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A chiral-spin symmetry in QCD in Minkowski spacetime
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In this paper, we look at how to construct in Minkowski spacetime a new type of chiral-spin group
transformation of the spinor fields, similar to the one discovered by recent works of Glozman et al. in
the context of high-temperature QCD and truncated studies in lattice calculations. Afterwards, we prove
the invariance of free massless fermionic action under such group transformations, as well as the
invariance of the Hamiltonian of free massless fermions. At the end, the possible presence of a
symmetry driven by such new chiral-spin group at high-temperature QCD, also at nonzero chemical

potential, is discussed.
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I. INTRODUCTION

In recent works, the emergence of an unexpected
symmetry in lattice QCD simulations has been observed,
in particular at high-temperature QCD [1-4], right above
the chiral phase transition 7 > T, but for T < 3T, and in
truncated studies (see Refs. [5-7] for information on these
peculiar works). More specifically, in truncated studies a
large degeneracy of hadron masses has been discovered.
The symmetry which corresponds to such degeneracy has
been explained by the group transformation SU(2) g (or in
words chiral-spin group) of the quark fields, first intro-
duced in [5-7], and that contains the axial group U(1), as
subgroup. However, as we have studied in [8], the mass
degeneracy could also be explained, in the Euclidean
spacetime, by the group transformation which we have
denoted with SU(2)7, that is defined in a slightly different
manner from SU(2).g, but still has U(1), as subgroup.
In fact, the two group transformations induce the same
transformation in hadron correlators (O(y)O(x)) calcu-
lated at fixed reference frame with x = (0,x;) and
y = (0,y,), from which we can still extract the hadron
masses, since at large 7 = y, — x4, we have (O(y)O(x)) ~
exp(—m7 ), with m the hadron mass associated with such
correlator. Moreover, we have seen that while SU(2) .y is
not a symmetry of the free fermionic action, which makes it
not compatible with the possibility of deconfinement at
extremely high 7, SU(2)7; is instead a symmetry of the
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free fermionic action, which makes it more suitable to
check its presence at 7 > T, where QCD is supposed to
approach at an almost-free theory.

The work done in Ref. [8] has been considered in
Euclidean spacetime. Here, we see that we can define the
SU(2)F also in Minkowskian and also prove that it leaves
the fermionic action invariant, repeating the same argu-
mentation of [8] (see Sec. III of this paper). For doing so,
we need to define a U(1) group starting simply from the
parity operator (see Sec. II). Beside this, we also prove the
invariance of the Hamiltonian of free massless fermions
under SU(2)7s, giving how the operators of creation and
annihilation of quarks and antiquarks (but in general
fermions and antifermions) transform under SU(2)Fg
(in Sec. 1V). We also briefly discuss what happens
when a gauge interaction term is added in the theory,
and finally, in Minkowski space the argument made in
Ref. [8], regarding the presence of SU(2)Fg at high T.
Moreover, we will see that a possible chemical potential
term in the action is SU(2)%g invariant. Therefore, we
expect that if SU(2)% would be present at high T and zero
chemical potential, i.e., 4 = 0, it will be present also at
1 # 0 (Sec. V). At the end, we summarize the main points
of this paper in Sec. VI, pointing out that in order to prove
the SU(2)Fg symmetry at high-temperature QCD, it is
important to study the presence of our U(1) group derived
from the parity operator, defined in Sec. II. This is
something that must be checked on lattice simulations
and that has not been investigated yet.

We remark that from Secs. II-IV (and including all
appendixes), everything is kept general, and the reader can
assume that we are considering a theory with whatever
gauge group G. Section V is instead specific for QCD,
where G = SU(3), because it is in connection with the
lattice results of Refs. [1-7].
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II. FROM PARITY TO A U(1) GROUP

For a spinor field, the parity transformation is defined as
w(x) = Py (x)PT =y (Px), with P=diag(1,—1,—1,—1)
and P the parity operator with properties P = P’ and
P? = 1. The application of two times this transformation
gives back again the same spinor field, because
Py (x)P™ = y"Py (Px)P" = y% % (P’x) = w(x), since
P? =T and (y°)? = 1 [see Eq. (A1) for the representation
used for the gamma matrices in this paper]. Therefore, for n
applications of parity, we have P"y (x)P™ = (y°)"y (P"x),
which is y(x) for n even and Y w (Px) for n odd. Exploiting
this fact, we can define the following spinor transformation:

(ia)"

n!

Py (x)P™

[]s

U(D)piw(x) = y(x) % =

=
Il
=}

cos(@)y(x) + isin(a)yw(Px),

(1)

where o is some global parameter. We have therefore
defined a unitary operator out of P, similar to what we have
done in Ref. [8] in Euclidean space, where this has been
done also for time reversal.

It is now convenient to introduce a bit of notation. We
construct two fields . (x) = 1 (w(x) £ y(Px)), that we call
“parity partners” and satisfying the properties: y’y (x) =
+Py . (x)PT and y. (Px) = ty (x). Afterwards we define
the two-component field:

(2)

Now, we can transform w,(x) and w_(x) via U(1)p
separately, obtaining that y . (x)VF =1 (y(x) Y £y (Px)"r).
Therefore, ¥(x) transforms as

U(1)p:¥(x) — ¥(x)F = (V’+<x>”g>

w_(x)%

P
iay®
_ e\ 1,/+(x) _ eia(a3®yo)q’(x)

e’y (x) |

(3)

where 6> ® y° is Hermitian and traceless. From (3) is
evident that U(1)p transformations, acting on ¥(x), form a
U(1) group.

The transformations (1) also have important conse-
quences on the fermionic actions, as we are going to see
now. Let I'(x) be an unspecified matrix function. Under
w(x) — cos(a)y(x) +isin(a)y’y(Px) we observe that

PO (x) - cos(@fFT(xIw(x
+ sin(a) @ (Px)y T (x)y "y (Px)
+ isin(a) cos(a) (7 (x)T'(x)y w(Px)
= (Px)y T(x)y (x)). 4)

Therefore, we can now distinguish two cases.

(1) IfI'(x) = T or9/ox*, then y°I"(x) = I'(Px)y"; there-
fore, [ d*xip(x)I'(x)y(x) is invariant after changing
x — Px in the second and fourth terms in (4). This
shows that the action of free massive fermions,

Selwp) = [ dxp)irag - my (). (5

with 0 = d/0dx*, is invariant under U(1)p trans-
formations.

() If T(x)=7"A,(x), then y°I'(x)=y*P:A,(x)y".
Therefore after integration d*x on both sides of
(4) and changing x — Px in the second and fourth
terms, we get the following:

[ i a, owa)

[ st eos(aya, (o +sinaaf ()w()

+isin(a) cos(a)y (x)y* (A, (x)—AF (x))yw (Px)].

(6)

where we defined Af(x) = PJA,(Px) = PA,(x)P".
Equation (6) shows how a possible gauge interaction term
in the action, namely S;(y.,w,A)= g [d*xp(x)y* x
A, (x)y(x), transforms. As it is clear from (6), for generic
values of a, S;(wUr, Y%, A)#S,(y,,A), because in
general AL (x) # A,(x), and a U(1)p transformation mixes
both these fields. Therefore, the interaction term breaks
U(1)p. However, if we restrict to particular values of a, we
can obtain the invariance of S;. In particular, we recognize
two cases:

(i) a=rkwithk=0,1,2,... = U(1)p reduces to the
group Z, Cc U(1)p and of course Sp+S; is Z,
invariant.

(i) a=rk+ (x/2) with k=0,1,2,... = In this
case if we perform also a parity transformation of
the gauge field A,(x) - Af(x), we can obtain
the invariance of the interaction term, namely
S;(wY, wV AP) = S;(y, i, A). In fact, as it is clear
from Eq. (1), U(1)p transformations reduce to parity
xiZ, € U(1)p transformations, where for parity
xiZ, we mean for example the transformation
w(x) = zi(Py(x)P"), with z € Z,.
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Otherwise, a sufficient condition for the U(1)p invari-
ance of S;(y,,A) can be obtained restricting ourself to
gauge configurations such that

Au(x)

= Ap(x) and A;(Px) =

= A, (%), (7)

which means Ay(Px) —A;(Px).

III. TOWARDS A NEW CHIRAL-SPIN GROUP

Beside U(1)p, the other ingredient that we need for
constructing our new chiral-spin group is to derive the
U(1), transformations for the field given in (2). U(1),
transformations are defined on y as w(x) — w(x)Vs =
exp(—iay’ )y (x). Thus,

x)Va
o, wi= (V0
= < e o (x)
ey ()
®)

The generator of U(1), for the field ¥ is therefore
—1 ® y°, which is traceless and Hermitian.

A. New chiral-spin group definition

Taking now the generators of the groups U(1), and
U(1)p, we rename them as X7 =¢° ® y* and X} =
—1 ® y°, and we define the third matrix £} =iZls] =
6 ® iy’y?. Now the set of 7’s,

=@ @i, -1, 9)

which are all traceless and Hermitian, verify the property:
(=7, 2]] = 2ie;3Z. Hence, they are generators of an
su(2) algebra. We call the Lie group generated by the
2Ps as SU(2)Fg. The SU(2)% group transformations on

the field ¥ in (1) are given by

SU(2)7CJS P(x) - ‘P(x)

o
UCST’

s7” = U‘Z‘SPT< )

o el(lnzn c SU(2)CS’ (10)

from which for the proper choice of the global vector
a = (a,a,a3), we can get the group transformations of
U(1)p and U(1), in (3) and (8), respectively. This means
that U(1)p, U(1), € SU(2)7. From the transformations
(10) we can get how y (and consequently @ = y'y°)
transforms, just inverting the definition of y_. in terms of .

Let us see now how to do it. First of all we recall an
important feature which will also be useful later on. As it is
well known, every element of a SU(2) group can be written

> = @197 )P ().,

as product of three U(1) matrices, which are subgroups of
SU(2). More precisely, if Uf.» € SU(2)7, then
Ull

. (x) = exp(if} )W (x),

(11)
where f,, p,, 3 are the three Euler angles. Using the

generators in (9) and Eq. (2), the previous equation can be
used to get the SU(2)% transformations for y, namely,

2?) eXP(iﬂzng) exp(ifs

lexp(=ifar°) (cos(Bs)w (x)

B3)rw (Px))]

B1)y° [exp(=ifay°) (cos(f3 )y (Px)
B3)r’y (x))], (12)

which is what we wanted to get.

A particular case is when in (10), we set (a;, @y, a3) =
(0, @, 0). In this situation, we obtain another U(1) subgroup
of SU(2)Fg, which we call U(1)p, and its generator is
therefore =7’ = 6 ® iy°y?. Now a U(1)p, transformation
of y can be written exploiting the definition of ¥ in (2) and
consequently obtaining that

~—

w(x) e = cos(p,
+1sin

+1sin

i

+isin

U(D)pr:w(x) = y(x)Vis
— TPy (x) + ey (x)
— cos(a)y (x) + isin(a) (/) (Px).,  (13)

which also corresponds to set the FEuler angles
(B1, P2, P3) = (n/4,a,—x/4) in Eq. (12). As we can see
it is similar to the U(1)p, transformations defined in
Ref. [8] for the Euclidean case.

We conclude saying that the group SU(2)7 as defined
by Eq. (7) differently from SU(2) g in Ref. [7], looks like a
rotation in the space of the parity partners y, (x) and w_(x)
(which is similar, but not the same, to what we did in
Ref. [9] for baryon parity doublets).

B. Consequences on the fermionic action

From how SU(2)% is defined in Eq. (10), we can obtain
some consequences on the invariance of the fermionic
action, in particular

(1) Sp(yw, ) at m = 0 is SU(2)F invariant;

(2) The mass term of Sy (y, ) breaks explicitly U(1)p,
and moreover a gauge interaction in the action is not
U(1)p, invariant; and

(3) A gauge interaction breaks SU(2)%. However, if we
restrict to gauge fields satisfying the relation given in
(7), then S;(y, ¥, A) is SU(2)E invariant.

The proof of such statements follows by the fact that

using the Euler decomposition that we have seen in (11)
and (12) any SU(2)F transformation can be written as a
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product of transformations belonging to U(1)p and U(1),.
Therefore, every action which is invariant under U(1)p and
U(1), will be also invariant under SU(2)%s. If one or both
of these two symmetries decays then the action is not
invariant anymore under SU(2)Z,. This is valid in particu-
lar for U(1)p, since the generator X is the commutator of
=7 and =¥, A direct proof of the second statement is also
given in Appendix B.

IV. CHIRAL SPIN AND HAMILTONIAN

Another study which we want to add is the invariance of
the free fermion Hamiltonian with respect to U(1)p and
SU(2)% (for the massless case) and derive the U(1), and
SU (2)755 transformations for creation and annihilation
operators for fermions and antifermions. Once we do this,
we will briefly discuss the case where a gauge interaction is
switched on.

Before we start, we point out here that in this whole
Sec. IV, we assume that the spinor field y describing free
(and eventually massless m = 0) fermions (or antifer-
mions) is solution of the Dirac equation in the free case,
which is [10]

/ 271. 3/2

where u,(p) and v,(p) are reported in Eq. (A2), and ¢, (p),
d.(p)" are the annihilation and creation operators for
particles and antiparticles, respectively.

This is the particular situation where the free fermion
action Sg(w,y), calculated on such spinor field (14),
reaches its minimum value, which is zero. From such
spinor field (14) we attempt to apply U(1), and SU(2)7g
transformations, defined in the previous section in case of a
totally generic spinor, in order to check the invariance of the
free fermion Hamiltonian.

This Hamiltonian, calculated using the spinor field in
(14), is given by [10]

(p)u,(p)e™* +d,(p)’

(14)

=3 [ @Bl o) elp) + d ) d o). (15
=0

which is invariant under parity, ie., PH,P" = H,.
This means that calling ¢f(p) = Pc,(p)P" and df (p)" =
Pd,(p)TP?, we have that

1 1
Hy =~Hy + = PH,P'
0775 0+2 0

=33 [ EpBICHN )+ D) D). (16)
r=0

v,(p)e™],

where we defined the following parity partners operators:

Cr(p)
<t (p)

The expressions for ¢, (p) and d,(p)' can be obtained by
the Fourier transform of y(x) [see (A3)], while ¢ (p) and
d? (p)' are obtained from the fact that Py (x)P" = y% (Px)
and given in (A4).

cr<p>=( ) Do) =(d,(p) A (p)). (17)

A. U(1)p and Hamiltonian

In order to check if H is U(1)p invariant, we need to
find how ¢, (p), d,(p)', cf(p), and d¥ (p)" transform. For
this purpose, we just need to use (A3) and (A4) together
with the fact that u,(p) and v,(p) given in (A2) transform
under parity as

VOMr(P> = Mr(_p)7

Here, we give the results:

yovr(p) = _Ur(_p>‘ (18)

¢, (p)V = cos(a)c,(p) +isin(a)ct (p),

cP(p)Ur = cos(a)cl (p) + isin(a)c,(p),
(d,(p)")V* = cos(a)d,(p)' + isin(a)d’ (p)T,
(d?(p)")VF = cos(a)d” (p)' +isin(a)d,(p)',  (19)

where we have just replaced y — wUF in (A3) and (A4);
see Appendix C for the detailed calculation. The result of
Eq. (19) can be rewritten using the definition in (17) as

¢, (p)Ur L
o) = Cp)"% = ;Z’,))Ug) — ¢, (p),
D,p)" = (D)) = (4, ()% (d(p)")% ),
—D <p) iac! (20)

where ¢! is the first Pauli matrix acting on the two-

dimensional space defined in Eq. (17). As it is clear
from (16), H is invariant under U(1)p transformations
of Eq. (20).

This result is actually pretty obvious in the free case, if
you consider that H, commutes with P. Take, for example,
a state of a particle |p) = c,(p)"|0) that has energy
E, = (p|Hy|p). The U(1)p invariance of H, tells us that
the state |p) is energetically equivalent to the state |p) =
(c,(p)"#)'10) = (cos(a)c,(p) —isin(a)c; (p)")|0), where
we used the second of Eq. (19). We rewrite it as |p) =
cos(a)|p) —isin(a)| —p). because c7 (p)*|0)=Pc, (p)']0) =
P|p)=|—p). Hence, we have (p|H|p) =cos(a)*(p|H,|p)+
isin(a)cos(a){=p|Holp ) — isin(a)cos (a) (p | Ho |-p) +
sin(a)*(~p|Ho| -p). However, (=p|Ho|-p)=
(p|PHoP'p)=(p|Holp)=E,, because [H,,P]=0, and
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for the same reason (—p|Hy|p) = (p|Hy| — p). Therefore,
(p|Ho|p) = (p|Holp) = E,, for whatever value of p.

Hence, the two states have the same energy.

B. SU(2)F, and Hamiltonian

We prove now that the Hamiltonian H, is also invariant
under SU(2)% transformations for m = 0. In order to see
this point, we give how c,(p), cf(p), d,(p)?, df(p)"
transform. At first we express these operators in terms
of ¥ instead of y, as we write explicitly in Eq. (D4).
Secondly, we use that for m = 0, the vectors u, and v,
satisfy the properties y’u.(p) = (6-p/|p|)u.(p) and
r’v.(p) = (6-p/|p|)v.(p). This reflects the fact that in
the massless case y° coincides with the helicity operator
6 -p/|p|. For convenience we choose y, and consequently
X, defined by Eq. (A2) in the solution of the Dirac
equation, such that they are eigenstates of the helicity

operator, i.e., (6 -p/|p|)yo = xo and (6 -p/lp|)y1 = —x1.
This means that for m = 0 we have

J/jur(l’) = hrur(p>7 str(p) - hr+1”r(p)’ (21)

with h, = (—=1)”, helicity of the particle.
Using these two considerations, and writing a generic
SU(2)Fg element extensively as

U%» = cos(a) + isin(a)[e; X + e,Z) + 327, (22)

where (a), @y, a3) = a(e;, e, e3), with 3 €7 =1, we
get that ¢,(p) and cf(p) transform as

¢,(p)"e” = cos(a)e, (p)
+isin(a)[e;cf (p) + esihct (p) — esh.c.(p)],

e/ (p)"o" = cos(a)c’ (p)
+isin(a)[e;c,(p) — esih,c,(p) + esh.cE(p)].
(23)

Full details regarding the derivation of (23) are given in
Appendix D.

Equation (23) can be written in a compact way using the
notation in (17) as

W0C,(p),  (24)

P

n(c

Hermitian,

2i€iijZc)
SU(2)% for the transformations of C,(p) in the massless

case. Notice that (24) are basically rotations in the space of

where X ):{01,—62h,,—03h,}, are all traceless,

) P P ] _
and with the property [Ei(c)’zj(c)] o

. Therefore, we have found a representation of

the parity partners: c,(p) and cf(p), which takes into
account the helicity of our particles.

The same can be done for d,(p)" and df(p)’ and we
obtain the following result:

(d,(p)") ™ = cos(a)d, (p)" +isin(a)[e,d? (p)’
+ esih, 1 df (p)" = esh,p1d,(p)'],
(P (p)") e = cos(a)dl (p)" + isin(a)e,d,(p)’

— ezihr+1dr(p)+ + e3hr+1df(P>T]’ (25)

where we used the same procedure as before. Again, details
of these calculations are reported in Appendix D.
Equation (25) can be given in a compact way as

D,(p)" = (Dp)") e = ((d,(p)") e (a2 (p)) o)

= D,(p)i(¢“" )", (26)

where Zzl’( 0= {6',—6%h,,|,—06>h, }, are again all trace-

less, Hermitian, and with the property [217? d),ZZ.D( d)] =
2ie,-ijf( ) Equation (26) expresses the representation of

SU(2)F transformations for D,(p) and it is a rotation of
the parity partners: d,(p)" and df (p)', where we take into
account the helicity for antiparticles.

As we can observe, the Hamiltonian in (16) is of course
invariant under transformations of C,(p) and D,(p)" given
in (24) and (26). This concludes our proof that Hy at m = 0
is SU(2)F invariant.

It remains to see what happens when m # 0 and in the
presence of a gauge interaction. For m # 0, we already
know that H is not invariant under U(1), and therefore is
not invariant under SU(2)7s, since U(1), € SU(2)%. The
case of a gauge interaction just makes fall the relation (18),
valid in the free case. This means that the relations (24) and
(26) do not represent anymore SU(2)Fg transformations.
Hence, in this situation we do not expect to have this
symmetry, even because, as we have already seen in the
previous section, the gauge interaction breaks the invari-
ance also in the action, because U(1)p is broken explicitly.

V. MASS DEGENERATION AND SYMMETRY

Now we consider the case of QCD, where the fermion
fields y that we have discussed so far are interpreted as
quark fields.

The SU(2)-g group transformations, as have been
described in [5-7,11,12], can be defined in Minkowskian
spacetime as

SUQ2)cs:y(x) = y(x)Ves = Uggp(x),

U%g = e € SU(2)cs,  (27)

114512-5
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where %, = {y°,iy’y°, —=°}, and we have just substituted
y* = y° from Euclidean to Minkowskian spacetime. We
can see from the above definition that we have two
important subgroups just tuning the a,s. One is U(1),
[which is also a subgroup of SU(2)7] and the other is the
U(1) group generated by 7%, from which the group trans-
formation is obtained by choosing (a;, @y, a3) = (a,0,0)
in (27). Hence, we get

U(1)g:w(x) = w(x)V s
= "y (x) = cos(a)y(x) + isin(a)%y(x). (28)

Now, using the Euler decomposition, whatever element
of SU(2)-s can be obtained by the product of three
matrices belonging to U(1), and U(1),. Therefore, the
real difference between SU(2)s and SU(2)7; lies in their
different subgroups: U(1),, given in (1), and U(1)p, given
in (5), respectively. However, while U(1)p is a symmetry of
the free fermion action Sy in (5), U(1), is broken explicitly.
This is why SU(2).g is not a symmetry of free massless
quarks. Now we want to show how SU(2)7s is related to
SU(2)¢ and its consequence on hadron correlators and
mass degeneration. At first we take the case when ¥(x) is
evaluated at the point x¥) = (x,0). In this situation, by
definition y (x() = y(x) and y_(x) = 0. Therefore,
the transformation (10) becomes

SU(2)7CDS P(x)) - P(xl ))U;SP

(29)

Now naming z//(x(”)UZsP =y, (x(f))UZs
rewritten also as

7, Eq. (29) can be

=y (x0) e = ey (x0). (30)

It coincides with Eq. (27), which means that
yw(x)Ves = y(x)Ye? . Hence, SU(2)P and SU(2)¢s
are indistinguishable when they act on the spinor y(x ()).

This has an important consequence, as we start to describe
now. Take a hadron observable Oy (x) made by N, quarks

and N, antiquarks, i.e.,

SU(2)¢s:y(x")

where H is a tensor specifying the quantum numbers of the
hadron H, and the indices {i},zl’__Nq and {j}k:L“_Nq
enclose Dirac, flavor, and eventually color indices. We
now choose to transform it with SU(2).¢ and for some

choice of the parameters «a,,s in (27) we get another hadron
observable, i.e.,

N, N,
OH’(X) = ll ..... ANy 1y, Hl// H , (32

k=1

which is the observable for the hadron H'. Oy(x) and
Oy (x) are connected via SU(2)¢ if for some a we

have OH’(x>:0H<x)U%SEHi1 ..... ing iRy Hz w(x )UCSX

N, _ .
[Ty, ().
w(x)Ves = y(x0)Ye?, then Oy(x)"es”, which is the
SU(2)F, transformation of Op(x) with the same set

Now, since for x=x) we have

of parameters a,s, has the property O (x(0)Ves =
= OH()C(’))UZ‘SP.
Therefore, even if OH(x)UZSP could be not associated with
an hadron for a generic x, however at x = x<‘), it coincides
with the hadron operator O (x(*)). At this point, suppose we
consider these two hadron correlators and their expansion in
the energy eigenstates using the translational invariance
Oy (x1) = exp(=iHx) Oy (0) exp(iHx,); we have

OH(x(”)UZ‘SP and consequently O (x()

(0[0k (") 0y (x")7|0) = ZI (0104 (0)[n) P57,

(0[O () Oy (x)F]0) = Z]wm YPeTiBT,
(33)

where y(’> = (90,0), 7 = yy— x9, while my = E; and

myy = Ej, are the masses associated with the hadrons H
and H', respectively. Now, if SU(2). is a symmetry of
the theory (which seems to be in truncated studies [5—7])
then (0|0 (y")s (0 (x)Ye)T|0) = (0]0k (y")) x
Oy (x)7|0) and therefore, since we have chosen the
SU(2)¢s transformations such that Oy (x)Ves = Oy (x),
then we have my = my, from (33). This means that a
degeneration of masses appears. Let us see the opposite, i.e.,
we find a degeneration my = my coming from
(0101 ()04 (x0)710) = (0104 (y) 04 (x)7]0).  In
that case at x=x( (and also y=y), we have
0y (x)Yes” = 0y, (x)Ves, which means from the corre-
lator side that

<0| On (y(t))OH’ (x(l))T |0>
= (0|04 (1) Ves (04 (x11)Ves)*|0)
= (004 (y) e (0 () esm) T 0)
= (0104 (y) O (x1)7]0). (34)

This implies that SU(2)% symmetry can also explain the
same mass degeneration. Therefore, looking just at the
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mass degeneration my = my does not tell us if the
symmetry is SU(2) g of the truncated studies [1-7,11,12],
where at first the mass degeneration has been observed, or
SU(2)% of this paper.

However, because SU(2)7 is a symmetry of free quarks
(in the massless case), its possible presence does not go
in contrast with the deconfinement regime at high-
temperature QCD, since in Sec. Il we have shown that
it is a symmetry of the action as well the Hamiltonian of
free fermions (let say quarks) in the massless case. On the
contrary, SU(2)¢ is not a symmetry of Sp at m =0
because U(1), is explicitly broken (see Refs. [11,12]).
Therefore, we expect SU(2)7 to be visible at temperature
T — oo, where quarks will behave as quasifree particles.
Hence, while SU(2).¢ is just present in the range
T.<T<3T, [1-4], SU(2)7C’S could be visible (at least
approximately) also at 7 > 37T . and describe the large mass
degeneracy which was previously explained by SU(2) 4 in
the truncated studies [5—7,11,12]. Therefore, a study on the
lattice on this point is strongly suggested.

Now, lattice calculations, as we know, are generally
performed at zero chemical potential (due to technical
difficulties). However, if we suppose to switch on an
eventual chemical potential term in the action, this would
not spoil SU(2)%. In fact, the SU(2)% transformations
leave also invariant the chemical potential part of the action
(as also SU(2)qg does, see Refs. [11,13]), which is
Sy (w.w) = u [ d*xy(x)'y(x). The demonstration starts
rewriting it - as  Sq,)(w. @) = p [ d*x(y o (x) T, (x) +
()W (x)), since w(x) =y, (x)+y_(x). This
because the mixing terms give zero under the integration,
indeed [ d*xyo(x)Ty=(x) = [dxyps(Px) ws(Px) =
— [d*xpi(x) Ty (x) =0, where firstly we used the
change of variable x — Px and |det(P)| = 1 and secondly
thaty . (Px) = +w.(x) by deﬁnition Therefore, using (2),
then we have S, (w.7) =u [ d4x‘P )"¥(x). Consequently

from Eq. (10), we get S(ﬂ)(z// e ples) = u [ d*x x
(P() o)) " = [ () W) = S (. ).
Hence, the invariance of S, (w.%) under SU(2)Zg is
proven. Consequently, if there is a regime at high temper-
ature where SU(2)Fg is a symmetry of QCD, then a

possible nonzero chemical potential does not break such
symmetry.

VI. SUMMARY

In Ref. [8], we have seen how SU(2)% can be a candidate
for describing the large degeneracy found on lattice calcu-
lations [5-7], and eventually at high-temperature QCD
studies [1-4]. Here, we have defined such group in
Minkowski space and proved that the fermionic action of
free massless fermions is left invariant under such group and
a chemical potential term is also SU(2)F invariant.

In the case of a gauge interaction, SU(2)7; is explicitly
broken except for some special cases [8]. Therefore, a more
profound investigation on this is needed. We have also seen
that the Hamiltonian of free fermions is SU(2)7 invariant
and given how the creation and annihilation operators of
fermions and antifermions, when organized in parity
partners [in the sense of Eq. (17)], would transform in
this case; see Egs. (24) and (26).

Moreover, from the Minkowskian perspective as we
have done in Euclidean [8], we have seen that a mass
degeneration given by a possible presence of the chiral-
spin group SU(2)¢ symmetry can be either explained by
our chiral-spin group SU(2)7,. However, since SU(2)7y is
a symmetry of free fermions, then it is compatible with the
presence of the deconfinement regime in QCD. Therefore,
it could be visible (at least effectively) at high-temperature
QCD, ie., T > T, (as, e.g., U(1), in Refs. [14-16]), but
this is still something to be checked on lattice calculations.

As we have shown in this paper, SU(2)s and SU(2)%
have both U(1), as subgroup; nevertheless, they differ
from each other by the subgroup generated by 7Y, i..,
U(1), € SU(2)cs [see Eq. (28)], and U(1)p C SU(2)%
[see Eq. (1)]. Now, U(1), has been already studied on the
lattice, and the suppression of its breaking for extremely
high temperature is pretty evident by many lattice studies
[14-16]. Therefore, in order to check the presence of
SU(2)Fg in QCD at high 7, it is sufficient to verify the
presence of U(1)p [defined by Eq. (1)] in lattice QCD at
high temperature, which still has not been done yet.

APPENDIX A: KNOWN FORMULAS

In this paper we have used the Dirac representation for
the gamma matrices, namely

170 0 01
0_ , k _ , 5 , Al
G (YR S A (O

where z¢ for k = 1, 2, 3 are the Pauli matrices. Using
such representation the solution of the Dirac equation
(iy#o, —m)y(x) =0, given in (14), contains the 4-
component vectors u,.(p) and v,.(p), which have the
following structure [10]:

E +m Xr
— 14
“(P) 2E, (ngm)(”)’
E +m E, +m)(/
2E, ’

Xr
where E, = /|p|* + m?, with y, = y,¢ [Where r @ 1 =
(r+ 1) mod 2], while y, and y, are two two-dimensional

Ur(p)

(A2)

orthogonal vectors, i.e., )(I)(,J = )('f)(’r, =0,,. Consequently,
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the normalization is u,(p)"u,. (p) = v.(p) v, (p) = 8,,, for
whatever p.

Other interesting features come from the coefficients
¢,(p) and d,(p)" in (14), namely the annihilation and
creation operators of particles and antiparticles, respec-
tively. They can be obtained by the Fourier transform

Px ipx
o) = [ G )y

L) = [ G e (43)

(27)

Moreover from the parity transformation Py (x)P" =
yYw(Px) and the relations (18), we can express cf(p) =

Pc,(p)P" and d (p)" = Pd,(p)"P" as |

to) = [ %ux—pﬁw(weip(m,

2w

20)' = [ G () e

27)3/2 (a4)
where we used that y° = (%), changed the variable
x — Px, used that P = diag(1,-1,-1,-1) = P!, and
that the Jacobian | det(P)|*> = 1.

APPENDIX B: U(1)p, BREAKING

In this appendix we want to prove that the gauge
interaction and also the mass term in the action break
explicitly U(1)p,, subgroup of SU(2)%. The expression of
U(1)p, transformations for a fermion field y is given in
Eq. (13), from which the transformation for 7 is j(x)Yps =

(w(x)%4) "y = cos(a)i(x) + i sin(a)i(Px)ir’y".

Let us start with the gauge interaction term of the action S;(y,w,A) = g [ d*xp(x)r*A, (x)y(x), ie.,

Sy (Ve Ui, A) g = / g (x) Vg A, () () P

—cosa)? [ dbi (), (0w (x) + isin(a) cos(a) [ @ s Gry A, xw (P

+ isin(a) cos(a) / d*xp (Px) (ir°y°)r* A, (x)w (x)

— sin(a)? / g (Px)(ir ) (1) A, (x)y ()

— cos(a)? / A0, () + isin(a) cos(a) [ () ir*7"), (w (P)

—isin(a) Cos(a)/d4xl/7(x)77’,fy”(iy5y0)Aﬂ(Px)l//(Px)—|—sin(a)2/d“xl/?(x)y”P’,fA”(Px)w(x)

— [ @tatp o) (cos(aa, x) + sin(a?AL (0)w(e)

+ isin(a) cos(a)ip (x)r" (A, (x) — A7 (x)) (ir°r° )y (Px)].

where we used that (iy>y°)y*(iy’y?) = —y*P) and we have
changed the variable x — Px for the last two terms after the
third equality, and used that the Jacobian |det(P)| = 1.
Equation (B1) tells us that for a generic value of a,
S(wUrsipVea,A) #S;(p. . A) because in general A7 (x)=
PyA,(x) # A,(x) and therefore S; is not U(1)p, invariant.
Equation (B1) is similar to Eq. (6) for U(1)p; hence, the
two consequences below that equation become similar for
U(1)p, in the sense that we can reobtain the invariance of
S; only for particular values of a. In particular, we
recognize two cases:
(i) a=rk with k=0,1,2,... = U(1)p, reduces to
the group Z, C U(1)p, [see Eq. (13)] and of course
Sr+ S; is Z, invariant.

(B1)

|
(i) a=nk+ (=/2) with k =0,1,2,... = In this case
if we perform also a parity transformation of the
gauge field A,(x) - A/ (x), we can obtain the
invariance of the interaction term, namely
S;(wYea, Vs, AP) = S, (y, 7, A). In fact, as it is
clear from Eq. (13), U(1)p, group transfor-
mations reduce to parity xy°Z, € U(1)p, trans-
formations, where for parity xy°Z, we mean
the transformation: (x) — zy°(Pw(x)P"), with
7€ 2Z,.

Otherwise a sufficient condition for the U(1)p,
invariance of S;(w,w,A), can be obtained restricting
ourself to gauge configurations satisfying the condition
in Eq. (7).
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Regarding the mass term m [ d*xi(x)y(x), we have

[ it it = cos(@? [ dnpa(n) + isin(acos(a) [ i x) 7w (P)
+isina) cos(a) [ dap(P)ir*s () =sin(a)? [ i (Pa) ') ir* ()
—cos(2a) [ i) + isin(2a) [ dix(P)(ir's ()
# [ dxitop), (B2)

which is therefore not invariant under U(1)p, transformations. The mass term breaks U(1)p,

APPENDIX C: EXPLICIT CALCULATION OF EQ. (19)

Let us start proving the first of Eq. (19), considering the expression (1) for the U(1)p transformations and the expression
of ¢,(p) in (A3). Therefore, we have

)" = [ o) i) e

30 3

—cos@)| [ ) wer| +isin)| [ o) (P
3y

= cos(a)c,(p) +isin(a) {/ (262)3/2 (Yu,(p)) w(x)e’” Px)]

= cos(a)c,(p) + isin(a)cf (p), (C1)

where we have changed the variable x — Px and used that | det(P)| = 1. We have also used the expression of ¢ (p) in (A4)
and Eq. (18).
For ¢f(p) we have

L) = [ () e

3 3y .
— cos@] [ ezl e +isinga)| | SEL (e

_ cos(a)c(p) - isin(a { S/Zyu,<—p>> <>eipx]

= cos(a)ck (p) + isin(a (C2)
where we used the same procedure as before. Regarding d,(p)" we obtain
@)% = [ 25 o)y x) e
d3.x + —ipx . . d3 —ipx
= c05(@)| [ (i o) w0 | +isine)| [ oo ) P (P
d*x

= cos(a)d,(p)" +isin(a)df (p)", (C3)
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and similar for df (p)* we have

3y o
(df(p)T)Ug :/(;jrw(—U,(—p))T[//(x)Upe“P(PX)

—os@)| [ s (o) e ™| —isinta)| [ 25 o) (P

27)

Px

= cos(a)df (p)" —isin(a) {/ W
= cos(a)d” (p)" + isin(a)d, (p)",

where we have changed the variable x — Px and used that
| det(P)| = 1. We have also used the expressions of d,(p)"
and df (p)" in (A3) and (A4), respectively, and Eq. (18).

APPENDIX D: EXPLICIT CALCULATION
OF EQS. (23) AND (25)

In order to prove Egs. (23) and (25), we introduce two

fields,
ur(P)>’ V.(p) = (vrép)) (d1)

)= ("}

which are defined in the parity partners space, as ¥(x) in
(2). Hence, we have that u,(p)"w(x)=U,(p)"[(1+0") ®
1¥(x) and v,.(p)"w(x) =V,(p)"[(1+6") @ 1]¥(x), where
1 acts in the Dirac space, ¥(x) is given in (2), and (1 + o!)
acts on the two-dimensional space of parity partners.

The properties of u,(p) and v,(p) [see Eq. (A2)], given
in Egs. (18) and (21), valid for m = 0, can be translated for
U,(p) and V,(p) as well, and we obtain

(1®7)U.(p) = U.(-p),
(1®7)V,(p) ==V, (-p).
(1®7)U,(p) = h.U,(p),
(1® )V, (p) = he V., (p),

where third and fourth equations are valid for m =0,
where > coincides with the helicity operator 6 - p/|p|. This

(D2)

—ip(Px)

20 ) e

(C4)

implies that for opposite values —p, third and fourth
equations of (D2) become

(ﬂ ® YS)Ur(_p) - _hrUr(_p>,

(ﬂ ® ys)Vr(_p) = _hrGBlVr(_p)' (D3)

(1+6") ®1],
and df(p)" of

Using such notation and defining I' =

we can rewrite ¢.(p), cf(p), d.(p)T,
Egs. (A3) and (A4) as

3

o) = [ fwvrwwmw,
d*x

¢/ (p) :/WUr(—P
d*x

_/(2 )3/2 Ur(_p

d.(p)" = / (2d)z/zV (p) T (x)er",

d*x
a7 (p)" = /W(—

dx
= /W(—Vr(—lf

where in ¢f(p) and df (p)?, we have changed the variable
x — Px and used that the Jacobian is | det(P)| = 1. At this
point the SU(2)7 transformations are given by

)T (x)elP(PY)

) TW(Px)etrr,

V,(=p)) T¥(x)e PP

))ITW(Px)eiPx, (D4)

o) = [ o U ) T e

3 d*x )
— cos(a)e,p) + isin@) D e, / G Vo) T (e

£p)r = [ -

3y
= cos(a)ck(p) + isin(a Z / d3/2

p)TW(x) 5 (P9

TFZP\P( Je ip(Px)
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dx

@@ = [

o 3x
@) = [ S v

Cs” = U*

where we used that ¥(x) pa

¥(x) and Ug ¢ i

definition (6° ® 1)¥(x) =

= cos(a)d,(p)" +isin(a) Z / 3/2

= cos(a)d? (p)" + isin(a Z /(271 3/2 V. (=p)) TZP¥ (x) e P(PY),

V,(p) T (x) 7 e

) TZPW(x)e 1P,

) T (x)"cs” ¢ ip(Po)

(D5)

is given in Eq. (22) From ¢ (p) and cf (p) it is evident that we need to
know the terms U,(+p)"[(1 + ') ® 1]Z¥(x), where =F =

{6*® 7%, 6 ®ir’y’, -1 ® y°}. At first we notice that by

¥(Px) and then from Egs. (D2) and (D3), we get

U,(2p) TEP¥(x) = (1 ® 1)U, (+p))'T(e* ® 1)¥(x) = U, (F p)' T¥(Px).
U (p) TEPY(x) = (1 ® ir*/")U,(£p)) T(* ® 1)¥(x) = £ih, U,(F p) T¥(Px),
U,(2p) TEPE(x) = (-1 @ 1)U, (£p)) TW(x) =F h,U,(£p) T¥(x). (D6)

where we have decomposed ¢° @ I; = (1 ® [;)(¢® ® 1), with [; = {y°,iy°y°} and used that [1 ® [;,T] =0 fori =1, 2.
Now we can plug (D6) in Eq. (D5), having in mind (D4), and finally we obtain the right sides of Eq. (23).

Regarding the terms V,(p)'[(1 + ¢') ® 1]¥(x)"es” for d,(p)" and d”(p)’, they can be rewritten using Egs. (D2)

and (D3) as
V. (£p) TEVY(x) =
V,(£p) TEDY(x) = (1 @ ir’y°)V.(£p)) T(0> @ 1)¥(x) =F
Vo (£p) TZP¥(x) = (=1 ® 1)V, (+p)) T¥(x)

(1 ®7°)V,(£p))'T(c’ @ 1)¥(x) = =V, (F p) T¥(Px),

ihreal Vr(q: p)TFlP(Px>’

=F hyg V,(£p) TW(x), (D7)

where we used the same procedure as in Eq. (D6). Now we plug (D7) in Eq. (D5) and keeping in mind the expression (D4),
we obtain the right sides of Eq. (25). This ends our calculation.
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