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Unsupervised anomaly-detection could be crucial in future analyses searching for rare phenomena in
large datasets, as for example collected at the LHC. To this end, we introduce a physics inspired variational
autoencoder (VAE) architecture which performs competitively and robustly on the LHC Olympics Machine
Learning Challenge datasets. We demonstrate how embedding some physical observables directly into the
VAE latent space, while at the same time keeping the anomaly-detection manifestly agnostic to them,
can help to identify and characterize features in measured spectra as caused by the presence of anomalies in
a dataset.
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I. INTRODUCTION

The absence of new physics (NP) discoveries thus far at
the LHC strains many of the scenarios beyond the standard
model (BSM) put forward in the last decades to address the
theoretical and phenomenological weaknesses of the SM.
It is possible that NP is present at mass scales just out of
reach of the LHC, in which case effective field theory
methods may help infer the presence of structures in the
low-statistics tails of distributions measured at the LHC.
Another possibility however is that new degrees of freedom
are already being produced at the LHC, but that existing
search strategies have not been specific enough to disen-
tangle their signatures from the backgrounds. In going
beyond the most motivated NP scenarios it becomes
impractical to consider searching for all possible signatures.
To address this problem, unsupervised machine learning
tools can be used to search for NP signals with no a priori
knowledge on what the relevant signatures may be. In par-
ticular, anomaly-detection techniques address the problem

of searching for rare a priori unknown signals in isolated
regions of measured phase-space. Several classes of unsu-
pervised methods using deep neural networks (DNNs)
have been explored in the literature thus far; CWoLa-
based methods [1–7],1 autoencoder (AE) and variational
AE (VAE) based methods [9–20], and others [21–28].
However interpreting what has been learned by a DNN in
physical terms is notoriously difficult. Another class of
unsupervised techniques based on latent Dirichlet alloca-
tion (LDA) [29–31] and other topic modeling methods
[32,33] do provide interpretability, but are not based on
DNNs. In this paper we introduce a novel optimization
strategy and latent space sampling step to address two
general outstanding issues in unsupervised VAE methods
for (dijet) anomaly-detection: (i) robustness of anomaly-
detection performance, and (ii) physical characterization of
the VAE latent space. Since we consider anomalies which
are localized in the invariant mass of dijets, the physical
characterization is in terms of both the observables used for
anomaly-detection and the invariant mass of the events.

II. DATASET AND OBSERVABLES

We demonstrate our approach using the LHC Olympics
R&D dataset, consisting of 106 simulated QCD dijet events
and up to 105 Z0 → Xð→ qq̄ÞYð→ qq̄Þ events (depending
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1Most notably, the ATLAS collaboration has recently imple-
mented a CWoLa-based weakly supervised dijet search [8].
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on the chosen signal to background (S=B) ratio benchmark)
withmZ0 ¼ 3.5 TeV,mX ¼ 500 GeV and mY ¼ 100 GeV.
Details on the simulation and kinematic cuts can be found
in Ref. [34]. From each event we select the two jets with the
highest pT and then order them by their mass in the input
layer of the VAE. For reasons of generality, we only use a
small set of standard high-level observables in the analy-
sis2: the jet mass (mj) and two ratios of N-subjettiness
observables (τ2=τ1; τ3=τ2) for each jet [36]. For our chosen
set of observables the signal (i.e., anomaly) events differ
significantly from background in just the mass of the
heaviest jet and τ2=τ1 of both jets, whereas the τ3=τ2
distributions exhibit significantly less distinguishing char-
acteristics. This is realistic since in a typical model-agnostic
BSM search we would expect only a subset of the
observables to be sensitive to the signal.
Using the VAE we want to obtain an anomaly score for

each event, indicating how anomaly- or background-like
the event is, which can then be used in a search for a
localized excess (i.e., a bump hunt) in the dijet invariant
mass (mjj) spectrum of the events. Importantly in this
approach, the dijet invariant mass observable itself should
not be among the inputs to the VAE, nor should it be
directly computable from the inputs, since this could sculpt
the invariant mass distribution of the events passing the cuts
leading to potential problems in quantifying the signifi-
cance of any excess (see e.g., Refs. [37–42] for a more
detailed discussion).
Finally, data preprocessing can have significant effects

on the anomaly-detection performance, the stability, and
the early stopping conditions. We tested our method
using different data preprocessing schemes available in
the Scikit-Learn v0.23.2 library [43]. We found that using the
common MaxAbsScaler works well for our choice of
observables, however we emphasize that this step should be
handled with care, depending on the observables’ distri-
butions in a given dataset.

III. VARIATIONAL AUTOENCODING

The VAE architecture [44] and loss function define a
probabilistic model for the dijet data in which each event
can be described by a single latent variable z. The function
pðzjeventÞ is the posterior distribution and encodes infor-
mation on the latent structure of that event. As shown on
Fig. 1, the VAE consists of two components, an encoder
and a decoder, where the encoder models the posterior
distribution for the model pðzjeventÞ and the decoder
models the likelihood pðeventjzÞ. The encoder consists
of a neural network mapping each event to a mean z̄ and a
log variance log σ2z , and a sampling step in which a value z

is sampled from a Gaussian distribution parametrized by z̄
and log σ2z . The decoder consists of a neural network
mapping the value z back to a reconstructed event.
Together this sequence defines a single forward pass
through the VAE. A key feature here is the bottleneck z,
i.e., the latent space, which is a compressed representation
of the event from which the decoder must attempt to
reconstruct the full event. Note that for a severely com-
pressed (low dimensional) latent space one does not expect
the VAE to accurately reconstruct individual events, nor
all the observable distributions. However, the medians of
these distributions are expected to be learned most easily
and thus reconstructed most accurately. The weights and
biases of the VAE are optimized such that the evidence-
lower-bound (ELBO) of the probabilistic model evaluated
on the dataset is maximized. This ELBO consists of two
terms, the reconstruction loss and the KL-divergence with
respect to the normal prior in latent space, with the latter
acting as a regularizer on the latent space distribution of
events. In general the two terms can be weighted differently
relative to each other, which in the end relates to the
variance on the reconstructed events produced on the
output layer of the decoder [45]. The resulting loss function
can be expressed as

L ¼ −α logpðeventjzÞ − 1

2
ð1þ log σ2z − z̄2 − σ2zÞ; ð1Þ

where − logpðeventjzÞ is modeled by the mean-squared-
error between the input and output events, and the second
term arises from the KL divergence between the posterior
distribution for a single event and the Normal distribution.
Consistent with previous studies [16,17,45] we find that
α ≫ 1 results in good performance and avoids s.c. “com-
ponent collapse” in which the KL divergence forces the
means and log variances of all events to 0. For definiteness,
in the following we present results for a value of α ¼ 5000,
however, our results were found not to be sensitive to
changes in α in the range α ∈ ½103; 104�.
The weights and biases of the networks were trained via

back-propagation with the following architecture: 3 hidden
layers with 64 nodes and SeLU activations were used in
both the encoder and the decoder, with the output layers of
both having linear activations. Our final results are however
insensitive to small changes in the choice of the DNN

FIG. 1. Standard encoder-decoder architecture used for the
VAE, with z̄ and σz representing the mean and standard deviation
that each event is mapped to by the encoder.

2Observables more specially suited for the LHC Olympics data
have been previously considered and can in principle result in
further significant increases in performance for a specific dataset,
albeit at the price of potential loss of generality, see e.g., Ref. [35].
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architecture or training parameters. All of the numerical
procedures were implemented with TensorFlow v2.3.1 [46,47].
In our analysis the networks were trained using a batch size
of 1000 for up to a maximum of 100 epochs.

IV. ANOMALY-DETECTION

Traditionally the reconstruction loss has been used as an
anomaly detection metric with autoencoders and even
VAEs. In the latter however, there are other anomaly
detection metrics that might be useful for detecting
anomalous jets in the training data. In particular the KL-
divergence in the loss function between the (Gaussian)
distribution of an encoded jet and the prior (unit Gaussian)
distribution measures how much the encoded distribution
of the jet deviates from the prior. Since the KL term in the
VAE loss function attempts to push all encoded distribu-
tions for the jets toward the prior, balanced against the
reconstruction loss, this KL-divergence could be a good
indicator of anomalous jets in the dataset.
In Fig. 2 we present a detailed comparison of various

anomaly detection metrics for 10 trained models, differing
only in the initial conditions of the weights, as a function of
the training epoch. The performance of different models
is evaluated using the ROC area under curve (AOC) and
the background mistag rate at signal efficiency of 0.5
(ϵ−1b ð0.5Þ). For comparison we used the Adadelta optimizer
[48] for half of the models (left column), and the Adam
optimizer [48] for the other half (right column), both with

default hyper-parameters as implemented in TensorFlow. Note
the unstable performance of the results obtained using
the Adam optimizer in comparison to those obtained with
the Adadelta optimizer, with both the loss function and the
anomaly-detection performance fluctuating rapidly during
training. Adam includes the adaptive estimation of both
first and second order moments when updating the network
weights, and is designed specifically to increase the speed
of training by reducing sensitivity to outliers in the data.
Adadelta on the other hand only relies on second order
moments, and uses adaptive learning rates per-dimension
aiming to prevent the continuous decay of learning rates
throughout the training while allowing the network to
determine the learning rates on the fly. In fact, by fine-
tuning the hyperparameters of the Adam optimizer, we
managed to reproduce the stability and performance that
Adadelta provides. Nonetheless, in the following we use
Adadelta, as the results are stable without having to resort
to any fine-tuning. For an in-depth comparison of different
optimizers, see e.g., Ref. [49].
In the left column of Fig. 2 we also see that the anomaly-

detection performance using the KL-divergence as the
anomaly detection metric is consistently better compared
to using the reconstruction error for the same purpose.
Moreover, we investigated this extensively and found that
when the KL-divergence between the encoded validation
events and the prior is at its largest, the performance of
the KL-divergence as an anomaly detection metric on the
testing data is at its best. We have only shown 5 example
runs selected at random here, but the pattern persists in
some form in all examples we checked. As a cross-check
we also studied the LHCO blackbox 1 data separately, with
the results presented in [35], where we find the same
behavior as the study using the LHCO R&D dataset here.
From Fig. 2 one can infer on a possible reason for this
behavior being due to two terms (reconstruction loss and
KL) in the loss function competing with each other in the
minimization procedure. The KL term is there to regulate
the latent space of the VAE, however it is possible that this
term can overregulate the latent space once the
reconstruction loss becomes small enough, leading to a
decrease in the separability of the latent representations. In
light of these observations we propose a simple yet
effective early-stopping procedure for the VAE. We train
the network until a peak is observed in the KL loss, and
then terminate training and select the network at the epoch
with the maximum KL loss. We determine that a peak has
been observed when the KL loss increases consistently for
at least 5 epochs and then decreases consistently for at least
5 epochs. With the selected network we then compute the
latent representations of the events, and use the KL-
divergence between the encoded event representations
and the prior distribution as the anomaly detection metric.
We considered 3 values of S=B ∈ ½10%; 1%; 0.1%� and

for each train 20 models differing in initial conditions
according to the early-stopping prescription described

FIG. 2. Comparison of various anomaly detection metrics as
functions of the training epoch between 10 different trainings of
the VAE, each using either the Adadelta (left column) or Adam
(right column) optimizer. See text for details.
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above. For robustness we ensemble the output of the
encoders in each of the 20 runs per S=B, using the mean
of the per-event KL divergence as the anomaly detection
metric. The performance of such an anomaly detection
metric at S=B ¼ 0.1% is shown with a black line on Fig. 3,
with the signal and background distributions of the average
per-event KL shown in the inset plot. We do not show the
results for larger S=B, however the only considerable
difference is that the width of the blue band narrows for
larger S=B, with the anomaly-detection performance
remaining similar even at 10%. In the anti-QCD tagger
limit, i.e., training on a sample with background only
events, we find that the classification performance is very

similar to the case with S=B ¼ 0.1%, albeit with increased
uncertainty.
An important statistic in evaluating anomaly-detection

methods is the improvement in significance (S=
ffiffiffiffi

B
p

) before
and after a cut on the anomaly detectionmetric.We can see in
Fig. 4 that with the VAE we achieve an improvement in the
significance of 2.75þ0.21

−0.13 at a signal efficiency of ∼0.5. This
demonstrates clearly that the VAE is able to amplify the
significance of the bump by separating signal and back-
ground events in latent space. Note that this anomaly-
detection technique does not employ sidebands nor signal
region scanning to identify the anomalous events. In practice
the thresholdon the anomaly scorewouldbe chosen such that
a fixed number of events are allowed to pass the cut [8]. For a
comparison of these results to other methods tested on the
same dataset, we refer the reader to Ref. [35].

V. LATENT SPACE CHARACTERISATION

Understanding what information deep-learning tools use
to arrive at a particular outcome is generally of great interest
in physics applications. In the case of anomaly-detection, we
would like to be able to identify why a particular event was
assigned a high anomaly score. The simplest way to do this is
to inspect the observables for events with large anomaly
scores, or in this casewe could also inspect events in different
regions of latent space, which is especially simple when the
dimension of the latent space is small. In this section however
we propose a different strategy.
In many anomaly-detection cases, including the example

studied here, the anomalous events will form a resonance in
the invariant mass variable. These types of signals can be
efficiently searched for in a bump hunt analysis. In a bump
hunt, signal regions and sideband regions are defined by
cuts in the invariant mass, with the sidebands used to
estimate the amount of background in the signal region.
Comparing with the measured number of events in the
signal region a limit on a potential signal cross-section can
be estimated. Using the anomaly scores calculated from the
VAE we could pre-select events for the bump hunt by
imposing a cut on the KL-divergence for each event. This
could significantly increase the significance of the signal
events in the sample, while at the same time significantly
reducing the total number of events in the analysis. In order
to ensure that this preselection does not artificially sculpt
some feature in the invariant mass distribution we select
observables for the training of the VAE that do not contain
information on the invariant mass of the events. Most
importantly, we do not include the invariant mass observ-
able in the input to the encoder.3 The latent parameters for
each event can be written z̄iðfOgÞ and σz;iðfOgÞ, with fOg

FIG. 3. ROC performance on the LHC Olympics test data with
S=B ¼ 0.1%. The uncertainty on the anomaly-detection, indi-
cated by the blue region around the ROC curve, is estimated using
the standard deviation of the per-event KL divergences around the
mean over the 20 VAE training runs. The distribution of the KL
metric for signal and background events is shown in the inset plot.
See text for details.

FIG. 4. Significance-improvement-curve (SIC) for the VAE
anomaly-detection on the LHC Olympics R&D data with
S=B ¼ 0.1%. The uncertainty on the curve is estimated in the
same way as in Fig. 3.

3In practice it is unfeasible to select observables with abso-
lutely no indirect correlation with the invariant mass. Known
decorrelation techniques can be employed to reduce residual
correlation effects, see e.g., Refs. [37,39–41].
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being the jet mass and N-subjettiness observables used in
training the VAE. Once we have acquired the anomaly
scores, we want to gain some physical insight into what is,
and what is not, encoded in the latent space.
We do this by training a separate decoder network

using the means and variances from the encoder network
trained to provide the anomaly scores. Thus the weights
and biases in the encoder network are frozen for this
portion of the analysis. The key difference is that the
new decoder is trained with the invariant mass informa-
tion from each event. The inputs to the decoder for each
event are z ∼N ðz̄i; σz;iÞ and m ∼N ðmjj; σmÞ, with mjj

being the invariant mass and σm an estimate of the
uncertainty on the invariant mass (for concreteness we
fix its value to σm ¼ 0.025mjj). This can be thought of as
extending the latent space of the trained encoder to now
include an invariant-mass direction. We also use a
StandardScaler pre-processing step on the invariant
masses. The architecture of this separate decoder is
shown in Fig. 5. The loss function now only contains a
reconstruction term, since the latent space parameters are
fixed. So the decoder is again optimized to minimize the
reconstruction of the events in the training data, but now
with the additional invariant mass information. If this new
information is useful to the decoder in improving the
reconstruction of the signal events, we should be able to
see imprints of the signal features when plotting a 2D
histogram of the reconstructed observables O with the
ðx; yÞ axis being ðmjj; z̄Þ. These imprints could provide
hints to the invariant mass of any anomalous clusters of
events in the dataset, and also indicate where in the space of
fOg these events are.
In training the separate decoder to interpret the latent

space, we find that the Adam optimizer provides better
results than the Adadelta optimizer used in the anomaly-
detection step. This is because the latent representations are
fixed and we now only have the reconstruction loss to
optimize, so we focus on obtaining as best reconstructions
of the jet observables as possible. We therefore train the
decoder until the reconstruction loss converges. In Fig. 6
we plot the reconstruction of the leading jet mass for both
signal and background, while in the inset figure we plot the

difference between the median of the reconstructed dis-
tribution and the median of the input distribution for each
observable, normalized by the standard deviation of the
input distribution. Despite having just S=B ¼ 0.1% the
network is able to reconstruct some of the main distinguish-
ing features of the leading jet mass distribution for both
signal and background, and satisfactorily reconstructs all
other observables’medians with the exception of the lighter
jet mass, which is however also less than 2σ away from its
input value. This is to be expected, since we use just a 1D
latent space, the amount of information on the event that
can be encoded here is very limited.
Since we can treat the latent space as a function of just

two variables, the values z and mjj, we can visualize the
reconstructed observables in a series of 2D heatmap plots.
We select the ranges z ∈ ½−2.5; 0� and mjj ∈ ½2; 8� TeV
based on where the events are mapped to in latent space and
their invariant masses. We then construct a grid on this 2D
space, passing each point through the newly trained
decoder to obtain a reconstructed event. To demonstrate
this we focus on a scenario with S=B ¼ 1%. The recon-
structed observables for the events are plotted as 2D
heatmaps in Fig. 7. Note again that the z direction in these
plots is approximately independent of the invariant mass,
due to the selection of observables used to train the
autoencoder in the first step. To aid the interpretation of
these plots we have added contour lines so that the
differences in the relative magnitude of the observables
are clearer. We have also overlaid contours to indicate
where in the latent space the background events and
anomalous events are, so that correlations with the

FIG. 5. Modified sampling and decoder architecture for the
characterization of the latent space as a function of the invariant
mass of the dijet events. Since only the decoder is (re)trained at
this stage, the grayed out region indicates that the weights of the
encoder are frozen.

FIG. 6. Input (outline) and reconstructed (filled) leading jet
mass distribution for both signal and background, with the inset
plot showing the difference between medians of the input and
reconstructed distributions, normalized to the standard deviations
of the input distributions. The error bars indicate a sigma
variation in the predicted medians averaged over the 20 VAE
training runs. See text for details.
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reconstructed observables are clearer. With this, we can see
that there is indeed a strong correlation between the
localized features in the invariant mass contours in latent
space at ∼3.5 TeV, and the actual location of the anoma-
lous events in latent space. This a first indication that the
invariant mass sampling step does provide additional
information to aid the reconstruction of the anomalous
events.
In order to evaluate the significance of these results, we

have run the same two-step training procedure but with
no anomalies in the dataset, S=B ¼ 0%, and plotted the
results in Fig. 8. Here we can clearly see that there are no
significant localized features in the reconstructed observ-
ables over the z −mjj plane where mjj ≳ 3 TeV. In both
Figs. 7 and 8 there is a slight correlation between z and mjj

for mjj ≲ 3 TeV, that is strongest in mj1 . This is due to a
residual correlation between mj1 and the dijet invariant
mass present in any finite jet pT range. However, since
the signal induced localized features in the invariant mass
contours in latent space are clearly independent of these
correlations, our results could potentially be further
improved through the use of techniques to remove the
correlations between z and mjj (for the background).
In addition it is important to be able to distinguish

imprints of actual anomalies localized in invariant mass
from possible statistical fluctuations in the z −mjj distri-
butions. We quantify effects of statistical fluctuations in the
data by training on 10 random subsets of background-only
events with 900 k events each. We then compute the
marginalized distributions of observables, hOiz, whereO is
averaged over z for a fixed value of mjj, normalized to the

average value ofO over the whole ðz;mjjÞ range ðhOiz;mjj
Þ.

The results are shown in Fig. 9, where the range of results
of the subsampled background runs are shown as shaded
regions. On the other hand the full lines depict results in the
presence of the signal with S=B ¼ 1%. Note that deviations
from hOiz=hOiz;mjj

≃ 1 at low mjj are again due to
aforementioned slight correlations between z and mjj.
However, more importantly, we observe significant local-
ized deviations from the smooth background-only bands in
the signal region of mjj, making it clear that localized
deformations in the contours imply the presence of anoma-
lous events, distinguishable from random statistical fluc-
tuations in the data (or residual z −mjj correlations).
Lastly we would like to comment on the current

limitation of this interpretation technique. Here we have
shown results for S=B ¼ 1%. For smaller numbers of
anomalous events the signal features in the invariant mass
contours in the latent space become less prominent and thus
more difficult to disentangle from possible fluctuations or
residual (encoder induced) z – mjj correlations. In the
future we plan to explore ways to mitigate this and extend

FIG. 7. Generated jet observables (mj, τ2=τ1) produced by
scanning over the latent space observables ðz;mjjÞ in a network
trained with S=B ¼ 1%. For each feature the solid black contours
denote the values of the true signal mean and one standard
deviation around it, while the solid blue contour shows the value
of the median. The dashed and dotted contours show the regions
in the latent space in which 68% and 95% of signal (red) and
background (black) resides.

FIG. 8. Generated jet observables (mj, τ2=τ1) produced by
scanning over the latent space observables ðz;mjjÞ in a network
trained with no anomalies, S=B ¼ 0%. See caption of Fig. 7
for details.

FIG. 9. Marginalized distributions of observables
(hOiz=hOiz;mjj

) computed for random subsets of background-
only S=B ¼ 0% events (shaded bands) and a dataset with
S=B ¼ 1% (full lines). See text for details.
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the application of our technique to work in more realistic
S=B scenarios.

VI. OUTLOOK

In this paper we have introduced an effective approach to
anomaly-detection using information encoded in the latent
space of a VAE. We then discussed a novel method for the
characterization of anomalies in a given dataset which can
aid in the interpretation of results from a bump hunt
analysis. Our method introduces “bumps” (in the invariant
mass contours) in latent space, which aid in the interpre-
tation of anomalous events as localized bumps in the
(invariant mass) spectrum and could aid in defining signal
windows in a prospective experimental analysis. The
performance of the anomaly-detection and the effectiveness
of the characterization are demonstrated on the LHC
Olympics R&D dataset. We also applied it successfully
to the black b ox 1 dataset, where it compares favorably to
other existing anomaly-detection approaches, see Ref. [35],
thus demonstrating its robustness. Our method (apart from
the choice of observables—i.e., the feature space) is how-
ever general and could be applied to other physics datasets
beyond LHC dijet spectra. The approach could potentially

be refined in several directions, either by (1) enlarging the
number of latent space dimensions encoding observables
used for anomaly-detection, particularly with the goal of
increasing the sensitivity of the physical latent space
characterization to smaller S=B ratios, as well as improving
the observables’ reconstruction accuracy; by (2) incorporat-
ing additional (uncorrelated) scanning observables used in
the characterization step (in addition tomjj), with the aim of
incorporating physical features into the latent space in order
to better separate signal and background encodings; finally
(3) the characterization step could potentially be used to
help define signal windows in more realistic NP search
analyses, all of which we leave for future work.

The code is publicly available at [47].

ACKNOWLEDGMENTS

The authors thank Andrej Matevc for his involvement in
the initial stages of the project. B. B., J. F. K., and A. S.
acknowledge the financial support from the Slovenian
Research Agency (Grant No. J1-3013 and research core
funding No. P1-0035). B. M. D. acknowledges funding
from BMBF.

[1] E. M. Metodiev, B. Nachman, and J. Thaler, Classification
without labels: Learning from mixed samples in high energy
physics, J. High Energy Phys. 10 (2017) 174.

[2] J. H. Collins, K. Howe, and B. Nachman, Anomaly Detec-
tion for Resonant New Physics with Machine Learning,
Phys. Rev. Lett. 121, 241803 (2018).

[3] J. H. Collins, K. Howe, and B. Nachman, Extending the
search for new resonances with machine learning, Phys.
Rev. D 99, 014038 (2019).

[4] K. Benkendorfer, L. L. Pottier, and B. Nachman, Simula-
tion-assisted decorrelation for resonant anomaly detection,
Phys. Rev. D 104, 035003 (2021).

[5] O. Amram and C. M. Suarez, Tag N’ train: A technique to
train improved classifiers on unlabeled data, J. High Energy
Phys. 01 (2021) 153.

[6] A. Andreassen, B. Nachman, and D. Shih, Simulation
assisted likelihood-free anomaly detection, Phys. Rev. D
101, 095004 (2020).

[7] J. H. Collins, P. Martín-Ramiro, B. Nachman, and D. Shih,
Comparing weak- and unsupervised methods for resonant
anomaly detection, Eur. Phys. J. C 81, 617 (2021).

[8] ATLAS Collaboration, Dijet Resonance Search with Weak
Supervision Using 13 TeV pp Collisions in the ATLAS
Detector, Phys. Rev. Lett. 125, 131801 (2020).

[9] M. Farina, Y. Nakai, and D. Shih, Searching for new physics
with deep autoencoders, Phys. Rev. D 101, 075021 (2020).

[10] T. Heimel, G. Kasieczka, T. Plehn, and J. M. Thompson,
QCD or what?, SciPost Phys. 6, 030 (2019).

[11] T. S. Roy and A. H. Vijay, A robust anomaly finder based on
autoencoder, arXiv:1903.02032.

[12] J. Hajer, Y.-Y. Li, T. Liu, and H. Wang, Novelty detec-
tion meets collider physics, Phys. Rev. D 101, 076015
(2020).

[13] M. C. Romao, N. Castro, and R. Pedro, Finding new physics
without learning about it: Anomaly detection as a tool for
searches at colliders, Eur. Phys. J. C 81, 27 (2021).

[14] S. Alexander, S. Gleyzer, H. Parul, P. Reddy, M.W.
Toomey, E. Usai et al., Decoding dark matter substructure
without supervision, arXiv:2008.12731.

[15] A. Blance, M. Spannowsky, and P. Waite, Adversarially-
trained autoencoders for robust unsupervised new physics
searches, J. High Energy Phys. 10 (2019) 047.

[16] O. Cerri, T. Q. Nguyen, M. Pierini, M. Spiropulu, and J.-R.
Vlimant, Variational autoencoders for new physics mining
at the large hadron collider, J. High Energy Phys. 05 (2019)
036.

[17] T. Cheng, J.-F. Arguin, J. Leissner-Martin, J. Pilette, and T.
Golling, Variational autoencoders for anomalous jet tag-
ging, arXiv:2007.01850.

[18] B. M. Dillon, T. Plehn, C. Sauer, and P. Sorrenson, Better
latent spaces for better autoencoders, SciPost Phys. 11, 061
(2021).

[19] T. Finke, M. Krämer, A. Morandini, A. Mück, and I.
Oleksiyuk, Autoencoders for unsupervised anomaly detec-
tion in high energy physics, J. High Energy Phys. 06 (2021)
161.

BUMP HUNTING IN LATENT SPACE PHYS. REV. D 105, 115009 (2022)

115009-7

https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1103/PhysRevLett.121.241803
https://doi.org/10.1103/PhysRevD.99.014038
https://doi.org/10.1103/PhysRevD.99.014038
https://doi.org/10.1103/PhysRevD.104.035003
https://doi.org/10.1007/JHEP01(2021)153
https://doi.org/10.1007/JHEP01(2021)153
https://doi.org/10.1103/PhysRevD.101.095004
https://doi.org/10.1103/PhysRevD.101.095004
https://doi.org/10.1140/epjc/s10052-021-09389-x
https://doi.org/10.1103/PhysRevLett.125.131801
https://doi.org/10.1103/PhysRevD.101.075021
https://doi.org/10.21468/SciPostPhys.6.3.030
https://arXiv.org/abs/1903.02032
https://doi.org/10.1103/PhysRevD.101.076015
https://doi.org/10.1103/PhysRevD.101.076015
https://doi.org/10.1140/epjc/s10052-020-08807-w
https://arXiv.org/abs/2008.12731
https://doi.org/10.1007/JHEP10(2019)047
https://doi.org/10.1007/JHEP05(2019)036
https://doi.org/10.1007/JHEP05(2019)036
https://arXiv.org/abs/2007.01850
https://doi.org/10.21468/SciPostPhys.11.3.061
https://doi.org/10.21468/SciPostPhys.11.3.061
https://doi.org/10.1007/JHEP06(2021)161
https://doi.org/10.1007/JHEP06(2021)161


[20] O. Atkinson, A. Bhardwaj, C. Englert, V. S. Ngairangbam,
and M. Spannowsky, Anomaly detection with convolutional
graph neural networks, J. High Energy Phys. 08 (2021) 080.

[21] J. A. Aguilar-Saavedra, J. H. Collins, and R. K. Mishra, A
generic anti-QCD jet tagger, J. High Energy Phys. 11 (2017)
163.

[22] B. Nachman and D. Shih, Anomaly detection with density
estimation, Phys. Rev. D 101, 075042 (2020).

[23] V. Mikuni and F. Canelli, UCluster: Unsupervised clustering
for collider physics, Phys. Rev. D 103, 092007 (2021).

[24] M. van Beekveld, S. Caron, L. Hendriks, P. Jackson, A.
Leinweber, S. Otten, R. Patrick, R. Ruiz de Austri, M.
Santoni, and M. White, Combining outlier analysis algo-
rithms to identify new physics at the LHC, J. High Energy
Phys. 09 (2021) 024.

[25] O. Knapp, G. Dissertori, O. Cerri, T. Q. Nguyen, J.-R.
Vlimant, and M. Pierini, Adversarially learned anomaly
detection on CMS open data: Re-discovering the top quark,
Eur. Phys. J. Plus 136, 236 (2021).

[26] C. K. Khosa and V. Sanz, Anomaly awareness, arXiv:2007
.14462.

[27] S. E. Park, D. Rankin, S.-M. Udrescu, M. Yunus, and P.
Harris, Quasi anomalous knowledge: Searching for new
physics with embedded knowledge, J. High Energy Phys. 06
(2021) 030.

[28] S. Caron, L. Hendriks, and R. Verheyen, Rare and different:
Anomaly scores from a combination of likelihood and out-
of-distribution models to detect new physics at the LHC,
SciPost Phys. 12, 077 (2022).

[29] B.M.Dillon,D. A. Faroughy, and J. F. Kamenik, Uncovering
latent jet substructure, Phys. Rev. D 100, 056002 (2019).

[30] B. M. Dillon, D. A. Faroughy, J. F. Kamenik, and M. Szewc,
Learning the latent structure of collider events, J. High
Energy Phys. 10 (2020) 206.

[31] D. M. Blei, A. Y. Ng, M. I. Jordan, and J. Lafferty, Latent
dirichlet allocation, J. Mach. Learn. Res. 3, 2003 (2003).

[32] E. M. Metodiev and J. Thaler, Jet Topics: Disentangling
Quarks and Gluons at Colliders, Phys. Rev. Lett. 120,
241602 (2018).

[33] E. Alvarez, F. Lamagna, and M. Szewc, Topic model for
four-top at the LHC, J. High Energy Phys. 01 (2020) 049.

[34] D. S. G. Kasieczka and B. Nachman, R&D dataset for LHC
olympics anomaly detection challenge, 2019 10.5281/zen-
odo.2629073.

[35] G. Kasieczka et al., The LHC olympics 2020: A community
challenge for anomaly detection in high energy physics,
Rep. Prog. Phys. 84, 124201 (2021).

[36] J. Thaler and K. Van Tilburg, Identifying boosted objects
with n-subjettiness, J. High Energy Phys. 03 (2011) 015.

[37] J. Dolen, P. Harris, S. Marzani, S. Rappoccio, and N. Tran,
Thinking outside the ROCs: Designing decorrelated taggers
(DDT) for jet substructure, J. High Energy Phys. 05 (2016)
156.

[38] G. Louppe, M. Kagan, and K. Cranmer, Learning to pivot
with adversarial networks, arXiv:1611.01046.

[39] C. Shimmin, P. Sadowski, P. Baldi, E. Weik, D. Whiteson,
E. Goul, and A. Søgaard, Decorrelated jet substructure
tagging using adversarial neural networks, Phys. Rev. D 96,
074034 (2017).

[40] I. Moult, B. Nachman, and D. Neill, Convolved substruc-
ture: Analytically decorrelating jet substructure observables,
J. High Energy Phys. 05 (2018) 002.

[41] L. Bradshaw, R. K. Mishra, A. Mitridate, and B. Ostdiek,
Mass agnostic jet taggers, SciPost Phys. 8, 011 (2020).

[42] G. Kasieczka and D. Shih, DisCo Fever: Robust Networks
Through Distance Correlation, Phys. Rev. Lett. 125, 122001
(2020).

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel et al., SCIKIT-LEARN: Machine learning in
Python, J. Mach. Learn. Res. 12, 2825 (2011).

[44] D. P. Kingma and M. Welling, Auto-encoding variational
bayes, arXiv:1312.6114.

[45] A. A. Pol, V. Berger, G. Cerminara, C. Germain, and M.
Pierini, Anomaly detection with conditional variational
autoencoders, 2020, arXiv:2010.05531.

[46] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean
et al., TensorFlow: A system for large-scale machine learning,
in Proceedings of the 12th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 16) (USE-
NIX Association, Berkeley, CA, 2016), pp. 265–283,
https://dl.acm.org/doi/proceedings/10.5555/3026877.

[47] A. Smolkovic and B. Dillon (2021),https://github.com/
alekssmolkovic/BuHuLaSpa.git.

[48] M. D. Zeiler, ADADELTA: An adaptive learning rate method,
arXiv:1212.5701.

[49] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and
G. E. Dahl, On empirical comparisons of optimizers for
deep learning, CoRR (2019), arXiv:1910.05446.

BORTOLATO, SMOLKOVIČ, DILLON, and KAMENIK PHYS. REV. D 105, 115009 (2022)

115009-8

https://doi.org/10.1007/JHEP08(2021)080
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1103/PhysRevD.101.075042
https://doi.org/10.1103/PhysRevD.103.092007
https://doi.org/10.1007/JHEP09(2021)024
https://doi.org/10.1007/JHEP09(2021)024
https://doi.org/10.1140/epjp/s13360-021-01109-4
https://arXiv.org/abs/2007.14462
https://arXiv.org/abs/2007.14462
https://doi.org/10.1007/JHEP06(2021)030
https://doi.org/10.1007/JHEP06(2021)030
https://doi.org/10.21468/SciPostPhys.12.2.077
https://doi.org/10.1103/PhysRevD.100.056002
https://doi.org/10.1007/JHEP10(2020)206
https://doi.org/10.1007/JHEP10(2020)206
https://doi.org/10.1103/PhysRevLett.120.241602
https://doi.org/10.1103/PhysRevLett.120.241602
https://doi.org/10.1007/JHEP01(2020)049
https://doi.org/10.5281/zenodo.2629073
https://doi.org/10.5281/zenodo.2629073
https://doi.org/10.1088/1361-6633/ac36b9
https://doi.org/10.1007/JHEP03(2011)015
https://doi.org/10.1007/JHEP05(2016)156
https://doi.org/10.1007/JHEP05(2016)156
https://arXiv.org/abs/1611.01046
https://doi.org/10.1103/PhysRevD.96.074034
https://doi.org/10.1103/PhysRevD.96.074034
https://doi.org/10.1007/JHEP05(2018)002
https://doi.org/10.21468/SciPostPhys.8.1.011
https://doi.org/10.1103/PhysRevLett.125.122001
https://doi.org/10.1103/PhysRevLett.125.122001
https://arXiv.org/abs/1312.6114
https://arXiv.org/abs/2010.05531
https://dl.acm.org/doi/proceedings/10.5555/3026877
https://dl.acm.org/doi/proceedings/10.5555/3026877
https://dl.acm.org/doi/proceedings/10.5555/3026877
https://dl.acm.org/doi/proceedings/10.5555/3026877
https://github.com/alekssmolkovic/BuHuLaSpa.git
https://github.com/alekssmolkovic/BuHuLaSpa.git
https://github.com/alekssmolkovic/BuHuLaSpa.git
https://github.com/alekssmolkovic/BuHuLaSpa.git
https://arXiv.org/abs/1212.5701
https://arXiv.org/abs/1910.05446

