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We study vector-boson scattering of the physical, gauge-invariant states in a reduced standard-model
setup on the lattice for various parameter sets. To this end, the phase shift in the scalar channel is determined
using a Lüscher-type analysis. The results can be readily interpreted in terms of the Higgs properties and a
reunitarized Fröhlich-Morchio-Strocchi analysis at the Born level. The only deviation appears for a Higgs
mass below the elastic threshold, where we find a negative scattering length indicative of the bound-state
nature of the physical scalar degree of freedom. We assess the possible implications for an experimental
detection of the effect.
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I. INTRODUCTION

Electroweak physics is very successfully described in the
framework of the Brout-Englert-Higgs (BEH) effect using
perturbation theory [1,2]. However, from a formal point
[3–6] of view the physical degrees of freedom cannot be the
elementary states charged under the weak interactions; they
change under weak gauge transformations, and are thus
gauge-dependent and hence unphysical. Rather, composite
operators and thus effectively bound states should be the
correct asymptotic degrees of freedom [3–5]. This seeming
paradox is resolved by the Fröhlich-Morchio-Strocchi
(FMS) mechanism [4,5].
The FMS mechanism is essentially an expansion of the

composite operators in terms of the Higgs vacuum expect-
ation value (VEV). It shows that to leading order the
properties of the bound states are identical to the ones of
the elementary states [4,5]. As a result of this, especially the
masses and widths should agree. This has been supported by
several lattice studies [7–10]. Similar statements also hold
for leptons [4,5,11,12], and even hadrons [13–15]. For an
overview and additional background on this issue we refer
to the review [14].
But the off shell properties and interactions of the bound

states can in principle deviate at higher orders of the VEV
[7,9,13,16,17]. Correspondingly, such deviations have been
observed for the form factor of the physical vector bosons

in lattice simulations [18] and analytically for off shell
Higgs [9,16] and vector boson properties [17]. This can
have potentially observable consequences.
We explore here the impact on one of the most central

processes in electroweak physics, namely vector-boson
scattering (VBS) [19–23], using lattice simulations.
However, for various reasons [14] the full standard model
cannot yet be fully simulated on the lattice and therefore we
consider a reduced standard model to this end. Furthermore
we explore different values of the masses and coupling
constants to study the behavior in a more general way. The
theoretical setup of this work is detailed in Sec. II. Further
details of the lattice simulations are described in Sec. III,
and can be skipped if only the comparison to analytical
calculations are of interest.
The ultimate result of our lattice calculations is the phase

shift in the spin zero partial wave in the elastic region,
shown in Sec. V. Additionally we obtain the fully gauge-
invariant prediction for this quantity at leading order using
the FMS mechanism in Sec. IV. Finally we compare both
results in Sec. V. Provided the Higgs mass is below the
elastic threshold we have a parameter-free analytical cal-
culation. It is found that it agrees well with the data, except
close to the threshold. Near the threshold, we observe a
negative scattering length, which is a sign of a bound state
of finite extent. The observed scale is consistent with the one
inferred from the form factor of the vector bosons them-
selves [18], drawing a nicely consistent picture. We also
estimate the consequences at the level of a cross section, and
discuss how this could erroneously fake a composite Higgs
signal from beyond the standard model. Finally, if there is
no Higgs below threshold, we find that we can use the
results to identify the presence and properties of a Higgs
resonance.
We summarize the results in Sec. VI, in which we draw a

conclusive picture of VBS in a fully gauge-invariant
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setting. Additional technical details are relegated to
Appendixes A to D.

II. THEORETICAL SETUP

A. A reduced standard model

We study a reduced standard model setup [24] which
consists of the weak interaction SUð2ÞW gauge theory
coupled to a complex scalar doublet ϕ. The corresponding
Lagrangian of this model is given by

L ¼ −
1

4
Wa

μνWa μν þ ðDμϕÞ†ðDμϕÞ − λðϕ†ϕ − f2Þ2; ð1Þ

with Wμ the gauge fields, Wa
μν the usual field-strength

tensor and Dμ the usual covariant derivative, where the
latter two depend on the gauge coupling g.
For latter convenience we also introduce a matrix

representation of the scalar field ϕ by

Φ ¼
 
ϕ1 −ϕ†

2

ϕ2 ϕ†
1

!
; ð2Þ

where ϕi are the corresponding components of the complex
doublet. In this form gauge transformations act on Φ as a
left multiplication. Additionally there is a global SUð2Þ
symmetry, which we will call the custodial symmetry in the
following and therefore denote as SUð2ÞC. This symmetry
acts on Φ as a right multiplication.
The potential term in Eq. (1) allows for a nontrivial

minimum and thus for a BEH effect to take place. The usual
procedure [2,14] is then to select a particular minimum
(“spontaneous gauge-symmetry breaking”) by gauge-fixing,
e.g., to a ’t Hooft gauge, and then perform a shift ϕ → vþ η,
where jvj ¼ f is the Higgs VEV. This leads to three
degenerate massive gauge bosons W of mass mW ¼ gf=2
and one massive scalar of mass mH ¼

ffiffiffiffiffiffiffiffiffiffi
2λf2

p
. The massive

scalar, associated to the component of η along v, will be
called the Higgs, while the remaining three degrees of
freedom are orthogonal to v and act as would-be
Goldstone bosons. The degeneracy of the gauge bosons is
enforced by the diagonal subgroup1 of SUð2ÞW × SUð2ÞC.
The parameters of Eq. (1) can then be fixed arbitrarily. In

our present work we are interested in either SM-like
settings, i.e., a Higgs somewhat heavier than the W, or
an even heavier Higgs to understand how resonances can be
described. The latter is also of relevance for 2-Higgs
doublet models [25], in which very similar considerations
hold as in the SM [26]. We therefore fix the W mass
throughout to 80.375 GeV, and vary the Higgs mass. We

also choose somewhat larger weak gauge couplings than in
the SM, which parametrically amplify the results, and
thus create a better signal-to-noise ratio in the lattice
simulations.

B. Elementary fields vs physical particles

In a perturbative setup the above described degrees of
freedom are then used as the asymptotic states [2].
However, because the shift and the BEH effect required
gauge fixing, which indeed is the only possibility to do so,
these are gauge-dependent states, and thus formally
unphysical [4,5,27]. The usual Becchi-Rouet-Stora-
Tyutin (BRST) construction is actually insufficient to
identify the physical degrees of freedom, which is a
consequence of the combination of the existence of
Gribov copies at arbitrary weak coupling [28] and
Haag’s theorem [29], see [14] for a review.
To overcome this issue, it is therefore necessary to use

intrinsically gauge-invariant objects (e.g., composite oper-
ators of the elementary fields like ϕ†ϕ) as the physical
degrees of freedom [3–5]. In general these objects need to
be treated nonperturbatively, but due to the presence of the
BEH effect, it is possible to augment perturbation theory
in a consistent way. This is the so-called FMS mecha-
nism [4,5,14].
In practice, this is a two-step process. Given any

manifestly gauge-invariant composite operator, first insert
the usual BEH split in a convenient gauge. In this way,
a (connected) correlation function like a propagator
becomes a sum of (individually gauge-dependent) corre-
lation functions, e.g.,

hðϕ†ϕÞ†ðxÞϕ†ϕðyÞi ¼ hðvηÞ†ðxÞvηðyÞi
þ hðη†ηÞ†ðxÞvηðyÞ þ x ↔ yi
þ hðη†ηÞ†ðxÞðη†ηÞðyÞi: ð3Þ

In a second step a double expansion in v and the other
coupling constants can be made. For example, at leading
order in v, the propagator of the composite operator ϕ†ϕ
therefore coincides to all orders in all other couplings with
the elementary Higgs propagator, and especially has the
same mass and width.
Especially, in the SM the leading order in v recovers the

ordinary perturbative results [14].2

But this also implies that higher orders in v will lead to
deviations from the results of ordinary perturbation theory.
Indeed, such deviations have previously been observed on
[18] and off [9,13,15,16,33] the lattice. In addition, because
the FMS mechanism is still perturbative in nature, it is not

1In a purely perturbative setting this diagonal subgroup is often
called the custodial group. However, since its definition is
dependent on the choice of gauge, we reserve this name here
for the physically observable global group SUð2ÞC.

2In general, this is not the case and there can be a qualitative
discrepancy, already at the level of the spectrum, depending on
the specific interplay of the gauge group and the custodial group
[14,30–32].
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able to describe genuine nonperturbative surplus bound
states, e.g., internal excitations. Both contributions can
potentially be misidentified in experiments as new physics,
if not thoroughly taken into account [13–15].
Recent studies showed that higher orders in v can be

accounted for analytically [9,14,16,17]. Testing the quality
of this, as well as ensuring that no relevant surplus effects
beyond this double-expansion arise, requires nonperturba-
tive methods. Both are aims of the present work.

C. Particles and the scattering process

As discussed above, we need composite operators which
describe the real physical observables, and thus the
particles observed in experiments. To make contact to
the successful perturbative treatment we also need their
connection to the elementary fields.
In our reduced SM all particles can be classified by their

JP quantum numbers, with spin J and parity P. The gauge-
invariant operators carry an additional quantum number,
describing the transformation properties under the global
symmetry. Therefore, these will be denoted by JPC , with C
being the custodial representation. The elementary fields
likewise carry a representation of the gauge group and, in
case of the scalar, also of the custodial group.
In general it is possible to construct operators with

arbitrary JPC , see e.g., [32,34,35]. Here we aim at inves-
tigating the elastic region in the scalar singlet channel.
Therefore, only JP0 states and the states of the single open
decay channel are needed, and thus the lightest stable
particle into which a 0þ0 could decay. That has been
established to be the 1−1 state [30,34]. Thus, the process
we are looking at is elastic scattering of two custodial triplet
vector bosons, the nonperturbatively and manifestly gauge-
invariant version of the elementary VBS process [20–23].
In this way [14], Haag’s theorem [29] is manifestly
preserved and the weak-coupling consequences of the
Gribov-Singer ambiguity [28,36] are evaded.
This process is particularly interesting as it is considered

to be a sensitive probe to new physics [22,23,37], and
deviations due to unaccounted-for SM background would
therefore have potentially a substantial impact on searches
for new physics.
Gauge-invariant composite operators with suitable over-

lap with the ground states, and thus the physical versions of
the asymptotic “Higgs” and “W/Z” states, are given by
[4,5,8,30,34]

O0þ
0 ¼ ϕ†ϕ ¼ 1

2
trfΦ†Φg; ð4Þ

O
1−
1
a

μ ¼ trfτaΦ†DμΦg; ð5Þ

with Φ as defined in Eq. (2) and τa ¼ σa=2 the SUð2Þ
generators proportional to the Pauli matrices σa. In the FMS
expansion to next-to-leading-order (NLO), these states are

found to expand to the elementary Higgs and gauge bosons,
and thus have the same mass [9,16]. This is confirmed by
lattice results [8,9].
We therefore now have the necessary setup to consider

the physical VBS process. As a nonperturbative approach
we will use lattice methods to determine the phase shift in
the JP ¼ 0þ partial wave in the elastic region, i.e., for
2mW ≤ minð4mW; 2mHÞ. To this end, wewill use a Lüscher
analysis [38,39] detailed in Sec. III. The results of the
Lüscher analysis do not rely on any interpretation in terms
of the FMS approach, and are thus a stand-alone outcome
of our work. In particular, we determine the scattering
lengths to obtain an estimate of the bound state scale for the
lattice settings where we do have a stable scalar. Otherwise,
we will test for the presence of resonances in the elastic
region.
Thereafter, we will determine the same phase shift

entirely analytically at the reunitarized Born level in the
FMS expansion, as detailed in Sec. IV. This is again a
result in itself giving now a fully perturbative description
of the physical VBS process. Finally, we will compare
this analytical result to the lattice result, and can therefore
test the validity of the FMS expansion and the possible
consequence of deviations as our final result.

III. LATTICE METHODS

A. Configurations

The configurations for this work have been created
using the methods described in [8,30,40] implementing
the unimproved lattice Wilson action corresponding to
Eq. (1) [24]. In the following, UμðxÞ will be used to
denote the lattice gauge links, while the same symbols
ϕðxÞ, and ΦðxÞ are used for the lattice versions of the
scalar fields.
The lattice parameters are given in Table I. We note that

the theory appears to have only very mild finite-volume and
discretization effects [30] due to the absence of an excep-
tionally light state like the pion in QCD. But the theory has
also much fewer resonances or bound states than QCD
[30,34]. To have enough states within the elastic region for
a determination of the phase shifts therefore requires that at
least some scattering states must lie within this window. In
addition, the bosonic states yield a lot of statistical noise,3

requiring very large statistics (Table II), and thus limiting
the physical volume. Thus, we were forced to use relatively
coarse lattices, see Table I and lattice sizes 84, 124, 164, 204,
244, 284, and 324. This setup allowed to reach the goals of
this work.
We note that our lattice sets use larger weak gauge

couplings than we would have in a SM setting. This and
the Higgs mass are therefore our main control parameter.

3We explicitly opted not to use over-smearing [34] to avoid
loosing information of potentially excited states.
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As mentioned, this choice of weak gauge coupling appears
to amplify the expected effects, and therefore allows us to
extract them from the noise. As far as has been system-
atically investigated [11,18,30] nontrivial effects seem to
not depend qualitatively on the weak gauge coupling, but
of course quantitatively. A logical extension of this work in
the future, using substantially more computing time, is
therefore to move towards weaker gauge coupling to assess
the quantitative size of the effects better.

B. Spectroscopy

The ingredients we need for the determination of the
phase shifts are the infinite-volume masses of the involved
particles as well as the energy levels as a function of the
volume within the elastic window [42,43].
To obtain them, we use a variational analysis approach

[38]. To optimize overlap, we employ a very large operator
basis. To this end, we construct 36 primary operators in the
relevant 0þ0 channel, which we then smear up to four times
using an APE smearing as detailed in [30,44], generating in
total 180 operators, see Eqs. (13) and (14).
We start with the basic operators

OHðxÞ ¼ ϕ†ðxÞϕðxÞ; ð6Þ

OWðxÞ ¼ TrfUμðxÞUνðxþ eμÞU†
μðxþ eνÞU†

νðxÞg; ð7Þ

O0þn ðxÞ ¼
X3
μ¼1

Tr

�
Φ†ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðΦðxÞÞp UμðxÞ

Φðxþ eμÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðΦðxþ eμÞÞ

p �
;

ð8Þ

O0þðxÞ ¼
X3
μ¼1

TrfΦ†ðxÞUμðxÞΦðxþ eμÞg; ð9Þ

Oa
1−n μ

ðxÞ ¼ Tr
�
τa

Φ†ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðΦðxÞÞp UμðxÞ

Φðxþ eμÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðΦðxþ eμÞÞ

p �
;

ð10Þ

Oa
1−μðxÞ ¼ TrfτaΦ†ðxÞUμðxÞΦðxþ eμÞg; ð11Þ

with Eqs. (6)–(9) in the 0þ0 channel and Eqs. (10)–(11) in
the 1−1 channel. They can be interpreted as the following
physical objects:

(i) OH describes a two-Higgs bound-state considered as
the physical Higgs particle as in Eq. (4)

(ii) OW describes a W-ball and expands to 1 −Wa
μνWaμν

in the continuum limit
(iii) Oa

1−μ is the vector triplet and thus is considered as the
physical W-boson as in Eq. (5)

(iv) O0þðnÞ
and Oa

1−ðnÞμ
have no direct physical connections

but yield a very stable signal [45]
These interpretations have to be understood in the sense of
a large overlap between the lattice operators and the
physical states [30]. One needs to keep in mind, that
potentially all operators in a channel contribute to all states.
From the local operators the momentum space Oðp⃗Þ

versions have then been obtained by a lattice Fourier trans-
formation. From theseoperatorswe constructed the following
operator basis used for the variational analysis in the 1−1
channel

O
1−
1
a

1−10μ ¼
8<
:

Oð0−4Þa
1−μ ð0⃗Þ

Oð0−4Þa
1−n μ

ð0⃗Þ
; ð12Þ

where the (0 − 4) refers to the different smearing levels. The
basis used is rather small, but based on [30] sufficient to
reliably determine the ground state mass. For the 0þ0 channel
the basis is chosen much larger,

O
0þ
0

1−90 ¼

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Oð0−4Þ
W ðp⃗Þ

Oð0−4Þ
H ðp⃗Þ

Oð0−4Þ
0þ ðp⃗Þ

Oð0−4Þ
0þn

ðp⃗Þ
Oð0−4Þa

1−μ ð−p⃗ÞOð0−4Þa
1−μ ðp⃗Þ

Oð0−4Þa
1−n μ

ð−p⃗ÞOð0−4Þa
1−n μ

ðp⃗Þ

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

such that jp⃗j2 ¼ 0

Oð0−4Þ
W ð−p⃗ÞOð0−4Þ

W ðp⃗Þ
Oð0−4Þ

H ð−p⃗ÞOð0−4Þ
H ðp⃗Þ

Oð0−4Þ
0þ ð−p⃗ÞOð0−4Þ

0þ ðp⃗Þ
Oð0−4Þ

0þn
ð−p⃗ÞOð0−4Þ

0þn
ðp⃗Þ

Oð0−4Þa
1−μ ð−p⃗ÞOð0−4Þa

1−μ ðp⃗Þ
Oð0−4Þa

1−n μ
ð−p⃗ÞOð0−4Þa

1−n μ
ðp⃗Þ

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

such that jp⃗j2 ¼ 1;2:

ð13Þ

The different absolute momentum values need to be under-

stood in ascendingorder, i.e.,O
0þ
0

31−60 corresponds to jp⃗j2 ¼ 1.
In addition to the operators above operators containing two
(or more) particle have also been considered,

TABLE I. Parameter sets. The lattice spacing has been set by
fixing the mass of the lightest state in the 1−1 channel to
80.375 GeV [8,40], which induces the lowest possible error,
being at the subpercent level. The running weak gauge coupling
in the MiniMOM scheme [41] has been determined as in [8] with
an error of order 1%.

Name β κ γ αW;200 GeV a−1 ½GeV� mH ½GeV�
Set 1 2.7984 0.2984 1.317 0.492 287 148þ6

−20
Set 2 2.8859 0.2981 1.334 0.448 291 149þ6

−11
Set 3 4.0000 0.2850 0.970 0.219 289 � � �
Set 4 4.0000 0.3000 1.000 0.211 243 275þ3

−3
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O
0þ
0

91−180 ¼ ðO0þ
0

1−90Þ2; ð14Þ

to find the inelastic threshold.
We construct then the full correlation matrix as

CijðΔtÞ ¼
1

Lt

XLt−1

t¼0

Cijðt;ΔtÞ;

Cijðt;ΔtÞ ¼ h½OiðtÞ− hOiðtÞi�½OjðtþΔtÞ− hOjðtþΔtÞi�i;
ð15Þ

with Lt the temporal extent and the standard errors given by

ΔCijðΔtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

LtðLt − 1Þ
XLt−1

t¼0

½Cijðt;ΔtÞ − CijðΔtÞ�2
vuut ð16Þ

in both channels. However, including all 180 operators in
the 0þ0 channel, which are partly extremely noisy, did not
yield a stable numerical result. We therefore did a
preselection and postselection of the operators included;
the latter only for the 0þ0 channel. In the following we
sketch the most important steps of the analysis performed,
skipping most technicalities. More details are given in
Appendix A.
First, we noted that including smaller smearing levels did

not show any statistically significant indications of overlap
with further states, but did increase the statistical errors. We
therefore reduced the set to the 4-times smeared operators,
leaving 36 and two operators in the 0þ0 and 1−1 channels,
respectively. In the 1−1 channel, this was sufficient to obtain
the necessary stable ground state signal.
In the 0þ0 channel we considered a variable number of

operators n for every setting and volume. We continuously
increased our operator basis from one operator to all 36
operators. These where added according to their time-
summed relative errors, starting with the least noisiest. This
ensured keeping the overall noise at a sustainable level. We
then monitored the resulting spectrum as a function of the
operator number, also in comparison to the expected
noninteracting spectrum. We limited the number of oper-
ators to the point where the spectrum was stable under
addition of further operators and the levels showed a
volume development which was consistent with the physi-
cal one, i.e., except for possible avoided level crossings a
polynomial or exponential behavior. In this way we
identified 10–20 operators for every volume and lattice
parameter set, which we admitted to the final analysis.
To determine the actual energy levels, we performed an

arbitrary precision4 variational analysis on the correlator
matrix. We identified levels by sorting the eigenvalues in

terms of the maximum overlap of the eigenvectors at finite
time with those at time zero.
However, the result was still very noisy, and most

eigenvalues did not have a signal for the whole time extent
of the lattice. Fits using single or double cosh behavior of
the effective masses did not yield satisfactory results. On
the other hand, the usual search for plateaus in the effective
energy5 of a correlator defined as [38]

EeffðtÞ ¼ −
1

t − Lt
2

arccosh

�
CðtÞ

CðLt=2Þ
�

ð17Þ

was also not possible, as the necessary quantity CðLt=2Þ
was usually drowned in noise.
To circumvent the problem, we used a predictor for

CðLt=2Þ [46]. Assuming that the variational analysis
yielded eigenvalues which became dominated by a single
state within a few time slices, we determined a value of
CðLt=2Þ. Therefore we used the assumption that EðtÞ
plateaus for every single level, and then averaged over a
window of time slices where this assumption turned out to
be reasonable. We then used the resulting averaged pre-
diction of CðLt=2Þ to determine in a constant fit the final
value of the mass. We used extensive tests with mock-up
data at various error levels to validate this method and
optimize our window, which in the end was ½2; Lt=2 − 2�
for sufficiently large volumes [46]. The resulting energy
levels were remarkably stable across different sets of
operators and volumes, giving further confidence in the
method.
We determined errors for our energy levels by varying

the correlator matrix as Cij → Cij � ΔCij and repeating the
full analysis three times, yielding asymmetric error bars.
Changing the amount of statistics showed that this was a
suitable estimate of the actual statistical errors.
In the 1−1 channel the ground state mass obtained by this

method were extremely precise, with errors at the per mill
level. We fitted the ground state with an exponential fall off
to extract the infinite volume mass. The results are listed in
Appendix B. When there was a signal for a bound state
below the elastic threshold in the 0þ0 channel, we did so
likewise, though here the errors are much larger. The final
result will be shown in Sec. VA, and the ground state mass
is given in Table I for the two cases in which it was below
the threshold. In addition Table I also contains the reso-
nance mass obtained for data set 4 as will be explained in
Sec. V B.

C. Phase shifts and the Lüscher analysis

In the determination of the phase shifts [42,43] we follow
closely the steps in [47,48]. The Lüscher analysis is used to

4In this way no preconditioning of the correlator matrix was
necessary or would have had any effect.

5Note that in standard literature this is usually referred to as the
effective mass but in the present context it is more accurate to use
the term energy.
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map the energy levels determined in Sec. III B to the phase
shift in the partial waves of the corresponding quantum
numbers, here 0þ0 . We note in passing that we have a
symmetric situation as the two-particle states in the elastic
region are made up of identical particles.
To this end, the energy in the center of mass frame for

states in the elastic region on the lattice are given by

cosh

�
E
2

�
¼ coshðmÞ þ 2 sin

�jp⃗j
2

�
2

ð18Þ

in lattice units and m the infinite volume mass, replacing
the usual continuum dispersion relation E ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p⃗2

p
.

We used the lattice dispersion relation throughout but note,
as in [47,48], that the difference compared to using the
continuum one was almost irrelevant.
Interaction distorts the levels and therefore a generalized

momentum is introduced which describes the deviation
from the lattice momenta without interaction,

q ¼ jp⃗j L
2π

: ð19Þ

These momenta are related to the phase shift δJ by a
transcendental equation of the type tan ðδJðqÞÞ ¼ fðqÞ
[43]. For our case of J ¼ 0 and vanishing center-of-mass
momentum the defining equation can be expressed as [43]

tanðδ0ðqÞÞ ¼
π

3
2q

Z0⃗
00ð1; q2Þ

; ð20Þ

with

Zd⃗
Jmðr; q2Þ ¼

X
X⃗∈Pd⃗

jx⃗jJYJmðx⃗Þ
ðx⃗2 − q2Þr ;

Pd⃗ ¼
�
x⃗ ∈ R3

����x⃗ ¼ y⃗ þ d⃗
2
; y⃗ ∈ Z3

�
; ð21Þ

where YJm are the usual spherical harmonics.
To make practical use of this connection an analytical

continuation of the transcendental function Zd⃗
Jm is neces-

sary. For this purpose we use the prescription detailed in
Appendix C, see also [47,49].
The phase shift can also be used to characterize [50] the

nature of the scattering. Defining near the threshold the
scattering length a0 by [48]

jp⃗j cotðδ0ðsÞÞ ¼
2Z0⃗

00ð1; q2Þffiffiffi
π

p
L

¼ 1

a0
þOðjp⃗j2Þ; ð22Þ

where a negative value indicates scattering on a bound state
with a characteristic scale given by a0. A positive or zero
value indicates the absence of such a bound state.
We again propagate errors in the phase shift analysis by

performing it three times with the input energy levels varied
within �1σ.

IV. PERTURBATIVE DESCRIPTION

In the usual perturbative description of VBS [19–23] the
initial and final states are fully specified. In the present
case, however, we do not have access to the precise initial
and final states, except knowing that it is made up by two
1−1 states in an s-wave with zero total momentum and net
zero custodial charge.
To determine the relevant matrix element we therefore

need to consider a mixture of all admissible states. We
construct it as a tensor product using Clebsch-Gordan
coefficients in spin and custodial charge. This yields
the state

jini ¼ j0þ0 i ¼
1

3

X1
m;c¼−1

ð−1Þmþcj1−1 ;m; ci ⊗ j1−1 ;−m;−ci:

ð23Þ

The full transition amplitude for the elastic region is then
obtained as

M ¼ houtjTjini ¼ 1

9

X1
m1 ;m2
c1 ;c2

¼−1
ð−1Þm1þm2þc1þc2

× hm1; c1;−m1;−c1jTjm2; c2;−m2;−c2i; ð24Þ

which is basically a sum over all 81 possible full 4-point
vertices hOm1;c1O−m1;−c1Om2;c2O−m2;−c2i. This quantity is
still fully gauge invariant and would need again non-
perturbative methods to be evaluated.
To obtain an analytical prediction, we apply now the

FMS mechanism to it. Performing first an expansion of the
operators in the VEV to leading order yields that Om;c are
replaced by Wm;c,

6 up to an irrelevant prefactor, which can
be absorbed in the definition of the operators [5,14]. At this
order, the matrix elements of scattering process are thus the
usual perturbative ones [13,18].
Performing now the perturbative expansion finally leaves

us with a sum over all possible polarized transition-
amplitudes at tree level for the processes WW → WW,
WW ↔ ZZ, and ZZ → ZZ. Additionally, due to CPT and
CP symmetry some helicity amplitudes can be related to
each other [20,21]. This reduces our problem to 12 different
amplitudes, which are listed in Table IX. The full amplitude
in a Born-level approximation for the transition amplitude
in Eq. (24) thus reads

6Switching between a � or a 1,2 description is only a rotation
of basis, and will not alter the final matrix elements. Therefore,
these will be omitted and WW refers to any valid combination
like WþW− or W1W2. Despite the Z in our degenerate case just
W3, we revert here momentarily to the notation with a Z for better
comparability to the standard results.
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MB ¼ 1
9
½4hWWjTjWWif0;0;0;0g −16hWWjTjWWif�;∓;0;0g þ8hWWjTjWWif�;∓;�;∓g þ8hWWjTjWWif�;∓;∓;�g
− 4hWWjTjZZif0;0;0;0g þ16hWWjTjZZif�;∓;0;0g −8hWWjTjZZif�;∓;�;∓g −8hWWjTjZZif�;∓;∓;�g
þ hZZjTjZZif0;0;0;0g −4hZZjTjZZif�;∓;0;0g þ2hZZjTjZZif�;∓;�;∓g þ2hZZjTjZZif�;∓;∓;�g�;

ð25Þ

with hc1c2jTjc3c4ifm1;m2;m3;m4g≡hm1;c1;m2;c2jTjm3;c3;
m4;c4itl the tree-level amplitudes. Kinematical details like
momentum assignments are given in Appendix D.
The individual amplitudes in Eq. (25) can be found in the

literature. Herewe are following the same kinematic assign-
ments as in [20,21]where the pureW- and pureZ-transitions
can be found. The remaining WW ↔ ZZ processes can be
deduced from theFeynman diagrams in Fig. 1 using e.g., [2].
In addition, also all other possible tree-level contributions to
the VBS process are shown in Fig. 1.
To obtain now an expression for the phase shift δ0 in the

s-wave one needs the relations

M ¼ 16π
X
J

ð2J þ 1ÞfJPJðcos θÞ; ð26Þ

fJ ¼
1

32πð2J þ 1Þ
Z

1

−1
MPJðcos θÞd cosðθÞ

¼ eiδJ sinðδJÞ; ð27Þ
where PJ are the Legendre polynomials. By projecting
Eq. (25) with P0 yields therefore the phase shift at
Born level.
However, because at Born level there is no branch cut in

the amplitudes the optical theorem is violated such a phase
shift would be complex. To avoid this requires either to go
to higher order or to reunitarize the result. As higher orders
in the present case otherwise change little and the result is
much more transparent, we chose here reunitarization
using the “direct T-matrix unitarization” approach [51].
Therefore, we first calculate the partial wave-transition
amplitude fJ in the specific channel by projection with P0

as mentioned above, followed by the corresponding
reunitarization prescription [51]

F J ¼
1

Re

�
1
fJ

�
− i

: ð28Þ

This is necessary to ensure unitarity, and is usually
found to be only a minor effect at the energies relevant

here [51]. This yields then the reunitarized Born-level FMS
prediction for the bound-state scattering process on the
lattice, and it agrees to this order to the perturbative VBS
scattering prediction. The latter would only change once
higher orders in the VEV would be taken into account.
To compare our results it also is instructive to obtain an

expression for tanðδJÞ. This can be done by solving Eq. (27)
which yields

tanðδJÞ ¼
F J

1þ iF J
¼ 1

Re

�
1
fJ

� : ð29Þ

We note that the reunitarization procedure in Eq. (28)
simplifies the relation for fJ ∈ R to tanðδJÞ ¼ fJ. This
relation therefore holds for the Born level amplitude which
is always real.

V. RESULTS

A. Energy spectra

The results7 for the energy levels in and around the
elastic region are shown for the four lattice setups from
Table I in Fig. 2 as a function of volume. Only in Sets 1 and
2, Figs. 2(a) and 2(b) respectively, we find a state below the
threshold as well as a state which evolves with volume
towards the elastic threshold. Thus, we interpret the results
in both cases as having a genuine and stable bound state in
the 0þ0 channel, which would act as a physical version of
the Higgs. The masses are given by 148þ6

−20 GeV and
149þ6

−10 GeV in the infinite-volume limit, respectively. The
large uncertainties of these quantities are mainly due to the
growing errors for larger lattices and the corresponding
extrapolation. Thus, it is very likely that the infinite
volume errors are overestimated. However one important

FIG. 1. Possible transition diagrams at tree-level. The ampersand (&) means that all possible combinations need to be considered here.
For example, the second diagram contains WW → WW and WW → ZZ.

7All figures except for Fig. 6 have been created using [52]. For
involved analytic calculations and Fig. 6 [53] has been used.
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feature is that these states are not consistent with the elastic
threshold at 160.75 GeV. Further the phase shift analysis
below will confirm this interpretation. Thus, the inelastic
threshold is set from the mean values to 296 GeV and
298 GeV, respectively, rather than at the 4 1−1 threshold at
321.5 GeV, though the difference is small. This is indicated
in Figs. 2(a) and 2(b) by the dashed orange line, which is
beneath the top of the plots.
In the other two setswedonot see a second state at or below

the elastic threshold. We therefore interpret the single state as
the elastic threshold scattering state. Thus, if a 0þ0 state should
exist, it does so only in the form of a resonance above the
elastic threshold, i.e., with a mass of at least 160.75 GeV.
We see that in all cases within the elastic region there are

substantial differences to the noninteracting scattering
states.8 In addition, we can also infer that not for all sets

and volumes we were able to identify all scattering states.
Also, many have substantial errors, despite the employed
statistics of order 105 decorrelated configurations for every
volume and set.

B. Phase shifts and resonance parameters

Our results for the (tangent of the) phase shifts are
plotted in Figs. 3(a)–3(d), also in comparison to the
perturbative predictions from Sec. IV. We also plot
tanðδ0Þ=jp⃗j in Figs. 4(a)–4(d), which yields the scattering
length at threshold. Note that the perturbative prediction for
the tangens of the phase shift always has a positive value
and thus the scattering length is also always positive.
The simplest picture arises for set 3 (Figs. 3(c) and 4(c)).

In this case there is no bound state below the threshold, and
no recognizable feature indicating a resonance. Thus we
use the analytic predictions for a Higgs mass much larger
than all other scales [see Eq. (D6)]. Therefore the analytic
predictions do not contain any uncertainties; our data
scatters then around the so-obtained perturbative predic-
tion. Also, the scattering length is within errors rather

FIG. 2. Energy spectra for the parameter sets in Table I with expected noninteracting states. Ground-state fits have been added when
suitable (see text). Points that are compatible with 0 GeV or have relative errors larger than 15% have been omitted. For full data see
Tables V–VIII.

8This is substantially different from the results in [34], where
heavily oversmeared basic operators have been used. This tends
to erase such deviations, and a much smaller bare gauge coupling
was employed.
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consistent with zero, as in the perturbative case. We
interpret this result therefore such that there is no light
scalar resonance, i.e., with a mass below the inelastic
threshold of 321.5 GeV, in this channel. The interaction is
essentially weak, and acceptably described by the analytic
prediction.
The situation for sets 1 and 2, Figs. 3(a) and 4(a) and

Figs. 3(b) and 4(b), respectively, is relatively similar. Here
the perturbative prediction is entirely fixed by the proper-
ties of the bound states and the running coupling. The error
of the perturbative prediction is thus entirely due to the
uncertainty of the bound state mass shown in Table I.
Although the uncertainty of the mass is non-negligible it
does not have a remarkable influence on the predicted
functional form. The uncertainties are shown as a red
ribbon in Figs. 3(a) and 3(b) respectively, which however
can only be seen close to the threshold. Away from the
threshold the data again scatter around the analytic pre-
diction, which therefore gives an acceptable description of
it. However, when approaching the elastic threshold the
lattice data significantly and consistently starts to deviate

from the analytic prediction, and becomes substantially
negative. As noted, this is indicative, and thereby consis-
tent, with a bound state below threshold, as was also
identified in the spectroscopical analysis. While a simple
extrapolation to threshold is difficult especially for set 2,
the results are broadly consistent with an inverse scattering
length of order 40 GeV. This will be further discussed in
Sec. V C.
However, already at this stage this is a remarkable result,

as this is within the same ballpark as was obtained for the
custodial/weak radius of the 1−1 state in [18]. As both bound
states emerge from the same weak interactions, a rough
agreement of their typical size parameters is encouraging.
This also emphasizes again the interpretation in [18] that
the bound states in the weak-Higgs sector exhibit a deep-
inelastic-scattering-like (DIS-like) behavior; when probed
at low energies they show a coherent reaction of the whole
bound state, demonstrated here by a typical bound-state
behavior of the scattering length close to the elastic
threshold. Probing at high energies, towards the inelastic
threshold, the reaction is that of the FMS-dominating

FIG. 3. The (tangent of the) phase shift as a function of energy for the parameter sets 1–4 in (a)–(d) as listed in Table I. Points with
errors crossing one singularity are shown fainter while those crossing multiple singularities have been dropped. In (d) one data point at
221 GeV lies outside the plot pane, but respective errors are still shown.
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individual constituent, and thus as obtained in the pertur-
bative approach.
Whether this size parameter is a genuine nonperturbative

feature, or whether it can be captured by the FMS
mechanism beyond leading order in the VEV is an open
question, and will have to await detailed calculations in the
future.
Set 4 finally shows a third behavior. The data is again

relatively well described by the perturbative expression.
Especially, close to the elastic threshold we do not see any
indication of a sizable negative scattering length, consistent
with the absence of a bound state below threshold in the
spectroscopical analysis.
However, around 275 GeV we observed a strong

deviation of the statistical significant data, tending towards
very large negative values of tanðδ0Þ. Such a large deviation
is indicative of a resonance [42,43]. However, attempting a
usual Breit-Wigner fit is not successful, mainly due to the
still relatively poor quality of the data. But using the mass
of the Higgs in the perturbative description as a free
parameter we find a quite good fit of the data for a

Higgs mass of about 275(3) GeV. The uncertainty of the
fit here is determined by error propagation using the
Jacobian of the model function. Given the otherwise good
agreement, this strongly suggests the existence of a
resonance in this channel at this energy.
Using the same Born-level-type calculation would yield

a width of the bound state at this energy of about 40 GeV
[2]. However, the matrix element cannot easily be supple-
mented by such a width due to the unitarity violation
problems of the Born amplitude. Still, a 40 GeV window
around the resonance position is still broadly within the
errors of the data, and thus it would be possible that a more
elaborate analysis could fix this width. In the present
system, this is therefore an alternative to the usual Breit-
Wigner fit or more sophisticated approaches, which is
possible only due to the FMS mechanism.

C. Impact on cross sections

Since VBS is used as a primary tool for searching for
new physics [37,54], it is interesting to ask how the

FIG. 4. The effective scattering length for the parameter sets 1–4 in (a)–(d) as listed in Table I. This quantity becomes the actual
scattering length at the inelastic threshold. Points with errors crossing one singularity are shown fainter while those crossing multiple
singularities have been dropped. In (c) one data point at 269 GeV lies outside the plot pane, but respective errors are still shown.
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observed effects could influence this. Since effects above
the inelastic threshold are inaccessible, we focus here on
the negative scattering length close to threshold. Since such
a negative scattering length would necessarily arise in any
scenario with the Higgs being a bound state, e.g., composite
Higgs scenarios and technicolor [55], the observed effect
here is indeed yet unaccounted for SM background9 for
such a signal.
VBS with on shell vector bosons in the initial or final

state, and thus in the relevant energy range, is only possible
currently at the LHC. ATLAS and CMS so far determine
corresponding cross sections, and will determine doubly
differential cross sections with (likely) fine enough binning
in the future [23,56]. The relevant question is thus what the
impact on these cross sections are.
The deviation in tanðδÞ visible for sets 1 and 2 in Fig. 3

can be well accounted for by the replacement

tanðδBornÞ → tanðδBornÞ − 2Δf; ð30Þ

where the factor 2 has been chosen for later convenience.
The additional contribution Δf is of the form

ΔfðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 4m2

W

p
4

�
a−10 þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−4m2

W

p
a−1
1

�
4
� ; ð31Þ

with a−10 and a−11 being some coefficients used to model the
influence of the bound-state structure of the Higgs.
Because this contribution will only appear in the channel
with the Higgs, the s-wave is independent of the scattering

angle. Also, since the tanðδBornÞ is always positive for
mH ⪅ 2mW and becomes negligible near the threshold, we
immediately see that a−10 is indeed the scattering length.
Thus this will give an estimate on the scattering length that
has not been possible by simple extrapolation of the data,
as discussed in the previous chapter. Fitting the data in
Fig. 3 with the modified relation in Eq. (30) yields a−10 and
a−11 being roughly 39þ10

−6 GeV and 41þ2
−1 GeV for set 1 and

12þ10
−8 GeV and 43þ5

−3 GeV for set 2, respectively. This
agrees with the rough estimate of 40 GeV from before.
The result of including Eq. (30) is shown in Figs. 5(a)

and 5(b) for sets 1 and 2, respectively. While the largest
modification is close to threshold, this reduces the phase
shift also at larger momenta, bringing it overall into better
agreement with the data. The uncertainty is dominated by
the scattering length, especially for set 2.
The corresponding matrix element is then

M ¼ MBorn − 32πΔf; ð32Þ

because at this level of reunitarization the partial wave
amplitude is just tanðδÞ. Because the process is elastic, the
energies and total values of three momenta of the initial
states and final states are equal, and thus the differential
cross section is given by [2]

dσ
dΩ

¼ 1

64π2E2
jMj2

¼ 1

64π2E2
ðM2

Born − 64πΔfMBorn þ ð32πΔfÞ2Þ ð33Þ

because both MBorn and Δf are real. Normalizing this to
the differential Born level cross section yields

�
dσ
dΩ

�
=
�
dσ
dΩ

�
Born

¼ 1−
64πΔf
MBorn

�
1 −

16πΔf
MBorn

�
; ð34Þ

FIG. 5. The (tangent of the) phase shift in comparison to the fit Eq. (30) for sets 1 and 2.

9Of course, our reduced SM setup cannot give a true
quantitative statement. Also, in the full SM the Higgs is unstable,
though relatively long lived. Hence, at least a coupled-channel
analysis would be needed to repeat this in the full SM [42]. It
remains that there is an attractive component in contrast to the
purely repulsive perturbative one.
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which is thus close to threshold a sizable contribution, but
quickly diminishes at higher energies.
Integrating the differential cross sections and combining

the results yields the modified total cross section

σ ¼ σBorn −
64πΔf
E2

ðtanðδBornÞ − ΔfÞ: ð35Þ

Note that the term in parentheses is not the same as the
initial replacement in Eq. (30) due to the missing factor of
2. However we still can see that the difference in the cross
section is mainly dominated by the deviation in the tangent.
Using the fits, these deviations are shown in Fig. 6 for the

differential cross section and in Fig. 7 for the integrated
cross section. In particular, the largest deviation appears
close to the threshold when being scattered perpendicular to
the incoming particles. Near the threshold even the total
cross section differs by a factor of 4. It is also visible that
the slightly different values for a0 and a1 in the two sets

give very different effects. In fact, changing either param-
eter by a factor of 2 changes the impact on the cross section
by a much larger factor. In fact, reducing a0 and a1
sufficiently leads to a suppression of the integrated cross
section for all energies, rather than an enhancement in some
kinematic range. The impact is thus strongly dependent on
the quantitative numbers. This can also be seen in the
integrated cross sections. While both cross sections are
closing in to each other in the high energy region, the
behavior close to the threshold is qualitatively different.
However, again the effect is very sensitive to the actual
parameters a0 and a1 as can be seen from the error bounds.
Because this is a reduced SM, and especially sets 1 and 2

were at stronger weak coupling, the effect is thus likely
substantiallyoverestimated.Also, the largedifferencebetween
sets 1 and 2 while having very similar input para-
meters shows the necessity to have very good quantitative
control to predict the impact on actual cross section measure-
ments, not tomention the inclusion of background. Hence, the

FIG. 6. Full normalized differential cross section as given in Eq. (34) as a function of energy and pseudorapidity η. Errors of the
parameters mH , a−10 , and a−11 have been omitted for obtaining these illustrations.

FIG. 7. Comparison (upper) and ratio (lower) of integrated born cross section and the full cross section in microbarn (μb) as given in
Eq. (35) as a function of energy.

PATRICK JENNY, AXEL MAAS, and BERND RIEDERER PHYS. REV. D 105, 114513 (2022)

114513-12



results here should be considered to be given the correct
qualitative behavior, but not a quantitative prediction.
It should also be noted that the effect originates from the

presence of the Higgs below threshold. VBS with vector
bosons with nonzero total weak/custodial charge will
therefore not be affected. Furthermore, the mixing between
the Z and γ will in practice affect even the ZZ channel as
this modifies the involved coupling constants and masses.

VI. SUMMARY AND CONCLUSION

We have presented the first fully gauge-invariant study of
VBS in a reduced SM setup in the elastic region of
the uncharged JPC ¼ 0þ0 partial wave. We confirmed the
absence of genuine nonperturbative bound states in the scalar
singlet channel below the inelastic threshold, confirming
previous results based on level counting [14,30,34]. We also
support that anFMSBorn-level analysis is able to describe the
scattering process quite well, including the appearance of a
resonance in the elastic region. Only in presence of a Higgs
below threshold the appearing, and expected, negative
scattering length is not fully captured at leading order. It
remains to be seen whether this can be remedied at higher
orders in the FMS expansion. Additionally, it should be
mentioned that recent investigations showed, that NLO
corrections to VBS in the other couplings modifies the
resulting total cross section at the LHC by up to 10%
[54,57–59], including effects like hadronization.
The emerging picture is very consistent with previous

investigations [4,5,9,14,16,18]. The actual physical degrees
of freedom are bound states, whose properties are well
described using the FMS mechanism. When probed, they
behave in a very DIS-like fashion. At low energies the
behavior is the one as expected from probing the bound
state at a whole, where a typical bound state size of order a
few ð∼10 GeVÞ−1 seems to be characteristic, which is
much more compact than a typical hadron. At high energies
the behavior is given by the FMS-dominating constituent,
and is essentially identical to the one in ordinary perturba-
tion theory. This therefore both reproduces the success of
perturbation theory and validates its use in this kinematical
region. Only towards the TeV range first indications appear
that again deviations due to the FMS-subdominant con-
stituents could play a role [9,15,16,33].
While it would be very interesting to actually measure the

size parameter experimentally, this would require to inves-
tigate one of the bound states well separated from its
production process, such that it can be considered quasia-
symptotically. That appears at least very challenging, given
that in the full SM all of these bound states decay. Only the
scalar particle inherits a narrowwidth from the Higgs [9], and
may therefore live long enough to isolate it well enough.
Whether this is experimentally feasible remains to be inves-
tigated. A possible avenue has been outlined in Sec. V C.
Conversely, this implies that corrections to VBS at

higher energies may be relatively small, and thus not

impede the search for new physics [55]. But this requires
further investigations as well, which are likely only
possible within the FMS mechanism as going beyond
the inelastic threshold does not yet appear feasible on
the lattice given the enormous statistical noise.
There is also a broader implication of the present results.

The same reasoning of gauge-invariance also applies to the
fermions in the standard model [4,5,13] and, by extension,
to hadrons [13,15]. For static properties first support in the
fermion sector has been gathered from exploratory lattice
results as well [11]. It therefore stands to reason that similar
deviations could also arise for leptons10 or hadrons, which
do form much better asymptotic states. To estimate the
effects will require substantially more involved calcula-
tions, and especially on the lattice can only be done by
proxy theories so far [11]. Still, they are a logical and
necessary goal, to exclude unaccounted for standard model
background in new physics searches.
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APPENDIX A: SPECTRUM EXTRACTION

1. Energy levels

In the following, the method to obtain the energy
spectrum from the correlator is given in more detail
[46]. The correlator on a lattice with periodic boundary
conditions takes the general form

CðtÞ ¼
X
k

Ak cosh

�
Ek

�
t −

Lt

2

�	
: ðA1Þ

Furthermore, it is known that the stochastic noise is
independent of t. This leads to an exponential increase
in the relative uncertainty towards the value at Lt=2. In this
method, we include only the correlator points until their
relative error exceeds 100%. This point in time is further
referred to as t0 with t0 ≤ Lt=2.
It is now assumed that for the considered correlators the

correlator can in some region be described by a single cosh
term with the ground-state energy E0 and a common value
for A0 which corresponds to the sought for estimate of
CðLt=2Þ,

10Note that here an effective custodial/weak radius is searched
for, and not the exceedingly small electromagnetic radius [60].
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CðtÞ
���
t∈Plateau

¼ A0 cosh

�
E0

�
t −

Lt

2

�	
: ðA2Þ

This region is further referred to as the plateau region.
We now define

fðA0ðtÞ; tÞ ¼
�
CðtÞ
A0ðtÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
CðtÞ
A0ðtÞ

�
2

− 1

s 	 1

t−Lt
2

¼ e−EeffðtÞ; ðA3Þ
interrelating the parameters A0ðtÞ, CðtÞ and EeffðtÞ to each
other, whereby EeffðtÞ serves a similar purpose as the
effective mass introduced in Eq. (17). If indeed the
correlator would be described by Eq. (A2), f would be
a constant.
By demanding fðA0ðtÞ; tÞ ¼! fðA0ðtÞ; tþ 1Þ a common

value of A0ðtþ 1=2Þ between two correlator points can be
calculated. These, similar to the function itself, follow a
constant behavior if they are part of the plateau. By taking
the mean of the A0ðtÞs in the would-be constant region, a
common value for the whole plateau can be obtained. After

initial tests with a variable plateau region, we could
establish that the considered correlators allow a fixed
plateau region with t ∈ ½2; t0 − 3�.
The value Ā0 ¼ Mean½A0ðt ∈ PlateauÞ� is then inserted

into Eq. (A3) which again leads to a constant region for
fðA0; tÞ. By doing a constant fit the final value of the mass
ĒPlat can be calculated (with t ∈ ½2; t0 − 2�) as

f̄ ¼ Mean½fðA0; t ∈ PlatÞ� → ĒPlat ¼ − log½f̄�: ðA4Þ

Tests with mock-up data and different levels of noise show
that this approach provides very good estimates of the
actual mass, substantially superior to fits using single or
double cosh, and the correlators indeed form plateaus
entering the value of A0.

2. Selection of operators

To obtain the full energy spectrum for a given set as a
function of volume we performed a variational analysis
[38] for each individual lattice size. As already mentioned
in the main text we used a variable number of operators in
our basis for each set and lattice size respectively.

FIG. 8. Energy levels for set 1 as a function of the operator basis size.
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To have an systematic approach of choosing the operator
basis we defined a signal-to-noise ratio SNRi for each
operator contributing to the correlation matrix by

SNRi ¼
XLt=2

t¼0

ΔCiiðtÞ
CiiðtÞ

ðA5Þ

withCijðtÞ andΔCijðtÞ as defined in Sec. III B and Eq. (16),
respectively.
Starting out with the operator contributing the smallest

SNRi, a first estimate of the ground state energy, using the
method from the previous section, has been obtained. Then
the operator with the next-smallest SNRi has been added to
the basis and a variational analysis has been performed to
disentangle the states and thus improve the plateau regions.
Again the energy levels have been obtained for all
eigenvalues using the predictor method. This procedure
has then been iterated until all operators were added to the
basis. In principle this procedure could also be stopped
once a certain total SNR has been reached, since at some
point the variational analysis becomes too noisy.
In Fig. 8 we show the so-obtained energy spectrum for

some specific lattice sizes of set 1 as a function of the
operator basis size. These figures also contain lines that
represent the expected noninteracting states in this region.
It can readily be seen from these plots, that always the first
operator already predicts quite sufficiently the ground state
in this channel. However, we also note, that for the majority
of the energy levels the upper and the lower ends of the
error bars do exactly coincide with energy levels that are
missing for the specific operator basis. This is indeed to be
expected since this is basically a remnant of bad disen-
tanglement of close-lying states.
To finally obtain the full spectra as a function of the

volume as shown in Fig. 2 one needs to pick an operator
basis for each setup. The number of employed operators as
a function of volume is shown in Table III. This choice is
based on the evolution with the number of operators of the
energy levels as shown in Fig. 8. We note that because of
levels approaching each others differently on different
volume and the general increase of noise with increasing
volume, the number of operators for different volumes
needs to be done independently.

3. Volume dependence

For the application of the Lüscher analysis and also for
the use of the perturbative transition amplitudes it is
necessary to obtain the infinite volume masses mW and,
if a bound state below threshold is found, mH. Therefore
the resulting data was then fitted by the ansatz [61]

mN ¼ m∞ þ c0
L
e−c1L ðA6Þ

and the errors were obtained again from variation of the
input data within �1σ. The resulting parameters can be
found in Table IV.

APPENDIX B: LATTICE PARAMETER SETS
AND FIT TABLES

The total number of configurations employed in our
analysis is given in Table II. For reproduce-ability we also
give the number of used operators in the variational
analysis for each parameter set in Table III. In Table IV
we present all the fit results of the infinite volume masses
mW using Eq. (A6), the bound state mass mH and the
coefficients from Eq. (31) in sets 1 and 2 as well as the

TABLE II. Total number of uncorrelated configurations per
data set and lattice size.

L Set 1 Set 2 Set 3 Set 4

8 664 724 555 881 828 985 1 412 021
12 463 852 409 854 481 642 481 642
16 656 962 511 968 781 562 751 500
20 452 231 434 070 496 460 512 148
24 629 442 579 293 682 715 848 591
28 446 666 426 794 320 115 381 307
32 105 371 107 035 89 428 82 626

TABLE III. Chosen number of operators for the variational
analysis to obtain the energy levels in Tables V–VIII.

L Set 1 Set 2 Set 3 Set 4

8 8 11 11 9
12 13 13 10 10
16 13 4 11 16
20 9 11 9 14
24 12 11 20 11
28 10 11 23 11
32 13 10 13 8

TABLE IV. Fit results for the parameters of the given equations.
Values are given in terms of inverse lattice spacing except for c1,
which is dimensionless.

Fit par. Equation Set 1 Set 2 Set 3 Set 4

mW (A6) 0.280(3) 0.277(3) 0.278(2) 0.330(5)
c0 (A6) 3.4(2) 3.3(2) 2.4(3) 1.5(7)

c1 (A6) 0.118(6) 0.126(6) 0.18(2) 0.17(6)

mH (A6)/(29) 0.52þ0.02
−0.07 0.52þ0.02

−0.04 � � � 1.134(11)
c0 (A6) 0.6þ0.2

−0.5 0.30þ0.14
−0.05 � � � � � �

c1 (A6) 0(3) 0(3) � � � � � �
a−10 (31) 0.136þ0.035

−0.021 0.041þ0.035
−0.028 � � � � � �

a−11 (31) 0.143þ0.007
−0.004 0.148þ0.018

−0.011 � � � � � �
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TABLE V. Data 2.7984-0.2984-1.317.

L E ½GeV� E− ½GeV� Eþ ½GeV�
8 147 1 1
8 192 3 3
8 236 13 13

12 156 2 2
12 183 3 3
12 268 18 17

16 150 2 2
16 177 3 3

20 149 4 4
20 173 7 7

24 148 4 3
24 163 19 18
24 183 38 29
24 193 33 28
24 257 8 11

28 147 15 15
28 171 18 16
28 295 19 58

32 149 29 6
32 164 12 74
32 219 8 12

TABLE VI. Data 2.8859-0.2981-1.334.

L E ½GeV� E− ½GeV� Eþ ½GeV�
8 146 1 1
8 202 2 2
8 250 4 4

12 155 2 2
12 193 3 3
12 254 7 7
12 671 451 110

16 150 3 3
16 188 5 5
16 240 4 4

20 149 4 4
20 185 8 8
20 254 32 35

24 149 6 6
24 184 14 14
24 224 7 8
24 298 33 40

28 147 16 13
28 181 29 31
28 207 6 6
28 288 26 60

32 150 7 15
32 165 26 37
32 198 13 14
32 209 9 9

TABLE VII. Data 4.0-0.285-0.97.

L E ½GeV� E− ½GeV� Eþ ½GeV�
8 144 1 1
8 278 3 3
8 300 3 3

12 142 1 1
12 283 9 9
12 305 4 4
12 346 72 95

16 145 2 2
16 255 9 9
16 308 17 17

20 148 4 5
20 224 16 15
20 272 27 29
20 287 31 7

24 151 3 5
24 215 8 9
24 267 6 6
24 290 6 61

28 129 59 57
28 146 15 6
28 173 29 45
28 252 2 1
28 303 20 11
28 343 29 50
28 991 847 847

32 160 13 8
32 193 41 24
32 195 16 59

TABLE VIII. Data 4.0-0.3-1.0.

L E ½GeV� E− ½GeV� Eþ ½GeV�
8 141 1 1
8 276 3 3

12 143 1 1
12 278 5 5
12 289 22 13
12 375 116 133

16 148 2 3
16 232 8 8
16 265 67 24
16 299 45 57

20 155 6 12
20 211 20 15
20 278 6 6
20 325 48 30

24 153 12 17
24 202 7 8
24 220 44 52
28 156 18 20

(Table continued)
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resonance mass mH in set 4 using the perturbative pre-
diction of the phase shift. Finally, the energy levels and the
corresponding uncertainties in the elastic region, obtained
as described in Appendix A, are given in Tables V–VIII
respectively for each parameter set.

APPENDIX C: GENERALIZED ZETA
FUNCTION Zd⃗

Jmðr; q2Þ
Here we want to present the analytical continuation and

numerical evaluation of the zeta functionZd⃗
Jmðr; q2Þ defined

in Eq. (21)we employed. This has already been discussed by
Lüscher in [43,61] and on several other occasions [62–66]
for different systems, i.e., moving reference frames. Herewe
follow [67], where a faster converging version is presented.
However, it turned out that there are some typographical
errors and discrepancies between the published and the
preprint version of [67]. Therefore, for completeness and
consistency of our own results, we present a full derivation

of the numerically stable, analytically continued zeta func-
tion in the rest frame (d⃗ ¼ 0⃗) for the case of spinless particles
(J ¼ m ¼ 0) employed by us, following the steps of [67].
For comparison we will also state the slower converging
formula derived in [62].
The definition of the zeta function Zd⃗

00ðr; q2Þ is

Zd⃗
Jmðr; q2Þ ¼

X
x⃗∈Pd⃗

jx⃗jJYJmðx⃗Þ
ðx⃗2 − q2Þr ;

Pd⃗ ¼
�
x⃗ ∈ R3

����x⃗ ¼ y⃗ þ d⃗
2
; y⃗ ∈ Z3

�
; ðC1Þ

and takes on finite values for Rer > 3=2. For the spinless
case Eq. (C1) simplifies to

Zd⃗
00ðr; q2Þ ¼

1ffiffiffiffiffiffi
4π

p
X
x⃗∈Pd⃗

1

ðx⃗2 − q2Þr : ðC2Þ

To calculate scattering phase shifts as shown in Eq. (20) we
need r ¼ 1 and thus an analytic continuation. First we split
the sum into two parts

X
x⃗

1

ðx⃗2 − q2Þr ¼
X
x⃗2<q2

1

ðx⃗2 − q2Þr þ
X
x⃗2>q2

1

ðx⃗2 − q2Þr ; ðC3Þ

with x⃗ ∈ Pd⃗. For the second sum, the denominator is
always larger zero and thus it is possible to rewrite it in the
following way,

X
x⃗2>q2

1

ðx⃗2 − q2Þr ¼
X
x⃗2>q2

1

ΓðrÞ
Z

∞

0

dt
ðx⃗2 − q2Þ

�
t

x⃗2 − q2

�
r−1

e−t substitute u ¼ t
x⃗2 − q2

¼ 1

ΓðrÞ
X
x⃗2>q2

�Z
1

0

du ur−1e−uðx⃗2−q2Þ þ
Z

∞

1

du ur−1e−uðx⃗2−q2Þ
	
: ðC4aÞ

Adding and again subtracting the x⃗2 < q2 part of this sum for the first integral and reverting the substitution for some parts
yields the following equation

¼ 1

ΓðrÞ
Z

1

0

du ur−1euq
2
X
x⃗

e−ux⃗
2 −

1

ΓðrÞ
X
x⃗2<q2

ΓðrÞ − Γðr; x⃗2 − q2Þ
ðx⃗2 − q2Þr

þ 1

ΓðrÞ
X
x⃗2>q2

Z
∞

1

du ur−1e−uðx⃗2−q2Þ; ðC4bÞ

with Γðr; x⃗2 − q2Þ the upper incomplete gamma function. Although the second argument of this function is a negative
value, which in general is not well-defined, this is still valid in our case due to the denominator. Note also that the first sum
now covers the full range of x⃗ ∈ Pd⃗ again. Finally, the last integral can be solved by again reverting the substitution.
Collecting all terms together we end up with the following result,

¼ 1

ΓðrÞ
Z

1

0

du ur−1euq
2
X
x⃗

e−ux⃗
2 −

X
x⃗2<q2

1

ðx⃗2 − q2Þr þ
X
x⃗

Xr
k¼1

e−ðx⃗2−q2Þ

ðr − kÞ!ðx⃗2 − q2Þk ; ðC4cÞ

TABLE VIII. (Continued)

L E ½GeV� E− ½GeV� Eþ ½GeV�
28 190 14 16
28 214 9 16
28 319 23 20

32 162 8 6
32 184 9 16
32 221 1 1
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where the second term in Eq. (C4c) exactly cancels the first
term in Eq. (C3). Our final form for this equation turns out
to be a combination of the versions stated in the published
and preprint version of [67].
For further evaluation we can use Poisson’s summation

formula X
z⃗∈Z3

fðz⃗Þ ¼
X
z⃗∈Z3

Z
d3r fðr⃗Þei2πz⃗ r⃗ ðC5Þ

to simplify the first integral in Eq. (C4c). By integrating
over r⃗ and explicitly inserting x⃗ from Eq. (C1) we arrive at

X
x⃗∈Pd⃗

e−ux⃗
2 ¼

�
π

u

�3
2X
y⃗∈Z3

ð−1Þy⃗ d⃗e−π2 y⃗2

u ðC6Þ

for the sum inside the integral. The divergence at r ¼ 1 is
due to the y⃗ ¼ 0⃗ term in the sum. Splitting the sum in a
divergent (y⃗ ¼ 0⃗) and a finite part (y⃗ ≠ 0⃗) finally allows us
to separate the divergence and to analytically continue the
functionZ

1

0

duur−1euq
2

�
π

u

�3
2 ¼ π

3
2

X∞
k¼0

ðq2Þk
k!

Z
1

0

duur−
3
2
þk−1

¼ π
3
2

X∞
k¼0

ðq2Þk
k!

1

rþk−3=2
; ðC7Þ

which only works for Refrg > 3=2. However, the right-
hand side takes a finite value for r ¼ 1 and thus can be used
for continuation. The final expression for the zeta function
for r ¼ 1 is

ffiffiffiffiffiffi
4π

p
Zd⃗

00ð1;q2Þ ¼
X
x⃗∈Pd⃗

e−ðx⃗2−q2Þ

ðx⃗2−q2Þþ π
3
2

X∞
k¼0

ðq2Þk
k!

1

k− 1=2

þ
Z

1

0

dueuq
2

�
π

u

�3
2X
y⃗∈Z3

0ð−1Þy⃗ d⃗e−π2 y⃗2

u ;

ðC8Þ

where the summation
P

y⃗∈Z3
0 intends that y⃗ ¼ 0⃗ has been

left out.
Inserting also d⃗ ¼ 0⃗ into the formula yields finally a

numerically stable and fast converging representation of the
generalized zeta function as needed in Eq. (20),

ffiffiffiffiffiffi
4π

p
Z 0⃗

00ð1; q2Þ ¼
X
y⃗∈Z3

e−ðy⃗2−q2Þ

ðy⃗2 − q2Þ þ π
3
2

X∞
k¼0

ðq2Þk
k!

1

k − 1=2

þ
Z

1

0

du euq
2

�
π

u

�3
2
X
y⃗∈Z3

0
e
−π2 y⃗2

u : ðC9Þ

Note, that here the first sum does include y⃗ ¼ 0⃗ not as
stated in the published version of [67]. That Eq. (C9) is
indeed the correct form can be seen by comparison
with [62,63].
The implementation used in this work follows Eq. (C9)

and has been verified by comparison with values obtained
as described in [62]. In this paper a different expression for
Eq. (C7) is given by

Z
1

0

du ur−1euq
2

�
π

u

�3
2 ¼ −2π3

2 þ
Z

1

0

duðeuq2 − 1Þ
�
π

u

�3
2

:

ðC10Þ

However, both yielded numerically the same results but the
integral version in Eq. (C10) converged much slower. To
verify the calculations in this work, the zeros of the
generalized zeta function have been calculated and com-
pared with those stated in [68].

APPENDIX D: RELATIVISTIC KINEMATICS,
PERTURBATIVE PHASE SHIFTS, AND

TRANSITION AMPLITUDES

The kinematic assignments in this work follow closely
the ones in [20,21]. However, keeping in mind that the
prescriptions have to be compared to lattice data it is more
instructive to use the following conventions for the
dispersion relation and the Mandelstam variables,

p2 ¼
�
E
2

�
2

−m2
W; ðD1Þ

s ¼ E2; ðD2Þ

t ¼ −4p2 sin

�
θ

2

�
2

; ðD3Þ

u ¼ −4p2 cos

�
θ

2

�
2

; ðD4Þ

with θ being the scattering angle between the incoming
and the outgoing particles. This conventions only differ to
those in [20,21] by a replacement of E with E=2.
Using this convention we obtained the polarized tran-

sition amplitudes given in Table IX.
The full amplitude from Eq. (25) in the Born approxi-

mation can be obtained from the individual elements in
Table IX. It is therefore given by
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MB ¼ g2W
36

�ð1 − 2c2ÞðE2 þ 4m2
WÞ2

m4
W

þ 8ð18E6 − 131E4m2
W þ 520E2m4

W − 816m6
WÞ

ðE2 − 4m2
WÞ2ðð1 − cÞE2 þ 2ð2c − 1Þm2

WÞ
−

4cð5E2 þ 4m2
WÞ2

E4 − 5E2m2
W þ 4m4

W

þ 10ðm4
HðE2 þ 4m2

WÞ2 þ 4m2
Hð3E4m2

W − 8E2m4
W − 16m6

WÞ þ 12m4
WðE2 − 4m2

WÞ2Þ
m2

WðE2 − 4m2
WÞ2ð2m2

H þ ð1 − cÞðE2 − 4m2
WÞÞ

þ 2ðm4
HðE2 þ 4m2

WÞ2 þ 4m2
Hð3E4m2

W − 8E2m4
W − 16m6

WÞ þ 12m4
WðE2 − 4m2

WÞ2Þ
m2

WðE2 − 4m2
WÞ2ð2m2

H þ ð1þ cÞðE2 − 4m2
WÞÞ

þ 1

m4
WðE2 −m2

HÞðE2 − 4m2
WÞ2

½5E10 − 44E8m2
W − 60E6m4

W þ 412E4m6
W − 416E2m8

W − 64m10
W

þ6m4
Hm

2
WðE2 þ 4m2

WÞ2 þm2
Hð−5E8 þ 37E6m2

W þ 24E4m4
W − 560E2m6

W þ 512m8
WÞ�
�
; ðD5Þ

where c ¼ cosðθÞ. MB can be split into MW
B þMH

B , with MW
B collecting the terms that are independent of mH [i.e., the

first line of Eq. (D5)] and MH
B the rest. For the case when there is no Higgs found below or in the elastic region (as is the

case for set 3) the diagrams in Fig. 1 containing Higgs exchanges need to be dropped. This can be achieved by calculating
the limit mH → ∞ of Eq. (D5). In this case MW

B is unaffected and the remaining term simplifies to

lim
mH→∞

MH
B ¼ g2W

36

2ðc − 23ÞE6m2
W þ 4ð2c − 3ÞE4m4

W − 32ðc − 10ÞE2m6
W − 64ð2cþ 11Þm8

W þ 5E8

m4
WðE2 − 4m2

WÞ2
: ðD6Þ

The final equations for the partial wave transition amplitudes f0 in Eq. (27) and the integrated cross section σBorn in
Eq. (35) are not given here since these are quite involved expressions but can be straightforwardly obtained by evaluating
the integrals

f0 ¼
1

32π

Z
1

−1
MBdc σBorn ¼

1

64π2E2

Z
1

−1
jMBj2dc: ðD7Þ

TABLE IX. Polarized transition amplitudes for the tree-level processes in the elastic region of the 0þ0 channel. We use c ¼ cosðθÞ as an
abbreviation. All entries need to be multiplied by the overall factor g2W ¼ 4παW.

Polarization hWWjTjWWipol
f0; 0; 0; 0g ðc2þ6c−3ÞE4

16m4
W

þ 8ð1−3cÞE2

16m2
W

− ð4p2−cE2Þ2
16m2

Wðt−m2
HÞ
− ðE2−2m2

WÞ2
4m2

Wðs−m2
HÞ
− ðE2−uÞð2cm2

WþtÞ2
4m4

Wðt−m2
WÞ þ 4E2tð1þ3cÞ

4m2
Wðt−m2

WÞ −
cp2ðE2þ2m2

WÞ2
m4

Wðs−m2
WÞ

f�;∓; 0; 0g 1−c2
8

½ E2

m2
W
þ E2ðE2þuÞ

m2
Wðt−m2

WÞ −
E2

t−m2
H
− 4ðE2þ4m2

WÞ
t−m2

W
�

f�;∓;�;∓g ð1þcÞ2
4

ðt−m2
H−m

2
W

t−m2
H

þ u−E2

t−m2
W
Þ

f�;∓;∓;�g ð1−cÞ2
4

ðt−m2
H−m

2
W

t−m2
H

þ u−E2

t−m2
W
Þ

hWWjTjZZipol
f0; 0; 0; 0g 2ðc2−3ÞE4þ12E2m2

W

16m4
W

þ 4m2
WðE2−m2

WÞ−E2m2
H

4m2
Wðs−m2

HÞ
f�;∓; 0; 0g E2ð1−c2Þ

4m2
W

f�;∓;�;∓g ð1þcÞ2
2

f�;∓;∓;�g ð1−cÞ2
2

hZZjTjZZipol
f0; 0; 0; 0g ðE2−2m2

WÞ2
4m2

Wðs−m2
HÞ
þ ðE2ð1−cÞ−4m2

WÞ2
16m2

Wðt−m2
HÞ

þ ðE2ð1þcÞ−4m2
WÞ2

16m2
Wðu−m2

HÞ
f�;∓; 0; 0g E2ð1−c2Þ

4

2p2þm2
H

ðt−m2
HÞðu−m2

HÞ
f�;∓;�;∓g m2

Wð1þcÞ2
2

2p2þm2
H

ðt−m2
HÞðu−m2

HÞ
f�;∓;∓;�g m2

Wð1−cÞ2
2

2p2þm2
H

ðt−m2
HÞðu−m2

HÞ
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