
A chiral-spin symmetry in QCD in Minkowski spacetime

Marco Catillo *

Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland

(Received 19 December 2021; accepted 6 June 2022; published 27 June 2022)

In this paper, we look at how to construct in Minkowski spacetime a new type of chiral-spin group
transformation of the spinor fields, similar to the one discovered by recent works of Glozman et al. in
the context of high-temperature QCD and truncated studies in lattice calculations. Afterwards, we prove
the invariance of free massless fermionic action under such group transformations, as well as the
invariance of the Hamiltonian of free massless fermions. At the end, the possible presence of a
symmetry driven by such new chiral-spin group at high-temperature QCD, also at nonzero chemical
potential, is discussed.
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I. INTRODUCTION

In recent works, the emergence of an unexpected
symmetry in lattice QCD simulations has been observed,
in particular at high-temperature QCD [1–4], right above
the chiral phase transition T > Tc, but for T ≲ 3Tc, and in
truncated studies (see Refs. [5–7] for information on these
peculiar works). More specifically, in truncated studies a
large degeneracy of hadron masses has been discovered.
The symmetry which corresponds to such degeneracy has
been explained by the group transformation SUð2ÞCS (or in
words chiral-spin group) of the quark fields, first intro-
duced in [5–7], and that contains the axial group Uð1ÞA as
subgroup. However, as we have studied in [8], the mass
degeneracy could also be explained, in the Euclidean
spacetime, by the group transformation which we have
denoted with SUð2ÞPCS, that is defined in a slightly different
manner from SUð2ÞCS, but still has Uð1ÞA as subgroup.
In fact, the two group transformations induce the same
transformation in hadron correlators hOðyÞŌðxÞi calcu-
lated at fixed reference frame with x ¼ ð0; x4Þ and
y ¼ ð0; y4Þ, from which we can still extract the hadron
masses, since at large T ¼ y4 − x4, we have hOðyÞŌðxÞi∼
expð−mT Þ, with m the hadron mass associated with such
correlator. Moreover, we have seen that while SUð2ÞCS is
not a symmetry of the free fermionic action, which makes it
not compatible with the possibility of deconfinement at
extremely high T, SUð2ÞPCS is instead a symmetry of the

free fermionic action, which makes it more suitable to
check its presence at T ≫ Tc, where QCD is supposed to
approach at an almost-free theory.
The work done in Ref. [8] has been considered in

Euclidean spacetime. Here, we see that we can define the
SUð2ÞPCS also in Minkowskian and also prove that it leaves
the fermionic action invariant, repeating the same argu-
mentation of [8] (see Sec. III of this paper). For doing so,
we need to define a Uð1Þ group starting simply from the
parity operator (see Sec. II). Beside this, we also prove the
invariance of the Hamiltonian of free massless fermions
under SUð2ÞPCS, giving how the operators of creation and
annihilation of quarks and antiquarks (but in general
fermions and antifermions) transform under SUð2ÞPCS
(in Sec. IV). We also briefly discuss what happens
when a gauge interaction term is added in the theory,
and finally, in Minkowski space the argument made in
Ref. [8], regarding the presence of SUð2ÞPCS at high T.
Moreover, we will see that a possible chemical potential
term in the action is SUð2ÞPCS invariant. Therefore, we
expect that if SUð2ÞPCS would be present at high T and zero
chemical potential, i.e., μ ¼ 0, it will be present also at
μ ≠ 0 (Sec. V). At the end, we summarize the main points
of this paper in Sec. VI, pointing out that in order to prove
the SUð2ÞPCS symmetry at high-temperature QCD, it is
important to study the presence of our Uð1Þ group derived
from the parity operator, defined in Sec. II. This is
something that must be checked on lattice simulations
and that has not been investigated yet.
We remark that from Secs. II–IV (and including all

appendixes), everything is kept general, and the reader can
assume that we are considering a theory with whatever
gauge group G. Section V is instead specific for QCD,
where G ¼ SUð3Þ, because it is in connection with the
lattice results of Refs. [1–7].
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II. FROM PARITY TO A Uð1Þ GROUP

For a spinor field, the parity transformation is defined as
ψðxÞ→PψðxÞP†¼ γ0ψðPxÞ, with P¼diagð1;−1;−1;−1Þ
and P the parity operator with properties P ¼ P† and
P2 ¼ 1. The application of two times this transformation
gives back again the same spinor field, because
P2ψðxÞP†2 ¼ γ0PψðPxÞP† ¼ γ0γ0ψðP2xÞ ¼ ψðxÞ, since
P2 ¼ I and ðγ0Þ2 ¼ 1 [see Eq. (A1) for the representation
used for the gamma matrices in this paper]. Therefore, for n
applications of parity, we have PnψðxÞP†n ¼ ðγ0ÞnψðPnxÞ,
which is ψðxÞ for n even and γ0ψðPxÞ for n odd. Exploiting
this fact, we can define the following spinor transformation:

Uð1ÞP∶ψðxÞ → ψðxÞUα
P ≡X∞

n¼0

ðiαÞn
n!

PnψðxÞP†n

¼ cosðαÞψðxÞ þ i sinðαÞγ0ψðPxÞ;
ð1Þ

where α is some global parameter. We have therefore
defined a unitary operator out of P, similar to what we have
done in Ref. [8] in Euclidean space, where this has been
done also for time reversal.
It is now convenient to introduce a bit of notation. We

construct two fields ψ�ðxÞ ¼ 1
2
ðψðxÞ � ψðPxÞÞ, that we call

“parity partners” and satisfying the properties: γ0ψ�ðxÞ ¼
�Pψ�ðxÞP† andψ�ðPxÞ ¼ �ψ�ðxÞ. Afterwards we define
the two-component field:

ΨðxÞ ¼
�
ψþðxÞ
ψ−ðxÞ

�
: ð2Þ

Now, we can transform ψþðxÞ and ψ−ðxÞ via Uð1ÞP
separately, obtaining that ψ�ðxÞUα

P ¼ 1
2
ðψðxÞUα

P �ψðPxÞUα
PÞ.

Therefore, ΨðxÞ transforms as

Uð1ÞP∶ΨðxÞ→ΨðxÞUα
P ¼

�
ψþðxÞUα

P

ψ−ðxÞUα
P

�

¼
�

eiαγ
0

ψþðxÞ
e−iαγ

0

ψ−ðxÞ

�
¼ eiαðσ3⊗γ0ÞΨðxÞ;

ð3Þ

where σ3 ⊗ γ0 is Hermitian and traceless. From (3) is
evident that Uð1ÞP transformations, acting on ΨðxÞ, form a
Uð1Þ group.
The transformations (1) also have important conse-

quences on the fermionic actions, as we are going to see
now. Let ΓðxÞ be an unspecified matrix function. Under
ψðxÞ → cosðαÞψðxÞ þ i sinðαÞγ0ψðPxÞ we observe that

ψ̄ðxÞΓðxÞψðxÞ → cosðαÞ2ψ̄ðxÞΓðxÞψðxÞ
þ sinðαÞ2ψ̄ðPxÞγ0ΓðxÞγ0ψðPxÞ
þ i sinðαÞ cosðαÞðψ̄ðxÞΓðxÞγ0ψðPxÞ
− ψ̄ðPxÞγ0ΓðxÞψðxÞÞ: ð4Þ

Therefore, we can now distinguish two cases.
(1) If ΓðxÞ ¼ 1 or ∂=∂xμ, then γ0ΓðxÞ ¼ ΓðPxÞγ0; there-

fore,
R
d4xψ̄ðxÞΓðxÞψðxÞ is invariant after changing

x → Px in the second and fourth terms in (4). This
shows that the action of free massive fermions,

SFðψ ; ψ̄Þ ¼
Z

d4xψ̄ðxÞðiγμ∂xμ −mÞψðxÞ; ð5Þ

with ∂
x
μ ¼ ∂=∂xμ, is invariant under Uð1ÞP trans-

formations.
(2) If ΓðxÞ ¼ γμAμðxÞ, then γ0ΓðxÞ ¼ γμPν

μAνðxÞγ0.
Therefore after integration d4x on both sides of
(4) and changing x → Px in the second and fourth
terms, we get the following:

Z
d4xψ̄ðxÞγμAμðxÞψðxÞ→Z
d4x½ψ̄ðxÞγμðcosðαÞ2AμðxÞþsinðαÞ2AP

μ ðxÞÞψðxÞ

þ isinðαÞcosðαÞψ̄ðxÞγμðAμðxÞ−AP
μ ðxÞÞγ0ψðPxÞ�;

ð6Þ

where we defined AP
ν ðxÞ≡ Pμ

νAμðPxÞ ¼ PAνðxÞP†.
Equation (6) shows how a possible gauge interaction term
in the action, namely SIðψ ; ψ̄ ; AÞ ¼ g

R
d4xψ̄ðxÞγμ ×

AμðxÞψðxÞ, transforms. As it is clear from (6), for generic
values of α, SIðψUα

P ; ψ̄Uα
P ; AÞ ≠ SIðψ ; ψ̄ ; AÞ, because in

general AP
μ ðxÞ ≠ AμðxÞ, and a Uð1ÞP transformation mixes

both these fields. Therefore, the interaction term breaks
Uð1ÞP. However, if we restrict to particular values of α, we
can obtain the invariance of SI . In particular, we recognize
two cases:

(i) α ¼ πk with k ¼ 0; 1; 2;… ⇒ Uð1ÞP reduces to the
group Z2 ⊂ Uð1ÞP and of course SF þ SI is Z2

invariant.
(ii) α ¼ πkþ ðπ=2Þ with k ¼ 0; 1; 2;… ⇒ In this

case if we perform also a parity transformation of
the gauge field AμðxÞ → AP

μ ðxÞ, we can obtain
the invariance of the interaction term, namely
SIðψUα

P ; ψ̄Uα
P ; APÞ ¼ SIðψ ; ψ̄ ; AÞ. In fact, as it is clear

from Eq. (1), Uð1ÞP transformations reduce to parity
×iZ2 ∈ Uð1ÞP transformations, where for parity
×iZ2 we mean for example the transformation
ψðxÞ → ziðPψðxÞP†Þ, with z ∈ Z2.
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Otherwise, a sufficient condition for the Uð1ÞP invari-
ance of SIðψ ; ψ̄ ; AÞ can be obtained restricting ourself to
gauge configurations such that

AP
μ ðxÞ ¼ AμðxÞ; ð7Þ

which means A0ðPxÞ ¼ A0ðxÞ and AiðPxÞ ¼ −AiðPxÞ.

III. TOWARDS A NEW CHIRAL-SPIN GROUP

Beside Uð1ÞP, the other ingredient that we need for
constructing our new chiral-spin group is to derive the
Uð1ÞA transformations for the field given in (2). Uð1ÞA
transformations are defined on ψ as ψðxÞ → ψðxÞUα

A ¼
expð−iαγ5ÞψðxÞ. Thus,

Uð1ÞA∶ΨðxÞ→ΨðxÞUα
A ¼

�
ψþðxÞUα

A

ψ−ðxÞUα
A

�

¼
�
e−iαγ

5

ψþðxÞ
e−iαγ

5

ψ−ðxÞ

�
¼eiαð−1⊗γ5ÞΨðxÞ:

ð8Þ

The generator of Uð1ÞA for the field Ψ is therefore
−1 ⊗ γ5, which is traceless and Hermitian.

A. New chiral-spin group definition

Taking now the generators of the groups Uð1ÞA and
Uð1ÞP, we rename them as ΣP

1 ¼ σ3 ⊗ γ0 and ΣP
3 ¼

−1 ⊗ γ5, and we define the third matrix ΣP
2 ¼ iΣP

1 Σ
P
3 ¼

σ3 ⊗ iγ5γ0. Now the set of ΣP
n s,

Σ⃗P ¼ ðσ3 ⊗ γ0; σ3 ⊗ iγ5γ0;−1 ⊗ γ5Þ; ð9Þ

which are all traceless and Hermitian, verify the property:
½ΣP

i ;ΣP
j � ¼ 2iϵijkΣP

k . Hence, they are generators of an
suð2Þ algebra. We call the Lie group generated by the
ΣP
n s as SUð2ÞPCS. The SUð2ÞPCS group transformations on

the field Ψ in (1) are given by

SUð2ÞPCS∶ΨðxÞ → ΨðxÞUα
CSP ¼ Uα

CSP
ΨðxÞ;

Uα
CSP

¼ eiαnΣ
P
n ∈ SUð2ÞPCS; ð10Þ

from which for the proper choice of the global vector
α ¼ ðα1; α2; α3Þ, we can get the group transformations of
Uð1ÞP and Uð1ÞA in (3) and (8), respectively. This means
that Uð1ÞP; Uð1ÞA ⊂ SUð2ÞPCS. From the transformations
(10) we can get how ψ (and consequently ψ̄ ¼ ψ†γ0)
transforms, just inverting the definition of ψ� in terms of ψ .
Let us see now how to do it. First of all we recall an

important feature which will also be useful later on. As it is
well known, every element of a SUð2Þ group can be written

as product of three Uð1Þ matrices, which are subgroups of
SUð2Þ. More precisely, if Uα

CSP
∈ SUð2ÞPCS, then

Uα
CSP

ΨðxÞ ¼ expðiβ1ΣP
1 Þ expðiβ2ΣP

3 Þ expðiβ3ΣP
1 ÞΨðxÞ;

ð11Þ

where β1, β2, β3 are the three Euler angles. Using the
generators in (9) and Eq. (2), the previous equation can be
used to get the SUð2ÞPCS transformations for ψ, namely,

ψðxÞUα
CSP ¼ cosðβ1Þ½expð−iβ2γ5Þðcosðβ3ÞψðxÞ

þ i sinðβ3Þγ0ψðPxÞÞ�
þ i sinðβ1Þγ0½expð−iβ2γ5Þðcosðβ3ÞψðPxÞ
þ i sinðβ3Þγ0ψðxÞÞ�; ð12Þ

which is what we wanted to get.
A particular case is when in (10), we set ðα1; α2; α3Þ ¼

ð0; α; 0Þ. In this situation, we obtain anotherUð1Þ subgroup
of SUð2ÞPCS, which we call Uð1ÞPA and its generator is
therefore ΣP

2 ¼ σ3 ⊗ iγ5γ0. Now a Uð1ÞPA transformation
of ψ can be written exploiting the definition of Ψ in (2) and
consequently obtaining that

Uð1ÞPA∶ψðxÞ → ψðxÞUα
PA

¼ e−αγ
5γ0ψþðxÞ þ eαγ

5γ0ψ−ðxÞ
¼ cosðαÞψðxÞ þ i sinðαÞðiγ5γ0ÞψðPxÞ; ð13Þ

which also corresponds to set the Euler angles
ðβ1; β2; β3Þ ¼ ðπ=4; α;−π=4Þ in Eq. (12). As we can see
it is similar to the Uð1ÞPA transformations defined in
Ref. [8] for the Euclidean case.
We conclude saying that the group SUð2ÞPCS as defined

by Eq. (7) differently from SUð2ÞCS in Ref. [7], looks like a
rotation in the space of the parity partners ψþðxÞ and ψ−ðxÞ
(which is similar, but not the same, to what we did in
Ref. [9] for baryon parity doublets).

B. Consequences on the fermionic action

From how SUð2ÞPCS is defined in Eq. (10), we can obtain
some consequences on the invariance of the fermionic
action, in particular
(1) SFðψ ; ψ̄Þ at m ¼ 0 is SUð2ÞPCS invariant;
(2) The mass term of SFðψ ; ψ̄Þ breaks explicitly Uð1ÞPA

and moreover a gauge interaction in the action is not
Uð1ÞPA invariant; and

(3) A gauge interaction breaks SUð2ÞPCS. However, if we
restrict to gauge fields satisfying the relation given in
(7), then SIðψ ; ψ̄ ; AÞ is SUð2ÞPCS invariant.

The proof of such statements follows by the fact that
using the Euler decomposition that we have seen in (11)
and (12) any SUð2ÞPCS transformation can be written as a
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product of transformations belonging to Uð1ÞP and Uð1ÞA.
Therefore, every action which is invariant under Uð1ÞP and
Uð1ÞA will be also invariant under SUð2ÞPCS. If one or both
of these two symmetries decays then the action is not
invariant anymore under SUð2ÞPCS. This is valid in particu-
lar for Uð1ÞPA since the generator ΣP

2 is the commutator of
ΣP
1 and ΣP

3 . A direct proof of the second statement is also
given in Appendix B.

IV. CHIRAL SPIN AND HAMILTONIAN

Another study which we want to add is the invariance of
the free fermion Hamiltonian with respect to Uð1ÞP and
SUð2ÞPCS (for the massless case) and derive the Uð1ÞP and
SUð2ÞPCS transformations for creation and annihilation
operators for fermions and antifermions. Once we do this,
we will briefly discuss the case where a gauge interaction is
switched on.
Before we start, we point out here that in this whole

Sec. IV, we assume that the spinor field ψ describing free
(and eventually massless m ¼ 0) fermions (or antifer-
mions) is solution of the Dirac equation in the free case,
which is [10]

ψðxÞ ¼
X1
r¼0

Z
d3p

ð2πÞ3=2 ½crðpÞurðpÞe
−ipx þ drðpÞ†vrðpÞeipx�;

ð14Þ

where urðpÞ and vrðpÞ are reported in Eq. (A2), and crðpÞ,
drðpÞ† are the annihilation and creation operators for
particles and antiparticles, respectively.
This is the particular situation where the free fermion

action SFðψ ; ψ̄Þ, calculated on such spinor field (14),
reaches its minimum value, which is zero. From such
spinor field (14) we attempt to apply Uð1ÞP and SUð2ÞPCS
transformations, defined in the previous section in case of a
totally generic spinor, in order to check the invariance of the
free fermion Hamiltonian.
This Hamiltonian, calculated using the spinor field in

(14), is given by [10]

H0 ¼
X1
r¼0

Z
d3pEp½crðpÞ†crðpÞ þ drðpÞ†drðpÞ�; ð15Þ

which is invariant under parity, i.e., PH0P† ¼ H0.
This means that calling cPr ðpÞ ¼ PcrðpÞP† and dPr ðpÞ† ¼
PdrðpÞ†P†, we have that

H0 ¼
1

2
H0 þ

1

2
PH0P†

¼ 1

2

X1
r¼0

Z
d3pEp½CrðpÞ†CrðpÞ þDrðpÞ†DrðpÞ�; ð16Þ

where we defined the following parity partners operators:

CrðpÞ¼
�
crðpÞ
cPr ðpÞ

�
; DrðpÞ†¼ðdrðpÞ† dPr ðpÞ† Þ: ð17Þ

The expressions for crðpÞ and drðpÞ† can be obtained by
the Fourier transform of ψðxÞ [see (A3)], while cPr ðpÞ and
dPr ðpÞ† are obtained from the fact that PψðxÞP† ¼ γ0ψðPxÞ
and given in (A4).

A. Uð1ÞP and Hamiltonian

In order to check if H0 is Uð1ÞP invariant, we need to
find how crðpÞ, drðpÞ†, cPr ðpÞ, and dPr ðpÞ† transform. For
this purpose, we just need to use (A3) and (A4) together
with the fact that urðpÞ and vrðpÞ given in (A2) transform
under parity as

γ0urðpÞ ¼ urð−pÞ; γ0vrðpÞ ¼ −vrð−pÞ: ð18Þ

Here, we give the results:

crðpÞUα
P ¼ cosðαÞcrðpÞ þ i sinðαÞcPr ðpÞ;

cPr ðpÞUα
P ¼ cosðαÞcPr ðpÞ þ i sinðαÞcrðpÞ;

ðdrðpÞ†ÞUα
P ¼ cosðαÞdrðpÞ† þ i sinðαÞdPr ðpÞ†;

ðdPr ðpÞ†ÞUα
P ¼ cosðαÞdPr ðpÞ† þ i sinðαÞdrðpÞ†; ð19Þ

where we have just replaced ψ → ψUα
P in (A3) and (A4);

see Appendix C for the detailed calculation. The result of
Eq. (19) can be rewritten using the definition in (17) as

CrðpÞ → CrðpÞUα
P ≡

�
crðpÞUα

P

cPr ðpÞUα
P

�
¼ eiασ

1

CrðpÞ;

DrðpÞ† → ðDrðpÞ†ÞUα
P ≡ ð ðdrðpÞ†ÞUα

P ðdPr ðpÞ†ÞUα
P Þ;

¼ DrðpÞ†eiασ1 ð20Þ

where σ1 is the first Pauli matrix acting on the two-
dimensional space defined in Eq. (17). As it is clear
from (16), H0 is invariant under Uð1ÞP transformations
of Eq. (20).
This result is actually pretty obvious in the free case, if

you consider that H0 commutes with P. Take, for example,
a state of a particle jpi ¼ crðpÞ†j0i that has energy
Ep ¼ hpjH0jpi. The Uð1ÞP invariance of H0 tells us that
the state jpi is energetically equivalent to the state jp̃i ¼
ðcrðpÞUα

PÞ†j0i ¼ ðcosðαÞcrðpÞ† − i sinðαÞcPr ðpÞ†Þj0i, where
we used the second of Eq. (19). We rewrite it as jp̃i¼
cosðαÞjpi− isinðαÞj−pi, because cPr ðpÞ†j0i¼PcrðpÞ†j0i¼
Pjpi¼j−pi. Hence, we have hp̃jH0jp̃i¼cosðαÞ2hpjH0jpiþ
isinðαÞcosðαÞh−pjH0jp i − isinð αÞcos ðαÞ hp jH0 j−pi þ
sinðαÞ2h−pjH0j−pi. However, h−pjH0j−pi¼
hpjPH0P†jpi¼hpjH0jpi¼Ep, because ½H0; P� ¼ 0, and
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for the same reason h−pjH0jpi ¼ hpjH0j − pi. Therefore,
hp̃jH0jp̃i ¼ hpjH0jpi ¼ Ep, for whatever value of p.
Hence, the two states have the same energy.

B. SUð2ÞPCS and Hamiltonian

We prove now that the Hamiltonian H0 is also invariant
under SUð2ÞPCS transformations for m ¼ 0. In order to see
this point, we give how crðpÞ, cPr ðpÞ, drðpÞ†, dPr ðpÞ†
transform. At first we express these operators in terms
of Ψ instead of ψ , as we write explicitly in Eq. (D4).
Secondly, we use that for m ¼ 0, the vectors ur and vr
satisfy the properties γ5urðpÞ ¼ ðσ · p=jpjÞurðpÞ and
γ5vrðpÞ ¼ ðσ · p=jpjÞvrðpÞ. This reflects the fact that in
the massless case γ5 coincides with the helicity operator
σ · p=jpj. For convenience we choose χr and consequently
χ0r, defined by Eq. (A2) in the solution of the Dirac
equation, such that they are eigenstates of the helicity
operator, i.e., ðσ · p=jpjÞχ0 ¼ χ0 and ðσ · p=jpjÞχ1 ¼ −χ1.
This means that for m ¼ 0 we have

γ5urðpÞ ¼ hrurðpÞ; γ5vrðpÞ ¼ hrþ1vrðpÞ; ð21Þ

with hr ¼ ð−1Þr, helicity of the particle.
Using these two considerations, and writing a generic

SUð2ÞPCS element extensively as

Uα
CSP

¼ cosðαÞ þ i sinðαÞ½e1ΣP
1 þ e2ΣP

2 þ e3ΣP
3 �; ð22Þ

where ðα1; α2; α3Þ ¼ αðe1; e2; e3Þ, with
P

3
i¼1 e

2
i ¼ 1, we

get that crðpÞ and cPr ðpÞ transform as

crðpÞU
α
CSP ¼ cosðαÞcrðpÞ

þ i sinðαÞ½e1cPr ðpÞ þ e2ihrcPr ðpÞ − e3hrcrðpÞ�;
cPr ðpÞU

α
CSP ¼ cosðαÞcPr ðpÞ

þ i sinðαÞ½e1crðpÞ − e2ihrcrðpÞ þ e3hrcPr ðpÞ�:
ð23Þ

Full details regarding the derivation of (23) are given in
Appendix D.
Equation (23) can be written in a compact way using the

notation in (17) as

CrðpÞ→CrðpÞU
α
CSP ≡

�
crðpÞU

α
CSP

cPr ðpÞU
α
CSP

�
¼eiαnΣ

P
nðcÞCrðpÞ; ð24Þ

where ΣP
nðcÞ ¼ fσ1;−σ2hr;−σ3hrg, are all traceless,

Hermitian, and with the property ½ΣP
iðcÞ;Σ

P
jðcÞ� ¼

2iϵijkΣP
kðcÞ. Therefore, we have found a representation of

SUð2ÞPCS for the transformations of CrðpÞ in the massless
case. Notice that (24) are basically rotations in the space of

the parity partners: crðpÞ and cPr ðpÞ, which takes into
account the helicity of our particles.
The same can be done for drðpÞ† and dPr ðpÞ† and we

obtain the following result:

ðdrðpÞ†ÞU
α
CSP ¼ cosðαÞdrðpÞ† þ i sinðαÞ½e1dPr ðpÞ†

þ e2ihrþ1dPr ðpÞ† − e3hrþ1drðpÞ†�;
ðdPr ðpÞ†ÞU

α
CSP ¼ cosðαÞdPr ðpÞ† þ i sinðαÞ½e1drðpÞ†

− e2ihrþ1drðpÞ† þ e3hrþ1dPr ðpÞ†�; ð25Þ

where we used the same procedure as before. Again, details
of these calculations are reported in Appendix D.
Equation (25) can be given in a compact way as

DrðpÞ† → ðDrðpÞ†ÞU
α
CSP ≡ ð ðdrðpÞ†ÞU

α
CSP ðdPr ðpÞ†ÞU

α
CSP Þ

¼ DrðpÞ†ðeiαnΣ
P
nðdÞ ÞT; ð26Þ

where ΣP
nðdÞ ¼ fσ1;−σ2hrþ1;−σ3hrþ1g, are again all trace-

less, Hermitian, and with the property ½ΣP
iðdÞ;Σ

P
jðdÞ� ¼

2iϵijkΣP
kðdÞ. Equation (26) expresses the representation of

SUð2ÞPCS transformations for DrðpÞ and it is a rotation of
the parity partners: drðpÞ† and dPr ðpÞ†, where we take into
account the helicity for antiparticles.
As we can observe, the Hamiltonian in (16) is of course

invariant under transformations of CrðpÞ and DrðpÞ† given
in (24) and (26). This concludes our proof thatH0 atm ¼ 0

is SUð2ÞPCS invariant.
It remains to see what happens when m ≠ 0 and in the

presence of a gauge interaction. For m ≠ 0, we already
know that H0 is not invariant under Uð1ÞA and therefore is
not invariant under SUð2ÞPCS, since Uð1ÞA ⊂ SUð2ÞPCS. The
case of a gauge interaction just makes fall the relation (18),
valid in the free case. This means that the relations (24) and
(26) do not represent anymore SUð2ÞPCS transformations.
Hence, in this situation we do not expect to have this
symmetry, even because, as we have already seen in the
previous section, the gauge interaction breaks the invari-
ance also in the action, because Uð1ÞP is broken explicitly.

V. MASS DEGENERATION AND SYMMETRY

Now we consider the case of QCD, where the fermion
fields ψ that we have discussed so far are interpreted as
quark fields.
The SUð2ÞCS group transformations, as have been

described in [5–7,11,12], can be defined in Minkowskian
spacetime as

SUð2ÞCS∶ψðxÞ → ψðxÞUα
CS ¼ Uα

CSψðxÞ;
Uα

CS ¼ eiαnΣn ∈ SUð2ÞCS; ð27Þ
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where Σn ¼ fγ0; iγ5γ0;−γ5g, and we have just substituted
γ4 → γ0 from Euclidean to Minkowskian spacetime. We
can see from the above definition that we have two
important subgroups just tuning the αns. One is Uð1ÞA
[which is also a subgroup of SUð2ÞPCS] and the other is the
Uð1Þ group generated by γ0, from which the group trans-
formation is obtained by choosing ðα1;α2; α3Þ ¼ ðα; 0; 0Þ
in (27). Hence, we get

Uð1Þ0∶ψðxÞ → ψðxÞUð1Þα
0

¼ eiαγ
0

ψðxÞ ¼ cosðαÞψðxÞ þ i sinðαÞγ0ψðxÞ: ð28Þ

Now, using the Euler decomposition, whatever element
of SUð2ÞCS can be obtained by the product of three
matrices belonging to Uð1ÞA and Uð1Þ0. Therefore, the
real difference between SUð2ÞCS and SUð2ÞPCS lies in their
different subgroups: Uð1Þ0, given in (1), and Uð1ÞP, given
in (5), respectively. However, whileUð1ÞP is a symmetry of
the free fermion action SF in (5),Uð1Þ0 is broken explicitly.
This is why SUð2ÞCS is not a symmetry of free massless
quarks. Now we want to show how SUð2ÞPCS is related to
SUð2ÞCS and its consequence on hadron correlators and
mass degeneration. At first we take the case when ΨðxÞ is
evaluated at the point xðtÞ ¼ ðx0; 0Þ. In this situation, by
definition ψþðxðtÞÞ ¼ ψðxðtÞÞ and ψ−ðxðtÞÞ ¼ 0. Therefore,
the transformation (10) becomes

SUð2ÞPCS∶ΨðxðtÞÞ → ΨðxðtÞÞUα
CSP

¼ eiαnΣ
P
n

�
ψðxðtÞÞ

0

�
¼

�
eiαnΣnψðxðtÞÞ

0

�
:

ð29Þ

Now naming ψðxðtÞÞUα
CSP ≡ ψþðxðtÞÞU

α
CSP , Eq. (29) can be

rewritten also as

SUð2ÞPCS∶ψðxðtÞÞ → ψðxðtÞÞUα
CSP ¼ eiαnΣnψðxðtÞÞ: ð30Þ

It coincides with Eq. (27), which means that

ψðxðtÞÞUα
CS ¼ ψðxðtÞÞUα

CSP . Hence, SUð2ÞPCS and SUð2ÞCS
are indistinguishable when they act on the spinor ψðxðtÞÞ.
This has an important consequence, as we start to describe
now. Take a hadron observable OHðxÞ made by Nq quarks
and N̄q antiquarks, i.e.,

OHðxÞ ¼ Hi1;…;iNq ;j1;…;jN̄q

YNq

l¼1

ψðxÞil
YN̄q

k¼1

ψ̄ jkðxÞ; ð31Þ

whereH is a tensor specifying the quantum numbers of the
hadron H, and the indices figl¼1;…Nq

and fjgk¼1;…N̄q

enclose Dirac, flavor, and eventually color indices. We
now choose to transform it with SUð2ÞCS and for some

choice of the parameters αns in (27) we get another hadron
observable, i.e.,

OH0 ðxÞ ¼ H0
i1;…;iNq ;j1;…;jN̄q

YNq

l¼1

ψðxÞil
YN̄q

k¼1

ψ̄ jkðxÞ; ð32Þ

which is the observable for the hadron H0. OHðxÞ and
OH0 ðxÞ are connected via SUð2ÞCS if for some α we

haveOH0 ðxÞ¼OHðxÞUα
CS ≡Hi1;…;iNq ;j1;…;jN̄q

QNq

l¼1ψðxÞ
Uα

CS
il

×QN̄q

k¼1 ψ̄ jkðxÞU
α
CS . Now, since for x ¼ xðtÞ we have

ψðxðtÞÞUα
CS ¼ ψðxðtÞÞUα

CSP , then OHðxÞU
α
CSP , which is the

SUð2ÞPCS transformation of OHðxÞ with the same set

of parameters αns, has the property OHðxðtÞÞUα
CS ¼

OHðxðtÞÞU
α
CSP and consequently OH0 ðxðtÞÞ ¼ OHðxðtÞÞU

α
CSP .

Therefore, even if OHðxÞU
α
CSP could be not associated with

an hadron for a generic x, however at x ¼ xðtÞ, it coincides
with the hadron operatorOH0 ðxðtÞÞ. At this point, suppose we
consider these two hadron correlators and their expansion in
the energy eigenstates using the translational invariance
OHðxðtÞÞ ¼ expð−iHx0ÞOHð0Þ expðiHx0Þ; we have

h0jOHðyðtÞÞOHðxðtÞÞ†j0i ¼
X
n

jh0jOHð0Þjnij2e−iEnT ;

h0jOH0 ðyðtÞÞOH0 ðxðtÞÞ†j0i ¼
X
n

jh0jOH0 ð0Þjnij2e−iE0
nT ;

ð33Þ

where yðtÞ ¼ ðy0; 0Þ, T ¼ y0 − x0, while mH ¼ E0 and
mH0 ¼ E0

0 are the masses associated with the hadrons H
and H0, respectively. Now, if SUð2ÞCS is a symmetry of
the theory (which seems to be in truncated studies [5–7])
then h0jOHðyðtÞÞUα

CSðOHðxðtÞÞUα
CSÞ†j0i ¼ h0jOHðyðtÞÞ×

OHðxðtÞÞ†j0i and therefore, since we have chosen the
SUð2ÞCS transformations such that OHðxÞUα

CS ¼ OH0 ðxÞ,
then we have mH0 ¼ mH, from (33). This means that a
degeneration of masses appears. Let us see the opposite, i.e.,
we find a degeneration mH0 ¼ mH coming from
h0jOH0 ðyðtÞÞOH0 ðxðtÞÞ†j0i ¼ h0jOHðyðtÞÞOHðxðtÞÞ†j0i. In
that case at x ¼ xðtÞ (and also y ¼ yðtÞ), we have

OHðxðtÞÞU
α
CSP ¼ OHðxðtÞÞUα

CS , which means from the corre-
lator side that

h0jOH0 ðyðtÞÞOH0 ðxðtÞÞ†j0i
¼ h0jOHðyðtÞÞUα

CSðOHðxðtÞÞUα
CSÞ†j0i

¼ h0jOHðyðtÞÞU
α
CSP ðOHðxðtÞÞU

α
CSP Þ†j0i

¼ h0jOHðyðtÞÞOHðxðtÞÞ†j0i: ð34Þ

This implies that SUð2ÞPCS symmetry can also explain the
same mass degeneration. Therefore, looking just at the
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mass degeneration mH0 ¼ mH does not tell us if the
symmetry is SUð2ÞCS of the truncated studies [1–7,11,12],
where at first the mass degeneration has been observed, or
SUð2ÞPCS of this paper.
However, because SUð2ÞPCS is a symmetry of free quarks

(in the massless case), its possible presence does not go
in contrast with the deconfinement regime at high-
temperature QCD, since in Sec. III we have shown that
it is a symmetry of the action as well the Hamiltonian of
free fermions (let say quarks) in the massless case. On the
contrary, SUð2ÞCS is not a symmetry of SF at m ¼ 0
because Uð1Þ0 is explicitly broken (see Refs. [11,12]).
Therefore, we expect SUð2ÞPCS to be visible at temperature
T → ∞, where quarks will behave as quasifree particles.
Hence, while SUð2ÞCS is just present in the range
Tc < T ≲ 3Tc [1–4], SUð2ÞPCS could be visible (at least
approximately) also at T > 3Tc and describe the large mass
degeneracy which was previously explained by SUð2ÞCS in
the truncated studies [5–7,11,12]. Therefore, a study on the
lattice on this point is strongly suggested.
Now, lattice calculations, as we know, are generally

performed at zero chemical potential (due to technical
difficulties). However, if we suppose to switch on an
eventual chemical potential term in the action, this would
not spoil SUð2ÞPCS. In fact, the SUð2ÞPCS transformations
leave also invariant the chemical potential part of the action
(as also SUð2ÞCS does, see Refs. [11,13]), which is
SðμÞðψ ; ψ̄Þ ¼ μ

R
d4xψðxÞ†ψðxÞ. The demonstration starts

rewriting it as SðμÞðψ ; ψ̄Þ ¼ μ
R
d4xðψþðxÞ†ψþðxÞ þ

ψ−ðxÞ†ψ−ðxÞÞ, since ψðxÞ ¼ ψþðxÞ þ ψ−ðxÞ. This
because the mixing terms give zero under the integration,
indeed

R
d4xψ�ðxÞ†ψ∓ðxÞ ¼

R
d4xψ�ðPxÞ†ψ∓ðPxÞ ¼

−
R
d4xψ�ðxÞ†ψ∓ðxÞ ¼ 0, where firstly we used the

change of variable x → Px and j detðPÞj ¼ 1 and secondly
that ψ�ðPxÞ ¼ �ψ�ðxÞ by definition. Therefore, using (2),
then we have SðμÞðψ ;ψ̄Þ¼μ

R
d4xΨðxÞ†ΨðxÞ. Consequently

from Eq. (10), we get SðμÞðψUα
CSP ; ψ̄Uα

CSP Þ ¼ μ
R
d4x×

ðΨðxÞUα
CSP Þ†ΨðxÞUα

CSP ¼ μ
R
d4xΨðxÞ†ΨðxÞ ¼ SðμÞðψ ; ψ̄Þ.

Hence, the invariance of SðμÞðψ ; ψ̄Þ under SUð2ÞPCS is
proven. Consequently, if there is a regime at high temper-
ature where SUð2ÞPCS is a symmetry of QCD, then a
possible nonzero chemical potential does not break such
symmetry.

VI. SUMMARY

In Ref. [8], we have seen how SUð2ÞPCS can be a candidate
for describing the large degeneracy found on lattice calcu-
lations [5–7], and eventually at high-temperature QCD
studies [1–4]. Here, we have defined such group in
Minkowski space and proved that the fermionic action of
free massless fermions is left invariant under such group and
a chemical potential term is also SUð2ÞPCS invariant.

In the case of a gauge interaction, SUð2ÞPCS is explicitly
broken except for some special cases [8]. Therefore, a more
profound investigation on this is needed. We have also seen
that the Hamiltonian of free fermions is SUð2ÞPCS invariant
and given how the creation and annihilation operators of
fermions and antifermions, when organized in parity
partners [in the sense of Eq. (17)], would transform in
this case; see Eqs. (24) and (26).
Moreover, from the Minkowskian perspective as we

have done in Euclidean [8], we have seen that a mass
degeneration given by a possible presence of the chiral-
spin group SUð2ÞCS symmetry can be either explained by
our chiral-spin group SUð2ÞPCS. However, since SUð2ÞPCS is
a symmetry of free fermions, then it is compatible with the
presence of the deconfinement regime in QCD. Therefore,
it could be visible (at least effectively) at high-temperature
QCD, i.e., T > Tc (as, e.g., Uð1ÞA in Refs. [14–16]), but
this is still something to be checked on lattice calculations.
As we have shown in this paper, SUð2ÞCS and SUð2ÞPCS

have both Uð1ÞA as subgroup; nevertheless, they differ
from each other by the subgroup generated by γ0, i.e.,
Uð1Þ0; ⊂ SUð2ÞCS [see Eq. (28)], and Uð1ÞP ⊂ SUð2ÞPCS
[see Eq. (1)]. Now, Uð1ÞA has been already studied on the
lattice, and the suppression of its breaking for extremely
high temperature is pretty evident by many lattice studies
[14–16]. Therefore, in order to check the presence of
SUð2ÞPCS in QCD at high T, it is sufficient to verify the
presence of Uð1ÞP [defined by Eq. (1)] in lattice QCD at
high temperature, which still has not been done yet.

APPENDIX A: KNOWN FORMULAS

In this paper we have used the Dirac representation for
the gamma matrices, namely

γ0¼
�
1 0

0 −1

�
; γk¼

�
0 τk

−τk 0

�
; γ5¼

�
0 1

1 0

�
; ðA1Þ

where τk for k ¼ 1, 2, 3 are the Pauli matrices. Using
such representation the solution of the Dirac equation
ðiγμ∂xμ −mÞψðxÞ ¼ 0, given in (14), contains the 4-
component vectors urðpÞ and vrðpÞ, which have the
following structure [10]:

urðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þm

2Ep

s � χr
σ·p

Epþm χr

�
;

vrðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þm

2Ep

s � σ·p
Epþm χ

0
r

χ0r

�
; ðA2Þ

where Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

p
, with χ0r ¼ χr⊕1 [where r ⊕ 1 ¼

ðrþ 1Þ mod 2], while χ0 and χ1 are two two-dimensional
orthogonal vectors, i.e., χ†rχr0 ¼ χ0†r χ0r0 ¼δrr0 . Consequently,
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the normalization is urðpÞ†ur0 ðpÞ ¼ vrðpÞ†vr0 ðpÞ ¼ δrr0 , for
whatever p.
Other interesting features come from the coefficients

crðpÞ and drðpÞ† in (14), namely the annihilation and
creation operators of particles and antiparticles, respec-
tively. They can be obtained by the Fourier transform

crðpÞ ¼
Z

d3x

ð2πÞ3=2 urðpÞ
†ψðxÞeipx;

drðpÞ† ¼
Z

d3x

ð2πÞ3=2 vrðpÞ
†ψðxÞe−ipx: ðA3Þ

Moreover from the parity transformation PψðxÞP† ¼
γ0ψðPxÞ and the relations (18), we can express cPr ðpÞ≡
PcrðpÞP† and dPr ðpÞ† ≡ PdrðpÞ†P† as

cPr ðpÞ ¼
Z

d3x

ð2πÞ3=2 urð−pÞ
†ψðxÞeipðPxÞ;

dPr ðpÞ† ¼
Z

d3x

ð2πÞ3=2 ð−vrð−pÞÞ
†ψðxÞe−ipðPxÞ; ðA4Þ

where we used that γ0 ¼ ðγ0Þ†, changed the variable
x → Px, used that P ¼ diagð1;−1;−1;−1Þ ¼ P−1, and
that the Jacobian j detðPÞj2 ¼ 1.

APPENDIX B: Uð1ÞPA BREAKING

In this appendix we want to prove that the gauge
interaction and also the mass term in the action break
explicitly Uð1ÞPA, subgroup of SUð2ÞPCS. The expression of
Uð1ÞPA transformations for a fermion field ψ is given in
Eq. (13), from which the transformation for ψ̄ is ψ̄ðxÞUα

PA ¼
ðψðxÞUα

PAÞ†γ0 ¼ cosðαÞψ̄ðxÞ þ i sinðαÞψ̄ðPxÞiγ5γ0.

Let us start with the gauge interaction term of the action SIðψ ; ψ̄ ; AÞ ¼ g
R
d4xψ̄ðxÞγμAμðxÞψðxÞ, i.e.,

SIðψUα
PA ; ψ̄Uα

PA ; AÞ=g ¼
Z

d4xψ̄ðxÞUα
PAγμAμðxÞψðxÞUα

PA

¼ cosðαÞ2
Z

d4xψ̄ðxÞγμAμðxÞψðxÞ þ i sinðαÞ cosðαÞ
Z

d4xψ̄ðxÞγμðiγ5γ0ÞAμðxÞψðPxÞ

þ i sinðαÞ cosðαÞ
Z

d4xψ̄ðPxÞðiγ5γ0ÞγμAμðxÞψðxÞ

− sinðαÞ2
Z

d4xψ̄ðPxÞðiγ5γ0Þγμðiγ5γ0ÞAμðxÞψðPxÞ

¼ cosðαÞ2
Z

d4xψ̄ðxÞγμAμðxÞψðxÞ þ i sinðαÞ cosðαÞ
Z

d4xψ̄ðxÞγμðiγ5γ0ÞAμðxÞψðPxÞ

− i sinðαÞ cosðαÞ
Z

d4xψ̄ðxÞPμ
νγνðiγ5γ0ÞAμðPxÞψðPxÞ þ sinðαÞ2

Z
d4xψ̄ðxÞγνPμ

νAμðPxÞψðxÞ

¼
Z

d4x½ψ̄ðxÞγμðcosðαÞ2AμðxÞ þ sinðαÞ2AP
μ ðxÞÞψðxÞ

þ i sinðαÞ cosðαÞψ̄ðxÞγμðAμðxÞ − AP
μ ðxÞÞðiγ5γ0ÞψðPxÞ�; ðB1Þ

where we used that ðiγ5γ0Þγμðiγ5γ0Þ ¼ −γνPμ
ν and we have

changed the variable x → Px for the last two terms after the
third equality, and used that the Jacobian j detðPÞj ¼ 1.
Equation (B1) tells us that for a generic value of α,
SIðψUα

PA ;ψ̄Uα
PA ;AÞ≠SIðψ ;ψ̄ ;AÞ because in general AP

μ ðxÞ≡
Pν

μAνðxÞ ≠ AμðxÞ and therefore SI is not Uð1ÞPA invariant.
Equation (B1) is similar to Eq. (6) for Uð1ÞP; hence, the
two consequences below that equation become similar for
Uð1ÞPA in the sense that we can reobtain the invariance of
SI only for particular values of α. In particular, we
recognize two cases:

(i) α ¼ πk with k ¼ 0; 1; 2;… ⇒ Uð1ÞPA reduces to
the group Z2 ⊂ Uð1ÞPA [see Eq. (13)] and of course
SF þ SI is Z2 invariant.

(ii) α ¼ πkþ ðπ=2Þ with k ¼ 0; 1; 2;… ⇒ In this case
if we perform also a parity transformation of the
gauge field AμðxÞ → AP

μ ðxÞ, we can obtain the
invariance of the interaction term, namely
SIðψUα

PA ; ψ̄Uα
PA ; APÞ ¼ SIðψ ; ψ̄ ; AÞ. In fact, as it is

clear from Eq. (13), Uð1ÞPA group transfor-
mations reduce to parity ×γ5Z2 ∈ Uð1ÞPA trans-
formations, where for parity ×γ5Z2 we mean
the transformation: ψðxÞ → zγ5ðPψðxÞP†Þ, with
z ∈ Z2.

Otherwise a sufficient condition for the Uð1ÞPA
invariance of SIðψ ; ψ̄ ; AÞ, can be obtained restricting
ourself to gauge configurations satisfying the condition
in Eq. (7).
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Regarding the mass term m
R
d4xψ̄ðxÞψðxÞ, we have

Z
d4xψ̄ðxÞUα

PAψðxÞUα
PA ¼ cosðαÞ2

Z
d4xψ̄ðxÞψðxÞ þ i sinðαÞ cosðαÞ

Z
d4xψ̄ðxÞðiγ5γ0ÞψðPxÞ

þ i sinðαÞ cosðαÞ
Z

d4xψ̄ðPxÞðiγ5γ0ÞψðxÞ − sinðαÞ2
Z

d4xψ̄ðPxÞðiγ5γ0Þðiγ5γ0ÞψðPxÞ

¼ cosð2αÞ
Z

d4xψ̄ðxÞψðxÞ þ i sinð2αÞ
Z

d4xψ̄ðPxÞðiγ5γ0ÞψðxÞ

≠
Z

d4xψ̄ðxÞψðxÞ; ðB2Þ

which is therefore not invariant under Uð1ÞPA transformations. The mass term breaks Uð1ÞPA.

APPENDIX C: EXPLICIT CALCULATION OF EQ. (19)

Let us start proving the first of Eq. (19), considering the expression (1) for the Uð1ÞP transformations and the expression
of crðpÞ in (A3). Therefore, we have

crðpÞUα
P ¼

Z
d3x

ð2πÞ3=2 urðpÞ
†ψðxÞUα

Peipx

¼ cosðαÞ
�Z

d3x

ð2πÞ3=2 urðpÞ
†ψðxÞeipx

�
þ i sinðαÞ

�Z
d3x

ð2πÞ3=2 urðpÞ
†γ0ψðPxÞeipx

�

¼ cosðαÞcrðpÞ þ i sinðαÞ
�Z

d3x

ð2πÞ3=2 ðγ
0urðpÞÞ†ψðxÞeipðPxÞ

�
¼ cosðαÞcrðpÞ þ i sinðαÞcPr ðpÞ; ðC1Þ

where we have changed the variable x → Px and used that j detðPÞj ¼ 1. We have also used the expression of cPr ðpÞ in (A4)
and Eq. (18).
For cPr ðpÞ we have

cPr ðpÞUα
P ¼

Z
d3x

ð2πÞ3=2 urð−pÞ
†ψðxÞUα

PeipðPxÞ

¼ cosðαÞ
�Z

d3x

ð2πÞ3=2 urð−pÞ
†ψðxÞeipðPxÞ

�
þ i sinðαÞ

�Z
d3x

ð2πÞ3=2 urð−pÞ
†γ0ψðPxÞeiðPxÞ

�

¼ cosðαÞcPr ðpÞ þ i sinðαÞ
�Z

d3x

ð2πÞ3=2 ðγ
0urð−pÞÞ†ψðxÞeipx

�
¼ cosðαÞcPr ðpÞ þ i sinðαÞcrðpÞ; ðC2Þ

where we used the same procedure as before. Regarding drðpÞ† we obtain

ðdrðpÞ†ÞUα
P ¼

Z
d3x

ð2πÞ3=2 vrðpÞ
†ψðxÞUα

Pe−ipx

¼ cosðαÞ
�Z

d3x

ð2πÞ3=2 vrðpÞ
†ψðxÞe−ipx

�
þ i sinðαÞ

�Z
d3x

ð2πÞ3=2 vrðpÞ
†γ0ψðPxÞe−ipx

�

¼ cosðαÞdrðpÞ† þ i sinðαÞ
�Z

d3x

ð2πÞ3=2 ðγ
0vrðpÞÞ†ψðxÞe−ipðPxÞ

�
¼ cosðαÞdrðpÞ† þ i sinðαÞdPr ðpÞ†; ðC3Þ
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and similar for dPr ðpÞ† we have

ðdPr ðpÞ†ÞUα
P ¼

Z
d3x

ð2πÞ3=2 ð−vrð−pÞÞ
†ψðxÞUα

Pe−ipðPxÞ

¼ cosðαÞ
�Z

d3x

ð2πÞ3=2 ð−vrð−pÞÞ
†ψðxÞe−ipðPxÞ

�
− i sinðαÞ

�Z
d3x

ð2πÞ3=2 vrð−pÞ
†γ0ψðPxÞe−ipðPxÞ

�

¼ cosðαÞdPr ðpÞ† − i sinðαÞ
�Z

d3x

ð2πÞ3=2 ðγ
0vrð−pÞÞ†ψðxÞe−ipx

�
¼ cosðαÞdPr ðpÞ† þ i sinðαÞdrðpÞ†; ðC4Þ

where we have changed the variable x → Px and used that
j detðPÞj ¼ 1. We have also used the expressions of drðpÞ†
and dPr ðpÞ† in (A3) and (A4), respectively, and Eq. (18).

APPENDIX D: EXPLICIT CALCULATION
OF EQS. (23) AND (25)

In order to prove Eqs. (23) and (25), we introduce two
fields,

UrðpÞ ¼
�
urðpÞ
0

�
; VrðpÞ ¼

�
vrðpÞ
0

�
; ðD1Þ

which are defined in the parity partners space, as ΨðxÞ in
(2). Hence, we have that urðpÞ†ψðxÞ¼UrðpÞ†½ð1þσ1Þ⊗
1�ΨðxÞ and vrðpÞ†ψðxÞ¼VrðpÞ†½ð1þσ1Þ⊗1�ΨðxÞ, where
1 acts in the Dirac space, ΨðxÞ is given in (2), and ð1þ σ1Þ
acts on the two-dimensional space of parity partners.
The properties of urðpÞ and vrðpÞ [see Eq. (A2)], given

in Eqs. (18) and (21), valid for m ¼ 0, can be translated for
UrðpÞ and VrðpÞ as well, and we obtain

ð1 ⊗ γ0ÞUrðpÞ ¼ Urð−pÞ;
ð1 ⊗ γ0ÞVrðpÞ ¼ −Vrð−pÞ;
ð1 ⊗ γ5ÞUrðpÞ ¼ hrUrðpÞ;
ð1 ⊗ γ5ÞVrðpÞ ¼ hr⊕1VrðpÞ; ðD2Þ

where third and fourth equations are valid for m ¼ 0,
where γ5 coincides with the helicity operator σ · p=jpj. This

implies that for opposite values −p, third and fourth
equations of (D2) become

ð1 ⊗ γ5ÞUrð−pÞ ¼ −hrUrð−pÞ;
ð1 ⊗ γ5ÞVrð−pÞ ¼ −hr⊕1Vrð−pÞ: ðD3Þ

Using such notation and defining Γ ¼ ½ð1þ σ1Þ ⊗ 1�,
we can rewrite crðpÞ, cPr ðpÞ, drðpÞ†, and dPr ðpÞ† of
Eqs. (A3) and (A4) as

crðpÞ ¼
Z

d3x

ð2πÞ3=2UrðpÞ†ΓΨðxÞeipx;

cPr ðpÞ ¼
Z

d3x

ð2πÞ3=2Urð−pÞ†ΓΨðxÞeipðPxÞ

¼
Z

d3x

ð2πÞ3=2Urð−pÞ†ΓΨðPxÞeipx;

drðpÞ† ¼
Z

d3x

ð2πÞ3=2 VrðpÞ†ΓΨðxÞe−ipx;

dPr ðpÞ† ¼
Z

d3x

ð2πÞ3=2 ð−Vrð−pÞÞ†ΓΨðxÞe−ipðPxÞ

¼
Z

d3x

ð2πÞ3=2 ð−Vrð−pÞÞ†ΓΨðPxÞe−ipx; ðD4Þ

where in cPr ðpÞ and dPr ðpÞ†, we have changed the variable
x → Px and used that the Jacobian is j detðPÞj ¼ 1. At this
point the SUð2ÞPCS transformations are given by

crðpÞU
α
CSP ¼

Z
d3x

ð2πÞ3=2UrðpÞ†ΓΨðxÞU
α
CSP eipx

¼ cosðαÞcrðpÞ þ i sinðαÞ
X3
i¼1

ei

Z
d3x

ð2πÞ3=2UrðpÞ†ΓΣP
i ΨðxÞeipx;

cPr ðpÞU
α
CSP ¼

Z
d3x

ð2πÞ3=2Urð−pÞ†ΓΨðxÞU
α
CSP eipðPxÞ

¼ cosðαÞcPr ðpÞ þ i sinðαÞ
X3
i¼1

ei

Z
d3x

ð2πÞ3=2 Urð−pÞ†ΓΣP
i ΨðxÞeipðPxÞ;
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ðdrðpÞ†ÞU
α
CSP ¼

Z
d3x

ð2πÞ3=2 VrðpÞ†ΓΨðxÞU
α
CSP e−ipx

¼ cosðαÞdrðpÞ† þ i sinðαÞ
X3
i¼1

ei

Z
d3x

ð2πÞ3=2 VrðpÞ†ΓΣP
i ΨðxÞe−ipx;

ðdPr ðpÞ†ÞU
α
CSP ¼

Z
d3x

ð2πÞ3=2 ð−Vrð−pÞÞ†ΓΨðxÞU
α
CSP e−ipðPxÞ

¼ cosðαÞdPr ðpÞ† þ i sinðαÞ
X3
i¼1

ei

Z
d3x

ð2πÞ3=2 ð−Vrð−pÞÞ†ΓΣP
i ΨðxÞe−ipðPxÞ; ðD5Þ

where we used thatΨðxÞUα
CSP ¼ Uα

CSP
ΨðxÞ andUα

CSP
is given in Eq. (22). From crðpÞ and cPr ðpÞ it is evident that we need to

know the terms Urð�pÞ†½ð1þ σ1Þ ⊗ 1�ΣP
i ΨðxÞ, where ΣP

i ¼ fσ3 ⊗ γ0; σ3 ⊗ iγ5γ0;−1 ⊗ γ5g. At first we notice that by
definition ðσ3 ⊗ 1ÞΨðxÞ ¼ ΨðPxÞ and then from Eqs. (D2) and (D3), we get

Urð�pÞ†ΓΣP
1 ΨðxÞ ¼ ðð1 ⊗ γ0ÞUrð�pÞÞ†Γðσ3 ⊗ 1ÞΨðxÞ ¼ Urð∓ pÞ†ΓΨðPxÞ;

Urð�pÞ†ΓΣP
2 ΨðxÞ ¼ ðð1 ⊗ iγ5γ0ÞUrð�pÞÞ†Γðσ3 ⊗ 1ÞΨðxÞ ¼ �ihrUrð∓ pÞ†ΓΨðPxÞ;

Urð�pÞ†ΓΣP
3 ΨðxÞ ¼ ðð−1 ⊗ γ5ÞUrð�pÞÞ†ΓΨðxÞ ¼∓ hrUrð�pÞ†ΓΨðxÞ; ðD6Þ

where we have decomposed σ3 ⊗ li ¼ ð1 ⊗ liÞðσ3 ⊗ 1Þ, with li ¼ fγ0; iγ5γ0g and used that ½1 ⊗ li;Γ� ¼ 0 for i ¼ 1, 2.
Now we can plug (D6) in Eq. (D5), having in mind (D4), and finally we obtain the right sides of Eq. (23).

Regarding the terms VrðpÞ†½ð1þ σ1Þ ⊗ 1�ΨðxÞUα
CSP for drðpÞ† and dPr ðpÞ†, they can be rewritten using Eqs. (D2)

and (D3) as

Vrð�pÞ†ΓΣP
1 ΨðxÞ ¼ ðð1 ⊗ γ0ÞVrð�pÞÞ†Γðσ3 ⊗ 1ÞΨðxÞ ¼ −Vrð∓ pÞ†ΓΨðPxÞ;

Vrð�pÞ†ΓΣP
2 ΨðxÞ ¼ ðð1 ⊗ iγ5γ0ÞVrð�pÞÞ†Γðσ3 ⊗ 1ÞΨðxÞ ¼∓ ihr⊕1Vrð∓ pÞ†ΓΨðPxÞ;

Vrð�pÞ†ΓΣP
3 ΨðxÞ ¼ ðð−1 ⊗ γ5ÞVrð�pÞÞ†ΓΨðxÞ ¼∓ hr⊕1Vrð�pÞ†ΓΨðxÞ; ðD7Þ

where we used the same procedure as in Eq. (D6). Now we plug (D7) in Eq. (D5) and keeping in mind the expression (D4),
we obtain the right sides of Eq. (25). This ends our calculation.
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