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The two-dimensional Schwinger model is used to explore how lattice fermion operators perceive the
global topological charge q ∈ Z of a given background gauge field. We focus on Karsten-Wilczek and
Borici-Creutz fermions, which are minimally doubled, and compare them to Wilson, Brillouin, naive,
staggered and Adams fermions. For each operator the eigenvalue spectrum in a background with q ≠ 0 is
determined along with the chiralities of the eigenmodes, and the spectral flow of the pertinent Hermitian
operator is worked out. We find that Karsten-Wilczek and Borici-Creutz fermions perceive the global
topological charge q in the same way as staggered and naive fermions do.
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I. INTRODUCTION

How does a given Dirac fermion operator D perceive
topology? In lattice gauge theory, this question has been
asked persistently over several decades. The answers would
be phrased in the language of three “iconic plots”: (i) the
chiralities hψ jγ5jψi where ψ is an eigenmode of the Dirac
operator, (ii) the crossings of the eigenvalues of the
Hermitian counterpart operator, and (iii) the fermionic
topological charge q ≃m trðD−1

m γ5Þ versus m.
In this paper we aim to produce such plots for Karsten-

Wilczek [1,2] and Borici-Creutz [3,4] fermions. These
discretization schemes are in the class of minimally
doubled lattice fermion actions, i.e., they yield two species
in the continuum limit (precisely the minimum required by
the Nielsen-Ninomiya theorem [5–7]) and yet maintain an
exact chiral symmetry. Some elementary properties of these
formulations like the spectral range and the free field
dispersion relations were worked out in Ref. [8]. A slight
disadvantage in practical terms is that the remnant chiral
symmetry is tasted; this has been discussed in detail in
Refs. [9–16].
The compliance of minimally doubled fermions with the

Atiyah-Singer index theorem has been discussed in
Refs. [17–19]. In our view the topological properties of
KW and BC fermions are most transparent if presented

alongside “known properties” of more mundane formula-
tions (Wilson, Brillouin, naive, staggered and Adams
fermions). In consequence, both the implementation effort
and the amount of material to be presented proliferate, and
this is why the scope of this paper is limited to two
spacetime dimensions (“2D”). We are optimistic that we
will follow up with a paper focusing on the situation in four
spacetime dimensions (“4D”).
We use the quenched Schwinger [20,21] model as a test

bed for our calculations, since the set of all Uð1Þ gauge
fields on a two-dimensional torus falls into classes
labeled by a topological index q ∈ Z [22], like in
QCD, and the theory can be simulated without topology
freezing [23–27]. In 2D fermion matrices tend to be
small, and their eigenvalues may be evaluated inexpen-
sively. We apply one step of stout smearing with ρ ¼ 0.25
[28] to the “thin link” gauge field U, and evaluate the
fermion operators on the resulting “fat link” gauge
background V. A preliminary account of this investiga-
tion has been given in Ref. [29].
The remainder of this article is organized as follows. The

situation for Wilson and Brillouin fermions is reviewed in
Sec. II. The details for staggered and Adams fermions are
worked out in Sec. III. The relation between the latter two
formulations is mirrored by the relation between the naive
action without and with an Adams-like taste-splitting term
Csym, as shown in Sec. IV. In Sec. V we discuss central-
branch fermions and their descendants. Armed with this
insight we are in a position to analyze the situation for KW
fermions in Sec. VI and for BC fermions in Sec. VII. The
lesson learned on species-lifting terms can be applied to
KWand BC fermions; in Sec. VIII we demonstrate that this

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 105, 114511 (2022)

2470-0010=2022=105(11)=114511(26) 114511-1 Published by the American Physical Society

https://orcid.org/0000-0001-5168-5669
https://orcid.org/0000-0002-2336-1541
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.114511&domain=pdf&date_stamp=2022-06-27
https://doi.org/10.1103/PhysRevD.105.114511
https://doi.org/10.1103/PhysRevD.105.114511
https://doi.org/10.1103/PhysRevD.105.114511
https://doi.org/10.1103/PhysRevD.105.114511
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


yields single-taste formulations with additive mass renorm-
alization. Finally, a summary is presented in Sec. IX. Our
notation and the Clifford algebra conventions are specified
in Appendix A. A side-by-side comparison of all fermionic
charge definitions motivated by our investigations is given
in Appendix B, and complemented with an analytic argu-
ment in Appendix C.

II. WILSON AND BRILLOUIN FERMIONS

The Wilson Dirac operator at vanishing bare mass is
defined as [30]

DWðx; yÞ ¼
X
μ

γμ∇μðx; yÞ −
ra
2

X
μ

△μðx; yÞ ð1Þ

and a glimpse at (9) reveals that it differs from the naive
Dirac operator by a Hermitian, positive semi-definite
term of mass dimension 5. Due to △

†
μ ¼ △μ and

½△μ; γ5� ¼ 0 the Wilson operator is γ5-Hermitian, i.e.,
γ5DWγ5 ¼ D†

W. An unpleasant feature is that the termP
μ △μðx; yÞ mixes1 on interacting gauge backgrounds

with the identity. Chiral symmetry is broken, and the bare
massm in the massive operatorDN þm is both additively
and multiplicatively renormalized [31]. In the free-field
limit the Wilson operator takes a diagonal form in
momentum space

DWðpÞ¼ i
X
μ

γμ
1

a
sinðapμÞþ

r
a

X
μ

f1−cosðapμÞg

¼ i
X
μ

γμp̄μþ
ra
2

X
μ

p̂2
μ with p̂μ¼

2

a
sin

�
apμ

2

�
; ð2Þ

which again highlights the anti-Hermitian and Hermitian
positive semi-definite nature of the two terms, respec-
tively. Specifically for r ¼ 1 the 2d=2 − 1 unphysical
species do not propagate into any one of the 2d on-axis
directions [31].
The eigenvalues λi ∈ C of DW on an interacting back-

ground with topological charge q ¼ 1 are shown in Fig. 1.
The result is not far from the free-field case2 and two
depleted areas separate the physical branch at ReðλÞ ≃ 0
from the two species at ReðλÞ ≃ 2 and the one at ReðλÞ ≃ 4.
The symmetry about the real axis reflects the pairing
property imposed by the γ5-Hermiticity [31]. Due to the
breaking of chiral symmetry the physical branch has a

nonzero renormalized mass [31], and adding a bare mass
term mδx;y to (1) shifts all eigenvalues by þm.
We calculate both the left eigenvector hψ ijDW ¼ hψ ijλi

and the right eigenvector DWjψ ii ¼ λijψ ii for any (joint)
eigenvalue λi, with i ¼ 1;…; 2d=2Nvol and Nvol ¼ N1 ·… ·
Nd the box volume in lattice units. Since DW is non-
normal3 hψ ij is not related to jψ ii by a dagger operation.
With the left and the right eigenvectors in hand, one finds
hψ ijγ5jψ ii for each i. The result is plotted as a “needle”
above the pertinent λi ∈ C in the right panel. Two needles
reach almost down to −1, indicating one species with
correct chirality in the physical branch and one in the
doubly lifted branch near ReðλÞ ≃ 4. And two needles reach
almost up to þ1, indicating two species with opposite
chirality in the singly-lifted branch near ReðλÞ ≃ 2.
It is customary to move on to the Hermitian Wilson

operator HW ¼ γ5ðDW þmÞ [33], and to plot its eigen-
value spectrum (which is in R) as a function of the bare
mass m, see Fig. 2. There is one downward crossing near
m ¼ 0, indicating the fermionic topological charge
qW ¼ þ1, in line4 with the topological charge being
q ¼ þ1. However, upon adopting a panoramic view, one
sees that there is no net crossing as m tends from −∞
to þ∞.
The Brillouin Dirac operator at zero bare mass is defined

as [34,35]

DBðx; yÞ ¼
X
μ

γμ∇iso
μ ðx; yÞ − ra

2
△briðx; yÞ; ð3Þ

where ∇iso
μ denotes a 2 × 3d−1-point discretization of the

covariant derivative, and △bri denotes a 3d-point discre-
tization of the gauged Laplacian. It is conceptually a
Wilson-type5 fermion, albeit with reduced breaking of the
hypercubic symmetry.
The eigenvalues λi ∈ C of DB at m ¼ 0 on the same

background configuration are shown in Fig. 3. The main
difference to the Wilson eigenvalue spectrum is that all
doublers are located near ReðλÞ ≃ 2, the physical branch
near ReðλÞ ≃ 0 contains only one species. The additive
mass shift is comparable to the Wilson case, and the
symmetry about the real axis indicates that DB is γ5-
Hermitian. We compute the left eigenvector hψ ij and the
right eigenvector jψ ii for each eigenvalue λi, and plot the

1Another (we think more adequate) view is that the Laplacian
consists of two parts, a2△μ ¼ 2Cμ − 2I, with Cμ given in (A3)
and I the identity, and that Cμ (which depends on the gauge field)
transforms differently under taste rotations than I (present in △μ
and the mass term); see footnote 17 for details.

2In the free-field case the eigenvalue spectrum of DW fol-
lows from γμ (μ ¼ 1;…; d) having eigenvalues �1. The eigen-
values of DW are inside an ellipse that fits into the rectangle
½0; 2dr� × ½− ffiffiffi

d
p

;þ ffiffiffi
d

p � in d dimensions.

3An operator A is normal if ½A; A†� ¼ 0. In this case the row-
vector hψ ij is the daggered version of the column vector jψ ii. In
the event A is non-normal, there is no way of obtaining hψ ij from
a single jψ ji. Here, one needs to combine all column vectors jψ ji
into a matrix, invert it, and the ith row of the inverse is hψ ij. In the
literature the latter statement features as bi-orthogonality con-
dition hψ ijψ ji ¼ δij. See Ref. [32] for details.

4There is a difference in sign between d ¼ 2 and d ¼ 4, see the
discussion in Appendix B.

5The Brillouin fermion [34,35] shares this property with the
closely related hypercube fermion of Bietenholz et al. [36,37] and
the chirally improved fermion of Gattringer et al. [38,39].
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chirality hψ ijγ5jψ ii as a needle at position λi ∈ C. The
chirality of the would-be zero mode λ ≃ 0.06978 is almost
−1, while the two modes at 1.9972� 0.0012i and the one
mode at 1.9851 mix6 heavily.
The eigenvalue flow of the Hermitian Brillouin operator

HB ¼ γ5ðDB þmÞ is shown in Fig. 4. There is again one
eigenvalue crossing near m ¼ 0, indicating that the
Brillouin operator finds qB ¼ þ1, too. In the panoramic
view there is no net eigenvalue crossing, though this
property is not as easily seen as in the Wilson case.

III. STAGGERED AND ADAMS FERMIONS

The Susskind (“staggered”) Dirac operator at vanishing
bare mass is defined as [40]

DSðx; yÞ ¼
X
μ

ημðxÞ∇μðx; yÞ ð4Þ

with the Kawamoto-Smit phase factors ημðxÞ ¼
ð−1Þ

P
ν<μ

xν and ζμðxÞ ¼ ð−1Þ
P

ν>μ
xν [41]. These are used

to define the matrices Γμðx; yÞ, see (A8), which act like γμ
in spinor space, and the matrices Ξμðx; yÞ, see (A9), which
act like γμ in taste

7 space [9–12]. Unlike in the Wilson case,

FIG. 2. Spectral flow of the Wilson operator, i.e., eigenvalues of γ5ðDW þmÞ versusm. Relevant part nearm ¼ 0 (left) and panoramic
view (right).

FIG. 1. Eigenvalues of the Wilson operator on a background with q ¼ 1 (left), and “needle plot” of the γ5-chiralities in the pertinent
left-right-eigenvector sandwich (right).

6The diagonal elements in this 3 × 3 block of the chirality
matrix read 0.785,0.785,1.0, while the six off-diagonal elements
in this block are not close to zero. On the other hand, there is very
little mixing between these three modes and the physical mode
(out of the six extra off-diagonal elements present in the 4 × 4
matrix the two largest in magnitude are �0.00267).

7In the latter case the matrix γμ is often denoted by ξμ, to avoid
confusion. In such a situation γα ⊗ ξβ denotes a combined
transformation in spinor and taste space, see Refs. [9–12] and
Ref. [31].
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these matrices depend on the gauge field U; each Γμ or Ξμ

is a 1-hop operator.
In the following we use the matrix Γ5ðx; yÞ which

implements γ5 in spinor space (up to cutoff effects), and
there is a similar matrix Ξ5ðx; yÞ which implements ξ5 in
taste space (up to cutoff effects). The precise definitions are
given in Appendix A. Sometimes a two-index notation is
used to refer to the γ ⊗ ξ decomposition, specifically Γ50 ≡
Γ5 ⊗ 1 and Γ05 ≡ 1 ⊗ Ξ5. In this approach Γ5 and Ξ5 are
extended ultralocal operators (d-hop operators in d
dimensions).
Furthermore, there is the 0-hop operator ϵðx; yÞ ¼

ð−1Þ
P

μ
xμδx;y, with the representation ϵ ≐ γ5 ⊗ ξ5, and

it is sometimes denoted Γ55. Unlike Γ50 or Γ05, it does not
depend on the gauge background U, but it connects these
two matrices by means of the identities

Γ50ðx; yÞ ¼
X
z

ϵðx; zÞΓ05ðz; yÞ ¼
X
z

Γ05ðx; zÞϵðz; yÞ; ð5Þ

Γ05ðx; yÞ ¼
X
z

ϵðx; zÞΓ50ðz; yÞ ¼
X
z

Γ50ðx; zÞϵðz; yÞ: ð6Þ

In passing we note that all occurrences of Uμ in these
formulas should be replaced by the smeared gauge field
VμðxÞ, as this greatly reduces the effects of taste symmetry
breaking [13–16]. Last but not least, the staggered action
(4) is ϵ-Hermitian, i.e., ϵDSϵ ¼ D†

S [31].
The eigenvalue spectrum of DS on the same gauge

configuration as in Sec. II is shown in Fig. 5. The
eigenvalues λi are purely imaginary, and there is a pairing
property λ ↔ −λ which reflects the ϵ-Hermiticity. Close
inspection reveals that the eigenvalues are twofold nearly
degenerate, i.e., each blob in the figure actually represents
two nearby eigenvalues. In particular the blob on the real

FIG. 4. Spectral flow of the Brillouin operator, i.e., eigenvalues of γ5ðDB þmÞ versus m. Relevant part near m ¼ 0 (left) and
panoramic view (right).

FIG. 3. Eigenvalues of the Brillouin operator on a background with q ¼ 1 (left), and “needle plot” of the γ5-chiralities in the pertinent
left-right-eigenvector sandwich (right).
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axis represents the two would-be zero eigenvalues8

expected for topological charge q ¼ 1 (in general 2jqj
for q ∈ Z). In 4D the near degeneracy is fourfold [42,43].
Like in the previous section, we proceed by calculating

all eigenvectors of DS. Since DS is normal, it suffices to
compute the right eigenvector jψ ii for any λi, the left
eigenvector is just hψ ij ¼ ðjψ iiÞ†. The chirality is defined
as the expected value of the chirality operator in the
sandwich between hψ ij and jψ ii. However, choosing ϵ
as the chirality operator is not a good choice, since
hψ ijϵjψ ii ¼ 0 holds9 for all modes. Early publications
demonstrating (on interacting backgrounds) that one must

use Γ5 as the chirality operator include [12,44–47].
Choosing Γ5 as defined in (A4) and representing the
chirality hψ ijΓ5jψ ii as a needle over λi ∈ C yields the
right panel in Fig. 5. The two would-be zero modes have a
chirality close to −1, all other modes have chiralities close
to zero. Last but not least, we verified that Ξ5 is insensitive
to topology, i.e., hψ ijΞ5jψ ii ≃ 0 for all modes. This differ-
ence is crucial; it underpins the workings of the staggered
flavor interpretation (see Refs. [9–16] and Ref. [31] for a
guide to the literature).
The spectral flow of the staggered operator is shown in

Fig. 6. A naive analog to γ5ðDW þmÞ would be
ϵðDS þmÞ, but this choice yields no eigenvalue crossing.
The more faithful analog is HS ¼ ϵDS þmΓ50, since
Γ50DS is not Hermitian. Since specðϵDSÞ ¼ specðiDSÞ,
also iDS þmΓ50 works fine. Incidentally, this was the
first proposal by Adams to generate a staggered spectral

FIG. 5. Eigenvalues of the staggered operator on a background with q ¼ 1 (left), and needle plot of the Γ50-chiralities in the pertinent
left-right-eigenvector sandwich (right). The standard ϵ-chiralities or Γ55-chiralities are exactly flat (not shown).

FIG. 6. Naive spectral flow of the staggered Dirac operator, i.e., eigenvalues of ϵðDS þmÞ versus m (left), and eigenvalues of
iDS þmΓ50, ϵDS þmΓ50, ϵðDS þmΓ05Þ versus m (right).

8The precise values of the two would-be zero eigenvalues are
λ ≃�0.00776i.

9This fact occasionally misled people to believe that “stag-
gered fermions are blind to topology.”

TOPOLOGICAL PROPERTIES OF MINIMALLY DOUBLED … PHYS. REV. D 105, 114511 (2022)

114511-5



flow [48], and it was also used in Ref. [49]. Finally, due to
the property (5), (6), the faithful choice is identical toHS ¼
ϵðDS þmΓ05Þ which holds a preview of the Adams
operator (see below). These three (non-naive) choices
are seen to yield identical results (with two down crossings,
as expected for a two-species operator and q ¼ þ1).
Armed with this insight, we are in a position to esteem

the ingenuity of the operator

DAðx; yÞ ¼ DSðx; yÞ þ
r
a
ð1� Γ05Þ ð7Þ

proposed by Adams [50]. The choice of sign inside the
parentheses depends on the conventions underpinning
(A10) and (A11). In practice one will choose it such that

the needle in the physical branch (see below) points in the
same direction as in Figs. 1, 3 and 5. In other words,
the Adams proposal is to use Γ05 ¼ Ξ5 to induce a
separation between the physical mode10 and the doubler
mode. Like with the other operators, we introduce a
Wilson-like deformation parameter r in (7). The Adams
operator (7) is ϵ-Hermitian, i.e., ϵDAϵ ¼ D†

A.
The eigenvalues of DA are shown in Fig. 7 (still using

the same q ¼ 1 background as before). The eigenvalue
spectrum is symmetric about the real axis (owing to the

FIG. 7. Eigenvalues of the Adams operator on a background with q ¼ 1 (left), and needle plots of the Γ50-chiralities (black stars) and
Γ55-chiralities (open green circles) in the pertinent left-right-eigenvector sandwich (right).

FIG. 8. Spectral flow of the Adams operator, i.e., eigenvalues of ϵðDA þmÞ versus m. Relevant part near m ¼ 0 (left) and panoramic
view (right).

10In 4D the Adams term r
a ð1� Γ05Þ causes a splitting between

two near-degenerate physical modes and two near-degenerate
doublers, see [51–53] for illustrations in the free-field case and
the interacting case.
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ϵ-Hermiticity), but there is no reflection symmetry about
ReðzÞ ¼ 1. Like in the Wilson-Brillouin case there is a
single (exactly real) would-be zero mode in the physical
branch (and another one near 2). We compute the left
eigenvector hψ ij and the right eigenvector jψ ii for each
eigenvalue11 λi and plot the chirality hψ ijϵjψ ii as a needle
(with green circle) at position λi ∈ C. It is nearly −1 at
λ ¼ 0.0706 (in the physical branch) and nearly þ1 at λ ¼
1.9276 (in the doubler branch). Why is ϵ the correct
chirality operator for DA ? The answer was given in the
discussion of the (working) spectral flow plot for DS in
Fig. 6. The pluses and crosses give the eigenvalues of

ϵDS þmΓ50 ¼ ϵðDS þmΓ05Þ; ð8Þ
where the equality follows from (5), (6). This way Adams
managed to have the operator ϵ, which induces the
Hermiticity property of DS, in front, and one recognizes
that the term in parentheses is just a shifted version of DA

(withm taking the role of r). Our figure also illustrates what
happens if one measures the chirality ofDA with the wrong
chirality operator Γ5 (needles with black stars). This time
either branch has a downward-pointing needle, and upon
letting r → 0 the situation smoothly turns into the staggered
needle plot shown in Fig. 5. Conversely, the Adams choice
of chirality, ϵ, is not an option in the staggered case, since
upon letting r → 0 the two oppositely oriented needles
(green circles) would annihilate in this limit and yield an
entirely flat chirality plot (as discussed in the staggered
paragraph above).
The spectral flow plot for the Adams operator, i.e., the

eigenspectrum of ϵðDA þmÞ versus m, is shown in Fig. 8.
The left panel shows a single down crossing (as expected for
an undoubled operator and q ¼ 1), the right one clarifies that
there is no net crossing. Note that the left panel of Fig. 8 is
not identical to the right panel of Fig. 6 (in the former case
one sees the effect of additive mass renormalization, like for
DW or DB, while in the latter case the crossing of the two
physical modes is symmetric aboutm ¼ 0). The relationship
between these two plots is more subtle—the parameter m in
Fig. 6 is a disguised version of r in the Adams operator (7) at
am ¼ −r, while in Fig. 8 we have r ¼ 1 fixed, and the
variable m is really a mass.

IV. NAIVE FERMIONS WITHOUT AND WITH
SPECIES-LIFTING TERM

The naive Dirac operator at zero bare mass is defined as

DNðx; yÞ ¼
X
μ

γμ∇μðx; yÞ; ð9Þ

where the anti-Hermitian behavior ∇†
μ ¼ −∇μ makes the

operator γ5-Hermitian, i.e., γ5DNγ5 ¼ D†
N. In the free-field

limit this operator assumes a diagonal form in momentum
space,

DNðpÞ ¼ i
X
μ

γμ
1

a
sinðapμÞ ¼ i

X
μ

γμp̄μ

with p̄μ ¼
1

a
sinðapμÞ; ð10Þ

which illustrates the anti-Hermitian nature of the derivative
(momentum) term.
Based on the 1-hop operators Cμðx; yÞ given in

Appendix A one defines the d-hop operator

Csym ¼ 1

d!

X
perm

C1C2…Cd ð11Þ

or specifically Csym ¼ 1
2
fC1; C2g in d ¼ 2 dimensions,

and Csym ¼ 1
24
½C1C2C3C4 þ perm� in d ¼ 4 dimensions.

Furthermore, there is the operator 1
2
ðC1 þ C2Þ2 ¼ Csym þ

1
2
ðC2

1 þ C2
2Þ in 2D. Note that these operators depend

on the gauge background (just as Γ5 and Ξ5 in
Sec. III did).
The eigenvalue spectrum of the naive Dirac operator DN

on our q ¼ 1 gauge background is shown in Fig. 9. The
dots coincide12 with the staggered dots in Fig. 5, but there is
an additional (exact) twofold13 degeneracy. The naive
operator is “blind to topology” if one uses γ5 to define
chirality, since hψ ijγ5jψ ii ¼ 0 holds for each eigenmode ψ i
of DN. This situation is reminiscent of choosing ϵ as
the chirality operator in the staggered case; this gave
hψ ijϵjψ ii ¼ 0 for each eigenmode ψ i of DS. However,
in the staggered case the situation changed by switching to
Γ5 as the chirality operator, and one wonders whether using
Csym ⊗ γ5 or 1

2
ðC1 þ C2Þ2 ⊗ γ5 might bring a similar

change for the naive Dirac operator. The right panel
displays the chirality hψ ijCsym ⊗ γ5jψ ii as a needle at
position λi ∈ C for each i. Hence Csym ⊗ γ5 works per-
fectly as a chirality operator; we find four modes14 reaching
almost down to −1, as expected for a fermion operator
which encodes for four continuum species. We also tried
1
2
ðC1 þ C2Þ2 ⊗ γ5, and the respective needle plot is hard to

distinguish from the one in Fig. 9. Still, there is a subtle

11In doing so we keep in mind that DA is not normal,
½DA; D

†
A� ≠ 0, see footnote 3 for details.

12The blob on the real axis is at λ ≃�0.00776i, cf. footnote 8,
and each eigenvalue is twofold degenerate.

13In 4D the exact degeneracy is fourfold, but after this
degeneracy has been removed the eigenvalue spectrum would
again coincide with the staggered eigenvalue spectrum (which in
4D has a fourfold near degeneracy).

14In 4D there are 16 needles on a background with q ¼ �1; in
general 2d in d spacetime dimensions.
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difference15 in the sense that the former operator is almost diagonal on the subspace spanned by the would-be zero modes,

while the latter one is not. But the chirality operator
h
1
2
ðC1 þ C2Þ2 − 1

i
⊗ γ5 ameliorates the situation again. Its needle plot

still looks like that in Fig. 9, while it is again close to diagonal on the subspace spanned by the would-be zero modes.

FIG. 9. Eigenvalues of the naive Dirac operator on a background with q ¼ 1 (left), and needle plot of the Csym ⊗
γ5-chiralities in the pertinent left-right-eigenvector sandwich (right). The ½1

2
ðC1 þ C2Þ2 − 1� ⊗ γ5-chiralities look similar, the

γ5-chiralities are zero (not shown).

FIG. 10. Spectral flow of the naive Dirac operator, i.e., eigenvalues of γ5ðDN þmÞ versus m (left), and eigenvalues of γ5ðDN þ
mCsym ⊗ 1Þ versus m (right); every point is twofold degenerate.

15In the subspace of would-be zero modes the chiralities Csym ⊗ γ5 and 1
2
ðC1 þ C2Þ2 ⊗ γ5 take the form

Csym ⊗ γ5 ≐

0
BBBB@

−0.9148 0.0 −0.0013 0.0

0.0 −0.9148 0.0 −0.0013

−0.0013 0.0 −0.9148 0.0

0.0 −0.0013 0.0 −0.9148

1
CCCCA;

1

2
ðC1 þ C2Þ2 ⊗ γ5 ≐

0
BBBB@

−0.915 0.0 −0.939 0.0

0.0 −0.915 0.0 0.936

−0.939 0.0 −0.915 0.0

0.0 0.936 0.0 −0.915

1
CCCCA

and considering elements Oð10−3Þ as zero, the former matrix is diagonal, while the latter one is not. The attentive reader may think of
definining new basis vectors, e.g., “(firstþ third)” or “(secondþ fourth)” in this subspace, with normalization 1=

ffiffiffi
2

p
. The first matrix

would be unchanged, while the second one would become close to diagonal. However, this proposal ignores that the first two
eigenvectors belong to λ ≃þ0.00776i, and the latter two to λ ≃ −0.00776i. Hence, after the proposed rotation, this is no longer an
eigenbasis of DN.
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The spectral flow plots for the naive action are presented
in Fig. 10. Using γ5 as the chirality operator, DN shows no
crossing; the eigenvalues of γ5ðDN þmÞ are symmetric
under m ↔ −m. This situation is analogous to the stag-
gered case with ϵ as chirality operator. Choosing instead
Csym ⊗ γ5 as chirality operator, the situation changes. In
view of the exact twofold degeneracy16 in the eigenvalues
of γ5ðDN þmCsym ⊗ 1Þ, there are (in total) four down
crossings, as expected for a four-species formulation (in
2D) and q ¼ 1. Modulo this degeneracy, the right panel

bears strong similarity with the respective staggered panel,
i.e., eigenvalues of ϵðDS þmΓ50Þ.
Given the similarity between the right panels of Figs. 6

and 10, and bearing in mind the process which led to the
construction of DA in (7), one defines the Adams-like
operator

Dlikeðx; yÞ ¼
X
μ

γμ∇μðx; yÞ þ
r
a
ð1� CsymÞx;y; ð12Þ

which realizes a “2þ 2” taste splitting in d ¼ 2 dimen-
sions, and an “8þ 8” splitting in d ¼ 4 dimensions [19]. In
either dimension the splitting is consistent with chirality,
i.e., the physical modes share one chirality and all doubler
modes have opposite chirality. This feature holds true for

FIG. 11. Eigenvalues of the “Adams-like” Dirac operator DN þ 1 − Csym on a background with q ¼ 1 (left), and needle plots of the
Csym ⊗ γ5-chiralities (black stars) and γ5-chiralities (golden circles) in the pertinent left-right-eigenvector sandwich (right).

FIG. 12. Spectral flow of the Adams-like Dirac operator, i.e., eigenvalues of γ5ðDN þ 1 − Csym þmÞ versus m. Relevant part near
m ¼ 0 (left) and panoramic view (right).

16Choosing instead ½1
2
ðC1 þ C2Þ2 − 1� ⊗ γ5 as chirality oper-

ator, one finds a similar crossing picture, but the eigenvalues of
γ5ðDN þm½1

2
ðC1 þ C2Þ2 − 1� ⊗ 1Þ are twofold near degenerate

rather than exactly degenerate.
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Adams fermions, provided their chirality is measured with
Γ55 ¼ ϵ. For the operator (12) it holds true in conjunction
with the standard γ5-definition of the chirality.
The eigenvalues λi ∈ C of the Adams-like operator (12)

are shown in Fig. 11. The term 1 − Csym separates the two
branches nicely, and all eigenvalues are twofold near
degenerate. After removing this near degeneracy, the
eigenvalue spectrum bears a striking similarity with the
one of the Adams operator, see Fig. 7, with a comparable
size of the additive mass shift. The would-be zero modes
are exactly real, and the eigenvalues associated with non-
chiral modes come in complex conjugate pairs, owing to
the γ5-Hermiticity of Dlike. Unlike in Fig. 7, there is a
reflection symmetry about ReðzÞ ¼ 1. We compute the
right eigenvector jψ ii and the left eigenvector hψ ij for each
eigenvalue and plot the (correct) chirality hψ ijγ5jψ ii as a
needle (golden circle) at position λi ∈ C. Two modes in the
physical branch reach almost down to −1, and two modes
in the doubler branch reach almost up to þ1. Our figure
also illustrates the result of combining the action (12) with
the wrong chirality operator Csym ⊗ γ5 (needles with black
stars). In this case either branch has downward-pointing
needles, and upon letting r → 0 the situation smoothly
turns into the naive chirality plot shown in Fig. 9.
Conversely, the correct choice of chirality, γ5, is not an
option in the naive case, since upon letting r → 0 the two
oppositely oriented needles (golden circles) would annihi-
late in this limit and yield an entirely flat chirality plot (as
discussed in the naive paragraph above).
The spectral flow plot of the operator (12), i.e., the

eigenvalues of γ5ðDN þ 1 − Csym þmÞ versus m, is shown
in Fig. 12. Each dot represents two nearly degenerate
eigenvalues. Considering the situation in the vicinity of
m ¼ 0 one finds two down crossings, as expected for a two-
species formulation and q ¼ 1. The right panel shows that
there is no net crossing, and the situation is symmetric
about m ¼ −1 (which holds only approximately in the
Adams case).

V. CENTRAL-BRANCH FERMIONS AND
DESCENDANTS

The “central-branch” Dirac operator at vanishing bare
mass is defined as [54–56]

Dcbðx;yÞ¼
X
μ

γμ∇μðx;yÞþ
r
a

�
−
a2

2

X
μ

△μ−dI

�
x;y
; ð13Þ

where I denotes the identity in position space. In the
notation of Appendix A the square bracket is −

P
μ Cμ, see

(A3), and it is evaluated at ðx; yÞ whereupon Iðx; yÞ ¼ δx;y.
In the free-field limit the central branch operator assumes a
diagonal form in momentum space

DcbðpÞ ¼ i
X
μ

γμ
1

a
sinðapμÞ þ

r
a

X
μ

f0 − cosðapμÞg

¼ i
X
μ

γμp̄μ þ
r
a

�
a2

2

X
μ

p̂2
μ − d

�
; ð14Þ

which confirms that it is a shifted version of the Wilson
operator (1), (2).
We refrain from showing a plot of the eigenvalues of

Dcb, since it is just a copy of Fig. 1, but shifted by 2 units to
the left. This formulation leads to 2 species in 2D or 6 in
4D. If chirality is measured by the usual γ5 operator, the
physical species share one chirality. There is no additive
mass renormalization, but one should not be fooled to
believe17 that there is true chiral symmetry. In fact, a close
look at Fig. 1 reveals that the eigenvalues in the central
branch are slightly “fuzzed” in the horizontal direction, in
contradistinction to actions with a remnant chiral symmetry
like DS, DN, DKW and DBC (cf. Secs. III,IV,VI,VII).
The central-branch-squared Dirac operator (briefly men-

tioned in Ref. [29]) is defined as

Dcbsðx;yÞ¼
X
μ

γμ∇μðx;yÞþ
r
a

�
−
a2

2

X
μ

△μ−dI

�
2

x;y
ð15Þ

and in the free-field limit it assumes a diagonal form in
momentum space

DcbsðpÞ ¼ i
X
μ

γμ
1

a
sinðapμÞ þ

r
a

�X
μ

f0 − cosðapμÞg
�
2

¼ i
X
μ

γμp̄μ þ
r
a

�
a2

2

X
μ

p̂2
μ − d

�
2

ð16Þ

which indicates that indeed only the lifting term in (13),
(14) is squared. In 2D this operator has two branches with
“2þ 2” multiplicities, in 4D it has three branches with
“6þ 8þ 2” multiplicities.
In Fig. 13 the eigenvalue spectrum of Dcbs is plotted. In

comparison to Dcb the recipe (15), (16) squares the

17It pays to consider the symmetries of the underlying taste
structure [57]. The Wilson lifting term is DW −DN ¼
− a

2

P
△μ ¼ 1

a ð−
P

Cμ þ dIÞ, where I is the identity. Since γ5
commutes with both Cμ and I, we have fγ5;−

P
Cμg ¼

−2γ5
P

Cμ and fγ5; Ig ¼ 2γ5, so both
P

Cμ and I break chiral
symmetry. Still, there is an important difference between these
operators. Let τμ;x ¼ ð−1Þxμ iγμγ5 be the generator of the (remov-
able) taste symmetry of naive fermions, and consider a taste
rotation ψx → τμ;xψx and ψ̄x → ψ̄xτμ;x. Then DNðx; yÞ ¼
τμ;xDNðx; yÞτμ;y and Iðx; yÞ ¼ τμ;xIðx; yÞτμ;y transform in the
same way. But the hopping part of the Wilson term transforms
as Cμðx; yÞ ¼ −τμ;xCμðx; yÞτμ;y and Cνðx; yÞ ¼ þτμ;xCνðx; yÞτμ;y
for μ ≠ ν. Hence, I and

P
Cμðx; yÞ in DW and Dcb do not share

the full set of symmetries, and renormalize differently. In
summary, the central branch term −

P
Cμ does not mix with

the identity, but still breaks chiral symmetry.

STEPHAN DÜRR and JOHANNES H. WEBER PHYS. REV. D 105, 114511 (2022)

114511-10



(horizontally acting) Wilson “lifting term” while the (ver-
tically acting) “derivative term” is unaltered. Hence the right
(curved) branch in this figure is a superposition of what used
to be the leftmost and rightmost branches of the Wilson
operator, while the left (near-straight) branch ofDcbs is more-
or-less identical to the central branch of Dcb. Accordingly,
the left (near-straight) branch of Dcbs hosts two wrong-
chirality species, while the right (curved) branch hosts two
right-chirality species. A remarkable feature is the unusually
small additive mass shift18 of the near-straight branch. For
each eigenvalue λi we calculate the left eigenvector hψ ij and
the right eigenvector jψ ii ofDcbs and determine the chirality

hψ ijγ5jψ ii. The result is displayed as a needle at position
λi ∈ C. We find two would-be zero modes in the physical
branch with chiralities close to þ1, and two modes in the
doubler branch, at ReðλÞ ≃ 4, with chiralities close to −1. In
the physical branch nearby modes tend to have very small
chiralities, while in the doubler branch adjacent modes are
subject19 to heavy mixing.
In Fig. 14 the spectral flow of the operator Hcbs ¼

γ5ðDcbs þmÞ is displayed. There is a twofold (near-
degenerate) up crossing at m ≃ 0, but there is no net

FIG. 13. Eigenvalues of the “central-branch-squared”Dirac operator at r ¼ 1 on a background with q ¼ 1 (left), and needle plot of the
γ5-chiralities in the pertinent left-right-eigenvector sandwich (right).

FIG. 14. Spectral flow of the central-branch-squared Dirac operator at r ¼ 1, i.e., eigenvalues of γ5ðDcbs þmÞ versusm. Relevant part
near m ¼ 0 (left) and panoramic view (right).

18This mass shift is due to the fact that the operators C2
μ mix

with the identity, while the operators CμCν do not for μ ≠ ν,
cf. footnote 17.

19This effect is mitigated by using a smaller r; for instance
r ¼ 1

4
reduces the mixing significantly. This is evident from

comparing Figs. 13 and 15. The latter figure is not a “squeezed”
version (by a factor 1

4
) of the former one; the key difference is the

amount of “jumping” of the needles near the needle pointing
towards −1.
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crossing on a large scale. The deviation of the up crossing
from m ¼ 0 is smaller than the deviation of the down
crossing from m ¼ −4r ¼ −4. This matches, in the eigen-
value plot, the small offset of the physical branch from
ReðλÞ ¼ 0 and the relatively large offset of the doubler
branch from ReðλÞ ¼ 4r ¼ 4.
The central-branch-squared-and-flipped Dirac operator

is defined as

Dcbsfðx; yÞ ¼
X
μ

γμ∇μðx; yÞ þ
r
a
d2Ix;y

−
r
a

�
−
a2

2

X
μ

△μ − dI

�
2

x;y
; ð17Þ

where the flipping operation is designed to interchange the
physical and the rightmost doubler branches. In 2D this has

no effect on the number of species, but in 4D it trades 6
species for 2.
In Fig. 15 the eigenvalue spectrum of Dcbsf at r ¼ 1

4
is

plotted. If we were to stay with r ¼ 1 the figure would be a
copy of Fig. 13, except for an inversion about ReðλÞ ¼ 2,
and the needle plot would result via the same operation
from Fig. 13. In this case we would be confronted with the
unpleasant feature that the physical would-be zero modes
are in the middle of a region with heavy mixing, as evident
from the little spikes nearby. By choosing r ¼ 1

4
the mixings

in the curved (now physical) branch are drastically reduced
compared to Fig. 13.
In Fig. 16 the spectral flow of the operator Hcbsf ¼

γ5ðDcbsf þmÞ is shown. There is a twofold (near-degen-
erate) down crossing at m ≃ 0, but there is no net crossing
on a large scale. The deviation of the down crossing from

FIG. 16. Spectral flow of the central-branch-squared-and-flipped operator at r ¼ 1
4
, i.e., eigenvalues of γ5ðDcbsf þmÞ versus m.

Relevant part near m ¼ 0 (left) and panoramic view (right).

FIG. 15. Eigenvalues of the “central-branch-squared-and-flipped” Dirac operator at r ¼ 1
4
on a background with q ¼ 1 (left), and

needle plot of the γ5-chiralities in the pertinent left-right-eigenvector sandwich (right).
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m ¼ 0 is larger than the deviation of the up crossing from
m ¼ −4r ¼ −1. This matches, in the eigenvalue plot, the
large offset of the physical branch from ReðλÞ ¼ 0
and the much smaller offset of the doubler branch
from ReðλÞ ¼ 4r ¼ 1.

VI. KARSTEN-WILCZEK FERMIONS

The Karsten-Wilczek proposal is to restrict the Wilson
term in (1) to the spatial components

DKWðx; yÞ ¼
X
μ

γμ∇μðx; yÞ − i
ra
2
γd

Xd−1
i¼1

△iðx; yÞ ð18Þ

with an extra factor iγd to make it anti-Hermitian
and anticommuting with γ5 [1,2]. As a result, the
Karsten-Wilczek (KW) operator is γ5-Hermitian, i.e.,
γ5DKWγ5 ¼ D†

KW. In the free-field limit the KW operator
assumes a diagonal form in momentum space

DKWðpÞ ¼ i
X
μ

γμ
1

a
sinðapμÞ þ i

r
a
γd

Xd−1
i¼1

f1 − cosðapiÞg

¼ i
X
μ

γμp̄μ þ i
ra
2
γd

Xd−1
i¼1

p̂2
i ; ð19Þ

which again indicates that DKW is an anti-Hermitian
operator.
This formulation was shown to have 2 species for r ¼ 1

in the original works [1,2]. How this number decreases
from 2d, at r ¼ 0, to 2, at r ¼ 1, has been investigated in
Ref. [8]. In d ¼ 4 dimensions the number of species is
reduced by 2,6,6 at r ¼ 1=6; 1=4; 1=2, respectively, so the
species chain is 16 → 14 → 8 → 2. In d ¼ 2 dimensions
the reduction takes place at r ¼ 1=2, so the species chain
is 4 → 2. Of course, the number of species is unchanged
by a sign flip of r. In Ref. [8] also the free-field (quark-
level) dispersion relation of the KW operator is given.
In 2D the KW operator (18) takes the simple form
(cf. Appendix A)

DKWðx; yÞ ¼
X
μ

σμ∇μðx; yÞ − i
ra
2
σ2△1ðx; yÞ: ð20Þ

The eigenvalues of the KWoperator (20) at r ¼ 1 on the
same q ¼ 1 background as before are displayed in Fig. 17.
The spectrum is purely imaginary, like in the staggered or
naive case, but it stretches out to �3. In the depleted part in
the middle, eigenvalues come in near-degenerate pairs (the
pair λ ¼ �0.00214i is represented by a single blob on the
real axis). We compute the right eigenvector jψ ii and the
left eigenvector hψ ij for each eigenvalue λi ∈ C. If one were
to choose the chirality operator γ5, the result would be an

entirely flat needle plot. Choosing an appropriate20 chirality
operator like Csym ⊗ γ5 the situation is different; for each
mode the chirality hψ ijCsym ⊗ γ5jψ ii is plotted as a needle
at position λi ∈ C. One finds two needles reaching nearly
down to −1, as expected for a two-species formulation
and q ¼ 1.
In Ref. [8] we discuss, for d ¼ 2 and d ¼ 4, how the KW

operator evolves from the naive operator as r increases
from 0 to 1. In particular we derive the spectral bound
jImðλKWÞj ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð1 − rÞp

for 0 ≤ r ≤ 1
2
, and jImðλKWÞj ≤

1þ 2r for 1
2
≤ r, both valid in the free-field case in 2D. In

Fig. 18 the eigenvalue spectrum is shown for a number of r
values, along with the spectral bound mentioned. The free-
field bound seems to give a rather accurate estimate of the
actual spectral range in the interacting case. Defining a
would-be zero mode by the (somewhat arbitrary) criterion
jImðλKWÞj < 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NxNy

p
, the number of would-be zero

modes is seen to drop from 4 to 2 in the vicinity of r ¼ 1=2,
in line with expectations [8].
The spectral flow plot with the inappropriate choice of

chirality operator, i.e., the eigenvalues of γ5ðDKW þmÞ
versus m, is shown in Fig. 19. As expected, there is no
crossing in the vicinity of m ¼ 0. The situation is different
with an appropriate chirality operator; the eigenvalues of
γ5ðDKW þmCsym ⊗ 1Þ show a twofold down crossing near
m ¼ 0. At a superficial level, the latter plot looks similar to
the “good” staggered and naive plots in Figs. 6, 10,
respectively. Still, there are two notable differences.
Compared to the good staggered plot the intrataste splitting
is smaller (cf. discussion in Sec. VII). Compared to the
good naive plot, in addition the (exact) twofold degeneracy
is missing.

VII. BORICI-CREUTZ FERMIONS

The basis for Borici-Creutz fermions in d spacetime
dimensions is the idempotent operator

Γ¼ 1ffiffiffi
d

p
X
μ

γμ with Γ2¼ 1

2d

�X
α

γα;
X
β

γβ

�
¼2d
2d

¼1 ð21Þ

and fΓ; γμg ¼ 2ffiffi
d

p and fΓ; γ5g ¼ 0. This suggests to define
the dual gamma matrices

γ0μ ¼ ΓγμΓ ¼
�

2ffiffiffi
d

p − γμΓ
�
Γ ¼ 2ffiffiffi

d
p Γ − γμ; ð22Þ

20The KW operator has two zeros in the Brillouin zone, with
opposite chiralities due to the Nielsen-Ninomiya theorem [5–7].
In the free field case they are located at apd ¼ 0; π (with api ¼ 0
for i ¼ 1;…; d − 1), and encode the same chiralities as for naive
fermions [8]. Therefore, the same chirality operators can be
employed for KW and naive fermions. We found good results
with both Csym ⊗ γ5 and ½1

2
ðC1 þ C2Þ2 − 1� ⊗ γ5 at r ¼ 1.
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FIG. 17. Eigenvalues of the KW Dirac operator on a background with q ¼ 1 (left), and needle plot of the Csym ⊗ γ5-chiralities in the
pertinent left-right-eigenvector sandwich (right). The standard γ5-chiralities are exactly flat (not shown).

FIG. 18. Eigenvalues of the KWDirac operator on an interacting background as a function of the species-lifting parameter r (left), and
number of would-be zero modes versus r (right).

FIG. 19. Spectral flow of the KW Dirac operator, i.e., eigenvalues of γ5ðDKW þmÞ versus m (left), and eigenvalues of γ5ðDKW þ
mCsym ⊗ 1Þ versus m (right).

STEPHAN DÜRR and JOHANNES H. WEBER PHYS. REV. D 105, 114511 (2022)

114511-14



which are Hermitian and satisfy the Dirac-Clifford algebra,
since (22) implies fγ0μ; γ0νg ¼ 2δμν and fΓ; γ0μg ¼ 2ffiffi

d
p .

Furthermore, one finds fγμ; γ0νg ¼ 4
d − 2δμν ¼ fγ0μ; γνg.

The Borici-Creutz (BC) proposal is to dress the Wilson
term in (1) with i times (22),

DBCðx; yÞ ¼
X
μ

γμ∇μðx; yÞ − i
ra
2

X
μ

γ0μ△μðx; yÞ; ð23Þ

where our second term differs in sign from the original
proposal [3,4]. Note that the second term is anti-Hermitian
and anticommutes with γ5, since

γ0μγ5 ¼ ΓγμΓγ5 ¼ −Γγμγ5Γ

¼ Γγ5γμΓ ¼ −γ5ΓγμΓ ¼ −γ5γ0μ ð24Þ
and this renders the BC operator γ5-Hermitian, i.e.,
γ5DBCγ5 ¼ D†

BC. In the free-field limit the BC operator
assumes a diagonal form in momentum space

DBCðpÞ ¼ i
X
μ

γμp̄μ þ i
r
a

X
μ

γ0μf1 − cosðapμÞg

¼ i
X
μ

γμp̄μ þ i
ra
2

X
μ

γ0μp̂2
μ ð25Þ

in which the bracket f1 − cosðapμÞg may be split and the
sum over γ0μ performed by means of

X
μ

γ0μ ¼ 2
ffiffiffi
d

p
Γ −

X
μ

γμ

¼ 2
ffiffiffi
d

p
Γ −

ffiffiffi
d

p
Γ ¼

ffiffiffi
d

p
Γ: ð26Þ

The free-field form (25) highlights the invariance under
any permutation of the d axes.
This formulation was shown to have 2 species for r ¼ 1

in the original works [3,4]. How this number decreases
from 2d, at r ¼ 0, to 2, at r ¼ 1, has been investigated in
Ref. [8]. In 4D one starts with 16 species, and this number
decreases by 6 at r ¼ 1=

ffiffiffi
3

p
, and by 8 at r ¼ 1=

ffiffiffi
2

p
; so the

species chain is 16 → 10 → 2. In 2D one starts with 4
species, and this number decreases by 2 at r ¼ 1=

ffiffiffi
3

p
; so

the species chain is 4 → 2. A sign flip in r affects the
location of the doubler mode in the Brillouin zone (cf. foot-
note 21) but not the number of physical modes. For the
free-field (quark-level) dispersion relation see Ref. [8].
In 2D the BC operator (23) takes the simple form
(cf. Appendix A)

DBCðx; yÞ ¼
X
μ

σμ∇μðx; yÞ − i
ra
2
σ2△1ðx; yÞ

− i
ra
2
σ1△2ðx; yÞ ð27Þ

and comparing this to (20) shows that the BC operator is
not a symmetrized form of the KWoperator; it has an extra
term. This is why, in Eqs. (23), (25), the sign of the

r-dependent term differs from the literature. With our
convention the joint terms in Eqs. (20), (27) have like sign.
The eigenvalues of the BC operator (27) at r ¼ 1 on the

same q ¼ 1 background as before are displayed in Fig. 20.
The spectrum is purely imaginary (as for the previously
discussed chiral actions), but this time it stretches out to
�ð2þ ffiffiffi

2
p Þ. In the depleted part in the middle, eigenvalues

come in near-degenerate pairs (the pair λ ¼ �0.00854i is
represented by a single blob on the real axis). We compute
the right eigenvector jψ ii and the left eigenvector hψ ij for
each eigenvalue λi ∈ C. With γ5 as chirality operator, one
obtains hψ ijγ5jψ ii ¼ 0 for all modes ψ i. Choosing
½2Csym − 1� ⊗ γ5 as chirality operator21 the situation is
different; for each mode the chirality hψ ij½2Csym − 1� ⊗
γ5jψ ii is plotted as a needle at position λi ∈ C. One finds
two needles reaching nearly down to −1, as expected for a
two-species formulation and q ¼ 1.
In Ref. [8] we discuss how the BC operator evolves from

the naive operator as r increases from 0 to 1. In particular we
derive the spectral bound jImðλBCÞj ≤

ffiffiffi
d

p ðrþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
Þ

for 0 ≤ r, valid in the free-field case in d dimensions. In
Fig. 21 the eigenvalue spectrum is shown for a number of r
values, along with the spectral bound mentioned (for
d ¼ 2). The free-field bound seems to give a rather accurate
estimate of the actual spectral range in the interacting case.
Defining a would be zero mode by the same criterion as in
Sec. VI, their number is seen to evolve from 4 to 2 in the
vicinity of r ¼ 1=

ffiffiffi
3

p
, in line with expectations [8].

As for naive or KW fermions, γ5 is an inappropriate
choice of the chirality operator; the eigenvalues of γ5ðDBC þ
mÞ versus m show no crossing, see Fig. 22. With the
appropriate chirality operator the situation is different;
γ5ðDBC þm½2Csym − 1� ⊗ 1Þ reveals the expected two-fold
eigenvalue down crossing nearm ¼ 0. At a superficial level,
the latter plot looks similar to the good staggered plot in
Fig. 6, the good naive plot in Fig. 10, and the good KW plot
in Fig. 19 (modulo degeneracies).
Upon comparing these four plots more diligently, one

notices that (apart from the extra twofold exact degeneracy
in the naive case) these plots differ by the size of the taste
breaking. Taking the splitting between the two down
crossings in Figs. 6 and 10 as a basis, the splitting in the

21As for KW fermions, the two surviving zero modes of BC
fermions must encode opposite γ5 chiralities, due to the Nielsen-
Ninomiya theorem [5–7]. An extended splitting operator sepa-
rates these cleanly if it assumes opposite (nonzero) real values at
these two positions. The two zero modes of BC fermions
surviving in the free theory are located at apμ ¼ 0 and
apμ ¼ κðrÞ, with κðrÞ≡ −2 arctanð1=rÞ for all d components
of ap [8]. For the canonical value r ¼ 1, the second mode is thus
at κð1Þ ¼ −π=2. While the operator CsymðkÞ assumes the value 1
at apμ ¼ 0, it yields 0 at apμ ¼ −π=2. A deformation of CsymðkÞ
that realizes the desired sign change is ð1þ AðrÞÞCsym − AðrÞ
with AðrÞ ¼ ½2þ cos2ðκðrÞÞ�=½2 − cos2ðκðrÞÞ�; this yields
Að1Þ ¼ 1. We found good chirality results with both ½2Csym −
1� ⊗ γ5 and ½1

2
ðC1 þ C2Þ2 − 1� ⊗ γ5 at r ¼ 1.
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FIG. 20. Eigenvalues of the BC Dirac operator on a background with q ¼ 1 (left), and needle plot of the ½2Csym − 1� ⊗ γ5-chiralities in
the pertinent left-right-eigenvector sandwich (right). The standard γ5-chiralities are exactly flat (not shown).

FIG. 21. Eigenvalues of the BC Dirac operator on an interacting background as a function of the species-lifting parameter r (left), and
number of would-be zero modes versus r (right).

FIG. 22. Spectral flow of the BC Dirac operator, i.e., eigenvalues of γ5ðDBC þmÞ versus m (left), and eigenvalues of γ5ðDBC þ
m½2Csym − 1� ⊗ 1Þ versus m (right).
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KW case (Fig. 19) seems smaller, while in the BC case
(Fig. 22) it seems comparable or larger. To corroborate this
finding we display in Fig. 23 how the (positive) eigenvalues
λKW=i and λBC=i evolve from the naive ones, as r grows from
0 to 1.5, this time with a logarithmic scale on the ordinate.
The twofold degeneracy of the naive action is split for any
r > 0, but the behavior of the (one) remainingwould-be zero
eigenvalue is different in the two panels. In the KW case it
behaves very smoothly, and at r ≃ 1 it is smaller than in the
naive or staggered case.On the other hand, in theBCcase the
would-be zero eigenvalue performs wild movements in the
vicinity of the pole-merger zone at r ¼ 1=

ffiffiffi
3

p
(see Ref. [8]

for details), and at r ≃ 1 the deviation of the would-be zero
eigenvalue from zero is comparable in size to the naive or
staggered case. This raises further questions [58–62]; we
shall briefly comment on this in Sec. IX.

VIII. KW AND BC FERMIONS WITH
SPECIES-LIFTING TERMS

In Secs. III–VI, and VII we learned about the close
relationship between a good chirality operator X which
measures the chiralities hψ ijXjψ ii of the eigenmodes ψ i of
a given (doubled) D and the operator Dþ rð1� X ⊗ ϵÞ or
Dþ rð1� X ⊗ γ5Þ in which the tastes are separated22

according to their chiralities. For KW fermions both X ¼
Csym ⊗ γ5 and X ¼ ½1

2
ðC1 þ C2Þ2 − 1� ⊗ γ5 turned out to

be good chirality operators, see footnote 20. For BC
fermions both X ¼ ½2Csym − 1� ⊗ γ5 and X ¼ ½1

2
ðC1 þ

C2Þ2 − 1� ⊗ γ5 were found to be good chirality operators,
see footnote 21. Hence the question arises whether one may
add such an operator (without the factor γ5) to separate the
two species (“tastes”) present in DKW or DBC.
In Fig. 24 the eigenvalues of the operators DKW

þsð1 − CsymÞ ⊗ 1 and DKW þ s
2
ðC1 þ C2Þ2 ⊗ 1 at s ¼ 1

are shown (with r ¼ 1 in DKW). Both species-lifting terms
work fine, but the curvature of the curved branches23 agrees
only in two of three cases with the curvature of the
appropriate branch of the Wilson operator. The panels
with the respective γ5-chiralities show that in either branch
there is exactly one mode24 with chirality close to �1. This
is different from the situation encountered in Sec. VI, where
the chiralities of DKW needed to be measured with Csym ⊗
γ5 or 1

2
ðC1 þ C2Þ2 ⊗ γ5. But this difference is completely

analogous to the difference between the DS and DA in
Sec. III or the difference between DN and Dlike in Sec. IV.
In Fig. 25 the eigenvalues of the operators DBC þ sð1 −

CsymÞ ⊗ 1 and DBC þ s
2
ðC1 þ C2Þ2 ⊗ 1 at s ¼ 1 are

shown (with r ¼ 1 in DBC). Both species-lifting terms
work fine, but the curvature of the curved branches25 agrees

FIG. 23. Upper half of the left panels of Figs. 18 and 21, but with logarithmic y-scale. The threshold for an eigenvalue to be considered
a “would-be zero eigenvalue” is indicated by a dotted line.

22Starting from the staggered operator with 2d=2 species in d
dimensions, the resulting Adams operator (7) has 2d=2−1 left-
handed species in one branch and an equal number of right-
handed species in the other branch. And starting from the naive
operator with 2d species, the resulting Adams-like operator (12)
has 2d−1 left-handed species in one branch and an equal number
of right-handed species in the other branch.

23For the operator DKW þ ð1 − CsymÞ ⊗ 1 the eigenvalues in
the left branch resemble the eigenvalues in the physical branch
of DW, and the right branch resembles the rightmost branch
of DW − 2. On the other hand in DKW þ s

2
ðC1 þ C2Þ2 ⊗ 1

it takes s ¼ 1
2
to make the right branch mimic the rightmost

branch of DW − 3.
24In the left panel of Fig. 24 the needle near λ ¼ 0 points

downwards, so everything is fine. In the right panel this needle
points upwards, so consistency with the remainder of this article
is lost. This could be avoided by using the operator DKW þ ½2 −
1
2
ðC1 þ C2Þ2� ⊗ 1 instead.
25The eigenvalues in the curved branch of DBC þ ð1 −

CsymÞ ⊗ 1 approximately coincide with the eigenvalues in the
physical branch of DW. On the other hand in DBC þ s

2
ðC1 þ

C2Þ2 ⊗ 1 it takes s ¼ 1
2
to ensure that the eigenvalues in the right

branch match those in the rightmost branch of DW − 3.
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only in one of two cases with the curvature of the
appropriate branch of the Wilson operator. The panels
with the respective γ5-chiralities show that in either branch
there is exactly one mode26 with chirality close to �1.
Again, either construction repeats the reasoning which led
to the Adams operator (7) or the Adams-like operator (12).
In summary both DKW and DBC may be equipped with a

species-lifting term. All four options discussed yield an
undoubled fermion operator with additive mass renormal-
ization. In the event sð1 − CsymÞ ⊗ 1 is added, we recom-
mend using s ¼ 1. In the event s

2
ðC1 þ C2Þ2 ⊗ 1 is added,

we recommend using s ¼ 1
2
, as this reduces unwanted

mixings in the unphysical branch.

IX. CONCLUSIONS

Our goal was to provide evidence in the interacting
theory that two minimally doubled fermion actions, namely

Karsten-Wilczek [1,2] and Borici-Creutz [3,4] fermions,
perceive a global topological charge as foreseen in the
seminal “anomaly” paper by Karsten and Smit [5].
In case of nonminimally doubled actions with (remnant

exact) chiral symmetry, i.e., for staggered and naive fer-
mions, it is known (perhaps not widely so) that special
diligence is needed to select an appropriate chirality operator
X to see the needles in the chirality plots hψ ijXjψ ii at
position λi ∈ C. In the case of Karsten-Wilczek fermions
choosing X as Csym ⊗ γ5 or

1
2
½ðC1 þ C2Þ2 − 1� ⊗ γ5 yields

good results, and with Borici-Creutz fermions a similar
statement holds true for X being ½2Csym − 1� ⊗ γ5
or 1

2
½ðC1 þ C2Þ2 − 1� ⊗ γ5.

We find that any appropriate choice of X for the needle
plot would always yield the expected number of crossings
in the spectral flow plot, and it would result in a useful
definition of the topological charge via the “trace formula”
discussed in Appendixes B and C.
To stress the universality of the underlying concept, we

opted for showing similar plots with Wilson, Brillouin,

FIG. 24. Eigenvalues of DKW with two lifting terms on a background with q ¼ 1, and needle plots of the γ5-chiralities in the pertinent
left-right-eigenvector sandwiches.

26As to the signs of the needles footnote 24 applies again.
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staggered, Adams, naive andAdams-like fermions, plus two
more varieties dubbed central-branch-squared and central-
branch-squared-and-flipped fermions (of which the former
one has very small additive mass shift). To limit the overall
length, our numerics was restricted to 2D, but we plan to
show similar plots in 4D at some point in the future.
An important part of the discussion focused on the

intimate relation between a working chirality operator X for
a given fermion action D and the lifting term that is needed
to separate branches in D according to their chirality
(typically X ⊗ γ5 or X ⊗ ϵ). This viewpoint emphasizes
that Adams fermions are derived from staggered fermions
in essentially the same way as the Adams-like action (12)
is derived from the naive action (9). And it suggests
dedicated splitting terms by means of which one of the
species sitting in DKW or DBC can be lifted to become a
doubler mode (albeit at the price of loosing the remnant
chiral symmetry).

Finally the smallness of the (one) would-be zero eigen-
value of DKW at r ¼ 1 in Fig. 23 provides some (faint)
evidence that the taste splitting for Karsten-Wilczek fer-
mions might be smaller than for staggered fermions.
Evidently nothing is known at this point about a potential
change as a function of lattice spacing and box size, or
whether it carries over to 4D and, finally, to spectroscopy.
In the event this is not a fluke, this calls for further
investigation.
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FIG. 25. Eigenvalues of DBC with two lifting terms on a background with q ¼ 1, and needle plots of the γ5-chiralities in the pertinent
left-right-eigenvector sandwiches.
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APPENDIX A: NOTATION AND CLIFFORD
ALGEBRA CONVENTIONS

Throughout this article ∂μ and ∂
�
μ denote the discrete

forward an backward derivative, respectively, and ∇μ ¼
ð∂μ þ ∂

�
μÞ=2 is the symmetric derivative. These operators

are gauged in the obvious manner; for instance the
covariant symmetric derivative is

a∇μψðxÞ¼
1

2
½UμðxÞψðxþ μ̂Þ−U†

μðx− μ̂Þψðx− μ̂Þ�; ðA1Þ

where UμðxÞ is the parallel transporter from xþ μ̂ to x, and
μ̂ denotes a times the unit vector in direction μ. Similarly,
△μ ¼ ∂

�
μ∂μ ¼ ∂μ∂

�
μ denotes the second discrete derivative

a2△μψðxÞ ¼ UμðxÞψðxþ μ̂Þ − 2ψðxÞ
þ U†

μðx − μ̂Þψðx − μ̂Þ; ðA2Þ

in the presence of a gauge field UμðxÞ, and one defines
aDμðx; yÞ ¼ a∇μðx; yÞ and

Cμðx; yÞ ¼
1

2
½UμðxÞδxþμ̂;y þ U†

μðx − μ̂Þδx−μ̂;y�

¼ 1

2
a2△μðx; yÞ þ δx;y: ðA3Þ

IndEuclidean spacetimedimensions (d even) it is customary
to use a 2d=2-dimensional representation of the γ-matrices.
In d ¼ 2 dimensions we use γ1 ¼ σ1; γ2 ¼ σ2, along with

γ5 ¼ −iγ1γ2 ¼ −iσ1σ2 ¼ σ3 ¼ diagðþ1;−1Þ ðA4Þ

and the matrices relevant to the Borici-Creutz discretization
then take the form

Γ ¼ 1ffiffiffi
2

p ðσ1 þ σ2Þ ¼
1ffiffiffi
2

p
�

0 1 − i

1þ i 0

�

¼
�

0 e−iπ=4

eþiπ=4 0

�
; ðA5Þ

σ01 ¼ Γσ1Γ ¼ 1

2
ðσ1 þ σ2Þσ1ðσ1 þ σ2Þ

¼ 1

2
ðσ1 þ σ2 þ σ2 þ σ2σ1σ2Þ ¼ σ2; ðA6Þ

σ02 ¼ Γσ2Γ ¼ 1

2
ðσ1 þ σ2Þσ2ðσ1 þ σ2Þ

¼ 1

2
ðσ1σ2σ1 þ σ1 þ σ1 þ σ2Þ ¼ σ1: ðA7Þ

Specifically for staggered and Adams fermions one defines
the 1-hop operators

Γμðx; yÞ ¼
1

2
ημðxÞ½UμðxÞδxþμ̂;y þ U†

μðx − μ̂Þδx−μ̂;y�
¼ ημðxÞCμðxÞ; ðA8Þ

Ξμðx; yÞ ¼
1

2
ζμðxÞ½UμðxÞδxþμ̂;y þ U†

μðx − μ̂Þδx−μ̂;y�
¼ ζμðxÞCμðxÞ; ðA9Þ

with ημðxÞ ¼ ð−1Þ
P

ν<μ
xν and ζμðxÞ ¼ ð−1Þ

P
ν>μ

xν . Based
on this we define in d ¼ 2 dimensions

Γ5 ≡ Γ50 ≡ −
i
2
½Γ1;Γ2� ¼ −

i
2
ðΓ1Γ2 − Γ2Γ1Þ; ðA10Þ

Ξ5 ≡ Γ05 ≡þ i
2
½Ξ1;Ξ2� ¼ þ i

2
ðΞ1Ξ2 − Ξ2Ξ1Þ; ðA11Þ

where the factor in front of (A10) is chosen to match the one
in front of (A4). Evidently, in d ¼ 4 dimensions Γ5 ¼
Γ5ðx; yÞ and Ξ5 ¼ Ξ5ðx; yÞ become 4-hop operators. Note
that both Γ5 and Ξ5 are ϵ-Hermitian operators, as follows
from (5), (6) along with Γ5 ¼ Γ†

5 and Ξ5 ¼ Ξ†
5.

In practice all the occurrences of UμðxÞ in this appendix
(in ∇μ, △μ, Cμ, Γμ, Ξμ and thus in Γ5 and Ξ5) are replaced
by the smeared gauge field VμðxÞ, in our case via one stout
step [28].

APPENDIX B: FERMIONIC TOPOLOGICAL
CHARGES

In the continuum one finds the formula qfer½A� ¼
ð−1Þd=2limm→0m trðD−1

m ½A�γ5Þ for the topological charge
q ∈ Z of a gauge field AμðxÞ. On the lattice similar
formulas hold true, provided some diligence is applied
to the “limm→0 procedure” and the multiplicity is divided
out [12,45]. In the following we use the sign for d ¼ 2; it is
straightforward to adjust this for d ¼ 4.
In Fig. 26 we plot the behavior of the Wilson and

Brillouin topological charges

qW½U� ¼ −m tr½ðDW þmÞ−1I ⊗ γ5�; ðB1Þ

qB½U� ¼ −m tr½ðDB þmÞ−1I ⊗ γ5� ðB2Þ

as a function of m. Evidently, these charges are not integer
valued, and it seems there is a pole structure in the vicinity
of m ≃ −0.1, where the latter value coincides with the bare
masses which would renderDW þm orDB þm effectively
massless, as seen in Figs. 1, 3.
Things become clearer upon considering a chirally

improved version of the Wilson Dirac operator. Using
AW ≡ ðDW − 1Þ†ðDW − 1Þ, a chirally improved descend-
ant at zero mass is defined via one KL11 iteration as
DKL11

W ¼ ðDW − 1Þ AWþ3
3AWþ1

þ 1, and DKL11
B is defined sim-

ilarly, see Ref. [35] for details. The eigenvalue spectra of
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these operators are shown in the top panels of Fig. 27. One
notices that these operators show very small additive mass
renormalization, and a few more Kenney-Laub steps make

it zero within machine precision [35]. Upon plugging
DKL11

W in place of DW into (B1) and DKL11
B in place of

DB into (B2), one obtains the results in the bottom panels of

FIG. 26. Topological charge of the Wilson (left) and Brillouin (right) operator versus am.

FIG. 27. Eigenvalues of the chirally improved Wilson and Brillouin operator (top), defined via one KL11 iteration (see text), along
with their topological charges versus am (bottom).
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Fig. 27. This time it is clear that one should ignore a small
“pole area” near m ¼ 0, and read off the curve at a nearby
m-value to find qW ¼ 1 and qB ¼ 1.
Given the arguments presented in Sec. III the staggered

and Adams charges are

qS½U� ¼ −
m
2
tr½ðDS þmÞ−1Γ50�; ðB3Þ

qA½U� ¼ −mtr½ðDS þ 1 − Γ05 þmÞ−1Γ55� ðB4Þ

on a background U; they are shown as a function of m in
Fig. 28. In the former case the function is even in m, in the
latter case the behavior is similar to that of qW and qB.
Again, one should ignore a pole area near m ¼ 0, and read
off the curve at a nearbym-value to find qS ¼ 1 and qA ¼ 1
(after some suitable interpolation and renormalization).

From the arguments presented in Sec. IV it follows that
one should define the charges

qN½U� ¼ −
m
4
tr½ðDN þmÞ−1Csym ⊗ γ5�; ðB5Þ

qlike½U� ¼ −
m
2
tr½ðDN þ 1 − Csym þmÞ−1I ⊗ γ5� ðB6Þ

for the naive and Adams-like operator, respectively. Their
dependence onm is displayed in Fig. 29. Again, the former
charge is even in m, the latter one is not.
Given the arguments presented in Sec. V it is clear that

the natural definitions are

qcbs½U� ¼ þm
2
tr½ðDcbs þmÞ−1I ⊗ γ5�; ðB7Þ

FIG. 29. Topological charge of the operator DN þm with Csym ⊗ γ5 as a probe versus am (left), and of Dlike þm ¼ DN þ 1 −
Csym þm with γ5 as a probe versus am (right).

FIG. 28. Topological charge of the staggered (left) and Adams (right) operators versus am, using Γ5 ¼ Γ50 as a chirally sensitive probe
in the former case, and ϵ ¼ Γ55 in the latter case.
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qcbsf ½U� ¼ −
m
2
tr½ðDcbsf þmÞ−1I ⊗ γ5� ðB8Þ

for central-branch-squared and central-branch-squared-
and-flipped fermions, respectively. The respective plots
are found in Fig. 30, based on r ¼ 1 in the former and r ¼ 1

4
in the latter case. The former formulation benefits from a
rather small additive mass renormalization.
Finally, following the discussion in Secs. VI and VII, we

define the charges

qKW½U�¼−
m
2
tr

�
ðDKWþmÞ−1 1

2
ðC1þC2Þ2⊗ γ5

�
; ðB9Þ

qKW½U� ¼ −
m
2
tr

�
ðDKW þmÞ−1Csym ⊗ γ5

�
; ðB10Þ

qBC½U�¼−
m
2
tr

�
ðDBCþmÞ−1 1

2
ðC1þC2Þ2⊗ γ5

�
; ðB11Þ

qBC½U� ¼ −
m
2
tr

�
ðDBC þmÞ−1½2Csym − 1� ⊗ γ5

�
ðB12Þ

for Karsten-Wilczek and Borici-Creutz fermions, respec-
tively. The four curves27 are displayed in Fig. 31; they are
even in m. For DKW the two options of the charge operator
work equally well, in line with what we reported in Sec. VI.
For DBC the chirality operator ½2Csym − 1� ⊗ γ5 seems to
workmarginally better than 1

2
ðC1 þ C2Þ2 ⊗ γ5, again in line

with Sec. VII.
In summary, a fermionic topological charge can be

determined by reading off the m-dependent charge “slightly

FIG. 31. Topological charge of the KW (left) and BC (right) operator versus am. In either case a chirality operator based on
1
2
ðC1 þ C2Þ2 and one based on Csym are used.

FIG. 30. Topological charge of the central-branch-squared operator at r ¼ 1 (left) and central-branch-squared-and-flipped operator at
r ¼ 1

4
(right) versus am.

27We checked that using X ¼ ½1
2
ðC1 þ C2Þ2 − 1� ⊗ γ5 instead

of X ¼ 1
2
ðC1 þ C2Þ2 ⊗ γ5 brings no visible change in either

panel of Fig. 31. This is in line with our statements regarding the
needle plots (or diagonal part of the chirality operator) in Secs. VI
and VII.
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to the left” and “slightly to the right” of the polelike structure,
and applying some suitable average (and possibly some
renormalization and a cast-to-integer operation). The averag-
ing procedure could be formalized, but it is clear that some
arbitrariness remains. In practice all occurrences of UμðxÞ in
this Appendix are replaced by the smeared gauge fieldVμðxÞ.
This holds for all DiracmatricesD and the staggeredΓ50,Γ05,
in line with Appendix A. Last but not least, in 4D the
multiplicity factors need to be adjusted. In the staggered case
it is 1

4
, in the Adams case 1

2
, the naive operator has 1

16
, and the

Adams-like operator 1
8
. For Dcbs it is 1

6
, and for Dcbsf nothing

changes.

APPENDIX C: ANALYTIC ARGUMENT

It is not surprising that the continuum formula qfer½A� ¼
ð−1Þd=2limm→0m trðD−1

m ½A�γ5Þ has lattice counterparts as
discussed in Appendix B. In the following we omit the
factor ð−1Þd=2 and concentrate on the Wilson operator DW,
but we see no obstacle to applying the argument to any
other action. The argument is not entirely new [12,45], but
it is still elucidating.
We want to feed the trace formula q½U� ¼

m trðD−1
m ½U�γ5Þ with the mode representation Dm ¼P

iðλi þmÞjψ iihψ ij of the Dirac operator, where jψ ii
is the right eigenvector of D and hψ ij is the left eigen-
vector (cf. footnote 3) on the gauge background U. In
this representation the inverse is given by D−1

m ¼P
iðλi þmÞ−1jψ iihψ ij, thanks to the bi-orthogonality con-

dition hψ ijψ ji ¼ δij. This yields q ¼ m trðPiðλi þmÞ−1
jψ iihψ ijγ5Þ ¼ m

P
iðλi þmÞ−1 trðjψ iihψ ijγ5Þ. Due to the

cyclic property of the trace the last factor is trðhψ ijγ5jψ iiÞ,
and since the trace of a scalar object is just that object we
have q ¼ m

P
iðλi þmÞ−1hψ ijγ5jψ ii.

Next we should recall the needle plots for each action,
for instance the right panel in Fig. 1 in case of DW. Since
hψ ijγ5jψ ii ≃ 0 for all i with ImðλiÞ significantly nonzero,
only the would-be zero modes in the physical branch and
their siblings in the lifted branches contribute to this sum.
But for these chiral modes hψ ijγ5jψ ii ≃�1, hence we
have

qlat ¼ m
X

i∈needles
ðλi þmÞ−1σi; ðC1Þ

where σi is the sign of the needle associated with the
exactly real mode i.
At this point we need to distinguish the various

formulations and the dimensionality of spacetime. For
instance for DW in d ¼ 2 dimensions we have three
contributions

qW ¼ m

�
1

λ0 þm
−

2

λ1−lift þm
þ 1

λ2−lift þm

�
ðC2Þ

with alternating signs and weights reflecting the multiplic-
ity of each branch. And for DW in d ¼ 4 dimensions the
sign and weight sequence would be fþ1;−4;þ6;−4;þ1g.
Next one should take into account that the two down-

ward pointing needles in Fig. 1 are related by reflection
symmetry. In fact the entire eigenvalue spectrum of the
massless operator is symmetric about ReðλÞ ¼ dr, and for
the massive operator this vertical reflection line is at
ReðλÞ ¼ drþm. Moreover, the eigenvalues in (C2) are
exactly real, and the offset of λ0 is basically given by the
additive mass shift. Hence λ0 ≃ −mcrit, where mcrit < 0

denotes the bare mass m at which DW creates massless
pions (on an infinite lattice). In consequence,

qW ¼ m

�
1

m −mcrit
−

2

2rþm
þ 1

4rþmcrit þm

�
; ðC3Þ

where we take into account that λ1−lift ¼ 2r for m ¼ 0,
modulo the “horizontal fuzziness” discussed in Sec. V.
Bringing everything atop a common denominator yields

qW ¼ m
ð2rþmcritÞ2 þ ð2rþmÞ2

ðm −mcritÞð2rþmÞð4rþmcrit þmÞ ðC4Þ

and for m ≃mcrit the latter expression simplifies to

qW ≃m
2ð2rþmcritÞ2

ðm −mcritÞð2rþmcritÞð4rþ 2mcritÞ
¼ m

m −mcrit
; ðC5Þ

which underpins the pole structure that shows up near
mcrit < 0 in the right panel of Fig. 26. In fact, for the
chirally improved Wilson operator DKL11

W the lower left
panel in Fig. 27 demonstrates that its additive mass shift
is much smaller than that of the Wilson operator.
For doubled chiral actions the basic formula (C1) still

holds true, but the sum is dominated by the would-be zero
modes which come in complex conjugate pairs. Here it is
important that the σi reflect the chiralities as determined by
an appropriate chirality operator. For instance, for stag-
gered fermions σi refers to Γ5 so that the pairs have like sign
(with ϵ they would have opposite sign and thus cancel).
Specifically in d ¼ 2 dimensions one has

qS ¼ m
2

�
1

þiϵþm
þ 1

−iϵþm

�

¼ m
2

2m
ðiϵþmÞð−iϵþmÞ ¼

m2

ϵ2 þm2
; ðC6Þ

which suggests that there is a double-pole structure near
m ¼ 0. In d ¼ 4 dimensions the factor in front is m

4
and
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there are 4jqj contributions, so the conclusion is
unchanged. Similarly, the argument goes through for
KW and BC fermions.
Looking at the plots assembled in Appendix Bwe find the

prediction of the pole structure confirmed, both for nonchiral
and chiral (doubled) actions. However, it is clear that the
curves include a significant regular part which is not covered

by the argument. Regarding the nonchiral actions we com-
ment that mapping out the pole structure in (C5) provides a
handle at λ0 (on a given configuration) and thus at the additive
mass shift −mcrit (after averaging over configurations). This
approach does not require any eigenvalue and/or eigenvector
computation, nor does it involve spectroscopy, but we do not
know whether it is very practical.
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