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We present a detailed study, at the fast detector simulation level, of top-pair photoproduction in
semileptonic mode at the Large Hadron-electron Collider (LHeC) and Future Circular Collider (FCC-he).
We work in full tree-level QED, not relying on the equivalent photon approximation, taking into account
the complete photoproduction kinematics. This allows us to define three photoproduction regions based on
the angular acceptance range of the electron tagger. Those regions provide different degrees of sensitivity to
top quark effective couplings. We focus on the tt̄γ dipole couplings and the left-handed vector tbW
coupling for which we determine limits at both energies and in different photoproduction regions. We find
that the LHeC and FCC-he will yield tight direct bounds on top dipole moments, greatly improving on
current direct limits from hadron colliders, and direct limits on the tbW coupling as restrictive as those
expected from the HL-LHC. We also consider indirect limits from b → sγ branching ratio and CP
asymmetry, that are well known to be very sensitive probes of top electromagnetic dipole moments.
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I. INTRODUCTION

Among the most important areas of research of future
pe− colliders, such as the Large Hadron-electron Collider
(LHeC) and the Future Circular Collider (FCC-he), is the
study of the top quark effective couplings to the Higgs and
the electroweak bosons [1]. Indeed, top quark effective
couplings is a phenomenological research area of great
interest [2–13]. Top-pair and single-top production at the
LHeC are very good probes for charged-current (hence-
forth CC) tbW and neutral-current (NC) ttZ effective
couplings [14,15]. Also, anomalous magnetic and electric
dipole moments of the top quark can be very well probed
through top-pair photoproduction in electron-proton col-
lisions [16–20].
In a previous preliminary study we obtained the

dependence of the parton-level cross section for top-pair
photoproduction on the top quark electromagnetic dipole
moments, in the context of the Standard Model effective
field theory (SMEFT), and established limits on those
moments. In this paper we extend that study by including
in our Monte Carlo simulations parton showering and
hadronization, and fast detector simulation, thus making
them more realistic. This is reflected, in particular, in the

study of background processes with a variable number of
jets. Even more important, however, is the fact that in [16]
the cross sections for photoproduction were computed in
the equivalent photon approximation (EPA), whereas in
this paper we work in full tree-level QED, taking into
account the complete kinematics of the photoproduction
process. This extension leads to three important improve-
ments with respect to [16]. First, it leads to a precise
computation of cross sections, and of their dependence on
the photoproduction kinematic variables such as the
scattered-electron transverse momentum. It is well known
that the EPA is valid in the logarithmic approximation and
only near the reaction threshold (see Sec. 6.8 and
Appendix E of [21]); we remove those limitations by
working in full QED. Second, by taking account of the
complete kinematics of the process we determine
the phase-space region where there is sensitivity to
the top dipole moments, and the complementary region
where there is not. Third, we consider besides the
electromagnetic (e.m.) dipole moments, also the left-
handed vector tbW coupling. We notice that in the EPA
the cross-section dependence on that coupling can occur
only through the top decay vertex, leading to very poor
sensitivity. Here, the full QED computation uncovers a
phase-space region where there is significant sensitivity to
that effective coupling.
In [16] the top dipole moments were expressed in terms

of the Wilson coefficient C33
uB associated with the dimen-

sion-six effective operatorQ33
uB. Specifically, it was found in

[16] that either the real part of the coefficient C33
uBr at values
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greater than 0.3 or the imaginary part CtBi at values greater
than 0.8 would produce a measurable 18% deviation from
the Standard Model (SM) cross section. Sometime before
[16] was published, we presented limits on C33

uB based on
the cross-section measurement of tt̄γ production at the
Collider Detector at Fermilab that were substantially
weaker: jC33

uBj < 17.0 (either real or imaginary part) [22].
In that same report we made an estimate of a then-future
sensitivity of tt̄γ production at the LHC at energies of 7 or
14 TeV, and our conclusion was that LHC should be able to
set bounds of around jC33

uBj < 3.0 [22]. Recent studies,
based on measurements with A Toroidal LHC ApparatuS
(ATLAS), have indeed obtained limits of this size [23].
Also in [22] we obtained limits from BRðB → XsγÞ and
ACPðB → XsγÞ that were of similar size to the ones found
from LHC data. Our analysis was based on a calculation of
ΔC7ðmWÞ, the variation of the SM CSM

7 ðmWÞ due to new
physics (NP) contributions from the magnetic and electric
anomalous dipole moments of the top quark found in [24].
A recent study on dimension-six operators effects on b → s
transitions has a new expression for ΔC7ðmWÞ that is very
different and, in particular, predicts a much higher sensi-
tivity of BRðB → XsγÞ [25]. To our knowledge there has
been no disproof of either calculation. We shall, therefore,
present updated limits from BRðB → XsγÞ and the asso-
ciated CP asymmetry based on the two possibilities.
The structure of this paper is as follows. In Sec. II we

discuss the effective Lagrangian framework of our study.
We summarize there, also, the results of several recent
global analyses of top quark effective couplings in that
framework. In Sec. III we carry out a Feynman-diagram
analysis of the top-pair photoproduction process in pe−

collisions in the SM. In Sec. IV we describe in detail the
Monte Carlo simulations of the photoproduction process
and its main irreducible background and obtain their cross
sections in the SM. In Sec. V we enumerate several
additional SM background processes and assess their
relative importance. In Sec. VI we present the limits to
the top e.m. dipole moments and left-handed vector tbW
coupling at the LHeC and FCC-he energies in different
photoproduction kinematical regions. In Sec. VII we give a
summary of the paper and our final remarks. Several
appendixes provide additional technical details on some
issues discussed in the main text. Appendix A deals with
our approach to neutrino momentum reconstruction. In
Appendix B we give the details on the calculation of
effective-coupling limits from BRðB → XsγÞ and its asso-
ciated asymmetry. In Appendix C we restate some of the
main results from Sec. VI in a different convention to
facilitate comparison with other studies.

II. EFFECTIVE SM LAGRANGIAN

The framework we use in this paper is the SM effective
Lagrangian with operators up to dimension six. In this

context, the Lagrangian for top-pair photoproduction is of
the form

L ¼ LSM þ 1

Λ2

X
O

ðĈOOþ H:c:Þ þ � � � ; ð1Þ

where O denotes dimension-6 effective operators, Λ is
the new-physics scale, and the ellipsis refers to higher-
dimensional operators. It is understood in (1) that the
addition of the Hermitian conjugate, denoted þH:c: in the
equation, is applicable only to non-Hermitian operators.
Throughout this paper we use the dimension-six effective
operators from the operator basis given in [26]. In particu-
lar, we use the same sign convention for covariant deriv-
atives as in [16,26], namely, Dμ ¼ ∂μ þ ieAμ for the
electromagnetic coupling. However, we adopt the operator
normalization defined in [27] (see also [28]), where a factor
yt is attached to an operator for each Higgs field it contains,
and a factor g (g0) for each Wμν (Bμν) field-strength tensor.
The Wilson coefficients in (1) are denoted Ĉ, since we will
denote C the coefficients associated with the original
operator basis [26]. In fact, it will be convenient in what
follows to express our results in terms of the modified
dimensionless couplings

C̃O ¼ ĈO
v2

Λ2
; ð2Þ

where v is the Higgs-field vacuum expectation value. At tree
level the coupling constants C̃O are independent of the scale
Λ. We denote complex couplings as C̃O ¼ C̃Or þ iC̃Oi.
There are seven operators in the basis [26] that couple

electroweak bosons and third family quarks. One of them is
the focus of our study: Q33

uB. Another one, Q
33
φu, generates

only a right-handed ttZ coupling so that it will not
contribute to the photoproduction process. Other four of
them generate anomalous tbW couplings:Q33

φud,Q
33
uW ,Q

33
dW;

and Qð3Þ33
φq . The first three receive strong limits from top-

decay W-helicity fractions [29–31] and, since the expected
sensitivity of top-pair photoproduction to those couplings is
low, we will not consider them further here. Unlike those

three, Qð3Þ33
φq only gets loose bounds from W-helicity

fractions measurements. In a previous study we have
obtained the LHeC sensitivity to the tbW couplings from
single-top production and indeed we have found that the
HL-LHC would give stronger (individual) constraints on
the tensorial Q33

uW and Q33
dW operators [14]. On the other

hand, the LHeC would have better sensitivity than the

HL-LHC for Qð3Þ33
φq [14] (and to a lesser degree, also for

Q33
φud). To date, the strongest direct bounds to Qð3Þ33

φq come
from single-top production cross sections at the LHC [32].
Besides Q33

uB, which is the focus of our study, we will also

include the left-handed tbW operator Qð3Þ33
φq in our analysis
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because, as we show below, tt̄ photoproduction at the
LHeC and FCC-he can also be a competitive probe for this
coupling. However, a redefinition of this operator that is
also commonly used in the literature [33] will be necessary.

Qð3Þ33
φq and Qð1Þ33

φq both generate ttZ and bbZ couplings. As
the latter receives very strong constraints from bottom-
quark production at the Z pole (measured at the Large
Electron–Positron Collider and at the Stanford Linear

Accelerator Center), we will have to combine the operators

Qð3Þ33
φq and Qð1Þ33

φq so as to eliminate the bbZ neutral current
term [34,35]. Thus, those operators will not be considered
by themselves but rather in a particular linear combination.
In this paper we will, therefore, set up our analysis

by focusing on just two operators: O33
uB and Oð−Þ33

φq .1

Expanding these operators in physical fields yields, with
the conventions discussed above,

O33
uB ¼ ytg0Q33

uB ¼
ffiffiffi
2

p
yteðvþ hÞð∂μAν − tan θW∂μZνÞt̄LσμνtL;

Oð−Þ33
φq ¼ Oð3Þ33

φq −Oð1Þ33
φq ¼ −y2t Q

ð−Þ33
φq

¼ −y2t
gffiffiffi
2

p ðvþ hÞ2ðWþ
μ t̄LγμbL −W−

μ b̄LγμtLÞ − y2t
g
cW

ðvþ hÞ2Zμ t̄LγμtL; ð3Þ

where Q33
uB, Q

ð−Þ33
φq are the operators defined in [26]. Notice

that both operators O33
uB and Oð−Þ33

φq are Oðg1Þ with respect
to the weak coupling constant, which makes the definitions
(3) consistent from the point of view of perturbation theory.

We stress here the definition Oð−Þ33
φq ¼ Oð3Þ33

φq −Oð1Þ33
φq we

use, since sometimes in the literature the opposite sign is
used. The effective Lagrangian used throughout this paper
results from substituting (3) and (2) in the Lagrangian (1). It
is convenient to record here the relation between the Wilson
coefficients in the form (2) and those associated with the
original basis [26] (see also [36]). From the relation

L ¼ LSM þ 1

Λ2

X
Q

ðCQQþ H:c:Þ þ � � � ;

analogous to (1), we obtain

C33
uB ¼ Λ2

v2
ytg0C̃33

uB ¼ 5.906C̃33
uB;

Cð−Þ33
φq ¼ −

Λ2

v2
y2t C̃

ð−Þ33
φq ¼ −16.495C̃ð−Þ33

φq : ð4Þ

The numerical values in this equation arise from the
parameters Λ ¼ 1 TeV, v ¼ 246 GeV, g0 ¼ 0.358, g ¼
0.648. Furthermore, for all practical purposes we set
yt ¼ 1 ¼ Vtb. We point out here that the couplings

C̃ð−Þ33
φq , C̃33

uB are both of Oðg0Þ in the perturbative expansion
and, therefore, from (4) Cð−Þ33

φq is Oðg0Þ but C33
uB is Oðg1Þ.

It is common practice in the literature to write the
anomalous interactions in terms of form factors. We adopt
here the definition of top electromagnetic dipole moments

given in Eq. (2) of [16], and the CC vertex form factors
from Eq. (7.1) of [32],

Lanom ¼ Lanom;em þ Lanom;CC;

Lanom;em ¼ e
4mt

t̄σμνðκ þ iκ̃γ5ÞtFμν;

Lanom;CC ¼ gffiffiffi
2

p fLVðWþ
μ ðt̄LγμbLÞ þW−

μ ðb̄LγμtLÞÞ;

fLV ¼ Vtb þ δfLV: ð5Þ

Direct comparison of (5) with (1), (2), and (3), yields the
tree-level relations,

κ ¼ 2y2t C̃
33
uBr; κ̃ ¼ 2y2t C̃

33
uBi; δfLV ¼ y2t C̃

ð−Þ33
φq : ð6Þ

The sign chosen in the last equality in (6) deserves
clarification. Because the signs in the corresponding
operator definitions (3) and (5) are opposite, a relative
“−” sign could be expected in the relation between δfLV and

C̃ð−Þ33
φq . However, we define the SM CC Lagrangian in this

paper with the same sign convention as in (3), and we
assume that the analogous convention is made in [32], with
the result that the interference term between the effective
CC interaction and the SM one has the same sign (“þ”) in
both cases. Thus, (6) gives the correct relationship between

δfLV and C̃ð−Þ33
φq . We also notice here, that the particularly

simple relations (6) are a consequence of Eq. (2) and the
operator normalization discussed above under that
equation.

A. Overview of global analysis
on top quark effective couplings

In the last few years several research groups have
reported extensive analyses of limits on certain sets of
SMEFT dimension-six operators based, in turn, on certain
sets of experimental observables. It is well known that no

1It should be noted that, eventually, a complete global analysis
should be made of the combined HL-LHC/LHeC sensitivity to all
the operators mentioned here.
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one experimental observable is only related to only one
effective operator in isolation. Rather, for any observable
there are usually four, five, or many more independent
operators that contribute. So, the goal is not necessarily to
prove that a certain observable is the best candidate to test
one coupling in particular, but that this observable can
contribute significantly to the pool of measurements that
will be used in future ever more extensive analyses.
In a recent study constraints on the three top dipole

operators QtB, QtW , and QtG are obtained by using as
experimental inputs the branching ratio BRðB̄ → XsγÞ and
two fiducial cross-section results of tt̄γ production by
ATLAS [23]. It is found that, despite the large difference
in sensitivities between tt̄γ and B̄ → Xsγ the inclusion of
the less sensitive tt̄γ input still improves significantly the
combined marginalized constraints. As far as experimental
inputs the BRðB̄ → XsγÞ stands out as probably the one
observable that is most sensitive to the magnetic dipole
operator QtB. However, we must also be aware of the fact
that this is an indirect observable that is actually sensitive to
most of the dimension-six operators with quark fields of
the Warsaw basis [25]. And even so, QtB is among those
operators whose contribution to the Wilson coefficients
of the effective Hamiltonian is not at the tree but at the

one-loop level [25]. It is well known that direct observ-
ables, like production cross sections, their kinematic dis-
tributions, and other related observables measured by
colliders like the Tevatron and the LHC will always play
the essential part of effective coupling studies.
Let us consider the reports of the last two years on global

fits to gauge and Higgs boson combined with top and bottom
quarks in the literature. In Table I we show some of the limits
reported by five collaborations: SMEFiT [33], TopFitter [37],
Fitmaker [38], HEPfit [39], and EFTfitter [40]. Out of these
five groups only the last one usesB-meson observables,while
the rest rely mostly on ATLAS and Compact Muon Solenoid
(CMS) data on single-top, tt̄, W-helicity in top decay, and
similar measurements of top quark processes. It is interesting
to observe the very diverse scenarios they depict for indi-
vidual constraints, as for instance Fitmaker andHEPfit obtain

very stringent bounds on Cð3Þ
φQ as compared to SMEFiT and

TopFitter, but then the exact opposite is true for CtW again
among these four collaborations. On the other hand, once the
global fit is performed and marginalized limits are obtained
we do see a more uniform scenario, as is shown in the lower
part of Table I. Since we are interested in the electromagnetic
dipole coupling, we added the tag tt̄γ to the last three groups
that used this LHC process in their fits, and then see if they

TABLE I. Limits on the effective couplings at 90–95% C.L. from global fits reported in the last two years. Coefficients as defined in

[26], and Cð1;3Þ
φQ ¼ Cð1;3Þ33

φq , Cð−Þ
φQ ¼ Cð1Þ33

φq − Cð3Þ33
φq , CtB ¼ C33

uB, CtW ¼ C33
uW , CtB ¼ C33

uB, CtZ ¼ cwC33
uW − swC33

uB.

C SMEFiT [33] TopFitter [37] Fitmaker [38] tt̄γ HEPfit [39] tt̄γ EFTfitter [40] tt̄γ;B

Individual 90–95% C.L.

Cð1Þ
φQ

−− −3.0;þ0.8 −0.03;þ0.05 −− −−

Cð3Þ
φQ

−0.38;þ0.34 −0.3;þ0.9 −0.03;þ0.05 −0.02;þ0.04 −−

Cð−Þ
φQ

−1.1;þ1.6 −− −− −0.04;þ0.08 −−

Cφt −3.0;þ2.2 −1.0;þ4.5 −1.2;þ2.9 −8.6;þ1.5 −−
Cφtb −− −0.3;þ0.3 −− −6.6;þ6.7 −−
CtW −0.08;þ0.03 −0.09;þ0.09 −0.12;þ0.51 −0.28;þ0.32 −−
CbW −− −0.05;þ0.05 −− −0.47;þ0.47 −−
CtZ −0.04;þ0.09 −− −− −0.39;þ0.57 −−
CtB −− −4.2;þ4.5 −4.5;þ1.2 −− −−

Marginalized 90–95% C.L.

Cð1Þ
φQ

−− −− −0.59;þ0.58 −− �0.43

Cð3Þ
φQ

−0.62;þ0.48 −− −0.67;þ0.46 −1.29;þ0.81 �0.40

Cð−Þ
φQ

−2.25;þ2.86 −− −− −2.42;þ2.29 −−

Cφt −13.36;þ3.96 −− þ2;þ11 −10.58;þ1.12 �13.2

Cφtb −− −− −− −7.6;þ7.6 −−
CtW −0.24;þ0.09 −− −0.09;þ0.55 −0.19;þ0.50 �0.50
CbW −− −− −− −0.98;þ0.94 −−
CtZ −1.13;þ0.86 −− −− −0.37;þ0.88 −−
CtB −− −− −5.2;þ2.5 −− �0.58
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would be the ones with better constraints onCtB. Apparently,
this is not quite the case; TopFitter and Fitmaker end up with
similar limits despite one not relying on tt̄γ. Of course, the
best bounds (which are not even individual) appear in the last
column, but we know that their strong bound really comes
from B̄ → Xsγ. We point out that the limits shown in Table I
have been obtained using linear (or interference) contribu-
tions as well as quadratic (or purely anomalous) contributions
to the chosen observables. These bounds are usually some-
what more stringent than the ones obtained with only linear
terms. The exception is in the middle column, where the
limits provided by Fitmaker [38] are only with linear terms.
Concerning future projections for the limits of C33

uB, or κ,
eþe− colliders like the Compact Linear Collider and the
International Linear Collider offer the highest sensitivity
with potential bounds of order jκj ≤ 0.003 (jC33

uBj ≤ 0.009)
and jκj ≤ 0.002 (jC33

uBj ≤ 0.006), respectively [41]. For the
HL-LHC ttγ a preliminary study in [42] (see also [43])
obtained jκj ≤ 0.12 (jC33

uBj ≤ 0.36) for 3ab−1 luminosity.
Recently, a more realistic analysis by [44] obtained a
similar sensitivity for 3ab−1 luminosity, with −0.5 ≤
C33
uB ≤ 0.3. These HL-LHC potential limits are similar to

the bounds obtained here for LHeC, and also of similar size
as the current 68% C.L. individual bound from B̄ → Xsγ as
shown in Appendix B.

III. TOP-PAIR PHOTOPRODUCTION IN THE SM:
DIAGRAMMATIC ANALYSIS

We are interested in this paper in top-pair photoproduc-
tion in pe− collisions in the semileptonic decay channel
which, at parton level, leads to the seven-fermion final
states,

ge− → e−tt̄ → e−blþνlb̄q̄uqd þ e−bquq̄db̄l−ν̄l;

with qu ¼ u; c; qd ¼ d; s; l ¼ e; μ: ð7Þ

This equation defines our signal process. The set of
Feynman diagrams for this process in the photoproduction
region in unitary gauge in the SM with Cabibbo mixing is
shown in Fig. 1. For each possible final-state lepton
(l ¼ e�, μ�) in (7) there are four possible quark-flavor
combinations, and for each possible lepton and quark-
flavor combination there are nine diagrams in Fig. 1, except
for l ¼ e− for which the number of diagrams doubles,
leading to a total of 180 Feynman diagrams for this process.
We consider the top-pair photoproduction process defined
by the diagrams in Fig. 1 our signal process, and denote its
cross section by σsgnl.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1. Unitary-gauge Feynman diagrams for the photoproduction of a top pair in semileptonic mode; see Eq. (7). All diagrams for
the final state e−blþνlb̄q̄uqd are shown. Diagrams (c)–(i) are necessary to preserve electromagnetic gauge invariance when t,W are
off shell.
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We can divide the set of diagrams in Fig. 1 into two
subsets: the first subset includes diagrams (a), (b), containing
three internal top lines, and the second one comprises the
remaining diagrams, (c)–(i), containing two internal top
lines. The second subset is necessary to preserve electro-
magnetic gauge invariance in the phase-space regions where
t orW lines are off shell. There is, in fact, strong destructive
interference between the two subsets in the photoproduction
region, such that the total cross section σsgnl computed with
all the diagrams is smaller than the cross sections obtained
from (a), (b) or (c)–(i) separately, by a factor 10–25
depending on the cuts used in the computation.
We must consider also other processes with the same

final state as (7), which constitute irreducible backgrounds.
Particularly important is the associate tbW photoproduc-
tion, in which bW does not originate in a top decay. For this
process, in semileptonic mode, we have to distinguish the
cases of leptonic and hadronic top decays,

ge− → e−tb̄W− þ e− t̄bWþ

→ e−blþνlb̄q̄uqd þ e−b̄l−ν̄lbquq̄d;

ge− → e−tb̄W− þ e− t̄bWþ

→ e−bquq̄db̄l−ν̄l þ e−b̄q̄uqdblþνl; ð8Þ

with qu, qd, l as in (7). These two sets of processes lead to
the same final states, and to two different but completely
analogous sets of Feynman diagrams. In Fig. 2 we show
the corresponding diagrams for tb̄W− photoproduction
with leptonic t decay. Taking into account the possible
lepton- and quark- flavor channels, the duplication of
diagrams for l ¼ e−, and the two types of processes in (8),
we are led to a total of 360 Feynman diagrams for (8).
There is strong destructive interference in the photo-
production region, similar to that described above for
the signal process, between the subset of diagrams from
Fig. 2 formed by diagrams (a)–(d) and that formed by
(e)–(i). The latter is needed to preserve electromagnetic
gauge invariance when t or W are off shell. This process,
as discussed in detail below, is the main irreducible
background to the signal process (7) and we denote its
cross section by σtbW.
Another process with the same final state as (7) that

we must take into account is tbqq photoproduction with
leptonic top decay, in which the qq does not arise from aW
decay,

ge− → e−tb̄q̄uqd þ e−t̄bquq̄d

→ e−blþνlb̄q̄uqd þ e−b̄l−ν̄lbquq̄d; ð9Þ

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2. Unitary-gauge Feynman diagrams for the associate photoproduction and decay of tbW in semileptonic mode with leptonic top
decay; see Eq. (8). All diagrams for the final state e−blþνlb̄q̄uqd corresponding to leptonic top decay are shown. Diagrams (e)–(i) are
necessary to preserve electromagnetic gauge invariance when t, W are off shell.
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with qu, qd, l as in (7). In Fig. 3 we show the Feynman
diagrams for the process (9) in its tb̄q̄uqd form, containing
a gqdq̄d vertex. From those diagrams, by exchanging
qd ↔ q̄u, q̄d ↔ qu, another set of valid ones with a
gquq̄u vertex can be obtained, which is not shown for
brevity. Taking account of the quark- and lepton-flavor
multiplicity as above, and the diagrams with gquq̄u vertex
not shown, results in a total of 360 diagrams for process (9).
As discussed below, tbqq constitutes a small background to
tt̄ photoproduction that can be neglected.
We stress here that the diagrams for processes (7)–(9)

exhaust all possible Feynman diagrams (900 in total) with
the same initial and final states as those processes and with
at least one internal top line, in the photoproduction region,
in unitary gauge, in the SM with Cabibbo mixing.
Furthermore, the interference between those processes is
small, at the level of a few percent, so that it makes sense to
consider tt̄ photoproduction the signal process with tbW
and tbqq as backgrounds.

IV. TOP-PAIR PHOTOPRODUCTION IN THE SM:
MONTE CARLO SIMULATIONS

We compute the tree-level cross section for top-pair
photoproduction and its backgroundswith thematrix-element

Monte Carlo generator MadGraph5_aMC@NLO (henceforth
MG5) version 2.6.3 [45]. We use the parton distribution
function CTEQ6l as implemented in MG5. The cuts we
apply at the parton level in MG5 are similar to those
described below in connection with event selection, but
substantially looser, in order to adequately populate phase
space without inappropriately restricting it. As should be
clear from the discussion in Sec. III, all resonant and non-
resonant Feynman diagrams for this process are taken into
account, as well as all off-shell and interference effects.
In particular, the small-width approximation is not used in
our simulations. We run PYTHIA version 6.428 [46] with
MG5 events as initial data, with default parameters, for
QCD/QED showering, hadronization, and resonance
decay. In the parton-level MG5 simulation we work in
the four light flavors scheme, retaining the masses of the
first two particle generations to keep PYTHIA’s event
rejection rate at 0. We neglect, however, the Higgs boson
couplings to the first two generations for numerical
efficiency, since the light-mass effects are negligibly small.
We run DELPHES version 3.4.2 [47] on PYTHIA events for

fast detector simulation. Jet clustering is carried out in
DELPHES by means of FastJet3.3.2 [48]. We carry out the
analysis of DELPHES events with ROOT version 6.22 [49].
For the LHeC and FCC-he detector simulations we use the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. Unitary-gauge Feynman diagrams for the associate photoproduction and decay of tbqq in leptonic mode; see Eq. (9). All
diagrams for the final state e−blþνlb̄q̄uqd are shown. Diagrams (g)–(i) are necessary to preserve electromagnetic gauge invariance
when t, W are off shell.
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configuration files developed by the experimental collab-
orations and distributed with DELPHES as delphes_card_
LHeC.tcl and delphes_card_FCCeh.tcl, respectively. In
both cases we use default parameters, with the following
exceptions. For jet clustering we use the anti-kt algorithm
with default radius parameter 0.4, but we set JetPTMin to
10 GeV since we will have to introduce a cut on jet pT with
pTmin ≥ 10 GeV to control irreducible backgrounds.
Furthermore, we find that at the LHeC the cross section
for top-pair photoproduction is somewhat small, and that
reducible backgrounds are much less important than
irreducible ones. We are thus led to choose a b-tagging
algorithm with higher efficiency and lower purity than the
default. We therefore change the settings in the LHeC
configuration file from the default with b-tagging efficiency
ηb ¼ 0.75, and c- and light-jet mistagging probabilities
pc ¼ 0.05 and pj ¼ 0.001, respectively, to a working point
with ηb ¼ 0.85, pc ¼ 0.1, pj ¼ 0.01. In the case of the
FCC-he configuration file, we leave the default b-tagging
working point unchanged which, for jyj < 2.5, 5 < pT <
400 GeV, is given by ηb ¼ 0.85, pc ¼ 0.04, pj ¼ 0.001.
We assume that the scattered electron in the photo-

production process is detected either in the main detector,
or in an appropriate forward one. We consider three rapidity
intervals in which the scattered electron can be detected,
thus determining three photoproduction regions. First, we
assume that the main detector covers the range 1°–179°
(see Sec. 11 of [50]), corresponding to y ¼ −4.741 in the
backward hemisphere. In fact, from Tables 12.4 and 12.6 of
[50] we see that both the tracker and electromagnetic
calorimeter are expected to extend up to η ¼ −4.8, so in
this photoproduction region the scattered electron’s energy-
momentum are measurable. Second, we assume that the
scattered electron may be identified by a detector similar
to the ones used for Compton scattering and luminosity
measurements, with angular acceptance in the range 179°–
179.5°, corresponding to −5.435 < y < −4.741. Third, we

assume that a small-angle electron tagger (see [50],
Sec. 13.1.4) covers the range π − 4 mrad < θðe−Þ <
π − 8.727 mrad, or −6.215 < yðe−Þ < −5.435. In sum-
mary, we define the three photoproduction regions,

PhPI∶ − 4.741 < yðe−Þ < −3.0;

PhPII∶ − 5.435 < yðe−Þ < −3.0;

PhPIII∶ − 6.215 < yðe−Þ < −3.0: ð10Þ

For simplicity, we assume there are no gaps in each range.
Notice that each region in (10) is defined to be contained by
the following one. In fact, the upper limit of the rapidity
interval is not very important in regions PhPII and PhPIII ,
as the dominant contribution to the SM photoproduction
cross section originates in the lower part of the rapidity
range, as illustrated in Fig. 4 (see left panel).
In order to determine the event kinematics we must first

reconstruct the neutrino momentum. For processes such as
tt̄ and tbW production in semileptonic mode, the transverse
neutrino momentum is identified with the missing trans-
verse momentum, and its longitudinal component is
approximately reconstructed from W-decay kinematics.
In Appendix A we discuss in some detail our approach
to neutrino-momentum reconstruction in asymmetric col-
liders such as the LHeC and FCC-he. We identify the two
b-tagged jets with the highest pT as the ones originating
in top decays, and denote them Jb0;1. The remaining
b-tagged jets, if any, are treated as light jets. The set of
light jets is ordered by decreasing pT , and denoted Jk,
k ¼ 0;…; Nl − 1. We identify the highest pT lepton,
electron or muon, as the one arising from leptonic top
decay. With this information, we divide the light jets into
three subsets: jets arising from the hadronic top decay,
Jhdrk, k ¼ 0;…; Nthdr − 1, jets from the leptonic top decay,
Jlptk, k ¼ 0;…; Ntlpt − 1, and jets not arising from top
decay, or “spectator” jets, Jspctk, k ¼ 0;…; Nspct − 1. Thus,

FIG. 4. Normalized differential cross sections, with cuts C0;…;3, with respect to lab-frame scattered-electron rapidity (left panel),
photon energy fraction (center), and photon-squared virtuality (right). The three photoproduction regions (10) are illustrated, as
indicated by the color code.
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the total number of jets in the event is NJ ¼ Nb þ Nthdrþ
Ntlpt þ Nspct. Each set of jets is ordered by decreasing pT .
We introduce the χ2 function:

χ2 ¼ 1

Γ2
t
ððmb0lνjlpt −mtÞ2 þ ðmb1jhdr −mtÞ2Þ; ð11Þ

wheremb0lνjlpt is the invariant mass of one of the two b-jets,
together with the charged lepton and neutrino, and with the
jets Jlpt. Similarly, mb1jhdr is the mass of the other b jet
together with the jets Jhdr. We set mt ¼ 172.5 GeV and
Γt ¼ 1.42 GeV [51]. Out of all possible jet configurations,
the one that minimizes χ2, as given in (11), is selected,
leading to reconstructed top- and antitop quarks. The
leptonic b jet is denoted Jb0 and the hadronic one Jb1.
The distribution of the number of light jets originating
from hadronic and leptonic top decays, and not arising from
top decays, is displayed in Fig. 5 at the LHeC energy in
photoproduction region PhPI . In the other regions it is
similar, and at the FCC-he energy a modest increase in the
number of light jets is observed, especially in Nthdr. The
event is retained if this reconstructed kinematics satisfies
the phase-space cuts we discuss next.
In a top-pair production event in semileptonic channel

for which (11) can be defined there must be at least two b
jets and at least two light ones. We then keep only the
events satisfying the preselection cut:

2 ≤ Nb; 2 ≤ Nl ≤ 5: ð12Þ

Here the requirement of at most five light jets is applied
for computational simplicity since, out of the events

with Nl ≥ 2, approximately 98.5% have Nl ≤ 5. Events
fulfilling (12) can be reconstructed using (11).
We introduce a phase-space cut defining the photo-

production kinematic region,

C0∶

8>><
>>:

yðe−Þ ∈ PhPk; k ¼ I; II; III;

Q2 < 3 GeV2; 0 < ξ < 0.98;

ΔRðj; jÞ > 0.4;

ð13Þ

where e− refers to the scattered electron, and the first line
refers to the appropriate photoproduction region (10).
In (13), Q2 ¼ −q2γ refers to the quasireal photon’s squared
virtuality, and ξ ¼ q0γ=Eebeam to the photon’s fraction of the
electron-beam energy in the lab frame. We assume that the
scattered electron must have an energy of at least 1.2 GeV
to be detected at the very forward detector, which leads to
the upper cut in ξ in (13). The distributions of the scattered-
electron lab-frame rapidity, yðe−Þ, and the photon energy
fraction ξ and Q2 are shown in Fig. 4 in the three
photoproduction regions (10) at the LHeC energy.
ΔRðj; jÞ in (13) refers to the distance between any pair
of jets, ΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηÞ2 þ ðΔφÞ2

p
.

We identify the charged lepton l from top decay with the
leading-pT lepton. Both the LHeC and FCC-he detectors
have a rapidity acceptance jyj < 4 for muons. We use a cut
for the charged lepton that essentially reflects that accep-
tance window,

C1∶ − 2.8 < yðlÞ < 4; jp⃗⊥ðlÞj > 5.0 GeV;

jp⃗⊥
missj > 5.0 GeV: ð14Þ

We set a rapidity cut on all light jets that roughly follows the
upper limit of the rapidity acceptance range for both the
LHeC (y < 4.9) and FCC-he (y < 5.2) tracking systems.
We identify the two leading pT light jets as originating from
top decay, and we require them to satisfy a minimum pT cut:

C2∶ −2.0<yðjÞ<5.0; jp⃗⊥ðJhdr0Þj; jp⃗⊥ðJhdr1Þj>p⊥
jmin:

ð15Þ

FIG. 5. Normalized differential cross sections, with cuts C0;…;3,
with respect to the number of light jets in hadronic top decay (red
bars), in leptonic top decay (blue bars), and not associated with
top decay (ocher bars).

TABLE II. Parameters involved in the cuts C0;…; C4,
Eqs. (13),…,(17).

LHeC FCC-he

PhPI PhPII PhPIII PhPI PhPII PhPIII

p⊥
jmin [GeV] 10 15 20 15 20 25

yb;min −0.5 −0.5 −0.5 −0.5 −0.5 −0.5
yb;max 3.0 3.0 3.0 3.0 2.7 2.7
p⊥
b;min [GeV] 30 35 45 35 40 50

p⊥
b;max [GeV] ∞ ∞ ∞ ∞ 200 200
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Here, j refers to all jets except the two b-tagged ones with
the highest transverse momenta. Jthdrk refers to the pT-
ordered collection of jets involved in the hadronic top decay
(k ¼ 0, 1,…), as defined above. Equation (15) requires the
two hardest such ones to have pT > p⊥

jmin as given in
Table II. The remaining light jets Jhdrk with k > 1, as well as
the light jets Jlptk arising from the leptonic decay and those
not originating from a top decay, are required to satisfy
jp⃗⊥j > 10 GeV. The differential cross sections with respect
to light jet lab-frame rapidity and transverse momentum is
shown in Fig. 6. The center-column panels in that figure refer
to the two leading-pT jets originating in hadronic top decay.
The right-column panels show the distributions for the
leading supernumerary jets, Jhdr2, Jlpt0, Jspct0. Notice that
in this last case the distributions have a normalization deficit,
since not all events contain supernumerary jets.
As discussed in connection with the reconstruction of the

top quarks, we identify the b jets produced directly in the
top decays with the two leading-pT b-tagged jets. The cuts
in these jets’ kinematic variables are crucial to suppress the
tbW irreducible background. We adopt the following cuts:

C3∶
� yb;min < yðJbkÞ < yb;max

p⊥
b;min < jp⃗⊥ðJbkÞj < p⊥

b;max

; k ¼ 0; 1; ð16Þ

where the relevant parameters are given in Table II. The
parameter ranges in (16) are chosen so as to suppress the
tbW background as much as possible, but wide enough for
the cuts to remain generic.
We introduce also a cut on the top masses,

C4∶ jmthdr −mtj2 þ jmtlpt −mtj2 < ðΔmtÞ2; ð17Þ

where mthdr, mtlpt refer to the reconstructed masses of
the hadronically and leptonically decaying top quarks,
and where we take mt ¼ 172.5 GeV, as already men-
tioned, and Δmt ¼ 30 GeV. The mass distributions for
the hadronically and leptonically decaying top quarks are
shown in Fig. 7 (see the left panel). Also shown in the
figure are the lab-frame rapidity and transverse momen-
tum distributions for the hadronic and leptonic top
quarks.

FIG. 6. Normalized differential cross sections, with cuts C0;…;3, with respect to lab-frame rapidity (upper row) and transverse
momentum (lower row). Left column: b jet from leptonic, Jb0, and hadronic, Jb1, top decay. Central column: two leading-pT light jets
from hadronic top decay. Right column: third leading-pT light jet from hadronic, and leading pT jet from leptonic top decay, and leading
jet not originating in top decay.
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Once the cutsC0−4 have been applied, the cross sections for the tt̄ photoproduction signal process (7), Fig. 1, and the tbW
irreducible background (8), Fig. 2, are found to be as follows:

LHeC FCC − he

½fb� PhPI PhPII PhPIII PhPI PhPII PhPIII

tt̄ 0.40 0.73 1.32 4.28 6.19 10.51

tbW 0.041 0.083 0.16 0.44 0.71 1.42

; ð18Þ

expressed in femtobarns. We notice here that the tbW
background has cross section at the parton level that is
roughly 20% of the signal cross section at the LHeC, and
roughly 35% at the FCC-he, the precise number depend-
ing on the photoproduction region. We designed the cuts
C0;…;4 to reduce this background to levels below 15%. As
seen in (18), the tbW background is 10% of the signal in
region PhPI and 11.3% in PhPII at both the LHeC and
FCC-he. In region PhPIII we have 12.2% at the LHeC
and 13.5% at the FCC-he. The tbW background proves to
be the most difficult one to control. The irreducible
background tbqq (9), Fig. 3, leads to cross sections at
the parton level that are at most 0.5% of those of the
signal process tt̄. At the detector level, when the cuts
C0;…;4 are applied, these cross sections fall below the
0.1% level. We therefore neglect this background in what
follows.

V. FURTHER SM BACKGROUNDS

In the previous section the signal process (7) and two of
its irreducible backgrounds, (8) and (9), both involving
resonant top production, were discussed in detail. In this
section we discuss several additional irreducible and
reducible SM backgrounds. The tbW production process
(8) turns out to be the most important background,
followed by single-top tbq production (Sec. VA), Whq
production (Sec. V C), and tbW again, in its reducible

version (Sec. V D). A summary of their cross sections
relative to the signal process is given below in Table III.

A. Single-top photoproduction (tbq)

The single-top, or tbq, photoproduction irreducible
background is of the form

qe− → e−tb̄q0 þ e−t̄bq0 → e−blþνlb̄q0 þ e−b̄l−ν̄lbq0:

ð19Þ

With all possible lepton- and quark-flavor combinations
taken into account, this process is given by 320 Feynman

FIG. 7. Normalized differential cross sections, with cuts C0;…;3, with respect to hadronically and leptonically decaying top quark mass
(left panel), lab-frame rapidity (center panel), and transverse momentum (right panel).

TABLE III. Background-to-signal ratios expressed as percent-
ages of the signal cross section, for the four main background
processes and statistical uncertainty. “RMS” refers to the sum in
quadrature of the previous lines.

LHeC FCC-he

(%) PhPI PhPII PhPIII PhPI PhPII PhPIII Section

tbW 10.3 11.3 12.2 10.3 11.4 13.5 IV
tbq 3.6 4.4 4.6 0.9 1.2 1.3 VA
WhqþWZq 1.8 1.8 1.4 0.2 0.2 0.2 V C
tbWðred:Þ 1.0 0.8 1.0 0.2 0.1 0.05 V D
Statistical 5.0 3.7 2.8 1.5 1.3 1.0 IV

RMS 12.2 12.8 13.4 10.5 11.5 13.6
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diagrams. For this process to pass the preselection cut (12),
an additional parton must be radiated. We may obtain that
additional jet in the final state by QCD showering, or by
considering the photoproduction of the final states (19)
with an additional gluon. For the purpose of obtaining the
cross section, either process, or an appropriately matched
combination of the two, leads to the same result.
The process of tbqg photoproduction is determined by

1800 Feynman diagrams distributed among 32 flavor
channels. The cross section for (19), however, is domi-
nated by subprocesses with an initial valence quark
undergoing a Cabibbo-allowed transition. In particular,
the cross section for final states with an antilepton lþ is
twice as large as that for final states with l−, since the
former involve u → d, while the latter involve d → u.
Judicious choice of the 10 flavor channels with the largest
cross sections leads to a reduction of the number of
diagrams to 585 without loss of numerical precision.
From the diagrams for tbqq photoproduction in Fig. 3 we
can obtain diagrams for tbqg by crossing the initial gluon
to the final state, and one final-state light quark to the
initial state. Further diagrams can be obtained from those
by reattaching the final gluon to other colored lines in the
diagram.
Full simulation, including the cuts C0−4, leads to the

cross sections for this process:

LHeC FCC−he

½fb� PhPI PhPII PhPIII PhPI PhPII PhPIII

tbq 0.014 0.032 0.061 0.039 0.072 0.13

tbqg 0.017 0.029 0.046 0.041 0.060 0.091

;

ð20Þ

expressed in femtobarns. We see that this background
constitutes 4% of the signal cross section at the LHeC, and
1% at the FCC-he.

B. No-top irreducible background:
Gluon-initiated processes

In this section we consider irreducible backgrounds to
the signal process (7), described by Feynman diagrams not
containing top lines. We begin by discussing the processes
with ge− initial states; the ones with initial qe−, with q a
light quark, are the topic of the next subsection.
We consider processes with the same initial and final

state as the signal one (7),

ge− → e−blþνlb̄q̄uqd þ e−bquq̄db̄l−ν̄l; ð21Þ

but described by Feynman diagrams without internal top
lines. Taking into account the four quark-flavor channels
and the duplication of the number of diagrams in the e−

lepton channel, there are 7920 diagrams for the

process (21), without t lines and with one QCD vertex,
in the photoproduction regime. We denote that set of
diagrams QCD1. There is also a set of 1880 diagrams
without t lines and with three QCD vertices, which we
denote QCD3. Some diagrams for the process (21) are
illustrated in Fig. 8.
We consider first the diagrams with only one QCD

vertex, set QCD1. We divide that set into two subsets,
QCD1 ¼ QCD1

bbg ∪ QCD1
qqg, with QCD1

bbg the set of dia-
grams in which the QCD vertex is bbg, and QCD1

qqg; that of
diagrams with a qqg vertex, with q any light quark. The set
QCD1

bbg contains 3240 diagrams, and QCD1
qqg; contains

4680 diagrams. The set QCD1
bbg has a cross section that is

between 70 and 90% of the cross section for the entire set
QCD1, depending on the energy and photoproduction
region, with the set QCD1

qqg; providing the rest of the
cross section.
The cross section obtained from the set QCD1

bbg is
dominated by the contribution from the diagrams for the
process (21) with WWbb intermediate state, ge− →
e−bb̄WþW−, as illustrated in Fig. 8(a). The photoproduc-
tion of WWbb is given by 720 diagrams and yields more
than 90% of the QCD1

bbg cross section. The cross sections
for QCD1

bbg are small relative to the signal process already
at the parton level, with the largest percentage fraction
obtained at the FCC-he energy and in the PhPIII region,
and found to be 3%. Even in that case, however, at the
detector-simulation level and with the cuts from Sec. IV, the
cross section for QCD1

bbg is found to amount to 0.08% of
the signal process, so we consider it negligible.
The set of diagrams QCD1

qqg; gives a smaller fraction of
the cross section for the entire set QCD1, representing from
20% in the region PhPI to 30% in PhPIII at the LHeC
energy, and about 12% at the FCC-he. The main contri-
bution to the cross section from this set originates in the
doubly resonant production of hWqq, followed by the
leptonic decay of W and h → bb̄. This process is given by
320 Feynman diagrams, with a representative example
shown in Fig. 8(c). A smaller contribution to the cross
section originates in the photoproduction of ZWqq,
also shown in the figure. This process is given by

(a) (b) (c)

FIG. 8. Representative unitary-gauge Feynman diagrams for
the photoproduction of (a) WWbb̄ in semileptonic mode,
(b) Wg�qq, (c) Whqq, WZqq, Wγ�qq. These diagrams belong
to the set QCD1

bbg, QCD
3, QCD1

qqg; respectively; see text.
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1000 Feynman diagrams. Its cross section is at most one-
third of that for hWqq (in PhPI at the LHeC) to less than
1% of hWqq at the FCC-he. There is a set of less resonant
processes similar to hWqq, such as hlνqq and Zlνqq
photoproduction, that yield much smaller cross sections.
The remaining diagrams in the set QCD1

qqg; not considered
so far involve the vertex γ� → bb̄. These are 2040 diagrams
that yield a cross section much smaller than hWqq photo-
production, and can therefore be neglected. Just as with the
processes described by QCD1

bbg, the contribution of
QCD1

qqg; to the cross section is negligibly small compared
to the signal cross section.
The set of diagrams QCD3, illustrated in Fig. 8(b), is at

most singly resonant and leads to small corrections to the
cross sections obtained from the set QCD1, so we will not
consider it further here. We mention, however, that this set
of diagrams is closely related to the reducible background
discussed below in Sec. V F. As an illustration of this fact
we notice that diagram 8(b) is the same as 11(b) with
q ¼ b. Thus, the cross section for the QCD3 processes is
actually taken into account when showering the back-
grounds in Sec. V F.

C. No-top irreducible background:
Quark-initiated processes

In this section we turn our attention to processes with one
less light parton in the final state as the signal one (7),

qe− → e−qbb̄lνl; ð22Þ

and described by Feynman diagrams without internal top
lines. Taking into account the four quark-flavor channels and
the duplication of the number of diagrams in the e− lepton
channel, there are 3320 diagrams for process (22), without t
lines, at lowest QCD order and in the photoproduction
regime. A few of those diagrams are illustrated in Fig. 9. The
cross section for the processes (22) is strongly dominated by
Whq, and to a lesser extent WZq, associated photoproduc-
tion as illustrated in the figure. In fact, these doubly resonant
processes account for about 97% of the cross section for
(22), with Whq alone yielding 90% of the total.
If we restrict ourselves to those doubly resonant proc-

esses, the number of diagrams is reduced to 36 per flavor
channel. However, in order to compute the cross section, it
is enough to consider processes with a valence quark in the
initial state and a Cabibbo-allowed flavor transition, and
only one lepton flavor,

ue− → e−dbb̄ μ̄ νμ; de− → e−ubb̄μν̄μ; ð23Þ

and multiply the cross section ×2.11 at the LHeC and
×2.28 at the FCC-he.
The numerical results for the cross section for this

irreducible background are as follows:

LHeC FCC − he

½fb� PhPI PhPII PhPIII PhPI PhPII PhPIII

WhqþWZq 0.007 0.014 0.018 0.011 0.016 0.013

: ð24Þ

These cross sections are rather small, though not negligible,
at the LHeC, where they constitute 1.8% of the signal cross
section after cuts, but much less significant at the FCC-he
where they are 0.2% of the signal.

D. Photoproduction of tbW as reducible background

In the LHeC simulation in DELPHES3.4.2 with default
parameters, the b-tagging algorithm only operates on
jets with lab.-frame absolute rapidity jyðjÞj < 3, and
pT > 0.5 GeV. In the case of the FCC-he detector simu-
lation, b tagging is restricted to jyðjÞj < 4, and

pT > 4.0 GeV. It is then possible to have tbW events in
which one b jet with jyðjbÞj < ymax ¼ 3, 4 is tagged and
passes the cuts (16), whereas the other b jet has yðjbÞ > 3

and is therefore not tagged, but passes the cuts (15) for light
jets. Under those conditions, if a light jet is mistagged and
satisfies the conditions (16), the event could pass the cuts.
We conclude, then, that the process tbW has a reducible
component that we must consider. We estimate the cross
section for this process by requiring at the parton level that
one b quark be inside the flavor-tagging region and the
other one outside. The cross sections we obtain are

FIG. 9. Sample unitary-gauge Feynman diagrams for the
photoproduction of Whq, WZq in semileptonic mode.
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LHeC FCC − he

½fb� PhPI PhPII PhPIII PhPI PhPII PhPIII

tbWred 0.004 0.006 0.013 0.008 0.007 0.005

: ð25Þ

We conclude that this reducible component of the tbW
background constitutes about 1% of the signal cross section
at the LHeC in all three photoproduction regions, and not
more than 0.2% at the FCC-he.

E. Reducible backgrounds: Quark-initiated processes

The quark-initiated photoproduction processes with one
charged lepton, missing transverse energy and jets in
the final state are described by Feynman diagrams with
Np ¼ Ng þ Nq partons in the final state, where Ng ≥ 0 is
the number of gluons and Nq ≥ 1 odd is the number of
quarks, and exactly NQCD strong and (Np þ 3 − NQCD)
electroweak vertices. We will restrict ourselves to
Nq ¼ 1, 3, since larger values lead to processes with very
small cross sections.
For Nq ¼ 1 we obtain leptonic single-W production

associated with at least one jet, as illustrated by the
Feynman diagram in Figs. 10(a) and 10(b). For the purpose
of estimating the cross section we take into account at the
parton level only diagrams with NQCD ¼ 0, such as 10(a),
and deal with QCD radiation only through PYTHIA show-
ering.2 Thus, when all possible lepton- and quark- flavor
combinations are allowed for, we have 160 diagrams
analogous to that of Fig. 10(a) with exactly one final-state
quark and four electroweak vertices. The cross sections
are quite small, as this background represents 0.2% of
the signal process at the LHeC, region PhPI , and less
than 0.1% in the other regions. At the FCC-he this
background essentially vanishes, due to the higher purity
of the b-tagging algorithm.

For Nq ¼ 3, at lowest order in QCD, we have diagrams
with three final-state quarks and six electroweak vertices as
shown in Figs. 10(c) and 10(d). There are 40500 such
Feynman diagrams when all 320 possible quark- and
lepton-flavor combinations are taken into account. Out
of the many physical processes contributing to the cross
section for this background, the dominant ones are the
doubly resonant WW production, illustrated in Fig. 10(c),
and WZ production, shown in Fig. 10(d) together with the
singly resonant production of Wγ�. Numerically, the cross
sections for these processes are typically a few percent of
those for the Nq ¼ 1 processes, therefore negligibly small.
These results also strongly suggest that we do not need to
consider reducible backgrounds with Nq ≥ 5.

F. Reducible backgrounds: Gluon-initiated processes

The gluon-initiated photoproduction processes with one
charged lepton, missing transverse energy and jets in the
final state are described by Feynman diagrams with Np ¼
Ng þ Nq partons in the final state, where Ng ≥ 0 is the
number of gluons and Nq ≥ 2 even is the number of quarks,
and exactly NQCD strong and (Np þ 3 − NQCD) electroweak
vertices. We will restrict ourselves to Nq ¼ 2, 4, since larger
values lead to processes with very small cross sections.
For Nq ¼ 2 we obtain leptonic single-W production

associated with least two jets, as illustrated by the Feynman
diagram in Figs. 11(a) and 11(b). As in the case of quark-
initiated processes, we allow for further QCD radiation
only through PYTHIA showering. Thus, when all possible
lepton- and quark-flavor combinations are considered, we
have 200 diagrams analogous to that of Fig. 11(a) with
exactly two final-state quarks, one strong and four electro-
weak vertices. The cross sections obtained for these
processes with the cuts described in Sec. IV are negligibly
small. This background represents less than 0.1% of the

(a) (b) (c) (d)

FIG. 10. Sample unitary-gauge Feynman diagrams for quark-initiated reducible background processes including photoproduction of
(a) Wq, (b) Wqqq, (c) WWq, (d) WZq=Wγ�q.

2Therefore, we cannot exclude contributions such as that in
Fig. 10(b) with q ¼ b, which constitute an irreducible back-
ground. We could argue about the consistency of including those
here, but that discussion is made irrelevant by the fact that all
those contributions turn out to be negligible, as shown below.
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signal process at the LHeC, region PhPI, and much less
than that in the other regions. At the FCC-he this back-
ground essentially vanishes, due to the higher purity of the
b-tagging algorithm.
For Nq ¼ 4, at lowest order in QCD, we have diagrams

with four final-state quarks, one strong and six electroweak
vertices as shown in Figs. 11(c) and 11(d). There are 64800
such Feynman diagrams when all 96 possible quark- and
lepton-flavor combinations are taken into account. Out of
the many physical processes contributing to the cross
section for this background, the dominant ones are the
doubly resonant WW production, illustrated in Fig. 11(c),
and WZ production, shown in Fig. 11(d) together with
the singly resonant production of Wγ�. Numerically, the
parton-level cross sections for these processes are typically
less than 1% of those for the Nq ¼ 2 processes. Thus, the
contributions of these processes to the background cross
section are negligibly small. These results also strongly
suggest that we do not need to consider reducible back-
grounds with Nq ≥ 6.

VI. RESULTS FOR EFFECTIVE COUPLINGS

For the computation of the cross section as a function

of the effective couplings C̃33
uB, C̃

ð−Þ33
φq , we simulated the

top-pair photoproduction process in pe− collisions with
MG5, PYTHIA6, and DELPHES3 as described in Sec. IV. The
effective operators (3) were implemented in MadGraph5 by
means of the program FeynRules version 2.0.33 [52].
As discussed above in Sec. III, there are 180 diagrams for

semileptonic top-pair photoproduction and decay in the SM

with Cabibbo mixing, allowing for all possible quark- and
(light) lepton- flavor combinations. When the effective
operators are included, additional diagrams enter the
computation. If we include only the operator Q33

uB, there
are 40 additional diagrams with one effective vertex, for a
total of 220 diagrams. If we include only the operator

Qð−Þ33
φQ , there are 360 additional diagrams with one effective

vertex and 180 with two such vertices, for a total of 720
diagrams. Finally, if we take into account both operators,
then there are 400 diagrams with one effective vertex,
260 with two and 40 with three effective vertices, for a total
of 880 diagrams. Representative diagrams with one, two,
and three effective vertices are shown in Fig. 12.
Diagrams with one, two, and three effective vertices

entering the amplitude for (7) contribute to it at OðΛ−nÞ
with n ¼ 2, 4, and 6, respectively. In fact, once the top
propagator dependence on effective couplings through the
top decay width is taken into account, the scattering
amplitude is given as a power series of Λ−2. We remark
that diagrams with two effective vertices must be kept in the
amplitude since, through their interference with SM dia-
grams, they make contributions to the cross section of the
same order,OðΛ−4Þ, as the square of diagrams with only one
effective vertex. We have actually taken into account the
contributions from diagrams with three effective vertices in
our calculation as well as the dependence of the top decay
width on the effective couplings, but we have explicitly
verified in all cases that the contribution to the cross section
from terms of order higher than OðΛ−4Þ is actually negli-
gible for values of the effective couplings within the bounds
given below. (We remark here, parenthetically, that the

FIG. 12. Representative unitary-gauge Feynman diagrams with one, two, and three anomalous effective vertices.

(a) (b) (c) (d)

FIG. 11. Sample unitary-gauge Feynman diagrams for gluon-initiated reducible background processes including photoproduction of
(a) Wqq, (b) Wqqqq, (c) WWqq, (d) WZqq=Wγ�qq.
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contributions to the cross section at order 1=Λ4 from
dimension-eight operators interfering with the SM are
currently unknown and constitute an inherent uncertainty
of the EFT analysis at dimension six.)

A. Methodology and assumptions

In order to obtain bounds on the effective couplings, we
consider the ratio of the cross section σeffðfC̃OgÞ obtained
from the Lagrangian (1) at tree level to the SM cross section
σSM ¼ σeffðf0gÞ∶

R ¼ σeffðfC̃OgÞ
σSM

; ð26Þ

where fC̃Og is the set of anomalous coupling constants. For
a given relative experimental uncertainty εexp, the region of
allowed values for the effective couplings fC̃Og is deter-
mined at the nσσ (nσ ¼ 1, 2,…) level by the inequalities

R ≶ 1� nσεexp: ð27Þ

Since only three real effective couplings enter the
Lagrangian for the processes considered here, we can
parametrize the ratio (26) as

R ¼ 1þ a1C̃
33
uBr þ a2ðC̃33

uBrÞ2 þ a02ðC̃33
uBiÞ2 þ b1C̃

ð−Þ33
φq

þ b2ðC̃ð−Þ33
φq Þ2 þ cC̃33

uBrC̃
ð−Þ33
φq þ � � � : ð28Þ

We obtain allowed intervals on the effective couplings by
substituting (28) in (27) with only one of the couplings
in (28) taken to be nonzero. Similarly, we consider also
allowed two-coupling regions for pairs of effective cou-
plings by setting the remaining one to zero in (28). The
parameters in (28) are determined from an extensive set of
Monte Carlo simulations at the detector level, for each
energy and photoproduction region, to which (28) is fitted.
Once those parameters are known, (27) yields the desired
one- or two-dimensional limits on the effective couplings
being considered. The consistency condition that the
contribution to the cross section from terms of OðΛ−6Þ
and higher in (1) be negligibly small entails on the
parametrizations (28) the requirement that the terms of

OðC̃3Þ and higher must be correspondingly negligible
within the allowed region determined by (27). We check
this consistency condition in all cases considered below.
The cross-section ratio (26) depends on the renormaliza-

tion and factorization scales, for moderate values of
the effective couplings, much more weakly than the cross
sections themselves. This was previously noticed, in a rather
different context, in [14] (see Sec. IVC of that reference).
Thus, the bounds on the effective couplings obtained from
(27) are therefore largely independent of those scales.
In order to obtain bounds on the effective couplings

through (27), below we assume εexp to take values within
a certain interval, which is motivated by estimating the
uncertainties in the signal cross section in our Monte Carlo
simulations through the addition in quadrature of the
statistical uncertainty and the backgrounds cross sections,
as summarized in Table III. In view of those results, we will
assume total measurement uncertainties of εexp ¼ 12, 15,
18%. The first value would be applicable to photoproduc-
tion region PhPI, especially at the FCC-he, the second
and third value could be applicable in the other photo-
production regions. The largest value of 18% is the one
used in [16]. More importantly, once bounds on the
anomalous couplings have been established for these three
uncertainty values, results for other εexp can be obtained by
interpolation.

B. Bounds on C̃ð− Þ33
φq

We obtain bounds on the left-handed vector tbW
coupling from Monte Carlo simulations as described
previously in this section. In Table IV we report the

single-coupling bounds for C̃ð−Þ33
φq obtained from (27) at

the LHeC and FCC-he energies, at the three photoproduc-
tion regions, at the 1σ level, for three values of the assumed
experimental uncertainty. Clearly, the largest sensitivity is
obtained in region PhPIII. Indeed, the anomalous coupling

C̃ð−Þ33
φq constitutes a perturbation δfLV to the SM CC

coupling fLV ¼ 1þ δfLV and, therefore, it also perturbs
the gauge cancellation discussed above under Eq. (7).
Thus, the sensitivity is largest in region PhPIII where
the cancellation is strongest. For that region we report
95% C.L. results both for the LHeC and the FCC-he in

TABLE IV. Single-coupling limits on the charged-current effective coupling C̃ð−Þ33
φq , at 68% C.L., at the LHeC and

FCC-he energies, in three photoproduction phase-space regions and for three assumed experimental uncertainties.

C̃ð−Þ33
φq , 68% C.L.

LHeC FCC-he

εexp PhPI PhPII PhPIII PhPI PhPII PhPIII

12% −0.11; 0.080 −0.056; 0.049 −0.039; 0.035 −0.11; 0.081 −0.061; 0.051 −0.039; 0.035
15% −0.14; 0.098 −0.072; 0.060 −0.049; 0.043 −0.14; 0.099 −0.078; 0.063 −0.049; 0.043
18% −0.18; 0.11 −0.089; 0.071 −0.060; 0.052 −0.18; 0.12 −0.097; 0.074 −0.060; 0.051

ANTONIO O. BOUZAS and F. LARIOS PHYS. REV. D 105, 115002 (2022)

115002-16



Table V. We see from Tables IV and V that the sensitivities
obtained at the LHeC and at the FCC-he are essentially the
same. (In Appendix C we give the bounds for LHeC,

PhPIII , in terms of Cð−Þ33
φq for the purpose of comparison

with other bounds in the literature.) Finally, the fit param-
eters from (28) are given by

b1 b2
LHeC∶ 3.259 4.407

FCC‐he∶ 2.263 4.552

; ð29Þ

for the photoproduction region PhPIII .
A fit similar to (29) for the main background tbW yields

b1 ¼ 2.221, b2 ¼ 1.650 at the LHeC, and b1 ¼ 2.275,
b2 ¼ 1.663 at the FCC-he. It should be taken into account
that, due to the fact that the cross section for tbW is
suppressed by the cuts (13)–(17), these coefficients are
subject to a larger numerical uncertainty than those for the
signal in (29). Let us consider, for concreteness, the range

of values for C̃ð−Þ33
φq in Table IV corresponding to a variation

Δσtt̄=σtt̄ ¼ 12% at the LHeC in region PhPIII . The
parameters b1;2 given above for σtbW imply a corresponding
variation ΔσtbW=σtbW ¼ 8%. Relative to the signal cross
section [see (18)] the variation is small, ΔσtbW=σtt̄ ¼
0.97%, for a total uncertainty of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.122 þ 0.00972

p
¼

12.04%. Similarly small results are found in the other
regions, and at the FCC-he energy.

It is of interest to compare our results for C̃ð−Þ33
φq with

those reported by CMS. A recent measurement of the
single-top production cross section used to set bounds on

δfLV is given in [32]. From Fig. 6 of [32] we obtain the
following limits at 1- and 2-σ significance:

68% C:L: 95% C:L:

CMS∶ −0.024 < δfLV < 0.094 −0.062 < δfLV < 0.132;

ð30Þ

with fLV ¼ 1þ δfLV and, as shown above, δfLV ¼ C̃ð−Þ33
φq .

We compare the limits we obtain in region PhPIII in
Tables IV and V to the CMS result (30) by comparing the
interval lengths. We see that at 68% C.L. our limits are
more restrictive than those from (30) for all three values of
εexp considered in the table. At εexp ¼ 12%, in particular,
the interval length in Table IV is roughly one-third of that
in (30). At 95% C.L. our results give a tighter bound for
εexp ¼ 12%, an equally tight bound at εexp ¼ 15% and
somewhat looser bounds at εexp ¼ 18%.

C. Bounds on C̃33
uB: Single-coupling bounds

We obtain bounds on the dipole ttγ couplings from
Monte Carlo simulations as previously described in this
section. In Table VI we report the single-coupling bounds
for C̃33

uBr obtained from (27) at the LHeC and FCC-he
energies, in the three photoproduction regions, at the 1σ
level, for three values of the assumed experimental uncer-
tainty. Similarly, in Table VII we show the bounds for the
coupling C̃33

uBi. Clearly, the largest sensitivity to C̃33
uB is

obtained in region PhPI . This is due to two different
mechanisms. First, the fact that the SM is close to an
infrared divergence at Q2 ¼ 0 and, therefore, as Q2

decreases the SM cross section grows much faster than
the dipolar cross section, which is infrared finite. This
causes the sensitivity to both C̃33

uBr, C̃
33
uBi to decrease as we

go from PhPI to PhPIII . Second, as seen in Fig. 4 (see left
panel), the rapidity distribution of the scattered electron is
more sharply peaked in PhPIII than in PhPI , thus leading
to a smaller interference with the dipolar amplitude that
leads to a flat distribution for yðe−Þ. This causes a reduction
in the sensitivity to C̃33

uBr in PhPIII as compared to PhPI .
The results obtained in region PhPI are also given at the

2σ level in Table VIII. (In Appendix C we give the bounds
for LHeC, PhPI , in terms of C33

uBr for the purpose of

TABLE VI. Single-coupling limits on the effective coupling C̃33
uBr, at 68% C.L., at the LHeC and FCC-he energies,

in three photoproduction phase-space regions and for three assumed experimental uncertainties.

C̃33
uBr, 68% C.L.

LHeC FCC-he

εexp PhPI PhPII PhPIII PhPI PhPII PhPIII

12% −0.041; 0.049 −0.063; 0.084 −0.13; 0.58 −0.040; 0.049 −0.061; 0.090 −0.13; 0.52
15% −0.050; 0.063 −0.077; 0.120 −0.16; 0.61 −0.048; 0.063 −0.075; 0.130 −0.15; 0.54
18% −0.059; 0.078 −0.090; 0.150 −0.18; 0.64 −0.057; 0.080 −0.088; 0.510 −0.17; 0.57

TABLE V. Single-coupling limits on the charged-current ef-

fective coupling C̃ð−Þ33
φq , at 95% C.L., at the LHeC and FCC-he

energies, in photoproduction region PhPIII and for three assumed
experimental uncertainties.

C̃ð−Þ33
φq , PhPIII , 95% C.L.

εexp LHeC FCC-he

12% −0.083; 0.067 −0.083; 0.067
15% −0.11; 0.083 −0.11; 0.082
18% −0.14; 0.098 −0.14; 0.097
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comparison with other bounds in the literature.) Finally, the
fit parameters from (28) are given by

a1 a2 a02
LHeC∶ −2.733 5.547 5.585

FCC‐he∶ −2.778 6.509 6.586

; ð31Þ

for the photoproduction region PhPI .
In photoproduction region PhPI the results analogous to

(31) for the main background process tbW are given by
a1 ¼ −0.177, a2 ¼ 0.0599, a02 ¼ 0.198 at the LHeC and
a1 ¼ −0.135, a2 ¼ 0.271, a02 ¼ 0.364 at the FCC-he.
These numbers are subject to a larger numerical uncertainty
than those for the signal in (31), because the cross section
for tbW is suppressed by the cuts (13)–(17). In this case, the
range of values for C̃33

uBr in Table VI corresponding to a
variation Δσtt̄=σtt̄ ¼ 12% at the LHeC in region PhPI ,
leads to ΔσtbW=σtbW ¼ 0.8% which, relative to the signal
cross section, corresponds to ΔσtbW=σtt̄ ¼ 0.08%.
Similarly negligibly small results are found in the other
regions, and at the FCC-he energy.
We mention that although not reported in detail here, we

have carried out a complete parton-level analysis of the
sensitivity to C̃33

uBr, C̃33
uBi in all three photoproduction

regions. In the case of region PhPI, the limits obtained
on those couplings are essentially the same as those
obtained previously in [16] in the framework of the

EPA. On the other hand, it is of interest to compare the
bounds obtained here from parametric detector-level
Monte Carlo simulations to those from the parton-level
analysis of [16]. From Table IX of [16], and using the
relation (6) between κ, κ̃ and C̃33

uBr, C̃
33
uBi, we find that,

assuming εexp ¼ 10% experimental uncertainty and at 1σ
C.L., we have

−0.022 < C̃33
uBr < 0.026; jC̃33

uBij < 0.10: ð32Þ

From the same table in [16] we find the following bounds
also at 1σ and at ε ¼ 18% experimental uncertainty:

−0.039 < C̃33
uBr < 0.047; jC̃33

uBij < 0.14: ð33Þ

These bounds are tighter than the comparable ones in
Tables VI and VII, as expected since the analysis in [16] is
carried out at the parton level only. We notice, however,
that the more complete analysis performed here yields
68% C.L. intervals for C̃33

uBr that are slightly less than 50%
larger, and for C̃33

uBi only 33% larger, than the partonic
analysis in the EPA in [16].

D. Two-dimensional allowed regions

In Fig. 13 we show the allowed regions in the κ–κ̃ plane,
determined by the top-pair photoproduction cross section at
both the LHeC and FCC-he energies, in region PhPI at
68% C.L. These regions are given by the circular coronas
determined by (27) with the parametrization (28) with the
parameters (31). The allowed regions shown in Fig. 13
correspond to the assumed measurement uncertainties
εexp ¼ 12, 15, 18% in different colors as indicated in the
figure caption. Also shown in the figure are the regions in
the κ–κ̃ plane allowed by the branching ratio and CP
asymmetry for the process B → Xsγ through inequalities
(B17) and (B30) in both the form obtained from [24] as
given in (B20) and (B32), and the form from [25] given by
(B21) and (B33). The difference in area between these two
regions hardly needs to be emphasized. We remark,
however, that even the smaller region resulting from
(B21) and (B33) is not completely contained in the annular
regions determined by top-pair photoproduction, which
results in a significant reduction of the allowed param-
eter space.
Also seen in Fig. 13 is that the annular allowed regions

obtained at the FCC-he are somewhat smaller than those
at the LHeC energy. We notice, however, that both sets of
allowed regions are identical in the neighborhood of
the origin (i.e., the SM), which is consistent with the
individual-coupling bounds shown in Tables VI–VIII
being the same at both energies. We can also make a
comparison of Fig. 13 with Fig. 5 of [16] (see also Fig. 71
of [1]), obtained at the parton level and in the EPA. The
region allowed by B̄ → Xsγ in Fig. 5 of [16] covers a

TABLE VII. Single-coupling limits on the effective coupling
C̃33
uBi, at 68% C.L., at the LHeC and FCC-he energies, in three

photoproduction phase-space regions and for three assumed
experimental uncertainties.

C̃33
uBi, 68% C.L.

LHeC FCC-he

εexp PhPI PhPII PhPIII PhPI PhPII PhPIII

12% �0.15 �0.18 �0.28 �0.13 �0.18 �0.25
15% �0.16 �0.21 �0.32 �0.15 �0.20 �0.28
18% �0.18 �0.23 �0.35 �0.17 �0.22 �0.31

TABLE VIII. Single-coupling limits on the effective couplings
C̃33
uBr, C̃

33
uBi, at 95% C.L., at the LHeC and FCC-he energies, in

photoproduction region PhPI and for three assumed experimen-
tal uncertainties.

PhPI ,95% C.L.

C̃33
uBr C̃33

uBi

εexp LHeC FCC-he LHeC FCC-he

12% −0.076; 0.11 −0.074; 0.12 �0.21 �0.19
15% −0.092; 0.17 −0.088; 0.21 �0.23 �0.21
18% −0.110; 0.60 −0.100; 0.53 �0.25 �0.23
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region of approximately −2.4 < κ < 0.3 largely shifted
towards negative values. That was because 104BRexpB̄ →
Xsγ ¼ 3.43 was about 10% larger than 104BRtheoB̄ →
Xsγ ¼ 3.15 and then large negative values of κ would
increase the theoretical value and bring it closer to the
experiment [see Eq. (B15)]. In Fig. 13 the situation has
reversed and now 104BRexpB̄ → Xsγ ¼ 3.32 is about 1%
smaller than 104BRtheoB̄ → Xsγ ¼ 3.36 and then κ tends
to lean somewhat toward positive values. On the other
hand, the 18% error region allowed by top-pair photo-
production in Fig. 5 [16] presents the shape of a corona
roughly 0.1 in thickness, whereas now in Fig. 13 the
thickness is about 0.15 for the same 18% experimental

uncertainty. This loss of sensitivity is due to the transition
from parton-level to detector-level simulations, and was
to be expected.
It is also desirable to obtain the allowed regions in the

C̃33
uBr–C̃

ð−Þ33
φq plane or, through (6) the κ–δfLV plane. We

notice here, however, that in photoproduction region PhPI ,
where the sensitivity to κ is highest, the corresponding
sensitivity to δfLV is too low to determine a closed region in
the plane. Similarly, in photoproduction region PhPIII , the
sensitivity to δfLV is highest, but the sensitivity to κ is too
low to yield a closed region. We therefore use the region
PhPII , where the sensitivities to those couplings are not
optimal for each single coupling, but high enough for both

(a) (b)

(c) (d)

FIG. 13. Allowed regions for the top quark dipole moments κ and κ̃ at (a), (b) the LHeC and (c), (d) the FCC-he. Panels (a), (c) display
a global view, (b), (d) a magnified one. Annular regions: regions allowed at 68% C.L. by a top-pair tagged-photoproduction cross-
section measurement, in photoproduction region PhPI (10), with experimental uncertainties 12% (dark green), 15% (light green), and
18% (yellow). Light-blue area: region allowed by the measurements of the branching ratio and CP asymmetry of B → Xsγ decays, from
inequalities (B17), (B30) with (B20), (B32). Darker-blue area: same as previous, but with (B21), (B33).
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to obtain a closed region. The parametrization (28) holds in
the kinematic region PhPII with parameters

a1 a2 b1 b2 c

LHeC∶ −1.706 3.319 2.313 3.221 0.0218

FCC‐he∶ −1.693 4.018 2.183 3.399 0.155

:

ð34Þ
The parameters in this equation comparable to those in (29)
and (31) are seen to be significantly smaller, reflecting the
reduced sensitivity in this region to both couplings. The
allowed region in the κ–δfLV plane obtained from (34) with
εexp ¼ 12% at 68% C.L. is shown in Fig. 14. As seen there,

the sensitivities to either C̃33
uBr or C̃ð−Þ33

φq are not strong
enough to properly constrain the two-dimensional param-
eter space. In the case of the LHeC, the interference
coefficient c in (34) is small enough that the regions
determined by each inequality in (27) are ellipses, whose
intersection leads to the large annular allowed region shown
in the left panel of Fig. 14. At the FCC-he energy the
parameter c in (34) is comparatively much larger, so the
regions determined by (27) are now hyperbolas, whose
intersection is the star-shaped allowed region seen in the
right panel of Fig. 14. Also shown in the figure are the
individual-coupling limits for δfLV from (30) [32], and for κ
from (B23). We see that even with the reduced sensitivity in
region PhPII , the allowed region determined by the top-
pair photoproduction process cuts part of the square region
determined by the individual-coupling limits.

VII. FINAL REMARKS

In this paper we presented a dedicated study of top-pair
photoproduction in semileptonic mode in pe− collisions at

the LHeC and FCC-he future colliders. We performed an
extensive set of Monte Carlo simulations at the fast detector
simulation level of that process and its SM backgrounds.
The most relevant background processes are found to be the
irreducible tbW, tbq, and Whq photoproduction.
In our cross-section computations all resonant and non-

resonant diagrams are taken into account, and all off-shell
effects for the top quark andW boson, and Z and h bosons in
the background processes, are included. Furthermore, since
we perform our calculations with the full QED scattering
amplitude (not relying on the EPA) we take into account the
complete photoproduction kinematics. This allows us to
define three photoproduction regions based on the angular
acceptance range of the electron tagger. We find that those
regions provide different sensitivity levels to different top
quark effective couplings. Another consequence of adopting
the framework of full tree-level QED is that, besides the
electromagnetic dipole tt̄γ coupling that is our main interest,
we find significant sensitivity to the SM-like left-handed
vector tbW coupling, for which photoproduction also turns
out to be a good probe.
We find in Sec. VI that the sensitivity of top-pair

photoproduction at the LHeC and FCC-he to the top
e.m. dipole moments is highest in photoproduction region
PhPI [see (10)], moderate in PhPII , and poor in PhPIII .
The mechanisms causing this are discussed in Sec. VI C.
An analysis of this process in PhPI at the parton level
yields essentially the same results as obtained previously in
[16]. The more realistic simulations carried out here lead,
of course, to somewhat weaker limits. Our results are
therefore consistent with those of [16]. However, the
phase-space region of validity of the results of [16], region
PhPI , could not have been determined with the methods
used there.

FIG. 14. Allowed regions for the top quark dipole moment κ and the CC form-factor δfLV at the LHeC (left panel) and FCC-he (right
panel) in photoproduction region PhPII (10), at 68% C.L. by a top-pair tagged-photoproduction cross-section measurement with
experimental uncertainties 12% (dark green), 15% (light green), and 18% (yellow). Vertical lines: single-coupling limits for κ from the
branching ratio for B → Xsγ decays, (B23). Horizontal lines: single-coupling limits for δfLV from (30) [32].
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Another important result (that could not have been
obtained in [16]) is that top-pair photoproduction at the
LHeC and FCC-he has significant sensitivity to the tbW

effective coupling C̃ð−Þ33
φq ¼ δfLV (alternatively, Cð−Þ33

φq ). The
limits obtained on this coupling are strongest in region
PhPIII , moderate in PhPII, and poor in PhPI . The reasons
why this is so are discussed in Sec. VI B, and they directly
imply that a higher sensitivity could be obtained if we could
attain angular acceptances down to angles smaller than the
4 mrad from the beam assumed in PhPIII . While this is
true, we point out here that such sensitivity gains will
encounter diminishing returns as the minimal scattering
angle (measured from the e−-beam direction) is decreased
from its value in PhPIII .
It is apparent from Sec. VI that the strength of the

dependence of the top-pair photoproduction cross section
on the effective couplings is essentially the same at the LHeC
and the FCC-he. This leads to the same sensitivity at both
colliders if we assume the samemeasurement uncertainty for
both, as seen in the individual-coupling limits reported in
Sec. VI. We notice, however, that the statistical uncertainties
are smaller at the FCC-he than at the LHeC, due to the larger
cross sections [see (18)], which is important especially in
photoproduction region PhPI , where the systematic uncer-
tainty from backgrounds is also slightly smaller at the FCC-
he (see Table III). Thus, we may expect a somewhat smaller
uncertainty and a slightly larger sensitivity to the top quark
e.m. dipole moments at the FCC-he than at the LHeC. In the
other two photoproduction regions the effects of the stat-
istical uncertainty are relatively less important, so we expect
the same sensitivity from both colliders.
In Sec. II Awe summarize the results of five independent

current global analyses of top quark effective couplings that
have been published in the last two years (see Table I). We
find there that two of those studies report very weak
constraints on C33

uB. Another two do not report limits for
this coefficient at all; and then, one of them reports
significantly stronger constraints, and the reason is that
it is the only one that includes indirect limits from the
B̄ → Xsγ branching ratio.
From a quantitative point of view, the main results of this

paper are the SM cross sections obtained in Sec. IV [see
Eq. (18)] for the tt̄ and tbW photoproduction processes, at
the LHeC and FCC-he and in the three photoproduction
regions, as well as the various differential cross sections
displayed in the figures in that section. The extensive
analysis of backgrounds performed in Sec. V is summa-
rized in Table III, which is also a relevant result. The most
important results, however, are the individual-coupling
limits given in Sec. VI B (see Tables IV and V) and
Sec. VI C (see Tables VI–VIII), also given at two energies
and three photoproduction regions, as well as the limits in
Sec. B 2 [see Eqs. (B22) and (B23)], Sec. B 3 [see
Eqs. (B34) and (B35)], and the two-dimensional allowed
regions found in Sec. VI D (see Figs. 13 and 14).

Taken together, these results show that measurements of
top-pair photoproduction at the LHeC and FCC-he will
lead to tight direct bounds on top quark e.m. dipole
moments, greatly improving on the direct limits resulting
from hadron-hadron colliders present and future. As for

the tbW left-handed vector coupling Cð−Þ33
φq (or δfLV), our

results strongly suggest that the LHeC and FCC-he
measurement will result in limits tighter than the current
ones from the LHC, and probably as good as those obtained
at the HL-LHC. We conclude from these observations that
measurements of top-pair photoproduction cross section at
the LHeC and FCC-he will provide greatly valuable
contributions to future global analyses.
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APPENDIX A: NEUTRINO MOMENTUM
RECONSTRUCTION

In processes like tt̄ or tbW photoproduction, (7) and (8),
in semileptonic mode, there is a single neutrino in the final
state and therefore its transverse momentum is observable,
p⃗⊥
ν ¼ p⃗⊥

miss. We can then use the kinematics of the decay
W → lνl to reconstruct pz

ν, assuming that p2
W is not too far

from m2
W . We define the W-boson transverse mass in the

standard way (see Eq. (48.50) in [51]),

p2
W⊥ ¼ ðjp⃗⊥

l j þ jp⃗⊥
ν jÞ2 − ðp⃗⊥

l þ p⃗⊥
ν Þ2

¼ 2jp⃗⊥
l jjp⃗⊥

ν j − 2p⃗⊥
l · p⃗⊥

ν ; ðA1Þ

which is an observable quantity. In the massless approxi-
mation we have p2

W ¼ 2pl · pν, which together with (A1)
leads to the relation

1

2
ðp2

W − p2
W⊥Þ ¼ jp⃗lj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pz
ν
2 þ jp⃗⊥

ν j2
q

− pz
lp

z
ν − jp⃗⊥

l jjp⃗⊥
ν j:
ðA2Þ

Squaring both sides of this equality and rearranging terms
yields the quadratic equation

jp⃗⊥
l j2pz

ν
2 − pz

lX
2pz

ν þ jp⃗lj2jp⃗⊥
ν j2 −

1

4
X4 ¼ 0;

with X2 ¼ 2jp⃗ljjp⃗νj þ ðp2
W − p2

W⊥Þ; ðA3Þ

which can be solved for pz
ν. Those solutions can be written

in the form
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pz
ν� ¼ pz

l

jp⃗⊥
l j2

�
1

2
ðp2

W − p2
W⊥Þ þ jp⃗⊥

l jjp⃗⊥
ν j
�

� jp⃗lj
jp⃗⊥

l j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
W − p2

W⊥
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
ðp2

W − p2
W⊥Þ þ jp⃗⊥

l jjp⃗⊥
ν j

r
:

ðA4Þ

In order to find a numerical value for pz
ν we need to assign a

value to p2
W and to choose one of the two roots in (A4). We

address both issues in turn in what follows.
All quantities entering the right-hand side of (A4) are

observable, with the exception of p2
W . If we substitute p

2
W

by the measured mass mexp
W

2, as is customary in the
literature, the argument of the first radical in (A4) becomes
mexp

W
2 − p2

W⊥, which is not necessarily positive. This results
in an implicit cut on events in which mexp

W
2 < p2

W⊥. We
choose to make our cuts fully explicit, so we must choose
p2
W in such a way that p2

W − p2
W⊥ ≥ 0 for all events. One

such possible choice is

p2
W ¼ maxfmexp

W
2; p2

W⊥g: ðA5Þ

We remark, however, that this is the value to be used as a
parameter in (A4). The actual value of p2

W in the event is
then given by the relation p2

W ¼ 2pl · pν with the recon-
structed value of pz

ν.
Regarding the choice of root in (A4), we notice that it is a

standard heuristic procedure in the literature to choose pz
ν

as the root with the smaller absolute value. From (A4), that
choice is

pz
ν ¼

�
pz
ν− if pz

l > 0

pz
νþ if pz

l < 0
: ðA6Þ

As this equation should make apparent, the relations
jpz

νþj ≶ jpz
ν−j are not invariant under longitudinal

Lorentz boosts. Thus, the prescription of the root with
“the smaller absolute value” is valid only in some frames
but not in others. Explicit computation shows, in fact, that
in the lab frame the correct value of pz

ν corresponds to the
root with the smaller absolute value in roughly half the
events, and to the other root in the remaining ones. We have
found, on the other hand, that the smaller absolute value
prescription works well in the average rest frame of the top
quark. By this we mean a frame in which the rapidity
distribution of the leptonically decaying top quark is
peaked at y ¼ 0. Explicitly, this corresponds to a
Lorentz boost in the forward direction with parameter
β ¼ coshð1.7Þ at the LHeC (see the central panel of Fig. 7)
and β ¼ coshð2.0Þ at the FCC-he. We stress here, however,
that a relation of the form jpz

νþj > jpz
ν−j defines an open set

in the manifold of proper orthochronous Lorentz trans-
formations, so we do not need to find a precise value for β
but, rather, one in the correct neighborhood.
We assess the goodness of our approach to neutrino

reconstruction by comparing the transverse momentum
and the rapidity of the generated neutrino and the
reconstructed one. Here, the generated neutrino is
identified by requiring it to be a decay product of a
W boson which, in turn, is a decay product of a top
quark. Notice that this is not a full validation, since the
two distributions need not be identical, but we expect
them to be close to each other. The result of this
comparison is shown in Fig. 15. The transverse-
momentum distributions are seen in the figure to be
essentially equal, as expected, and the rapidity distri-
butions are very close to each other, with the recon-
structed neutrino distribution being slightly narrower,
and therefore slightly taller at the maximum.

FIG. 15. Normalized differential cross sections with respect to transverse momentum and rapidity for the reconstructed neutrino (red
line) and the generated one (blue line).
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APPENDIX B: ALLOWED (κ, κ̃) REGION FROM
B̄ → Xsγ BRANCHING RATIO AND CP

ASYMMETRY

In this Appendix we obtain bounds on κ and κ̃ from a
comparison of the experimental and theoretical values of
the B̄ → Xsγ branching ratio and CP asymmetry.

1. Scale dependence of C33
uB and κ, κ̃

Before entering into the discussion of BRðB̄ → XsγÞ let
us consider the scale dependence of the effective

coefficients. The contribution of κ (and κ̃) to the effective
coefficient C7 is taken (as usual) at the scale mW (κðmWÞ or
C33
uBðmWÞ) and this is denoted by ΔC7ðmWÞ. On the other

hand, the limits from tt̄ photoproduction are to be consid-
ered at the mt scale [κðmtÞ or C33

uBðmtÞ]. These two scales
are not too far apart and the running produces only a few
percent change in numerical value. The renormalization-
group equation for the running of C33

uB, (and indeed also for
all of the other dimension-six effective operators) has been
provided in Refs. [53,54]:

16π2μ
d
dμ

C33
uB ¼

�
15

2
y2t þ

8

3
g2s −

9

4
g2 þ ð8þ 25=36Þg02

�
C33
uB;

so that μ
d
dμ

C33
uB ≃ 0.073C33

uB;

and then C33
uBðmtÞ ≃ 1.06C33

uBðmWÞ; ðB1Þ

where in the above equations some approximations have
been made. The only Yukawa factor considered is the top’s
yt ¼ 1, and the values of the gauge couplings have been
taken as nearly constant and at the scale mZ. Also, in
general there are contributions from other dimension-six
operators, but we are not considering them. In the context
of a global analysis with several effective operators and a
variety of observables, keeping track of the scale depend-
ence is important because mixing effects can be significant.
However we do not expect, even in a general context, that
there will be a substantial variation ofC33

uB in going from the
scalemt down tomW . A variation of a few percent given by
the factor 1.06 is small but we will take it into account.

2. The branching ratio BRðB̄ → XsγÞ
So, now let us turn our attention to B̄ → Xsγ. The B̄ →

Xsγ branching ratio and associated CP asymmetry are
known to be very good indirect tests of the anomalous
electromagnetic dipole moments of the top quark as
well as many other NP scenarios (See for instance:
[16,22,25,55,56]). A recent study that uses BRðB̄ →
XsγÞ can be found in [23], and we will use the same
average measurement by [57] that they used:

104BRðB̄ → XsγÞexpEγ>1.6 GeV ¼ 3.32� 0.15; ðB2Þ

and the same next-to-next-to-leading order SM calculation
[58] (also [59,60]):

104BRðB̄ → XsγÞSMEγ>1.6 GeV ¼ 3.36� 0.23: ðB3Þ

The allowed (κ, κ̃) parameter regions obtained below are
based on these two values.

The B̄ → Xsγ branching fraction is given by [61]

BRðB̄ → XsγÞthEγ>E0

¼ BRðB̄ → XceνÞexp
jV�

tsVtbj
jVcbj

6αe
πC

ðPðE0Þ þ NðE0ÞÞ;

ðB4Þ
where E0 ¼ 1.6 GeV is the minimum photon energy,
PðE0Þ and NðE0Þ are the perturbative and nonperturbative
contributions. The constant C is a ratio of B̄ → Xceν and
B̄ → Xueν amplitudes times Cabibbo-Kobayashi-Maskawa
parameters and it has an experimental value of 0.568 [62].
The perturbative term is a polynomial in the effective
Wilson coefficients of the effective Hamiltonian at the scale
μb [23,61]:

PðE0Þ ¼
X8
i;j¼1

Ceff
i ðμbÞCeff

j ðμbÞKijðE0; μbÞ; ðB5Þ

with the Wilson coefficients expanded as

Ceff
i ðμbÞ ¼ Cð0Þ

j ðμbÞ þ
αsðμbÞ
4π

Cð1Þ
j ðμbÞ

þ
�
αsðμbÞ
4π

�
2

Cð2Þ
j ðμbÞ þ � � � ; ðB6Þ

where we have omitted electromagnetic correction terms

[63]. In particular, for the coefficient Cð0Þ
7 [63],

Cð0Þ
7 ðμbÞ ¼ η16=23Cð0Þ

7 ðmWÞ

þ 8

3
ðη14=23 − η16=23ÞCð0Þ

8 ðmWÞ þ � � � ; ðB7Þ
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where Cð0Þ
7 ðmWÞ is the LO contribution that comes from the dimension-four SM Lagrangian as well as the dimension-six

operators of the SMEFT.
We will not attempt to use the lengthy expresions that arise when using Eqs. (B4)–(B7). Instead, we will use a simplified

expression that was given many years ago in Ref. [63] [specifically, their Eq. (20)]. Let us separate SM and NP contributions
C7 ¼ CSM

7 þ ΔCNP
7 ; then, we have

104BRðB̄ → XsγÞthEγ>E0
¼ 104BRðB̄ → XsγÞSMEγ>E0

þ B77

jΔC7j2
jCSM

7 j2 þ ð2B77 þ B27 þ B78ÞRe
�
ΔC7

CSM
7

�
; ðB8Þ

where the numbers Bij ¼ Bijðμ; δÞ are given in [63]. For μ ¼ mb, and δ ¼ 0.3 [E0 ¼ ð1 − δÞEmax
γ ¼ 1.6 GeV,

Emax
γ ¼ mb=2] we have B77 ¼ 0.361, B27 ¼ 1.387, and B78 ¼ 0.08. We therefore have [with CSM

7 ðmWÞ ¼ −0.22 at NLO]

104BRðB → XsγÞthEγ>1.6 GeV ¼ 104BRðB → XsγÞSMEγ>1.6 GeV þ 7.4jΔC7ðmWÞj2 − 9.9Re½ΔC7ðmWÞ�: ðB9Þ

The contribution from the dipole operatorQtB (¼ Q33
uB as

defined in [26]) enters through the electromagnetic dipole
vertex in the penguin diagram. Even before the top quark
was observed a calculation was done in Ref. [24]. Their
result was that at the scale μ ¼ mW (with x ¼ m2

t =m2
W)

ΔC7ðmWÞ ¼ κG1 þ iκ̃G2

¼
ffiffiffi
2

p mt

mW

v2

Λ2

cw
sw

�
CtB

G1 þG2

2
þ C�

tB
G1 −G2

2

�
;

G1 þ G2

2
¼ −

1

4
þ 1

4

1

x − 1
þ 1

8

x2 þ x
ðx − 1Þ2 −

1

4

3x − 2

ðx − 1Þ3 ln x;
G1 −G2

2
¼ 1

8
−
3

8

1

x − 1
þ 1

4

1

ðx − 1Þ2 þ
1

4

x − 2

ðx − 1Þ3 ln x:

ðB10Þ
This result is to be compared with the more recent one
in [25] (scale μW ¼ mW):

ΔC7ðmWÞ ¼
ffiffiffi
2

p mt

mW

v2

Λ2

cw
sw

½CtBEuB
7 þ C�

tBF
uB
7 �;

EuB
7 ¼ −

1

16

ðxþ 1Þ2
ðx − 1Þ2 −

1

8

x − 3

ðx − 1Þ3 x
2 ln x;

FuB
7 ¼ −

1

8
: ðB11Þ

We point out that these results from [25] are the ones
that have been used in the literature in the last six years, as
in [23]. The expressions (B10) and (B11) are noticeably
different both in their analytical expressions and numerical
values. For instance, with mt ¼ 174 GeV we have

G1 þ G2

2
¼ −0.030;

G1 −G2

2
¼ 0.062

EuB
7 ¼ −0.183; FuB

7 ¼ −
1

8
;

which means that the results from [25] make the branching
fraction much more sensitive to CtB (or κ) than those from

[24]. It is beyond the scope of this work to revise these one-
loop calculations in this case, though we may address
this issue in some future study. For the present analysis,
however, we will use both results. In terms of κ and κ̃, for
mt ¼ 174 GeV we have

½24�ΔC7ðmWÞ ¼ 0.032κ − i0.092κ̃; ðB12Þ

½25�ΔC7ðmWÞ ¼ −0.416κ − i0.166κ̃: ðB13Þ

Inserting the recent SM value of aSM ¼ 3.36 and either
Eq. (B12) or Eq. (B13) into Eq. (B9), we obtain

104BRðB → XsγÞtheo ¼ 3.36� 0.23þ BRκ;κ̃; ðB14Þ

with

½24�BRκ;κ̃ ¼ −0.32κ þ 0.01κ2 þ 0.06κ̃2; ðB15Þ

½25�BRκ;κ̃ ¼ 4.1κ þ 1.3κ2 þ 0.2κ̃2: ðB16Þ

Before writing down the formulas for the allowed
parameter region, we would like to point out that as we
were aware of the recent study of constraints on CtB from
tt̄γ and B → Xsγ in [23], we made a comparison of our
results with theirs. We first notice that they use the NP
contributionΔC7 by [25] (they define a coefficient C̃uB that
is equal to κ=5.62), which is written in our Eq. (B13). Then,
they plot the dependence of BRðB → XsγÞ on C̃uB which
has the shape of a parabola. We have compared the
BRðB → XsγÞ we obtain by using Eq. (B9) with their plot
and we have found good agreement.
The difference between the SM and the experimental

values is 3.36 − 3.32 ¼ 0.04 with an uncertainty given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.152 þ 0.232

p
¼ 0.28. We can then set, at the 1σ C.L.,

−0.04 − 0.28 ≤ BRκ;κ̃ ≤ −0.04þ 0.28: ðB17Þ

Thus, by setting κ̃ ¼ 0 we get from B → Xsγ
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½24�∶ − 0.75 ≤ κ ≤ 1.0; ðB18Þ

½25�∶ − 0.08 ≤ κ ≤ 0.06; ðB19Þ

which are the individual-coupling limits on κ from the
branching ratio BRðB̄ → XsγÞ.
The above limits for κ are set at the scale mW . We can

now obtain the corresponding limits at the scale mt. To do
so, we just use Eq. (B1): κðmtÞ ¼ 1.06κðmWÞ. Let us
rewrite Eqs. (B15) and (B16) at the scale mt [define
kt ≡ κðmtÞ]:

½24�BRκt;κ̃t ¼ −0.302κt þ 0.009κ2t þ 0.053κ̃2t ; ðB20Þ

½25�BRκt;κ̃t ¼ 3.87κt þ 1.16κ2t þ 0.178κ̃2t : ðB21Þ

Thus, by setting κ̃t ¼ 0 we get

½24�∶ − 0.78 ≤ κt ≤ 1.10; ðB22Þ

½25�∶ − 0.085 ≤ κt ≤ 0.064; ðB23Þ

3. The CP asymmetry AXsγ

The expression for the B → XsγCP asymmetry can be
written as [64]

AXsγ ¼
��

40

81
−
40

9

Λc

mb

�
αs þ π

Λc
17

mb

�
Im

C1

C7

−
�
4

9
αs þ

4

3
π2αs

Λ78

mb

�
Im

C8

C7

−
�
αs

40

9

Λc

mb
þ π

Λu
17 − Λc

17

mb

�
Im

�
ϵs
C1

C7

�
; ðB24Þ

where the coefficients Cj and αsðμÞ ¼ 0.3 at the scale
μ ¼ 2 GeV are given by [64]

C1ðμÞ ¼ 1.204; C8ðμÞ ¼ −0.175;

C7ðμÞ ¼ −0.381þ 0.55ΔC7ðmWÞ; ðB25Þ

with ΔC7 given in (B12) and (B13), and where 0.55 ¼
η16=23 is the factor for the running from the mW scale down
to μ ¼ 2 GeV [63]. In addition Λc ≃ 0.38 GeV, mb ¼ 4.6;
and ϵs, by using the Wolfenstein parameters in [64], is
given by

ϵs ¼
VubV�

us

VtbV�
td

¼ 10−2ð−0.8þ i1.8Þ: ðB26Þ

The Λ parameters are not known and in [64] they were
given some limits that have recently been revised. The
parameter with the greatest uncertainty is Λu

17: −660 <
Λu
17 < 660 MeV [65]. The other parameters have an

allowed range smaller by two orders of magnitude: −7 <
Λc
17 < 10 MeV and 17 < Λ78 < 190 MeV [65].
We can now write AXsγ in (B24) with the numerical

values in [64]:

102AXsγ ¼ ð6.91× 10−2 þ 3.8xc þ 0.7x78ÞIm
�
1

C7

�

þ ð0.133þ 3.78xucÞIm
�
−ϵs
C7

�
;

xu ¼
Λu
17

mb
; xc ¼

Λc
17

mb
; xuc ¼ xu − xc; x78 ¼

Λ78

mb:

ðB27Þ

As we have two different values for ΔC7, will obtain two
different evaluations of the asymmetry:

½24�102AXsγ ¼ jC7j−2ð0.091þ 0.355κ̃ − 0.004κÞ;
jC7j2 ¼ 10−2½ð3.81 − 0.176κÞ2 þ 0.256κ̃2�; ðB28Þ

and

½25�102AXsγ ¼ jC7j−2ð0.091þ 0.64κ̃ þ 0.055κÞ;
jC7j2 ¼ 10−2½ð3.81þ 2.29κÞ2 þ 0.834κ̃2�: ðB29Þ

In both cases, (B28) and (B29), by setting κ ¼ κ̃ ¼ 0 we
obtain 102ASM

Xsγ ¼ 0.627. There is an estimated �2.6
theoretical uncertainty in 102AXsγ that comes from Λu

17.
The experimental averaged value for the asymmetry can
be found in [51]: 102Aexp

Xsγ ¼ 1.5� 1.1. After adding the
two uncertainties in quadrature we obtain a global, (1σ)
68% C.L., �2.8 uncertainty and we can write the
inequality

−2.8þ 1.5 ≤ 102AXsγ ≤ 2.8þ 1.5: ðB30Þ

In order to find the individual limits on κ̃ from both
values of C7 we set κ ¼ 0 and approximate jC7j2 ≃ 0.3812

in (B28) and (B29) to obtain

½24�∶ − 0.79 ≤ κ̃ ≤ 1.5;

½25�∶ − 0.44 ≤ κ̃ ≤ 0.83: ðB31Þ

As before, let us now remember that so far the coupling κ
has been set at the scale mW . Replacing κ by κt=1.06 in
Eqs. (B28) and (B29), we obtain

½24�102AXsγ¼jC7j−2ð0.091þ0.335κ̃t−0.0038κtÞ;
jC7j2¼10−2½ð3.81−0.166κtÞ2þ0.228κ̃t2�; ðB32Þ
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and

½25�102AXsγ¼jC7j−2ð0.091þ0.604κ̃tþ0.052κtÞ;
jC7j2¼10−2½ð3.81þ2.160κtÞ2þ0.742κ̃t2�: ðB33Þ

From these equations, by setting κt ¼ 0 we obtain the
bounds

½24�∶ − 0.84 ≤ κ̃t ≤ 1.67; ðB34Þ
½25�∶ − 0.47 ≤ κ̃t ≤ 0.93: ðB35Þ

We point out that in Ref. [55] limits on κ̃ that are three
orders of magnitude stronger have been reported:

jκ̃j ≤ 1.4 × 10−3; ðB36Þ
based on nuclei and electron electric-dipole moment
measurements.

APPENDIX C: SINGLE-COUPLING BOUNDS FOR
WILSON COEFFICIENTS

In this Appendix we write the most relevant results from

Tables IV–VIII for the couplings C̃ð−Þ33
φq , C̃33

uB associated

with the basis operators O33
uB, Oð−Þ33

φq in terms of the

couplings C33
uB, Cð−Þ33

φq associated with Q33
uB, Qð−Þ33

φq .

Doing so is useful to compare with some results in the
literature. From those tables and (4) we obtain the limits on
Wilson coefficients given below at the LHeC energy.
Results for the FCC-he energy are completely analogous,
as seen from the tables in Secs. VI B and VI C.

The limits on Cð−Þ33
φq are

Cð−Þ33
φq , LHeC, PhPIII

εexp 68% C.L. 95% C.L.

12% −0.58; 0.64 −1.10; 1.37
15% −0.71; 0.81 −1.37; 1.81
18% −0.86; 0.99 −1.62; 2.31

The limits on C̃33
uB are

C33
uBr, LHeC, PhPI C33

uBi, LHeC, PhPI

εexp 68% C.L. 95% C.L. 68% C.L. 95% C.L.

12% −0.24; 0.29 −0.45; 0.65 �0.89 �1.24
15% −0.30; 0.37 −0.54; 1.00 �0.94 �1.36
18% −0.35; 0.46 −0.65; 3.54 �1.06 �1.48

These values are to be compared, e.g., with Table I and
with [16].
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