads, and then into a feed-forward layer, with
residual connection over each of the layers. The four output
vectors of those layers with dimension 64 are then flattened,
before feeding into another set of dense layers of dimensions
64 and 1, with the last layer being the output layer of the
network that has a sigmoid activation. We obtain 89.8%
purity for parton-level and 84.4% for detector-level events,
which are comparable to results using DNN and LSTM.

E. Lorentz Boost Networks

Lorentz Boost Networks are motivated by particle
kinematics in the rest frames of various particle combina-
tions. The LBNs take the 4-momentum of n final-state
particles as an input and create m arbitrary combinations of
particles, which are boosted to the rest frame of m different
combinations of particles. The set of m particle combina-
tions and the set ofm rest frames are constructed by a linear
combination of input momenta determined by two trainable
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n by m matrices. This step creates four-momenta of m
particles (boosted to the rest frames), which are used to
calculate the high-level variables such as invariant mass or
the angle between any particle pairs. The parameter m is
taken to be a hyperparameter of the network. These high-
level variables are combined with the 4-momentum of
the boosted particles and fed into a simple DNN classi-
fication network. The LBNs have been applied for the
semileptonic channel of tt̄h production [46,47] and dilep-
ton tt̄ production [48].
As the LBN architecture takes advantage of particle

kinematics in various rest frames of composite particles,
it is worth investigating the twofold ambiguity using
the LBN. Since the complete kinematic information of
all the final-state particles is unknown in our study, we use
the momentum of the four visible particles (two b-tagged
jets and two leptons) and the missing transverse momentum
with zeros in the E and pz component. Note that LBN does
not use the mass information explicitly.
We use the TensorFlow implementation of the Lorentz

Boost Network, which is available from https://git.rwth-
aachen.de/3pia/lbn. The schematic diagram of the Lorentz
Boost Network is shown in Fig. 5. We feed the
20-dimensional input momenta into the LBN layer. We
set the number of particles (n) and rest-frame combinations
(m) that LBN builds to n ¼ m ¼ 8, which leads to the
optimal result. The LBN layer returns the F ¼ 69 dimen-
sional output made up of six kinematic features (E, pT , η,
ϕ, mass, and cos θij, which is the decay angle of ith particle
in the jth rest frame) for those eight particles, which are fed
into two DNN layers with 512 neurons for each.
At parton level with 4-momentum input to the classifier,

we obtain an accuracy of 89.8%. With the detector-level
events, we obtain an accuracy 86%. For other values of m,
we obtained a slightly worse result. For example, for
m ¼ 4, we obtained 88% purity at the parton level and
85% at detector level.

F. Comparison of different methods

Now, we compare the performance of each method in
finding the correct and incorrect combination of a b quark
and a lepton for the dilepton tt̄ production. Table I
summarizes the purity (P) and the efficiency (ϵ) for various
ML approaches discussed in Sec. III and the existing
methods described in Appendix. All methods use four
momenta of four visible particles and the missing trans-
verse momentum as basic inputs. Some examples use

kinematic variables (mbl, MðblÞ
2CW , MðlÞ

2Ct, topness, ΔRbl)
in addition to the basic inputs, except for the cases “with
kinematic variables only,” where four momenta are omitted
in the inputs.
Most methods lead to similar results. Especially, if

BDT and a Random Forest take advantage of additional
kinematic features, their performance is comparable to
that of DNN. However, in the case of DNN, we have not
observed such improvement even with the additional
features. We believe that this is due to the flexibility
and the efficiency of NN, which learns the high-level
features (kinematic variables) from the lower-level data
(four momenta inputs) and therefore NN does not
need kinematic features as additional inputs. Even with
different network structures, the results did not change
significantly.
Table I shows that, when using some machine learning

algorithms such as BDT or DNN, the methods with
“kinematic variables only” lead to comparable results,
surpassing the performance of the traditional use of the
kinematic variables (topness, end points, or hemisphere).
This observation tells us that ML algorithms are able to find
nontrivial correlation among these kinematic variables
efficiently. However, the same algorithms do not improve
with both four momentum and kinematic variables as
inputs. We also notice that most ML methods lead to the
purity ∼90% and ∼85%, for the parton-level and detector-
level events.

Input  
Embedding

MultiHead  
Attention

Add & 
Norm

Feed 
Forward

Add & 
Norm

Inputs MultiHead
Attention

Add &
Norm

Feed
Forward

Add &
Norm

Output

3 transformer encoders

Dense 
Layer

FIG. 4. Schematic diagram of the Attention Network in our analysis.
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FIG. 5. Schematic diagram of the Lorentz Boost Network. See Refs. [46,47] for more details.
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Figure 6 summarizes the performance of each method in
the purity-efficiency plot for the parton-level events (left)
and the detector-level events (right), taking four momenta
as inputs (except for the two end point methods, which use

the kinematic variables as inputs.). Note that the purity is
defined as precision, which is the ratio of the number of true
positives to the number of events that pass the selection cuts
[Eq. (2.7)]. The efficiency is the ratio of the number of

TABLE I. Summary of the purity (P) and the efficiency (ϵ) for various methods discussed in Sec. III and Appendix. Basic inputs are
four momenta of two b-quarks, two leptons, and the missing transverse momentum. Some examples use kinematic variables (mbl,

MðblÞ
2CW , M

ðlÞ
2Ct, topness, and ΔRbl) in addition to the basic inputs.

Parton level Detector level

Algorithm Section P ϵ P ϵ

End points method I (mbl, M
ðblÞ
2CC, M

ðlÞ
2CC) A 1 0.816 1 0.789 1

End points method II (⋆) (mbl, M
ðblÞ
2CW , M

ðlÞ
2Ct) A 1 0.957 0.769 0.874 0.742

Hemisphere method A 2 0.78 1 0.77 1
Recursive jigsaw A 2 0.762 1 0.757 1
Topness method (♦) A 3 0.869 1 0.814 1
KLFitter (▴) A 4 0.866 1 0.776 1
Matrix element method A 5 0.847 1 0.817 1
Boosted decision tree III A 0.861 1 0.824 1
BDT with kinematic variables III A 0.904 1 0.841 1
BDT with kinematic variables only III A 0.895 1 0.834 1
Random Forest III A 0.834 1 0.812 1
Random Forest with kinematic variables III A 0.901 1 0.840 1
Random Forest with kinematic variables only III A 0.897 1 0.837 1
DNN III B 0.895 1 0.845 1
DNN (×) III B 0.990 0.721 0.990 0.543
DNN with kinematic variables III B 0.907 1 0.846 1
DNN with kinematic variables only III B 0.898 1 0.839 1
Long Short-Term Memory III C 0.893 1 0.839 1
Attention Network III D 0.898 1 0.844 1
Lorentz Boost Network III E 0.898 1 0.860 1

FIG. 6. Purity (P) vs efficiency (ϵ) curves for parton-level events (left) and detector-level events (right). For illustration, we show the
values of Pc [for ϵ ∈ ð0.55; 0.99Þ with 0.05 interval], which are used when cutting on the LBN score Pb1;l > Pc or Pb1;l0 > Pc.
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events that pass the selection cuts to the total number of
events [Eq. (2.6)]. The selection criteria that define the
various purity-efficiency curves are described in Sec. II.
Results using conventional methods such as the topness,
end points method II, and KL fitter methods are marked as
♦, ⋆, and ▴, respectively. (The efficiency of end point
method II is reduced due to the presence of unresolved
events.) The × mark is shown as a reference to 99% purity

for DNN. For the end point method I (mbl, M
ðblÞ
2CC, M

ðlÞ
2CC

without mass information), we cut on the transverse mass
(Mtt̄

T ¼ ffiffiffî
s

p
min) of the entire tt̄ system to make the purity-

efficiency curve [2,11,49,50].
DNN (solid red), Attention Network (long-dashed

orange), and LBN (dot-dashed bright green) show the best
performance with LBN being better for detector-level
events. We did not find any difference between atten-
tion-based network and DNN. Results using BDT and end
point method I are shown in the dark green-dashed and blue
dotted curve, respectively.
Taking 99% (95%) as a benchmark purity, the efficien-

cies of ML methods are [0.284, 0.599, 0.721, 0.732, 0.734]
([0.560, 0.758, 0.861, 0.873, 0.867]) for parton level and
[0.173, 0.495, 0.548, 0.541, 0.634] ([0.449, 0.645, 0.707,
0.0705, 0.779]) for detector level for end point I, BDT,
DNN, Attention Network, and LBN, respectively. We see
that deep learning and the LBN method in particular brings
impressive efficiency gains at these high levels of purity,
which could have major benefits for physics analyses
that rely on resolving the combinatorial ambiguity in
dileptonic tt̄.

IV. FINDING THE CORRECT PARTITION
WITHOUT ANY MASS INFORMATION

We have investigated various methods to resolve the
twofold ambiguity in the dilepton tt̄ production. Some
methods use explicit mass information, while others do not.
In this section, we consider the twofold ambiguity in the
same topology as in Fig. 1 but with the unknown mass
spectrum. For an illustration, we fix the mass of A, mA ¼
500 GeV and scan over two-dimensional mass parameters,
(mB, mC) with the mass constraint, 0 < mC < mB < mA.
We will use the end point method I, hemisphere method,
and neural networks. For the end point method I, we

compute (mbl, M
ðblÞ
2CC,M

ðlÞ
2CC) without using explicit masses

in the minimization. Here, the M2CC is defined as

M2CC ≡min
q⃗1;q⃗2

fmax ½MP1
ðq⃗1; m̃Þ;MP2

ðq⃗2; m̃Þ�g;

=⃗PT ¼ q⃗1T þ q⃗2T;

MA1
¼ MA2

;

MB1
¼ MB2

; ð4:1Þ

where MðblÞ
2CC and MðlÞ

2CC are the M2CC variable applied to
ðblÞ and ðlÞ subsystems, respectively. They are similar to

MðblÞ
2CW and MðlÞ

2Ct, but only the mass-equality conditions
(MA1

¼ MA2
and MB1

¼ MB2
) are imposed. However,

no numerical values are used during minimization.
Note that these variables satisfy MT2 ¼ M2 ≤ M2CC ≤
M2CC ðwith mass inputÞ ≤ maxðMP1

;MP2
Þ ¼ mA, where

MPi
is the mass of the mother particle in the ith

side, and M2 is the same as Eq. (4.1) without the two
mass constraints. These kinematic variables for the
correct combination are bounded by their maximum
end point, while the incorrect combination can vary
and could violate the kinematic end point. Therefore,
the mass variables for the correct combination tend to
be smaller than values for the incorrect combination.
We can resolve the twofold ambiguity without using
mass information, taking the partition that gives more
“smaller” values as the “correct” one. Note that there are
no unresolved events, leading to 100% efficiency.
For DNN and LBN, we randomly choose 100 mass

points in ðmB;mCÞ, covering the triangular parameter
space. These points are a good representation of the
two-dimensional mass space that we are interested in.
We prepare 100,000 events for each chosen mass point
and mixed them all before feeding them into NN.
Although we do not feed numerical values of the chosen
masses, NN learns how to resolve the twofold ambiguity
by suitable interpolation in the entire two-dimensional
mass space [51,52].
Figure 7 summarizes the results of the four methods

(end point method I in the first row, hemisphere method in
the second row, DNN in the third row, and LBN in the last
row) for the parton-level (left) and for the detector-level
(right) events. In the case of the end point and hemisphere
methods, our results for the parton-level events are
consistent with those in Ref. [1]. We have added similar
plots for detector-level events as well in the right column.
Analogous to Fig. 6 for the top-quark decay, we

see here that NNs outperform the traditional methods
for the case of unknown mass spectrum as well.
This is clearly depicted in Fig. 8, which shows the
purity difference between LBN and end point method I
(top) and between LBN and DNN (bottom) for parton-
level (left) and detector-level (right) events. LBN and
DNN provide very similar performance in the wide
range of the mass parameters (bottom panel), while
LBN surpasses the end point method I (top panel), whose
performance drops in the degenerate spectrum, mB ≈mA
(in the right side of the figure) or mB ≈mC (along
the diagonal), for both parton level and detector
level, and mB;mC ≪ mA (in the left-bottom corner) for
parton level.

ALHAZMI, DONG, HUANG, KIM, KONG, and SHIH PHYS. REV. D 105, 115011 (2022)

115011-10



FIG. 7. Purity for choosing the correct partitioning with the end point method I (top), the hemisphere method (second row),
DNN (third row), and LBN (bottom) in the two-dimensional (mB, mC) mass space for mA ¼ 500 GeV and mB > mC.
The purity in the left (right) panels are obtained for parton-level (detector-level) events.
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V. CONCLUSION

Resolving the combinatorial problem in collider
experiments is crucial for the discovery of new physics
and precision measurements. The simplest combinatorial
problem is the twofold ambiguity, which arises in the
top-quark pair production. As the most massive funda-
mental particle in the standard model, the top quark is the
only quark that decays before hadronization. The most
precise measurements of top-quark properties such as
top-quark mass are typically performed in the lepton-jet
or dilepton channels. Therefore, it is important to find the
correct assignment for the reconstructed objects (b-tagged
jet and a lepton), as the incorrect assignment will reduce
the precision in the measurements of the top-quark
properties.
In the dileptonic tt̄ events, we do not know the complete

kinematic information due to the two neutrinos since they
do not leave a trace in the detector. In particular, we do not
know the individual momentum of each missing particle;

we only know the total missing transverse momentum =⃗PT .
We are unable to reconstruct the missing momenta exactly,

which poses the difficulty in assigning a lepton and a
reconstructed b-quark pair.
In this paper, we have revisited with machine learning

algorithms the combinatorial problem in the dileptonic tt̄-
like event topology. We have compared the performance of
various algorithms against that of existing methods. In
particular, we investigated the performance of attention-
based networks, which has been found useful in the fully
hadronic channel, and the Lorentz Boost Network, which is
motivated by underlying physics principles. We found that
most of the machine learning methods outperform the
existing approaches based on kinematic variables. We then
generalized the mass spectrum in consideration of new
physics where the underlying mass spectrum is unknown,
and therefore no kinematic end point information is
available. We showed that the purity for selecting the
correct partition is greatly improved by utilizing the
machine learning techniques, especially in the regions
where the particle spectrum is degenerate.
A specific application of our study would be measure-

ment of the top-quark Yukawa coupling (yt;SM) in the tt̄h
production. As discussed in Refs. [18,19], top-quark

FIG. 8. The purity-difference between LBN and end point method I (top) and between LBN and DNN (bottom) for parton-level (left)
and detector-level (right) events.
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reconstruction in the dilepton channel plays an important
role. For example, Table I shows that the end points method
gives 74.2% efficiency and 87.4% purity at detector level
(marked as ⋆ in Fig. 6), which is comparable to results
presented in Refs. [18,19]. Using theM2 reconstruction and
the sideband subtraction, the uncertainty (δκt) on the top-
quark Yukawa coupling (κt ¼ yt=yt;SM, which is the
deviation from the SM value) is calculated as δκt ∼
0.096 [19] at the HL-LHC. On the other hand, our results
show that the same purity (87.4%) can be obtained at a
higher efficiency using DNN (with 92% efficiency) and
LBN (with nearly 100% efficiency), which would lead to a
gain of 24% and 35% more events, respectively. Naive
rescaling indicates that a gain α in the number of (both
signal and background) events would lead to the α=2
reduction in the precision on δκt. Following more a
accurate procedure in Ref. [19], we estimate the uncertainty
to be reduced to δκt ∼ 0.086 and δκt ∼ 0.082 using DNN
and LBN, respectively.
Another application of our study would be testing Bell’s

inequality with top-quark pair production [53,54]. It is well
known that the leptonic final state is maximally correlated
to top-quark polarization, which motivates the measure-
ment of violation of Bell’s inequality performed in the
dilepton channel. One of main goals is to reconstruct the
spin density matrix in the center of the momentum frame,
which requires full reconstruction of two neutrinos, resolv-
ing the twofold ambiguity. We anticipate that ML methods
would help such a measurement [55].
Finally, we would like to make brief comments on

impacts of ISR/FSR and backgrounds, postponing
detailed analysis in a future study. Our goal in this paper
was to investigate different NN architecture in depth to
resolve the combinatorial problem (twofold ambiguity)
without worrying about ISR/FSR and backgrounds so
that we can try various ML methods and make fair
comparison against existing approaches. We took the tt̄
dilepton production as a specific example and then
applied the ML methods to the case with arbitrary mass
spectrum, keeping an application in BSM searches in
mind. Therefore, we intentionally ignored ISR/FSR
and backgrounds, as their impacts are model dependent
in a sense that the hardness of ISR depends on the mass
scale of new particles and backgrounds depend on the
mass splitting.
Although we have not investigated the effects of ISR/

FSR using NNs, one can get a rough idea using the existing
methods for tt̄þ X production. References [18,19] studied
the twofold ambiguity in the tt̄h production with h → bb̄,
where parton-shower and hadronization are simulated with
PYTHIA. For example, Ref. [19] finds the efficiency of end
point II to be 78%, while our detector-level efficiency in
this paper is 74%. The small difference is due to different
set of cuts in data preparation. In Refs. [18,19], two hardest
b-tagged jets are chosen, which effectively rejects

contamination arising from ISR/FSR, resulting in similar
performance in the absence ISR/FSR.
The effect of ISR for top-quark production is studied in

details in Ref. [10], using the MT2 and mbl method, where
ISR/FSR and hadronization and detector effects are simu-
lated with PYTHIA and pretty good simulation (PGS),
respectively. Taking two leading b-tagged jets as b-quark
candidates from the top decay, they find an efficiency of
51.7% with a purity of 94.9% at the 7 TeV LHC, which is
comparable to end point I in the right panel of Fig. 6. This
comparison indicates that effects of ISR/FSR and hadro-
nization are mild or negligible when resolving the twofold
ambiguity for the dilepton top-quark production.
Effects of ISR in reconstruction of new particle masses

for new physics processes have been studied in Ref. [56].
They developed a novel technique to reduce ISR effects,
taking gluino pair production and its decay to two jets and
neutralino, g̃ g̃þj → 5jetsþ χ̃01χ̃

0
1, as an example. With

five jet candidates, they compute MT2ðiÞ, excluding the
ith jet (i ¼ 1;…; 5) and defineMmin

T2 ¼mini¼1;…;5ðMT2ðiÞÞ.
Therefore, by construction, Mmin

T2 < Mend point
T2 , and the

iminth jet that satisfies MT2ðiminÞ ¼ Mmin
T2 is considered

to be the ISR jet. Surprisingly, this simple kinematic
method gives reasonably good efficiency in identifying
the ISR jet. For a given mass spectrum (mg̃ ¼ 685 GeV
and mχ̃0

1
¼ 101.7 GeV), they identify the ISR jet among

five jets correctly 29% of time. This number increases
up to 44% with a cut minðMT2Þ > 500 GeV. A
similar method is used to distinguish tt̄ and tW
production [57].
Similarly, the importance of backgrounds also depends

on the details of new physics including mass spectrum. For
example, one can consider a new physics scenario, where
the mass difference between B and C is much larger than
mW (mB −mC ≫ mW), which would lead to two very high
pT leptons with little backgrounds. On the other hand, if
mB −mC ≲mW , we would suffer from the tt̄ background.
Therefore, to better estimate their impacts, it is appropriate
to consider a specific new physics case with a fixed mass
spectrum.
Even within SM, the effects of ISR/FSR and back-

grounds depend on what other particles are produced along
the two top quarks. Note that all discussion in this paper is
valid for any tt̄þ X processes, as long as X is reconstruct-
able. For example, one can consider tt̄h with h → γγ or tt̄h
with h → bb̄, where dominant backgrounds are different.
Specifically, for top-quark production, ISR/FSR should be
relatively harmless for our problem given the high
b-tagging efficiency and small fake rates expected at the
HL-LHC [10,26]. Therefore, in the case of tt̄ production,
background is not really a big concern. One can further
reduce the backgrounds at the cost of statistics, utilizing
various kinematic methods, as those methods themselves
are optimized for signal (tt̄) and backgrounds processes
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would violate the end point structures [18,19]. An interest-
ing question now is how well one can improve these results
using NNs, the details of which we reserve for a
future study.
So far, we have focused on resolving the twofold

ambiguity. One of advantage of using the kinematic
methods is their byproduct, i.e., some methods provide
ansatz for the momentum of the missing particles, which
can be used to reconstruct the full final state approximately.
A similar study with neural networks has been done
utilizing Lorentz structure of the four momenta [48].
Generalizing such a method for arbitrary mass spectrum
would be useful in search for new physics beyond the
standard model. We expect that NN-inspired reconstruction
will help to expedite discovery as well as the precision
measurement.

The source code can be found from [58].
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APPENDIX: OVERVIEW OF
EXISTING METHODS

There are several methods to resolve the twofold
ambiguity in the dilepton tt̄ production. Although each
method is introduced elsewhere, we did not find detailed
description on the topic. Moreover, there is no compre-
hensive study on the twofold ambiguity, which compares
the performance of all different methods using the same set
of events. We find it valuable to provide a brief review on
various existing methods in this Appendix, including the
performance of each method, and proper comparison.
Although we report the purity and efficiency of the
individual method in resolving the twofold ambiguity, a
method with a higher efficiency or a higher purity does not
necessarily mean a better method. Each method is unique,

has different motivations, and is based on different set of
assumptions. Depending on the underlying event topology
and the target study point, they may show different levels of
performance, hence it is prudent to keep as many tools as
possible in the analysis toolbox.

1. End point methods

For events with two missing particles, the on-shell
constrained M2 variable [24,31] provides a good estimate
for the unmeasured invisible momenta and thus can be
useful to discriminate combinatorial ambiguities [1,2,31]. It
is defined as a (3þ 1)-dimensional version ofMT2 [59–62],

M2ðm̃Þ≡min
q⃗1;q⃗2

fmax ½MP1
ðq⃗1; m̃Þ;MP2

ðq⃗2; m̃Þ�g;

=⃗PT ¼ q⃗1T þ q⃗2T; ðA1Þ

where the actual parent masses, MPi
, are considered

instead of their transverse masses, MTPi
(i ¼ 1, 2). The

m̃ is the test mass, which we take to be zero in our study.
Note that the minimization is performed over the
3-component momentum vectors q⃗1 and q⃗2 of the two
missing particles [2], assuming the missing transverse
momentum constraint as shown in Eq. (A1). At this point,
MT2 and M2 are known to be equivalent, in the sense that
the resulting two variables will have the same numerical
value M2 ¼ MT2 ≤ maxðMP1

;MP2
Þ [2,24,63]. Figure 9

shows M2 distribution of the correct (red, solid) and
incorrect (blue, dotted) pair for parton-level events (left)
and detector-level events (right). The correct pairing
respects the mass bound, while the incorrect paring goes
beyond the expected end point, which is the mass of the top
quark in this example.
However, for the tt̄ production considered in this paper

(in general, tt̄þ X, where X is fully reconstructed), the
value of the W-boson mass mW is experimentally known,
and therefore we can introduce the following variable in
the (bl) subsystem:

MðblÞ
2CW ≡min

q⃗1;q⃗2
fmax ½Mt1ðq⃗1; m̃Þ;Mt2ðq⃗2; m̃Þ�g;

=⃗PT ¼ q⃗1T þ q⃗2T;

Mt1 ¼ Mt2 ;

MW1
¼ MW2

¼ mW: ðA2Þ

Here, the second constraintMt1 ¼ Mt2 requires the equality
of two parent masses without use of a specific numerical
value, while the true W mass is used in the third constraint
MW1

¼ MW2
¼ mW . Similarly, taking the top-quark mass

mt in the minimization, we can define a new variable in
the (l) subsystem:
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MðlÞ
2Ct ≡min

q⃗1;q⃗2
fmax ½MW1

ðq⃗1; m̃Þ;MW2
ðq⃗2; m̃Þ�g;

=⃗PT ¼ q⃗1T þ q⃗2T;

MW1
¼ MW2

;

Mt1 ¼ Mt2 ¼ mt: ðA3Þ

By construction, MðlÞ
2Ct ≤ mW and MðblÞ

2CW ≤ mt.
Figure 10 shows M2CW (top) and M2Ct (bottom) dis-

tributions of the correct (red, solid) and incorrect (blue,
dotted) pair for parton-level events (left) and detector-level
events (right), respectively. We note that M2CW shows a
sharper distribution compared to M2 distribution, while

FIG. 9. M2 distribution of the correct (red, solid) and incorrect (blue, dotted) pair for parton-level events (left) and detector-level events
(right).

FIG. 10. M2CW [top, Eq. (A2)] andM2Ct [bottom, Eq. (A3)] distributions of the correct (red, solid) and incorrect (blue, dotted) pair for
parton-level events (left) and detector-level events (right).
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both respect the same end point (top-quark mass). For both
cases, the input mass (or test mass) is zero. However,M2CW
distribution begins from mW since the numerical value of
the W-boson mass is imposed during the minimization as
shown in Eq. (A2).
For the minimization of M2, M2Ct, and M2CW , we use

OPTIMASS [64]. While these mass-constraining variables
are proposed for mass measurement originally, one could
use them for other purposes such as measurement of spins
and couplings [1,10]. In our study, we use these variables to
fully reconstruct the final state of our interest, with the
unknown neutrino momenta obtained via minimization
procedure. These momenta may or may not be true particle
momenta, but they provide important nontrivial correla-
tions with other visible particles in the final state, which
help reconstruction.
The other useful kinematic variable is the invariant mass

mðiÞ
bl of b and l in ith pairing (i ¼ 1, 2). The invariant mass

distribution for the correct pairing is bounded by the
minimum and maximum values (mmin

bl ≤ mbl ≤ mmax
bl ),

which are given by

ðmmax=min
bl Þ2¼ 1

2

�
m2

t −m2
Wþm2

b

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððmt−mbÞ2−m2

WÞððmtþmbÞ2−m2
WÞ

q �
;

ðA4Þ

which become mmax
bl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

t −m2
W

p
and mmin

bl ¼ 0 in the
mb → 0 limit. Figure 11 shows the mbl distribution of the
correct (red, solid) and incorrect (blue, dotted) pair for
parton-level events (left) and detector-level events (right).

We take the larger (maxfmðiÞ
blg) of two possible invariant

masses for each choice of partitioning.
Now, we follow the procedure described in Ref. [1] to

resolve the twofold ambiguity. For each event, we compute

the following three-dimensional vector for both correct and
incorrect pairings:

ðmmax
bl −max

i
fmðiÞ

blg; mt −MðblÞ
2CW;mW −MðlÞ

2CtÞ: ðA5Þ

The correct combination would respect the anticipated

end points of mbl, M
ðblÞ
2CW , and MðlÞ

2Ct, leading to positive
components of above three-dimensional mass space. On the
other hand, the incorrect pairing could give either sign.
Therefore, by requiring that the partition which gives more
“plus” signs as the “correct” one, we can resolve the
twofold ambiguity. Then, we treat the corresponding
momenta of the two missing particles, which are obtained
via the minimization procedure, as “approximate”
momenta of the two missing neutrinos. If both partitions
give the same numbers of positive and negative signs,
we discard such events, since they are “unresolved cases.”
For parton-level events, we find such unresolved events are
23%, while it is 26% for detector-level events.
With the definitions of efficiency and purity in Eqs. (2.6)

and (2.7), selecting the resolved events only, the end point
method leads to 77% efficiency and 96% purity for parton-
level events and 74% efficiency and 87% purity for
detector-level events, respectively. We call this method
end point method II, which is shown as (⋆) in Table I and
Fig. 6. Similar methods were considered in the literature,
using (mbl, pt) [9] or (mbl, MT2) [10,11]. We find that the
latest study with (mbl, M2Ct, M2CW) in Ref. [1] gives the
best result concerning the combinatorial problem.
Although the use of the mass spectrum resolves the

twofold ambiguity more accurately, it is instructive, and
perhaps necessary in some examples, to repeat a similar
analysis without using mass information explicitly. We use

(mbl, MðblÞ
2CC, MðlÞ

2CC) without prior knowledge of mass
spectrum. For each event, there are two possible values

for each component of (mbl, M
ðblÞ
2CC, M

ðlÞ
2CC). Choosing the

FIG. 11. maxfmðiÞ
blg distribution of the correct (red, solid) and incorrect (blue, dotted) pair for parton-level events (left) and detector-

level events (right).
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combination that gives more smaller components as the
correct one, we obtain 81.6% purity for parton-level
events and 78.9% purity for detector-level events. Since
there are three quantities that we compare, in this case,
there is no unresolved event, and therefore the efficiency
is 100%. This is denoted as end point method I in Table I
and Fig. 6.
The end point method is very general and can be

extended easily to different event topologies. However, it
also has a few issues. First, the end points are sensitive
to the detector effects and get smeared significantly.
A proper deconvolution procedure (using the transfer
function) is required for a better performance. Second,
the finite widths of intermediate particles (top quark and
W in this case) also affect the shape of the kinematic
distributions, in which case the correct pairing could
violate the expected end point. Finally, there is quite
large number of unresolved events, which are discarded,
when mass information is imposed. These issues motivate
us to explore different methods to maximize both effi-
ciency and purity.

2. Hemisphere method and recursive
jigsaw reconstruction

Partitioning reconstructed particles into two decay
chains is often addressed by the so-called hemisphere
algorithm, developed originally within CMS [12] and later
adopted in many phenomenological studies [13–15]. Using
the standard hemisphere method, we cluster the visible
particles into two groups by keeping the invariant mass
of each group to a minimum. For the tt̄-like topology
considered in this paper, it is straightforward to see that the
hemisphere method is nothing but a variation of invariant
mass method without relying on the end point. The pairing
whose invariant mass is smaller is chosen to be the correct
pair, and the other is chosen to be the incorrect one. Since
the hemisphere method does not use the numerical value of

the end point, there is no violation of the end point, and
therefore we do not discard any event, keeping 100%
efficiency. We obtain the 78% purity for parton-level events
and 77% purity for detector-level events. These events are
ones in the left-upper corner of the mcorrect

bl ¼ mincorrect
bl line

(red, solid) in Fig. 12. An advantage of this method is that
one could obtain relatively good purity with 100% effi-
ciency without using the mass spectrum via fast compu-
tation. The results are not very sensitive to the detector
effects. However, if a high purity sample is required, the
method must be extended at the cost of statistics. For
example, as we discussed in the previous method, one can
further improve on the hemisphere algorithm by suitable
cuts on the invariant mass and either the jet pT [9] or
MT2 [10,11].
A similar idea is discussed in the Recursive Jigsaw

Reconstruction method. It is a technique for analyzing
reconstructed particles in the presence of kinematic
unknowns arising from the unmeasured particles and
the combinatoric unknowns associated with indistinguish-
able particles [21]. The method provides a very general
framework, which can be applied to various processes
at collider experiments. In particular, the dileptonic tt̄
production is one of the examples discussed
in Ref. [21]. Because of the simple nature of the
twofold ambiguity, the Recursive Jigsaw Reconstruction
method becomes very similar to the hemisphere method.
It takes the smaller of the two squared mass sum,
min ðm2

b1lþ
þm2

b2l−
; m2

b2lþ
þm2

b1l−
Þ, as the correct pair.

In other words, it chooses the combination where the sum
of 4-vector inner products is smallest, effectively pairing
particles flying closer together as expected from a
common decay source. This algorithm gives 76.2% of
purity for parton-level events and 75.7% for detector-
level events. We also used RESTFRAMES [21,65] and
obtained a similar purity. These results are very compa-
rable to what we have obtained using the hemisphere
method.

FIG. 12. Scatter distribution of (mcorrect
bl , mincorrect

bl ) for parton-level events (left) and detector-level events (right). The red-diagonal line
represents mcorrect

bl ¼ mincorrect
bl .
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3. Topness

The topness (T) was originally proposed in search for
supersymmetry [16], and then later a modified version was
used in search for the double Higgs production [22,23]. It is
nothing but a simple mass fitting in the tt̄-like topology
with a given mass spectrum.
The definition of the χ2 statistic is given by

χ2ij ≡ min
⃗=PT¼p⃗νTþp⃗ν̄T

�ðm2
bilþν

−m2
t Þ2

σ4t
þ ðm2

lþν −m2
WÞ2

σ4W

þ
ðm2

bjl−ν̄
−m2

t Þ2
σ4t

þ ðm2
l− ν̄ −m2

WÞ2
σ4W

�
; ðA6Þ

where b1 and b2 are the pT-ordered b-tagged jets. The
topness T is defined as T ¼ minðχ212; χ221Þ. We find the
momentum information of the two neutrinos via minimi-
zation algorithm over the missing transverse momentum

constraint, =⃗PT ¼ p⃗νT þ p⃗ν̄T . Then, the correct pair is
identified as the combination of b and l, which gives
the smaller of the two χ2 values, being more consistent
with the top-quark and W-boson masses. The correctly
identified events reside in the left-upper corner of the
diagonal line in Fig. 13. We obtain the 85% purity for
parton-level events and 81% purity for detector-level
events, keeping 100% efficiency, as shown as (♦)
Table I and Fig. 6. Note that in our minimization we
choose σt ¼ σW ¼ 5 GeV following Refs. [22,23]. We
find that the purity is not very sensitive to the choice of the
σ parameters.

4. Kinematic likelihood fitter

The Kinematic Likelihood Fitter (KLFitter) [17,58]
is a library for kinematic fitting using a likelihood
approach developed for the top-quark reconstruction.
The reconstruction of dileptonic tt̄ events utilizes the

neutrino-weighting method to solve the underconstrained
kinematic system in the final state with two b-tagged jets,
two charged leptons, and the missing transverse momen-
tum. The likelihood consists of three parts as shown in
Eq. (A7):

L ¼
Y
i¼x;y

GðEmiss
i jpν1

i ; p
ν2
i ; σ

miss
i ðmt;mW; ην1 ; ην2ÞÞ

×
Y2
i¼1

Gðηνi jmtÞ × ðml1;q1 þml2;q2Þα

×
Y2
i¼1

W jetðpdetector
jet;i jpparton

jet;i Þ

×
Y2
i¼1

Wlðpdetector
l;i jpparton

l;i Þ: ðA7Þ

The Gaussian distribution Gð� � �Þ in the first line of Eq. (A7)
is two dimensional and attempts to fix the neutrino
momenta via the missing transverse momentum constraint.
The second line contains two one-dimensional Gaussian
distributions multiplied by the inverse of the invariant
masses. α is a tuning parameter of the likelihood, and
we use the default value α ¼ −2. This choice is consistent
with choosing the smaller value of invariant masses,
which could increase the likelihood. The last two lines
include the transfer functions for the two charged leptons
(Wl) and the two jets (W jet), which are defined in
Eqs. (A8) and (A9), respectively. The transfer function
contains the response of the detector and is the conditional
probability to observe a detector-level event for a given
parton-level configuration. We use the transfer function
introduced in Refs. [66–69],

Wlðpdetector
l;i jpparton

l;i Þ ¼ 1 for pdetector
l;i ¼ pparton

l;i ; ðA8Þ

FIG. 13. χ2 value of the correct (x axis) and the incorrect pair (y axis) for parton-level events (left) and detector-level events (right).
The red-diagonal line represents χ212 ¼ χ221.
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W jetðpdetector
jet;i jpparton

jet;i Þ¼ 1ffiffiffiffiffiffi
2π

p ðf2þf3f5Þ

×
�
exp

−ðΔ−f1Þ2
2f2

2 þf3 exp
−ðΔ−f4Þ2

2f2
5

�
;

ðA9Þ

where Δ ¼ pdetector
jet;i − pparton

jet;i and fj ¼ aj þ pparton
jet;i bj. The

parameters aj and bj are determined from fully simulated
tt̄ events which are given in Refs. [66–68]. We use
Wlðpdetector

l;i jpparton
l;i Þ ¼ 1 for pdetector

l;i ¼ pparton
l;i (otherwise,

Wl ¼ 0) and W jetðpdetector
jet;i jpparton

jet;i Þ ¼ 1 for pdetector
jet;i ¼

pparton
jet;i (otherwise, W jet ¼ 0) for the parton-level analysis.

The likelihood distinguishes between neutrinos and anti-
neutrinos, and the charged leptons are paired accordingly.
We refer to Ref. [17] for further details.
Figure 14 illustrates how the above procedure works.

Two solid curves represent the distribution of the transfer
function as a function of Ejet for the two b-quark candidates
in a sample event. True Monte Carlo (MC) inputs are
marked as filled downward triangle for parton-level energy
(without detector effects) and as filled upward triangle for
smeared energy (with detector effects). The likelihood
method fixes the most probable Ejet, which are denoted
by filled star for correct pairing and filled circle for
incorrect paring. Note that these two points (either filled
star or filled circle) do not coincide with the maximum
location of the two curves [WðEjetÞ]. This is because the
two points are obtained by maximizing the total likelihood
Eq. (A7), including both transfer function, Gaussian dis-
tributions and invariant masses.

To distinguish the correct and incorrect pairings, we use

the ratio of two likelihoods for a given event x, LðxjCÞ
LðxjWÞ.

Therefore, the constant coefficients in Eq. (A7) cancel out.

Requiring LðxjCÞ
LðxjWÞ > 1, we obtain the 86.6% purity for

parton-level events and 77.6% purity for detector-level
events, keeping 100% efficiency. Although the likelihood
analysis is well motivated, we find in practice that the
obtained neutrino momenta are not always sufficiently
close to “true”momenta, which would encourage the use of
the matrix element method to be discussed later. It is also
difficult to generalize the method, when the masses of
particles are unknown.

5. Matrix element method

All methods that we discuss in this paper have one thing
in common. They all attempt to calculate a good variable
for distinguishing different hypotheses. Often, these
hypotheses are signal plus background and background
alone. The Neyman-Pearson lemma suggests that the
likelihood ratio is the optimal variable to distinguish
hypotheses [32,33]. The likelihood and the probability
are the same function with a different choice of dependent
and independent variables, so in particle physics, the
likelihood could be given by the differential cross section
normalized by the total cross section,

Pðp⃗vis
i jθ⃗Þ¼1

σ

Z
dx1dx2

f1ðx1Þf2ðx2Þ
2sx1x2

×

� Y
j∈final

Z
d3pj

ð2πÞ32Ej

�
jMθ⃗ðpjÞj2

Y
j∈vis

Wðp⃗j;p⃗vis
j Þ;

ðA10Þ

where jMθ⃗ðpjÞj2 is the squared matrix element for a given

set of parameters θ⃗. This is where the Matrix Element
Method gets its name. The xi is the momentum fraction of
each parton (i ¼ 1, 2) participating in the collision, fiðxiÞ is
the parton distribution function [70], and s is the center-of-
mass energy of the collider. The transfer function W
parametrizes the detector resolution (as discussed in
Sec. A 4), and the integration is performed over all final-
state particle momenta (over entire phase space.). For the
visible final-state particles, we integrate over transfer
functions. For the invisible final-state particles, we integrate
over the missing momenta.
The Matrix Element Method is a type of multivariate

analysis and provides an optimal variable. However, it can be
very challenging to integrate over transfer functions (and
accurately parametrizing the detector response in terms of
transfer functions) and invisible particle momenta. In prac-
tice, it may be much easier to get a pretty good variable by
using machine learning techniques on Monte Carlo data.
Another challenge is how to incorporate the effects of

FIG. 14. Distribution of the transfer function as a function of
Ejet for the two b-quark candidates in a sample event. True MC
inputs are marked as filled upward triangle for parton-level
energy (without detector effects) and as filled downward triangle
for smeared energy (with detector effects). The likelihood method
fixes the most probable Ejet, which are denoted by filled star for
correct pairing and filled circle for incorrect paring.
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additional radiation and/or other higher-order corrections
properly [71,72]. Unfortunately, the Matrix Element Method
requires the full knowledge of the underlying process
including masses, spins, and couplings of particles. It is
difficult to consider a model-independent analysis.
Nevertheless, the biggest motivation for using Matrix

Element Method (beyond Neyman-Pearson optimality) is
physical transparency. It is easy to understand where the
sensitivity comes from when the discriminating variable is
calculated explicitly. To get the basic idea on how well the
Matrix Element Method could resolve the twofold ambi-
guity, let us consider the gg→ tt̄→WþW−bb̄→bb̄lþl−νν̄
process at the parton level. We reconstruct the two top
quarks, taking both correct and incorrect combination with
true neutrino momenta. We find that 93.8% of the time the
squared matrix element for the correct combination is larger.
This result implies that it would be difficult to improve
beyond 93.8% using any methods that we are developing.
A similar exercise gives 86.2% for detector-level events.
For a more realistic investigation, we use MadGraph5_

aMC@NLO to generate the squared matrix element for
gg → tt̄ → WþW−bb̄ → bb̄lþl−νν̄. By computing the

ratio, Pðp⃗visjcorrectÞ
Pðp⃗visjincorrectÞ with MOMEMTA (a modular toolkit for

the Matrix Element Method at the LHC) [73], we obtain
84.7% for the parton-level events and 81.7% for the
detector-level events.

6. Analytic reconstruction

One can in principle solve up to a fourfold ambiguity
for the neutrino momentum in the dilepton production
using on-shell conditions of the top quark and theW boson
[74–77]. This analytic approach naturally solves the two-
fold ambiguity, when trying to reconstruct the final state
[75,76]. However, the method is very sensitive to the exact
value of the intermediate particle masses (the top-quark
and the W-boson masses in this case), and the off-shell
effects could result in no solution (or imaginary solution).
We will not further investigate the features of analytical
reconstruction in our current study, since these masses are
unknown a priori when applying the method to new
physics beyond the SM, and it is difficult to generalize
unlike other methods. Finally, we refer to Refs [78–83] for
readers who are interested in the singularity variables.
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