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We derive the on-shell form of amplitudes containing two external currents with a single hadron in the
initial state and two hadrons in the final state, denoted as 1þ J → 2þ J . This class of amplitude is
relevant in precision tests of the Standard Model as well as for exploring the structure of excited states in the
QCD spectrum. We present a model-independent description of the amplitudes where we sum to all orders
in the strong interaction. From this analytic form we are able to extract transition and elastic resonance form
factors consistent with previous work as well as a novel Compton-like amplitude coupling a single particle
state to a resonance. The results also hold for reactions where the one-particle state is replaced with the
vacuum, namely J → 2þ J amplitudes. We also investigate constraints placed upon the formalism for the
case of a conserved vector current in the form of the Ward-Takahashi identity. The formalism presented
here is valid for currents of arbitrary Lorentz structure and quantum numbers with spinless hadrons where
any number of two-particle intermediate channels may be open. When combined with the appropriate
finite-volume framework, this work facilitates the extraction of physical observables from this class of
amplitudes via lattice QCD calculations.
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I. INTRODUCTION

Quantifying nonperturbative quantum chromodynamic
(QCD) contributions to electroweak interactions of had-
ronic processes remains an ongoing challenge in modern
nuclear and particle physics. Several outstanding problems
lie in descriptions of hadronic transitions involving timelike
separated external currents, including computing hadronic
structure functions and precision tests of the Standard
Model. An important example in the context of precision
measurements is the anomalous magnetic moment of the
muon, aμ, where presently tension persists between the
theoretical prediction and the experimental measurement
[1]. Attempts have been made using phenomenological
analyses [2–12] and lattice QCD [13–17] to determine the
contributions that dominate the theoretical uncertainty of
aμ, which are the hadronic vacuum polarization (HVP) and
hadronic light-by-light (HLbL) tensors. At leading order in

quantum electrodynamics (QED), the HVP and HLbL
tensors can be written in terms of hadronic matrix elements
of the QED current J μ of the form h0jT½Q2

j¼1 J
μjðxjÞ�j0i

and h0jT½Q4
j¼1 J

μjðxjÞ�j0i, respectively.1 A promising
effort to determine the light-by-light amplitude, which is
the hardest to constrain, is to use a dispersive representation
of this amplitude, in terms of, among other things,
γ⋆γ⋆ → ππ; KK; ηη;…, transition amplitudes.
As mentioned, hadronic matrix elements of timelike

separated currents, which we refer to as long-range
processes are also necessary to examine the inner structure
of excited QCD states. For example, the elusive glueballs,
hypothesized states composed of pure glue, have been
studied in quenched lattice QCD calculations [18–20] and
the lowest-lying candidate is expected to lie in the 0þþ
channel. When the theory is unquenched, these states
become hadronic resonances that couple strongly to
ππ; KK;…, asymptotic states, obscuring any experimental
smoking-gun evidence of a glueball. A quantitative measure
of the internal charge distribution, which may in turn
provide a likelihood of a glueball assignment of a given
state, can be extracted from the two-photon coupling.
Given the resonant nature of these states, this coupling
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needs to be accessed from the same previously mentioned
amplitudes for γ⋆γ⋆ → ππ;…, which has been done for the
lowest-lying scalar resonance; see for instanceRefs. [21–23]
and Ref. [24] for a recent review on the extraction of this
coupling. Another example of a state whose internal
structure may be constrained by long-range processes is
that of the lowest-lying baryonic resonance, the Δð1232Þ.
Despite it being an experimentally well studied state, its
internal structure is phenomenologically largely uncon-
strained. A recent proposal was made to access the elastic
electromagnetic form factors of this state via the two-photon
exchange present in the ep → epπ cross section [25–32].
The hadronic contribution can be written in terms of virtual
photons, and included in this is the desired γ⋆p → Δ →
γ⋆pπ resonant amplitude. It is this piece fromwhich one can,
in principle, determine the elastic form factors of the
Δð1232Þ, and subsequently its charge distribution.
These examples, γ⋆γ⋆ → ππ;…, and γ⋆p → γ⋆pπ, fall

under a broad class of reactions that can be generically
written as J → 2þ J and 1þ J → 2þ J , respectively,
where J is an external local current, and the 1 and 2
represent the number of hadrons in the initial and final state,
respectively. In fact, the J → 2þ J reaction can be
understood as a simplified case of 1þ J → 2þ J , where
the initial hadron is replaced with the vacuum. In this work,
we present a nonperturbative derivation of the analytic
structure of this class of amplitudes. In doing so, we
provide an exact closed form for the amplitudes in terms
of singular functions that may be determined from the
physical subprocesses, together with a priori unknown,
smooth, real-valued functions. The results hold for generic
systems that may support bound states, resonances, or
neither. The derivations follow the formalism presented in
Refs. [33,34] for studying the simpler 1þ J → 1þ J and
2þ J → 2 amplitudes which we review. We collectively
refer to the classes of amplitudes involving two currents as
Compton-like amplitudes which we label with the symbol
T . Although the results presented are indeed exact, they
hold for kinematics where only one- and two-body inter-
mediate states may go on-shell, and we only consider
hadronic states with zero intrinsic spin.
The results of the 1þ J → 2þ J amplitude have two

immediate applications. First, this serves as a necessary
step toward the determination of these amplitudes directly
from QCD using lattice QCD. Second, these expressions
will provide constraints on the allowed parametrizations of
experimental analysis of these reactions. We elaborate
further on the first application, since this is expected to
be more immediately relevant.
Lattice QCD allows for a statistical determination of

energies and matrix elements defined in a finite-Euclidean
spacetime. Since the physical amplitudes of interest exist in
an infinite-Minkowski volume, a framework that connects
the lattice QCD calculated matrix elements to these infinite-
volume amplitudes is required. Among the classes of

amplitudes that are known to be accessible via lattice
QCD are purely hadronic two- [35–48] and three-body
scattering amplitudes [49–52], as well as 1þ J → 2
[53–56] and 2þ J → 2 [57,58] transition amplitudes.
This has already allowed for numerous lattice QCD calcu-
lations of resonant systems [59–81]. Given the successes of
this program (see Refs. [82,83] for recent reviews), groups
have recently begun to consider prospects for studying two-
current processes for kinematics where an intermediate two-
particle state may go on-shell [33,84–88]. Although these
formalisms have not yet been implemented in a lattice
calculation, it is clear that as a preliminary step it will be
necessary to have parametrizations of these amplitudes, as
well as the amplitudes of the physical subprocesses.
The remainder of this work is laid out as follows: in

Sec. II we present our main results, the on-shell represen-
tations for the 1þ J → 1þ J and 1þ J → 2þ J
Compton-like amplitudes along with a discussion of the
singularity structures that appear in both amplitudes.
Moving on to Sec. III we explore constraints and properties
of these on-shell forms, including their analytic continu-
ations, the definition of resonance form factors, and the
implications of the Ward-Takahashi identity. In Sec. IV we
present the derivation of our results. Finally, in Sec. V we
provide an outlook for these studies.

II. MAIN RESULT

In this section we present the analytic forms of the
amplitudes under consideration where we have singled
out the nonanalytic pieces that stem from placing inter-
mediate states on their mass shell. We refer to these as their
“on-shell” forms and save their derivation for Sec. IV.While
we assume no specific Lorentz structure for the currents,
these amplitudes do depend on the quantum numbers of the
currents whichwe label asA andB. These labels, whichmay
or may not be the same, include possible Lorentz indexes as
well as other quantum numbers, e.g., isospin. We introduce
two subscripts for T which label the number of particles in
the final/initial states, respectively. Thus, using this notation,
we will be considering the amplitudes T 11 and T 21 which
are shown in Figs. 1(a) and 1(b), respectively.
We can define the amplitude T in terms of appropriately

constructed Fourier transforms of two-current matrix ele-
ments between asymptotic states,

(a) (b)

FIG. 1. Diagrammatic representations of the (a) 1þ J → 1þ J
and (b) 1þ J → 2þ J amplitudes. The solid lines represent
stable single-particle states. The wiggly lines denote external
currents. Momentum conservation requires qi ¼ Pf þ qf − Pi.
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T AB
n1 ðPf;Pi;qfÞ≡i

Z
d4xeiqf ·x

×hn;Pf;outjTfJ AðxÞJ Bð0Þgj1;Pi;iniconn:;
ð1Þ

where n is either 1 or 2, depending on the number of
hadrons in the final state, “T” is the time-ordering operator,
and the “conn.” subscript indicates only fully connected
diagrams are included. From the definition, we see that the
momentum of the current J A, denoted by qf here, is
leaving the system, while the current J B injects momentum
qi ¼ Pf þ qf − Pi into the system. Diagrammatically,
there are two closely related topologies that contribute to
this matrix element, the s-channel and the u-channel
diagrams. We will refer to them as the direct and the
exchange contributions. An example of each of these, for
the case of an intermediate single particle state in T 11, is
illustrated in Figs. 2(a) and 2(b), respectively. Finally, here
we have included the AB superscripts on the T n1 amplitude
for completeness; however, since these superscripts will
always be required on the T amplitudes, to avoid cluttering
we will only write them where explicitly needed.
To arrive at the on-shell forms for these amplitudes, we use

all-orders perturbation theory in which we assume some
generic effective field theory where our hadronic states are
stable against strong decay as was done in Ref. [34]. We also
make two simplifying assumptions here, the first being that
our incoming and outgoing hadronic states are spinless, i.e.,
they can be either scalars or pseudoscalars, and the second
being that we are in a kinematic region where intermediate
three-particle on-shell states are forbidden. This implies
s ¼ ðPi þ qiÞ2 andu ¼ ðPi − qfÞ2 both lie below the lowest
three particle threshold with the appropriate quantum num-
bers. We also only consider spacelike virtualities of the
currents, or in the timelike region below any particle
production thresholds. Since this constraint applies to all of
the expressions below, wemay notmake it explicit each time.
The final expressions for the Compton-like amplitudes

depend on the amplitudes describing the kinematically
allowed subprocesses. These are the purely hadronic 2 → 2
amplitudes, and the 1þJ →1, 1þJ →2, and 2þ J → 2
transition amplitudes involving a single current insertion,
illustrated in Fig. 3. These amplitudes, which we respec-
tively label as M, won, H, and W, were the focus of
Ref. [34]. As discussed in detail in the aforementioned
reference, W has simple pole singularities that can be

expressed in terms of won, M, and single-particle propa-
gators. The remainder of the amplitude is denoted by Wdf,
where the subscript stands for “divergence-free.”
In Sec. IV we provide integral equations for M and H,

since they play an important role through the rest of the
derivation. For completeness, here we provide the on-shell
expressions for each of the amplitudes depicted in Fig. 3,

iMðsÞ ¼ iKðsÞ 1

1 − iρKðsÞ ; ð2Þ

wA
onðPf; PiÞ ¼

X
j

KA
j ðPf; PiÞfjðQ2Þ; ð3Þ

iHAðPf; PiÞ ¼ iMðsfÞAA
21ðPf; PiÞ; ð4Þ

iWA
dfðPf; PiÞ ¼ MðsfÞ

�
iAA

22ðPf; PiÞ

þ
X
j

ifjðQ2ÞGA
j ðPf; PiÞ

�
MðsiÞ; ð5Þ

whereK is the two-bodyK-matrix, andA21 andA22 are the
single-current analogs of the K-matrix where the subscripts
indicate how many hadrons are in the final and initial states,
respectively. Each of these objects are real and smooth
functions in the kinematic domain of interest, but in
principle contain singularities away from this region arising
from crossed channel processes or higher multiparticle
thresholds.2 Finally, Kj are kinematic functions whose
Lorentz structure depends on that of the current, and fj
are the single particle form factors which depend on
Q2 ¼ −ðPf − PiÞ2. For a given Lorentz structure, the
decomposition of won will contain a finite set of linearly
independent Kj tensors which we enumerate with the
subscript j. We also use the conventional notation sf ≡ P2

f

and si ≡ P2
i . In these expressions the two-particle states

have been partial-wave projected and the amplitudes are
matrices or vectors in angular momentum space accord-
ingly. The label “on” in won emphasizes that it has been
projected on-shell such that the form factors fj only depend
on the virtuality of the current, but the kinematic function
depends on the momenta Pf=i even when it is off-shell.
The singularities of these functions are encoded in the

two-particle phase space factor ρ and the triangle function
G. When only one two-particle channel is kinematically
allowed to go on its mass shell, these can be written as3

ρl0ml0 ;lml
¼ δl0lδml0ml

ξq⋆
8π

ffiffiffi
s

p ; ð6Þ

(a) (b)

FIG. 2. Examples of diagrams that appear in the (a) direct and
(b) exchange contributions to the T 11 amplitude.

2The K-matrix can have unphysical simple poles in this
kinematic region, but as discussed in the derivation, the A
functions cannot have such poles.

3For a general expression and deeper discussion of the
singularities we point the reader to Ref. [34].
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GA
j;2;l0ml0 ;lml

ðPf; PiÞ

≡
Z

d4k
ð2πÞ4

Y�
l0ml0

ðk⋆
fÞiKA

j;2ðkf; kiÞYlml
ðk⋆

i Þ
ðk2 −m2

1 þ iϵÞðk2f −m2
2 þ iϵÞðk2i −m2

2 þ iϵÞ ;

ð7Þ

where q⋆ is the two-particle relative momentum in the
center-of-momentum (CM) frame, the symmetry factor ξ is
defined to be 1=2 if the particles in this channel are identical
and 1 otherwise, k⋆

fðiÞ is the spatial part of the four-vector k
in the final (initial) CM frame, and Yl;ml

are proportional to
the solid harmonics, as introduced in Refs. [34,57,58],

Ylml
ðk⋆Þ ¼

ffiffiffiffiffiffi
4π

p
Ylml

ðk̂⋆Þ
�
k⋆
q⋆
�

l
; ð8Þ

where k⋆ is the magnitude of vector k⋆ and the centrifugal
barrier factors remove the spurious threshold singularities
of the spherical harmonics. As shown explicitly in
Ref. [34], the G function encodes a logarithmic singularity.
The last thing to point out here is that the numbered
subscripts that appear in Eq. (7) are used to distinguish
between the particles with masses m1 and m2 in the
intermediate state, with the number appearing on G and
Kj being the particle that the current is coupling to. Thus
Eq. (7) is specific to the case where the current couples to
particle 2.
Having reviewed the amplitudes and components that

will appear as building blocks, we nowmove on to the main
focus of this work. Starting with the simplest Compton
amplitude, T 11, in Sec. IVA we rederive the expression
obtained in Ref. [33],

iT 11ðPf; Pi; qfÞ ¼ iB11ðPf; Pi; qfÞ þ iwA
onðPf; PsÞiDðsÞiwB

onðPs; PiÞ þ iwB
onðPf; PuÞiDðuÞiwA

onðPu; PiÞ
þAA

12ðPf; PsÞiMðsÞAB
21ðPs; PiÞ þAB

12ðPf; PuÞiMðuÞAB
21ðPu; PiÞ; ð9Þ

where D is the simple pole contribution of the single-
particle propagator for a particle with mass m,

iDðk2Þ ¼ i
k2 −m2 þ iϵ

; ð10Þ

and B11 is a real-valued function4 whose singularities lie
outside of the kinematic region considered, similar to K,
A21, and A22. As with the 1þ J → 1 amplitude, one can
perform a Lorentz decomposition of B11 to write this in
terms of a sum over products of Lorentz tensors and
generalized form factors. We have also introduced the
notation Ps ¼ Pf þ qf ¼ Pi þ qi and Pu ¼ Pf − qi ¼
Pi − qf such that P2

s ¼ s and P2
u ¼ u.

From Eq. (9) we can see that there are two sources of
singularities that occur in the T 11 amplitude. The second
and third terms indicate the possibility of a simple pole
singularity originating from the pole piece of the propa-
gator. The last two terms can also contribute singularities of
similar structure if M features bound state poles, but M
also contains branch points corresponding to two-particle
thresholds.5

(a) (b)

(c) (d)

FIG. 3. Diagrammatic representations of the amplitudes that will appear as building blocks for the Compton-like amplitudes of
interest. In (a) we show the 2 → 2 scattering amplitude while the remaining diagrams represent hadrons interacting with external
currents. In increasing order of complexity these are the (b) 1þ J → 1, (c) 1þ J → 2, and (d) 2þ J → 2 amplitudes.

4In Ref. [33], this function was labeled S.

5In this expression the single intermediate state is assumed to
have quantum numbers different from the two-particle inter-
mediate state; otherwise, this contribution will be double counted
by the bound state pole in M. An example of a reaction with
these two different contributions is the Compton scattering off a
pion. In that case an intermediate pion cannot mix with a two pion
state.
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Moving on to the main new result of this work, we show
in Sec. IV B that the on-shell expression for the Compton-
like amplitude T 21 can be written as

iT 21ðPf;p̂0⋆
f ;Pi;qfÞ¼ iHA

onðPf;p̂0⋆
f ;PsÞiDðsÞiwB

onðPs;PiÞ
þ iHB

onðPf;p̂0⋆
f ;PuÞiDðuÞiwA

onðPu;PiÞ
þ
X

fiwoniDiHg
þ iT 21;dfðPf;p̂0⋆

f ;Pi;qfÞ; ð11Þ

where we have introduced the notation p0
x ≡ Px − p0 where

x can be f, s, or u.We use semicolons to distinguish between
the dependence on the final state, initial state, and the
current, since at least one of them depends on multiple
momenta. In the first two terms we introduce Hon which is
the extension of H to off-shell values of the momentum
describing the single particle state where, similar to won
defined in Eq. (3), the energy-dependent form factors are
kept on-shell. A thorough discussion of this on-shell
projected amplitude is given in the Appendix B. The sum
in the third term indicates that we need to sum over the
current coupling to each of the two external legs in the final
state, both for direct and exchange contributions. Therefore
in the case where the current only couples to the external
particle with final momentum p0

f this term should look like

X
fiwoniDiHg¼ iwA

onðp0
f;p

0
sÞiDðp02

s ÞiHBðPs;p0⋆
s ;PiÞ

þ iwB
onðp0

f;p
0
uÞiDðp02

u ÞiHAðPu;p0⋆
u ;PiÞ;

ð12Þ

where H is the 1þ J → 2 transition amplitude with addi-
tional barrier factors in its partial-wave projection to cancel
out spurious threshold singularities arising from the spheri-
cal harmonics. This is shown diagrammatically in Fig. 4.
The precise definition is given in Sec. IV B 2 in Eq. (72).
Finally, we have labeled the last term in Eq. (11) with the

subscript “df” which, as previously mentioned, stands for
“divergence-free.” The partial-wave projection of this term,
as shown in Sec. IV B, can be written as

iT 21;dfðPf; Pi; qfÞ ¼ iMðsfÞB21ðPf; Pi; qfÞ
þ iWA

dfðPf; PsÞAB
21ðPs; PiÞ

þ iWB
dfðPf; PuÞAA

21ðPu; PiÞ; ð13Þ

where B21 is a new, smooth, real-valued function which
depends on the total momentum of both the initial and the
final states as well as the momentum and Lorentz structure
of both of the currents.
Looking at Eqs. (11) and (13) we can see that T 21

inherits its singularity structure from the previously pre-
sented subamplitudes. The first three terms in Eq. (11)
correspond to one of the currents coupling to one of the
external legs. In each of these cases we get a singularity
from the pole piece of the single-particle propagator, D.
The other singularities for this amplitude reside in T 21;df .
Both M and each of the Wdf’s will have threshold
singularities in sf; however, the Wdf’s will also have
threshold singularities in s and u, respectively, as well as
the logarithmic singularities contained in the triangle
function.
Our choice for the on-shell projected amplitudes of the

subprocesses won and Hon is not unique, especially when
the amplitudes obey a constraint such as gauge invariance.
This freedom, however, does not modify the location,
strength, and nature of the singularities that appear in
our main results. Different prescriptions simply change
how smooth contributions are shared between different
terms of the on-shell projection. Our prescription choice
and possible alternatives are described in Appendix B.
Pending the appropriate finite-volume framework, we

anticipate the formalism presented in this work being useful
for lattice QCD calculations of these two-current processes.
In such cases the quantities A21, A22, B11, and B21 would
require an explicit parametrization. An example can be
found in the calculations of the process πγ → ππ in
Refs. [78,80], where the behavior in s and Q2 of the
quantity A21 was constrained with parametrizations of up
to ten parameters with approximately 50 independent
matrix elements calculated from the lattice. We expect a
similar trend when constraining the remaining smooth

FIG. 4. Diagrammatic representation of the expansion of the sum shown on the left-hand side of Eq. (12) where one of the external
currents couples to a single particle in the final state. Shown are all four of the possible terms contained within the sum; however, the two
final terms are faded as they are not included in Eq. (12) since we make the assumption that only a single final state particle is charged.
The gray circle represents the amplitude won, the dotted line represents the pole piece of the single particle propagator D, and the dark
circles are the 1þ J → 2 transition amplitude but with additional barrier factors as designated by the bar in H.
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kernels presented in this work. For cases where the currents
satisfy conservation laws, one expects additional con-
straints on the amplitudes via the Ward-Takahashi identity.
One must then impose these additional constraints on the
parametrizations for the short-distance kernels, e.g., the
quantities A22, B11, and B21 in this work. A discussion of
this constraint for A22 in the forward limit can be found in
Ref. [89], and the implications of this constraint for B11 and
B21 are discussed below in Sec. III B.
The remainder of this work focuses on discussing

properties of these Compton-like amplitudes as well as
deriving the on-shell forms given in Eqs. (9), (11), and (13).

III. CONSTRAINTS AND PROPERTIES

Here we present further analysis of the expressions for
the Compton-like amplitudes given in the previous section.
First, we discuss the analytic continuation of the ampli-
tudes; this is required for studying the properties of the
dynamical resonances featured within an amplitude. We
also use this to show that the formalism presented here is
consistent with previous work. Finally, we discuss the
Ward-Takahashi identity as it relates to these amplitudes
when considering conserved vector currents and the addi-
tional constraints it presents.

A. Analytic continuation

In this section we present the analytic continuation of the
amplitudes in the case they contain a resonant intermediate
state. For simplicity we show this for the case of a scalar
current with an S-wave resonance; however, the steps
shown are valid for currents of any Lorentz structure as
well as systems in higher partial waves. Here we remind the
reader that every instance of T also comes with implicit
superscripts AB, which in this case only represent the
internal quantum numbers of the external currents because
their Lorentz structure is trivial. Starting with the forward
limit of the 1þ J → 1þ J amplitude, i.e., qi ¼ qf and
defining Q2 ¼ −q2i ¼ −q2f, as one approaches the reso-
nance pole we find

lim
s→sR

ðs − sRÞT II
11ðs;Q2Þ ¼ −½f1→RðQ2Þ�2; ð14Þ

where T II
11 is the analytic continuation of T 11 to the second

Riemann sheet in s, f1→RðQ2Þ is the transition form factor,
and sR is the location of the resonance pole. This is also
shown diagrammatically in Fig. 5(a) where the double line
represents the resonance propagator and each vertex is
equal to the transition form factor. The analytic continu-
ation of T 11 is obtained from the knowledge of its analytic
structure given by its on-shell representation. By inspecting
Eq. (9) one can notice that taking the analytic continuation
of the amplitudesM therein is sufficient to obtain T II

11. We
solve for the transition form factor in Eq. (14) and exploit
the fact that the behavior of the scattering amplitude M
close to the resonance is

lim
s→sR

ðs − sRÞMIIðsÞ ¼ −c2; ð15Þ

where MII is the analytic continuation of M to the second
sheet in s and c is the physical coupling between the
resonance and the external two-particle state. Only the term
featuring the amplitude MIIðsÞ in the continuation of
Eq. (9) will survive the limit, to find

f1→RðQ2Þ ¼ cA21ðsR;Q2Þ: ð16Þ
Equation (16) agrees with Eq. (20) of Ref. [34] where f1→R
was found from the properties of the H amplitude close to
the resonance, thus providing a consistency check
for Eq. (9).
Moving on to the 1þ J → 2þ J amplitude we find

that a resonance can couple to the final state as well as to
intermediate states. This implies that the amplitude contains
a resonance pole both in the final two-state energy squared
sf as well as in the intermediate energy squared s.6 We will
study each of these poles one at a time by taking the limits
to the resonance in two steps

lim
sf→sR

ðsf − sRÞT II;I
21 ðPf; Pi; qfÞ ¼ −ct1→RðQ2

f; Q
2
i ; sÞ; ð17Þ

(a) (b)

FIG. 5. Diagrammatic representations of the (a) 1þ J → 1þ J and (b) 1þ J → 2þ J amplitudes when approaching a resonance
pole. The double lines represent the propagator for the resonance state, the black circles represent two-current scattering amplitudes, the
gray circles represent single-current form factors, and the open circle is the purely hadronic coupling between the resonance and the
asymptotic two-particle state.

6A resonance could also appear in the exchange channel as a
pole in variable u; for simplicity here we restrict ourselves to the
production in the direct diagrams.
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lim
s→sR

ðs−sRÞtII1→RðQ2
f;Q

2
i ;sÞ¼−fR→RðQ2

fÞf1→RðQ2
i Þ; ð18Þ

where Q2
f=i ¼ −q2f=i, T

II;I
21 is the analytic continuation of

T 21 to the second Riemann sheet in the sf variable only,
t1→R is the Compton-like amplitude coupling the single-
particle state to the resonance, and tII1→R is its analytic
continuation to the second sheet of variable s. This
Compton-like transition is a new quantity that has not
previously been considered. As previously mentioned, this
can have dynamical singularities as well. We also find that
the second limit allows for access to the same elastic
resonant form factors, fR→R, that can be obtained from W.
The diagrammatic representation of the amplitudes close to

these limits is shown in Fig. 5(b). The Compton-like
transition can be found by solving Eq. (17),

t1→RðQ2
f; Q

2
i ; sÞ ¼ lim

sf→sR

sR − sf
c

T II;I
21 ðPf; Pi; qfÞ

¼ cAA
21ðsR;Q2

fÞiDðsÞiwB
onðQ2

i Þ
þ cAB

21ðsR;Q2
i ÞiDðuÞiwA

onðQ2
fÞ

þ lim
sf→sR

sR − sf
c

T II;I
21;dfðPf; Pi; qfÞ: ð19Þ

The final term can be written explicitly as

lim
sf→sR

ðsR − sfÞ
c

T II;I
21;dfðPf; Pi; qfÞ ¼ lim

sf→sR
cB21ðPf; Pi; qfÞ þ

ðsR − sfÞ
c

WA;II;I
df ðsf; Q2

f; sÞAB
21ðs;Q2

i Þ

þ ðsR − sfÞ
c

WB;II;I
df ðsf; Q2

i ; uÞAB
21ðu;Q2

fÞ
¼ cðB21ðQ2

f; Q
2
i ; sÞ þ ½AA

22ðsR;Q2
f; sÞ þ fðQ2

fÞGA;II;IðsR;Q2
f; sÞ�MðsÞAB

21ðs;Q2
i Þ

þ ½AB
22ðsR;Q2

i ; uÞ þ fðQ2
i ÞGB;II;IðsR;Q2

i ; uÞ�MðuÞAA
21ðu;Q2

fÞÞ: ð20Þ

Here againWII;I
df and GII;I are the analytic continuations of these functions to the second Riemann sheet, but in the sf variable

only. As is shown explicitly in Appendix D, GII;I is given by

GII;Iðsf; Q2
f; sÞ ¼ Gðsf; Q2

f; sÞ − DiscsfGðsf; Q2
f; sÞ; ð21Þ

where Discsf is the discontinuity across the branch cut on the sf-axis. Combining Eqs. (19) and (20) we find

t1→RðQ2
f; Q

2
i ; sÞ ¼ c½B21ðQ2

f; Q
2
i ; sÞ þAA

21ðsR;Q2
fÞiDðsÞiwB

onðQ2
i Þ þAB

21ðsR;Q2
i ÞiDðuÞiwA

onðQ2
fÞ

þ½AA
22ðsR;Q2

f; sÞ þ fðQ2
fÞGA;II;IðsR;Q2

f; sÞ�MðsÞAB
21ðs;Q2

i Þ
þ½AB

22ðsR;Q2
i ; uÞ þ fðQ2

i ÞGB;II;IðsR;Q2
i ; uÞ�MðuÞAA

21ðu;Q2
fÞÞ�: ð22Þ

In the case where the resonance becomes a stable bound state Eq. (22) has to have the same analytic structure as given by
(9). The first three terms in these equations already meet this requirement, and it can be shown that the last two terms also
share the same analytic structure up to an additive smooth contribution, which can be reabsorbed into the B term.
Having an on-shell representation of t1→R, we may now use this result along with Eq. (18) to access the elastic resonant

form factor, fR→R,

fR→RðQ2
fÞ ¼ lim

s→sR
ðsR − sÞ t

II
1→RðQ2

f; Q
2
i ; sÞ

f1→RðQ2
i Þ

¼ c3ðAA
22ðsR;Q2

f; sRÞ þ fðQ2
fÞGA;II;IIðsR;Q2

f; sRÞÞAB
21ðsR;Q2

i Þ
cAB

21ðsR;Q2
i Þ

¼ c2ðAA
22ðsR;Q2

f; sRÞ þ fðQ2
fÞGA;II;IIðsR;Q2

f; sRÞÞ: ð23Þ

In the second equality, we only kept the terms in tII1→R that
survive the limit, and we used the definition of f1→R from
Eq. (16). In the last equality, GA;II;II has been analytically
continued to the second sheet for both s and sf. It is

important to note that the final result agrees with the
definition of the fR→R found in Eq. (25) of Ref. [34],
providing further evidence for the expression found in
Eq. (11).
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B. Ward-Takahashi identity

In this section we will discuss the implication of the
Ward-Takahashi identity of conserved vector currents, i.e.,
gauge invariance, to our results. In the case of the initial and
final current insertions corresponding to external on-shell
photons, we will label the amplitudes as T μν

n1;RðPf; Pi; qfÞ
where the vector index μ corresponds to the outgoing
photon, while the index ν corresponds to the incoming one.
The restrictions imposed by gauge invariance on 1þ J ν →
1þ J μ are

qf;μT
μν
11ðPf; Pi; qfÞ ¼ qi;νT

μν
11ðPf; Pi; qfÞ ¼ 0; ð24Þ

which give rise to a series of low-energy theorems on the
amplitudes [90–92], and these apply even for off-shell
photons. In particular, by a clever choice of the kinematic
tensors, the dynamics of real Compton scattering off
spinless mesons can be contained within only two scalar
amplitudes [93]. These amplitudes are free of kinematic
singularities, and satisfy gauge invariance, time inversion,
parity, and charge conjugation. This is achieved by choos-
ing a set of kinematic tensors that incorporate gauge
invariance explicitly. However, the on-shell expansion
and the gauge invariance constraints will prove sufficient
to recover the forward limit of the amplitude.
As shown explicitly in Appendix A, expanding Eq. (9)

around zero photon energy q0, in the rest frame of the
hadron, yields the expression

iT μν
11;RðP; P; qÞ ¼ 2ifð0Þ2

�
gμν − ðPμqν þ PνqμÞ 1

mq0

�
þOðq20Þ; ð25Þ

where the second term in the parentheses vanishes once this
amplitude is contracted with the external photon wave
functions. The derivation of Eq. (25) does not require an
explicit Lorentz decomposition of Tμν

11;R, but only the
analytic properties of each of the terms of Eq. (9). This
demonstrates that the constraints from the integral equation,
Eq. (46), plus gauge invariance reproduce the well-known
Thomson scattering

ϵμð0Þ0�ϵνð0ÞiT μν
11;RðP;P; 0Þ ¼ 2ifð0Þ2ϵ0� · ϵ; ð26Þ

where ϵð0Þ is the polarization three-vector of the incoming
(outgoing) photon.
Similarly, the Ward identity for the 1þ J ν → 2þ J μ

amplitude makes it vanish when contracted against the
external photon momentum, regardless of the virtuality of
the photon

qf;μiT
μν
21ðPf;p0;Pi;qfÞ¼qi;νiT

μν
21ðPf;p0;Pi;qfÞ¼0: ð27Þ

This means that the divergent-free part is equal to the
negative of the long-distance contributions, whenever they
are contracted with the momenta of the external photons

qf;μiT
μν
21;dfðPf; p0;Pi; qfÞ ¼ −qf;μ½iHμ

onðPf; p0;PsÞiDðsÞiwν
onðPs; PiÞ þ iwμ

onðp0
f; p

0
sÞiDðp02

s ÞiHνðPs; p0;PiÞ
þ iHν

onðPf; p0;PuÞiDðuÞiwμ
onðPu; PiÞ þ iwν

onðp0
f; p

0
uÞiDðp02

u ÞiHμðPu; p0;PiÞ�; ð28Þ

and similarly when contracted with qi;ν. Equation (28)
includes both the direct channel as well as the crossed
channel contributions. The barrier factors in Hμ, as seen
from Eq. (69), are an overall multiplicative factor in each
on-shell partial-wave transition amplitude, and as a result
do not affect the behavior of the amplitudes under the Ward
identity. On the other hand, in Appendix B we discuss the
implications of the on-shell projection of single particle
states in Hon and won when contracting the subamplitudes
against the external photon momentum. For the case of a
spinless particle, the Lorentz decomposition of the on-shell
projected 1þ J μ → 1 amplitude is

wμ
onðkf; kiÞ ¼ ðkf þ kiÞμfð−ðkf − kiÞ2Þ: ð29Þ

This can be used to calculate the contractions between the
current momenta and the single-particle currents,

qf;μw
μ
onðp0

f;p
0
sÞ¼ðp0

s−p0
fÞμwμ

onðp0
f;p

0
sÞ¼ðp02

s −m2ÞfðQ2
fÞ;

ð30Þ

qf;μw
μ
onðPu;PiÞ¼ðPi−PuÞμwμ

onðPu;PiÞ¼ðm2−uÞfðQ2
fÞ;
ð31Þ

where the rightmost equalities follow from the fact that the
momenta Pi and p0

f ¼ Pf − p0 are on-shell.
In the case of spinless particles, the Lorentz decom-

position of the 1þ J μ → 2 depends on the intrinsic parity
of the hadrons. We will focus on the case where the three
hadrons are pseudoscalars and leave in Appendix B the
relevant formulas to derive the case with opposite parity,
although the final result for both cases is equal. The case
with pseudoscalars is the most relevant in the light quark
sector since all scalar mesons made up of only light quarks
are hadronic resonances. The Lorentz decomposition of this
on-shell projected transition is given by
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iHμ
onðPf; p0;PsÞ ¼ ϵμνσρPf;νp0

σPs;ρihðsf; ðPs − p0Þ2; q2fÞ;
ð32Þ

where the function h is an energy dependent transition form
factor. The contraction of this amplitude with the current
momenta qf ¼ Pf − Ps will vanish due to the Levi-Civita
tensor, even for Ps ≠ m2. After performing the momentum
contraction to the long-range terms in Eq. (28), and the
equivalent operation with qi;ν, they simplify to

qf;μiT
μν
df ðPf; p0;Pi; qfÞ ¼ fðQ2

fÞðiHνðPs; p0;PiÞ
− iHν

onðPf; p0;PuÞÞ; ð33Þ

qi;νiT
μν
df ðPf; p0;Pi; qfÞ ¼ fðQ2

i ÞðiHμ
onðPf; p0;PsÞ

− iHμðPu; p0;PiÞÞ: ð34Þ

These expressions can be exploited to obtain an expression
of T μν

df in terms of simpler amplitudes whenever one of the
external photon momenta vanishes. Let us now specialize
to the case of vanishing final photon momentum, expand
the right-hand side of Eq. (33) around qf;μ ¼ 0, and keep
only the first order term. This can be equated to obtain the
T μν

df ðPf; p0;Pi; 0Þ amplitude. For that we begin by showing
the dependence on qf;μ explicitly,

qf;μiT
μν
21;dfðPf; p0;Pi; qfÞ ¼ fðQ2

fÞ
X
lm

ffiffiffiffiffiffi
4π

p
Ylmðp̂0⋆

f Þ
�
iMlððPf þ qfÞ2ÞAν

21;lmðPf þ qf; PiÞ
�
p0⋆
s

q⋆s

�
l

− iMlðsfÞAν
21;lmðPf; Pi − qfÞ

�
; ð35Þ

where q⋆s is the two-particle relative momentum in the CM frame of the intermediate s-channel. The momentummagnitudes
p0⋆
s and q⋆s depend implicitly on qf since Ps ¼ Pf þ qf. The first order expansion of the amplitudes M and Aν is

straightforward, and the expansion of the barrier factors can be shown to be equal to

�
p0⋆
s

q⋆s

�
l ≡

0
BBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0·ðPfþqfÞÞ2
ðPfþqfÞ2 −m2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPfþqfÞ2

4
−m2

q
1
CCCA

l

ð36Þ

¼ 1 −
l
q⋆2f

qf;μðPf − p0Þμ þOðqf;μqf;νÞ; ð37Þ

where q⋆f is the relative momentum of the final two-particle state. In the limit that external photon momentum qf;μ ¼ 0 we
find that

T μν
21;dfðPf; p0;Pi; 0Þ ¼ fð0Þ

X
lm

ffiffiffiffiffiffi
4π

p
Ylmðp̂0⋆

f Þ
�
2Pμ

f

∂MlðsfÞ
∂sf Aν

21;lmðPf; PiÞ

þMlðsfÞ
� ∂
∂Pμ

f
þ ∂
∂Pμ

i

�
Aν

21;lmðPf; PiÞ −
l
q⋆2f

ðPf − p0ÞμMlðsfÞAν
21;lmðPf; PiÞ

�
: ð38Þ

Using crossing symmetry, or by repeating the previous steps beginning with Eq. (34) instead of Eq. (33), we find, in the
limit that qi ¼ Pf þ qf − Pi vanishes, the divergent-free amplitude is equal to

T μν
21;dfðPf; p0;Pi;Pi − PfÞ ¼ fð0Þ

X
lm

ffiffiffiffiffiffi
4π

p
Ylmðp̂0⋆

f Þ
�
2Pν

f

∂MlðsfÞ
∂sf Aμ

21;lmðPf; PiÞ

þMlðsfÞ
� ∂
∂Pν

f
þ ∂
∂Pν

i

�
Aμ

21;lmðPf; PiÞ −
l
q⋆2f

ðPf − p0ÞνMlðsfÞAμ
21;lmðPf; PiÞ

�
: ð39Þ

These equations show that the Ward identity constrains the short-distance piece B21 to be given in terms of simpler
amplitudes whenever one of the photon momenta vanishes.
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IV. DERIVATION OF ON-SHELL
REPRESENTATIONS

Here we present the derivation for the two Compton-like
amplitudes presented in Sec. II. We review first the known
on-shell relation for the Compton amplitude of a single
hadron, written in Eq. (9). Then, we present our new result
for the Compton-like amplitude involving two hadrons, the
1þ J → 2þ J process, given in Eq. (11). In both cases,
the final hadronic state has an outgoing total momentum
Pf, and the final current is extracting momentum qf,
while the initial hadronic state has an incoming total
momentum Pi, and the initial current injects momen-
tum qi ¼ Pf þ qf − Pi.
In order to simplify the derivation, we will make a set of

assumptions which will be lifted in Sec. IV C. First, we
assume that only one channel composed of two particles
may be kinematically open. We will assume that the
particles carry the same mass, which we will label as m,
but only one of these can couple to the external current.
Although in this sense, the particles are distinguishable, we
will introduce a symmetry factor, ξ, which is defined to be
1=2 if the particles are identical and 1 otherwise. This will
serve as bookkeeping for when we lift these assumptions.
In what follows, we assume that the external particles

can couple to the external currents. As a result, for the
simple Compton amplitude 1þ J → 1þ J , we expect a
simple single-particle pole contributing to the amplitude.
Because the fully dressed single particle propagator only

depends on the masses of the particles, we will label it
simply as ΔðkÞ for all particles of momentum k. The simple
pole contribution of the propagator is labeled as Dðk2Þ and
defined in Eq. (10). The nonanalytic pieces of loop
integrals emerge from these simple poles. Near the sin-
gle-particle pole, the difference between Δ and D is a
smooth function, whose contribution will be absorbed into
smooth kernels in the derivation below. In order to simplify
the notation further, we will introduce a symbol for the
product of two propagators, Δð2Þ, defined by

Δð2ÞðP; kÞ≡ iΔðkÞiΔðP − kÞ; ð40Þ

where P is the total momentum carried by these two
propagators. The Compton-like amplitudes have contribu-
tions from direct and exchange diagrams, which in the case
of identical currents are related via crossing symmetry.
Throughout the derivations that follow, we will consider the
direct contribution, where the intermediate states have
momentum Ps, i.e., the sum of the initial state momentum
and that of the incoming current B. This s-channel
contribution to the amplitude will be made explicit by
introducing AB subscripts in the various building blocks. It
is relatively straightforward to obtain the u-channel con-
tributions by replacing A ↔ B and changing the corre-
sponding kinematic dependence of the amplitudes, i.e.,

qi ↔ −qf and s ↔ u. This will be done at the end of the
derivation.
As is evident from the final expressions presented in

Sec. II, the singularity structure of these amplitudes
depends on the amplitudes associated with physical sub-
processes, M, won, H, and W. In Sec. II we provided the
on-shell representation of these. Here we provide the
expressions of the integral equations for the off-shell M
and H amplitudes, since these will be used in the
subsequent derivation,7

iMðp0; pÞ ¼ iK0ðp0; pÞ

þ ξ

Z
d4k
ð2πÞ4 iMðp0; kÞΔð2ÞðPf; kÞiK0ðk; pÞ;

ð41Þ

iHAðPf;p0;PiÞ¼ iHA
0 ðPf;p0;PiÞþξ

Z
d4k
ð2πÞ4 iMðp0;kÞ

×Δð2ÞðPf;kÞiHA
0 ðPf;k;PiÞ; ð42Þ

where the momentum flowing through M and K0 is
labeled as Pf but it has been left implicit in its arguments.
The external momenta p and p0 denote the off-shell
momenta of particle two in the initial and final states,
respectively. Beyond the dependence on these external
momenta, the fact that the amplitudes are off-shell is left
implicit in here. Once the amplitudes M and H have been
partial-wave projected, which is implicitly done with the
“on” subscript or the barred operator H, they can be
understood as being the on-shell amplitude.
In Eq. (42) we separated the kinematic variables of H

associated with the initial and final states by a semicolon.
When the particle carrying the momentum p0 goes on-shell
and the subsequent amplitude is partial-wave projected, the
dependence on p0 will be trivial and is omitted from the
subsequent expressions.
The kernels K0 and H0 are smooth functions up to the

first unaccounted physical threshold. For now, this inelastic
threshold could include a second two-particle channel, but
after our generalization this must include three or more
particles. This will be true for all the kernels considered in
the following derivation, which will be labeled by bold-
faced capital letters.
To further simplify the following derivation we will

introduce a compact notation for the functions and integrals
considered. When we first write down the integral equation
considered, we will show all kinematic and integration
variables explicitly. After having written these expressions,
we will proceed to manipulate each element by leaving its
kinematic arguments and integration measure suppressed.
The measure will be denoted using

7The expression for H was first given in Ref. [54].

SHERMAN, ORTEGA-GAMA, BRICEÑO, and JACKURA PHYS. REV. D 105, 114510 (2022)

114510-10



Z
d4k
ð2πÞ4 →

Z
k
: ð43Þ

Using this notation, the integral equation for H, Eq. (42),
can be rewritten as

iHA ¼ iHA
0 þ ξ

Z
k
iM · Δð2Þ · iHA

0 : ð44Þ

The dots separating each element remind the reader that
these are functions of the internal flowing momenta. This
simplified notation will primarily be used for intermediate
steps in the derivation while final results will always be
shown with full notation.
Finally, the off-shell extension of the one-particle matrix

elements will be labeled by

wAðkf; kiÞ ¼
X
j

KA
j ðkf; kiÞfjðQ2; k2f; k

2
i Þ; ð45Þ

where Kj are kinematic prefactors and fjðQ2; k2f; k
2
i Þ are

the generalized off-shell form factors. As first described in
Ref. [58], one can recover the standard on-shell form
factors, fjðQ2Þ, by fixing the external momenta on-shell,

i.e., k2f ¼ k2i ¼ m2. We refer the reader to Appendix B for a
discussion about the prescription for the on-shell expansion
of the form factors.

A. The 1 +J → 1 +J Compton amplitude

We begin by reproducing the derivation of the on-shell
projection for T 11 first presented in Ref. [33]. The steps
closely resemble those presented in Ref. [34] for ampli-
tudes involving a single current insertion.
Summing to all orders in the strong interaction, depicted

in Fig. 6, we find that the s-channel contributions to T 11

can be written as

iT s
11ðPf;Pi;qfÞ¼ iwAðPf;PsÞiΔðPsÞiwBðPs;PiÞþ iTAB

11;0ðPf;Pi;qfÞþξ

Z
d4k
ð2πÞ4 iH

A
0 ðPf;Ps;kÞΔð2ÞðPs;kÞiHBðk;Ps;PiÞ;

ð46Þ

where we remind the reader Ps ¼ Pf þ qf ¼ Pi þ qi such
that P2

s ¼ s. The superscript s on T 11 is to remind the reader
that this is the contribution due to direct diagrams only.
The kernel T11;0 couples one-particle states via two-

current insertions. By making the single-particle poles and
two-particle cuts explicit, T11;0 is defined to be one- and
two-particle s-channel irreducible, and consequently it is a
smooth, nonsingular function in the kinematic region of
interest.
The pole term can be put into an on-shell form by

expanding w about the on-shell point for the internal pro-
pagator. The remaining short-distance contributions can be
absorbed into a single function,whichwewill denote asT11;α,

iwA · iΔ · iwB ¼ iTAB
11;αðPf; Pi; qfÞ

þ iwA
onðPf; PsÞiDðsÞiwB

onðPs; PiÞ: ð47Þ

A supplementary discussion about the on-shell expansion
process of kernel w can be found in Appendix B.
For the final term in Eq. (46) we use a similar

procedure as that shown in Ref. [34], where we start by
substituting the integral relation for H, Eq. (42), such
that we are left with integrals representing loops with
smooth, nonsingular kernels on each vertex. As reviewed
in some detail in Appendix C, we can then separate
out the singular pieces of these integrals by taking
advantage of the fact that in our limited kinematic region
the only singularities that may occur come from the
intermediate two-particle state going on-shell. Making
this separation and partial-wave projecting the kernels to
complete the integration over the singular piece,
we find

ξ

Z
k
iHA

0 · Δð2Þ · iHB ¼
X
l;ml

iHA
0;lml

ðPf; PsÞρiHB
lml

ðPs; PiÞ þ iTAB
11;1ðPf; Pi; qfÞ

þ ξ

Z
d4k
ð2πÞ4 iH

A
1 ðPf;Ps; kÞΔð2ÞðPs; kÞiHBðPs; k;PiÞ: ð48Þ

FIG. 6. Self-consistent integral equation for the Compton
amplitude iT s

11, where the s superscript is to emphasize that
only the direct channel diagrams are featured. The gray circles
represent the one-body matrix element, the open white circles
represent the kernels iTAB

11;0 and iHA
0 , respectively, which contain

all the two-particle irreducible diagrams in the P2
s ¼ s channel.
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This on-shell separation results in two new kernels H1 and
T11;1, both of which come from the off-shell contributions
of the loop integral. H1 comes with a kernel K0 in one
vertex and H0 in the other, while T11;1 has kernels H0 on
each vertex. The last term of Eq. (48) has the same structure

as the left-hand side, and therefore, we can repeat the step
shown in Eq. (48) and iterate an infinite number of times to
generate T11;j and Hj for all j ∈ N. After summing all
terms, we arrive at the on-shell expression

iT s
11ðPf;Pi;qfÞ¼ iwA

onðPf;PsÞiDðsÞiwB
onðPs;PiÞþ iTAB

11 ðPf;Pi;qfÞþ
X
l;ml

iHA
lml

ðPf;PsÞρMlðsÞiAB
21;lml

ðPs;PiÞ; ð49Þ

where T11 includes the sum of all iterated T11;j kernels as
well as T11;α, H is the sum of all Hj kernels, and we use
Eq. (4) to rewrite H in terms of M and A21.
As discussed in Ref. [34], if the K-matrix has unphysical

poles, H will contain these same poles. This can be made
explicit by writing it as

HA
lml

ðPf; PsÞ ¼ AA
12;lml

ðPf; PsÞKlðsÞ: ð50Þ

These poles arise by the all-orders summation of the
smooth contribution to the s-channel loop integrals.
These must be absent in T 11 in order to assure that it
remains analytic except for singularities required by uni-
tarity. Any unphysical poles present in the last term of

Eq. (49) have to be canceled exactly by unphysical K-
matrix poles present in T11. We remove the apparent poles
in T 11 by explicitly choosing T11 to be

TAB
11 ðPf; Pi; qfÞ ¼ BAB

11 ðPf; Pi; qfÞ þ
X
l;ml

AA
12;lml

ðPf; PsÞ

×KlðsÞAB
21;lml

ðPs; PiÞ; ð51Þ

where B11 is a real and smooth function in the restricted
kinematic domain. Inserting this as well as Eq. (50) for H
into Eq. (49), we can write our final expression for the
s-channel contributions

iT s
11ðPf;Pi;qfÞ¼ iwA

onðPf;PsÞiDðsÞiwB
onðPs;PiÞþ iBAB

11 ðPf;Pi;qfÞþ
X
l;ml

AA
12;lml

ðPf;PsÞiMlðsÞAB
21;lml

ðPs;PiÞ; ð52Þ

where on-shell expression ofM in Eq. (2) was used to further simplify the last term. Below the two-particle threshold, the
last term on the right-hand side of Eq. (52) becomes a smooth analytic contribution, up to possible bound state poles in the
two-particle channel, which are encoded in M.
As promised, we can now easily include the contribution from the exchange diagrams from Eq. (52) by swapping the A

and B indices, and changing qf → −qi, which results in s → u. Adding these two contributions, and again using the
previously introduced notation Pu ¼ Pf − qi ¼ Pi − qf such that P2

u ¼ u, we arrive at our final expression for T 11,

iT 11ðPf;Pi;qfÞ¼ iwA
onðPf;PsÞiDðsÞiwB

onðPs;PiÞþ iwB
onðPf;PuÞiDðuÞiwA

onðPu;PiÞþ iBAB
11 ðPf;Pi;qfÞþ iBBA

11 ðPf;Pi;−qiÞ
þ
X
l;ml

½AA
12;lml

ðPf;PsÞiMlðsÞAB
21;lml

ðPs;PiÞþAB
12;lml

ðPf;PuÞiMlðuÞAA
21;lml

ðPu;PiÞ�: ð53Þ

It is worth noting that this result agrees with the expression
given in Eq. (53) of Ref. [33] for the Compton scattering
amplitude.

B. The 1 +J → 2 +J Compton amplitude

Having derived the on-shell representation for the case of
the standard Compton amplitude we now move on to the
derivation of our main result where we may have two
hadrons in either the initial or the final state but not both.
We denote this class of Compton-like amplitudes as T 21

where the subscript tells us the number of hadrons in the
final/initial states, respectively.

To begin, we can split the amplitude into two sets, one
which contains kernels involving one-body interactions,
and the other which depends on a new short-distance kernel
(T0j0) which, as with all other kernels, is smooth and
nonsingular in the kinematic region of interest. Labeling
these as iT 1B and iT =1B, respectively, we have

iT AB
21 ¼ iT AB

21;=1B þ iT AB
21;1B: ð54Þ

In Secs. IV B 1 and IV B 2, we consider the case of the
direct contributions, i.e., those appearing as s-channel
intermediate states, and we give the governing equations
of these terms, respectively.
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1. No one-body amplitude

We begin by first analyzing the T s
21;=1B amplitude, the direct diagrams with no one-body contributions, which are shown

diagrammatically in Fig. 7. To all orders in the strong interaction, this can be written as

iT s
21;=1BðPf;p0;Pi;qfÞ ¼ iTAB

0j0ðPf;p0;Pi;qfÞþ ξ

Z
d4k
ð2πÞ4 iMðp0;kÞΔð2ÞðPf;kÞiTAB

0j0ðPf;k;Pi;qfÞ

þ ξ

Z
d4k
ð2πÞ4 iW

A
0j0ðPf;p0;Ps;kÞΔð2ÞðPs;kÞiHBðPs;k;PiÞ

þ ξ

Z
d4k0

ð2πÞ4 ξ
Z

d4k
ð2πÞ4 iMðp0; k0ÞΔð2ÞðPf;k0ÞiWA

0j0ðPf;k0;Ps;kÞΔð2ÞðPs;kÞiHBðPs;k;PiÞ; ð55Þ

where we have introduced two new short distance kernels, W0j0 and T0j0, involving one and two current insertions,
respectively. The former was introduced in Ref. [34] for deriving the expression for Wdf, given in Eq. (5).
In Eq. (55) we separated the kinematic variables of T

21;=1B and W0j0 associated with the final state, the initial state, and

one of the currents with semicolons. As was the case withH, we will only keep the semicolons for amplitudes that are off-
shell and/or have not been partial-wave projected. This notation will be used throughout.
The classes of integrals are identical to the ones considered in Ref. [34] in the context of theW amplitude. As previously

mentioned, in Appendix C we provide the key identities needed to isolate the singularities of these. Using Eq. (C7), we can
rewrite the first two terms of Eq. (55) to isolate the phase space singularities

iTAB
0j0 þ ξ

Z
k
iM · Δð2Þ · iTAB

0j0 ¼ iTAB
∞j0ðPf; p0;Pi; qfÞ þ

X
l;ml

iMlðp0ÞρiTAB
∞j0;lml

ðPf; Pi; qfÞ; ð56Þ

where T∞j0 includes the sum over an infinite number of smooth iterated kernels Tjj0.
For the third term in Eq. (55) we use the integral equation for H, Eq. (42), and Eq. (C13) to rewrite it as

ξ

Z
k
iWA

0j0 · Δ
ð2Þ · iHB ¼

X∞
j¼1

iTAB
0jj ðPf; p0;Pi; qfÞ þ

X
l;ml

iWA
0j∞;lml

ðPf; p0;PsÞρiHB
lml

ðPs; PiÞ: ð57Þ

Finally, the last term in Eq. (55) can be added to Eq. (57) using Eq. (C7),

ξ

Z
k
iWA

0j0 · Δ
ð2Þ · iHB þ ξ

Z
k0
ξ

Z
k
iM · Δð2Þ · iWA

0j0 · Δ
ð2Þ · iHB

¼
X∞
j¼1

iTAB
∞jjðPf; p0;Pi; qfÞ þ

X
l;ml

iWA
=1B;lml

ðPf; p0;PsÞρiHB
lml

ðPs; PiÞ

þ
X
l0;m0

l

iMl0 ðp0Þρ
�X∞

j¼1

iTAB
∞jj;l0m0

l
ðPf; Pi; qfÞ þ

X
l;ml

iWA
=1B;l0m0

l;lml
ðPf; PsÞρiHB

lml
ðPs; PiÞ

�
; ð58Þ

where we have introduced the function WA
=1B, defined as

WA
=1B;l0m0

l;lml
≡ X∞

j0;j¼0

iWA
j0jj;l0m0

l;lml
: ð59Þ

Adding Eqs. (56) and (58) we arrive at the final expression for iT
21;=1B,

iT s
21;=1BðPf;p0;Pi;qfÞ¼ iTAB

=1B ðPf;p0;Pi;qfÞþ
X
l;ml

iMlðp0ÞρiTAB
=1B;lmðPf;Pi;qfÞþ

X
l;ml

iWA
=1B;lml

ðPf;p0;PsÞρiHB
lml

ðPs;PiÞ

þ
X
l0;m0

l

iMl0 ðp0Þρ
X
l;ml

iWA
=1B;l0m0

l;lml
ðPf;PsÞρiHB

lml
ðPs;PiÞ; ð60Þ
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where we have added the smooth contributions into a single
kernel

TAB
=1B ¼

X∞
j0;j¼0

TAB
j0jj: ð61Þ

Finally, we partial-wave project the final state so that the
result simplifies to

iT s
21;=1B;lml

ðPf; Pi; qfÞ

¼ ð1þ iMlðsfÞρÞ
�
iTAB
=1B;lmðPf; Pi; qfÞ

þ
X
l0;m0

l

iWA
=1B;lml;l0m0

l

ðPf; PsÞρiHB
l0m0

l
ðPs; PiÞ

�
: ð62Þ

This result is easy to understand. In the absence of the one-
body couplings to the current, the amplitude does not have

triangle singularities. As a result, the only source of
singularities is due to s-channel bubble diagrams, which
result in the ρ cuts.
It is worth noting that both T=1B and WA

=1B can have

unphysical K-matrix poles. We make these explicit in our
final expression for T 21. Finally, Eq. (62) only includes
contributions from the s-channel. As with T 11, it
is straightforward to include the contribution from the
u-channel diagrams, which we will do once we have
derived the on-shell representation for T 21;1B.

2. One-body amplitude

Having dealt with T s
21;=1B we move on to the second term

contributing to Eq. (54) featuring direct diagrams with one-
body current insertions, namely T s

21;1B. Its diagrammatic
representation is shown in Fig. 7, and its underlying
equation can be written as

iT s
21;1BðPf; p0;Pi; qfÞ ¼ iHAðPf; p0;PsÞiΔðPsÞiwBðPs; PiÞ þ iwAðp0

f; p
0
sÞiΔðp0

sÞiHBðPs; p0;PiÞ

þ
Z

d4k
ð2πÞ4 iMðp0; kÞΔð2ÞðPf; kÞiwAðkf; ksÞiΔðksÞiHBðPs; k;PiÞ; ð63Þ

where p0
f=s ≡ Pf=s − p0, kf=s ≡ Pf=s − k, and all other

building blocks have previously been defined.
We begin by isolating the pole contribution of the

propagator of the first term. To do this, we first use the
definition of the transition amplitude,HA, given in Eq. (44)
in terms of the HA kernel. Next, we place the adjacent
kernels on their mass shell. By replacing HA with HA

0 , we
get the first contribution to iHA · iΔ · iwB,

iHA
0 ðPf; p0;PsÞiΔðPsÞiwBðPs; PiÞ

¼ iTAB
0jRðPf; p0;Pi; qfÞ

þ iHA
0;onðPf; p0;PsÞiDðsÞiwB

onðPs; PiÞ; ð64Þ

where T0jR is a new smooth function absorbing all off-shell
effects and the R in the subscript is meant to remind us that
the single-current coupling is taking place to the right of the
diagram. We illustrate this procedure diagrammatically in
Fig. 8. The subscript “on” in the kernelHon is to emphasize
that even if Ps is off-shell, the energy-dependent transition
form factors within are to be projected on-shell.
Appendix B provides further discussion about this pro-
cedure and an explicit treatment in the case of a conserved
vector current. Using the all orders definition of H,
Eq. (44), we get

FIG. 8. Diagrammatic form of the on-shell expansion shown in
Eq. (64). The first term is a new smooth kernel which we define to
be TAB

0jR, and the dotted line in the second term represents the pole
piece of the propagator, D.

FIG. 7. Diagrammatic representation of the direct diagrams of
the transition amplitude iT s

21. Most of the building blocks were
previously defined in Figs. 3 and 6, with the exception of the
white open circle connecting 1 and 2 hadronic states via the
insertion of two local currents, which is the diagrammatic
representation of TAB

0j0.
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iHA · iΔ · iwB ¼ iHA
onðPf; p0;PsÞiDðsÞiwB

onðPs; PiÞ þ iTAB
0jRðPf; p0;Pi; qfÞ

þ ξ

Z
d4k
ð2πÞ4 iMðp0; kÞΔð2ÞðPf; kÞiTAB

0jRðPf; k;Pi;qfÞ ð65Þ

¼ iHA
onðPf; p0;PsÞiDðsÞiwB

onðPs; PiÞ þ iTAB
∞jRðPf; p0;Pi; qfÞ þ

X
l;ml

iMlðp0ÞρiTAB
∞jR;lml

ðPf; Pi; qfÞ; ð66Þ

where we used Eq. (C7) to write the second equality.
For the second term in Eq. (63), we use the self-

consistent integral equation for H to rewrite it as

iwA · iΔ · iHB ¼ iwAðp0
f; p

0
sÞiΔðp0

sÞiHB
0 ðPs; p0;PiÞ

þ iwAðp0
f; p

0
sÞiΔðp0

sÞξ

×
Z

d4k
ð2πÞ4 iMðp0; kÞΔð2ÞðPs; kÞ

× iHB
0 ðPs;Pi; pÞ: ð67Þ

Once again, we can isolate the pole contribution by
projecting the final state coupling to theH0 kernel on-shell.
We do this by writing this kernel in terms of its CM
coordinates and using spherical harmonics to parametrize
the angular dependence. In order to assure that this
procedure does not introduce spurious singularities, we
use the modified spherical harmonics, Yl;ml

, defined in
Eq. (8). With this, we find

iwA · iΔ · iHB
0 ¼ iTAB

Lj0ðPf; p0;Pi;qfÞ
þ iwA

onðp0
f; p

0
sÞiDðp02

s Þ
×
X
l;ml

Ylml
ðp0⋆

s ÞiHB
0;lml

ðPs; PiÞ ð68Þ

≡ iTAB
Lj0ðPf; p0;Pi; qfÞ

þ iwA
onðp0

f; p
0
sÞiDðp02

s ÞiHB
0 ðPs; p0;PiÞ; ð69Þ

where in the last equality we have introduced a working
definition for H. The smooth kernel TLj0 is similar to T0jR
except that the current is now coupling to the left of the
diagram. This procedure is summarized in Fig. 9.
Next, we expand the second term of Eq. (67) by using the

recursion relation (41) such that onlyK0 kernels are next to
the single particle intermediate state. We will use the on-
shell expansion defined in Ref. [34],

iwAðp0
f; p

0
sÞiΔðp0

sÞiK0ðp0; kÞ
¼ iWA

Lj0ðPf; p0;Ps; kÞ þ iwA
onðp0

f; p
0
sÞiDðp02

s ÞiK0ðp0; kÞ;
ð70Þ

where K0 is defined in an analogous way to H0. Once all
the barred kernels have been grouped together we recover
the barred transition amplitude

iHBðPs; p0;PiÞ≡ iHB
0 þ ξ

Z
k
iK0 · Δð2Þ · iHB

0

þ ξ

Z
k
ξ

Z
k0
iK0 · Δð2Þ · iM · Δð2Þ · iHB

0

ð71Þ

¼
X
l;ml

Ylml
ðp0⋆

s ÞiHB
lml

ðPs; PiÞ; ð72Þ

where the last equality is a consequence of the recursive
definition of Eq. (42) and the definition of a barred kernel.
This allows us to rewrite Eq. (67) in the following

manner:

iwA · iΔ · iHB ¼ iwA
onðp0

f; p
0
sÞiDðp02

s ÞiHBðPs; p0;PiÞ
þ iTAB

Lj0ðPf; p0;Pi; qfÞ

þ ξ

Z
d4k
ð2πÞ4 iW

A
Lj0ðPf; p0;Ps; kÞ

× Δð2ÞðPs; kÞiHBðPs; k;PiÞ: ð73Þ

To finish the simplification of Eq. (67) we apply Eq. (C13)
to isolate the singularities of the remaining integral to find

FIG. 9. Diagrammatic form of the expansion shown in Eq. (69).
The first term is again a new smooth kernel we call TLj0, and the
white open circle in the second term represents H0 which is
similar to H0 except that it contains the modified spherical
harmonics Ylm as described in the text.
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iwA · iΔ · iHB¼ iwA
onðp0

f;p
0
sÞiDðp02

s ÞiHBðPs;p0;PiÞ
þ iTAB

Lj∞ðPf;p0;Pi;qfÞ
þ
X
l;ml

iWA
Lj∞;lml

ðPf;p0;PsÞρiHB
lml

ðPs;PiÞ;

ð74Þ

where we defined the TLjj kernels following Eq. (C10) by
replacing Aj → WLjj, B0 → H0, and Ij → TLjj.

Finally, we need to study the analytic structure
arising from the triangle diagram in the last term of
Eq. (63). To simplify the derivation we begin by replacing
M and H with K0 and H0, respectively. Adding the
rescattering contributions afterwards is straightforward.
This diagram was discussed in great detail in Ref. [34],
and it was shown that this contribution can be decom-
posed into four pieces that feature different analytic
behaviors:

Z
d4k
ð2πÞ4 iK0ðp0; kÞΔð2ÞðPf; kÞiwAðkf; ksÞiΔðksÞiHB

0 ðPs; k;PiÞ ¼ iTAB
0jCj0ðPf; p0;Pi; qfÞ

þ
X
l;ml

iWA
0jR;lml

ðPf; p0;PsÞρiHB
0;lml

ðPs; PiÞ þ
X
l;ml

iK0;lml
ðp0ÞρiTAB

Lj0;lml
ðPf; Pi; qfÞ

þ
X
l0;m0

l

X
l;ml

K0;l0m0
l
ðp0Þ

X
j

ifjð−q2fÞGA
j;l0m0

l;lml
ðPf; PsÞHB

0;lml
ðPs; PiÞ; ð75Þ

where G is the triangle function defined in Eq. (7) which
encodes the possible triangle singularities associated with
all intermediate particles in Fig. 10(b) going on-shell. The
kernel W0jR is the mirror of WLj0; i.e., it is a smooth
function. The kernel T0jCj0 captures the remaining analytic
behavior of the triangle diagram.
It is worth commenting on the subscript of the T kernels.

First, T0jCj0 denotes a kernel that is arising from a short
distance contribution where a single-particle coupling to
the current appears in the center of the triangle diagram. In

contrast to this, the kernel TLj0 arises from the one-body
contribution being to the right of the triangle diagram, but
to the left of H0, and it is the same kernel that appeared in
Eq. (68). Finally, T0jR appeared when the one-body
contribution was to the right of the H0 in Eq. (64). In
Fig. 10(a) we illustrate the different contributions to the
triangle diagram.
Equation (75) is, of course, one contribution to the last

term in Eq. (63). This contribution will be dressed by an
infinite number of terms with s-channel integrals of the

(a)

(b)

FIG. 10. Shown in (a) is the decomposition of the triangle diagram into each of its on-shell pieces where the first three terms contain
the smooth kernels T0jCj0, W0jR, and TLj0, respectively. The analytic form of this is shown in Eq. (75). The final term of this
decomposition is shown in more detail in (b) where the open semicircles on the left and right represent the modified spherical harmonics
Ylml

.
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form
R
K0Δð2Þ from the left, and in the intermediate state between the one-body current andH0. These integrals will result

in further ρ and triangle singularities. It is straightforward to see that for the intermediate states we will need to consider
triangle diagrams of the form

R
iK0 · Δð2Þ · iw · iΔ · iK0. Expressions of these terms can be obtained by replacing the

kernels T → W and H0 → K0 into the previous equation. All the terms proportional to the triangle function G can be
grouped and summed together to recover the M and H amplitudes. In short, this can be obtained from the last term in the
previous equation using the following replacement:X

l0;m0
l

X
l;ml

K0;l0m0
l
ðp0Þ

X
j

ifjð−q2fÞGA
j;l0m0

l;lml
ðPf; PsÞHB

0;lml
ðPs; PiÞ

⟶
X
l0;m0

l

X
l;ml

Ml0 ðp0Þ
X
j

ifjð−q2fÞGA
j;l0m0

l;lml
ðPf; PsÞHB

lml
ðPs; PiÞ: ð76Þ

We now turn our attention to the determination of terms that do not include the triangle function G. At first we will only
focus on the additional terms from intermediate two-body rescattering; the s-channel integrals from the final state
interactions are straightforward to account for at the end by means of Eq. (C7). We start by considering terms that will dress
TAB
0jCj0 to the right. These arise from the analytic piece of the triangle diagrams, i.e., T0jCj0, or terms containingW0jCj0. After

grouping them they can be expressed as

iTAB
0jCj0ðPf; p0;Pi; qfÞ þ ξ

Z
d4k
ð2πÞ4 iW

A
0jCj0ðPf; p0;Ps; kÞΔð2ÞðPs; kÞiHBðPf; k;PiÞ

¼ iTAB
0jCj∞ðPf; p0;Pi; qfÞ þ

X
l;ml

iWA
0jCj∞;lml

ðPf; p0;PsÞρiHB
lml

ðPs; PiÞ; ð77Þ

where we have used Eq. (C13) to project the kernels on-shell and defined the smooth kernel TAB
0jCjj implicitly via the loop

identity

ξ

Z
d4k
ð2πÞ4 iW

A
0jCjjðPf; p0;Ps; kÞΔð2ÞðPs; kÞiHB

0 ðPs; k;PiÞ ¼ iTAB
0jCjjþ1

ðPf; p0;Pi; qfÞ

þ
X
l;ml

iWA
0jCjj;lml

ðPf; p0;PsÞρiHB
0;lml

ðPf; PiÞ: ð78Þ

These same kernels will later be dressed from the left from contributions of the form

ξ

Z
d4k
ð2πÞ4 iK0ðp0; kÞΔð2ÞðPs; kÞiTAB

jjCjj0 ðPs; k;Pi; qfÞ ¼ iTAB
jþ1jCjj0 ðPf; p0;Pi; qfÞ

þ
X
l;ml

iK0;lml
ðp0;PsÞρiTAB

jþ1jCjj0;lml
ðPf; Pi; qfÞ: ð79Þ

Next, the kernelW0jR in the triangle diagram decomposition is always featured next to a phase space factor ρ, so that all
terms to the right of them can be factored into the amplitude H and placed on-shell,

X
l;ml

iWA
0jR;lml

ðPf; p0;PsÞρ
�
iHB

0;lml
ðPs; PiÞ þ ξ

Z
d4k
ð2πÞ4 iK0;lml

ðkÞΔð2ÞðPf; kÞiHBðPf; k;PiÞ
�

¼
X
l;ml

iWA
0jR;lml

ðPf; p0;PsÞρiHB
lml

ðPs; PiÞ: ð80Þ

The final state interactions can be taken into account in Eqs. (77) and (80) by applying the result found in Eq. (C7),

iTAB
0jCj∞ → iTAB

∞jCj∞ þ
X
l;ml

iMlρiTAB
∞jCj∞;lml

; ð81Þ
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iWA
0jCj∞;lml

→ iWA
∞jCj∞;lml

þ
X
l0;m0

l

iMl0ρiWA
∞jCj∞;l0m0

l;lml
;

ð82Þ

iWA
0jR;lml

→ iWA
∞jR;lml

þ
X
l0;m0

l

iMl0ρiWA
∞jR;l0m0

l;lml
: ð83Þ

Finally, all the terms with one-body contributions to the
left of the kernel after splitting the analytic behavior of the

triangle diagrams feature either TLj0 or WLj0. These terms
will appear within a sum over partial waves times a factor
of iK0;lml

ðp0Þρ, e.g., the third term on the right-hand side
of Eq. (75). Once final state interactions are taken into
account, this factor becomes iMlðp0Þρ. Leaving this
common factor implied, the analytic structure of the terms
with left kernels can be found, with the aid of Eq. (C13), to
be equal to

iTAB
Lj0;lml

ðPf; Pi; qfÞ þ ξ

Z
d4k
ð2πÞ4 iW

A
Lj0ðPf; p0;Ps; kÞΔð2ÞðPs; kÞiHBðPf; k;PiÞ

¼ iTAB
Lj∞;lml

ðPf; Pi; qfÞ þ
X
l0;m0

l

iWA
Lj∞;lml;l0m0

l
ðPf; PsÞρiHB

l0m0
l
ðPs; PiÞ; ð84Þ

where TAB
Ljj is defined via the loop identity that results from replacing the subscript 0jC → L in the W and T kernels of

Eq. (78).
The on-shell projection of the T 1B projection can be found by adding together Eqs. (66), (74), (75) along with the

rescattering contributions for Eq. (75),

iT s
21;1BðPf;p0;Pi;qfÞ ¼ iHA

onðPf;p0;PsÞiDðsÞiwB
onðPs;PiÞþiwA

onðp0
f;p

0
sÞiDðp02

s ÞiHBðPs;p0;PiÞ

þ
X
l;ml

ffiffiffiffiffiffi
4π

p
Ylml

ðp̂0Þ½1þiMlðsfÞρ�
�
iTAB

1B;lml
ðPf;Pi;qfÞþ

X
l0;m0

l

iWA
1B;lml;l0m0

l
ðPf;PsÞρiHB

l0m0
l
ðPs;PiÞ

�

þ
X
l;ml

ffiffiffiffiffiffi
4π

p
Ylml

ðp̂0ÞMlðsfÞ
X
l0m0

l

X
j

ifjð−q2fÞGA
j;lml;l0m0

l
ðPf;PsÞHB

l0m0
l
ðPs;PiÞ; ð85Þ

where we have added the smooth contributions into a single
smooth function

TAB
1B ¼ TAB

∞jCj∞ þ TAB
Lj∞ þ TAB

∞jR ð86Þ

and WA
1B is the same as defined in [34],

WA
1B ¼ WA

∞jCj∞ þWA
Lj∞ þWA

∞jR: ð87Þ

3. Full on-shell result for T 21

We began the derivation of the on-shell amplitude T 21 by
separating it into two terms. The first, labeled T

21;=1B, is

defined to include all possible diagrams that do not include
any one-body contribution, and it satisfies Eq. (55). The
second, labeled T 21;1B, includes all contributions where a

single-particle can couple to the external current directly.
This set of diagrams satisfies Eq. (63). By projecting all
possible intermediate states that may go on-shell, we
showed these two terms could be written in terms of purely
on-shell functions as Eqs. (62) and (85), respectively.
Throughout the derivation, we have only included the

contributions from the direct channel for the current
insertions. In particular, we have assumed that the momen-
tum of current B is inserted into the initial state and that the
A current takes momentum from the intermediate state. As
discussed in Sec. IVA, the exchange contributions can be
obtained by first swapping the A and B labels, followed by
changing qf → −qi, which results in s → u.
Adding Eqs. (62) and (85) as well as their u-channel

contributions, we arrive at the final expression for T 21,

iT 21ðPf;p0;Pi;qfÞ ¼ iHA
onðPf;p0;PsÞiDðsÞiwB

onðPs;PiÞþ iHB
onðPf;p0;PuÞiDðuÞiwA

onðPu;PiÞ
þ iwA

onðp0
f;p

0
sÞiDðp02

s ÞiHBðPs;p0;PiÞþ iwB
onðp0

f;p
0
uÞiDðp02

u ÞiHAðPu;p0;PiÞþ iT 21;dfðPf;p0;Pi;qfÞ;
ð88Þ
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where

iT 21;dfðPf; p0;Pi; qfÞ≡ iT s
21;dfðPf; p0;Pi; qfÞ

þ iT u
21;dfðPf; p0;Pi;−qiÞ; ð89Þ

where the u superscript reminds us that the second term
contains only u-channel contributions. As was the case

with W and T 11, we have isolated the simple pole
singularities and defined the remainder of the amplitude
as T 21;df . We now proceed to give a compact expression for
T s

21;df in terms of on-shell physical quantities. After
doing so, we will be able to add the exchange contribution.
The divergence-free terms appearing in T s

21;df can be
written as

iT s
21;df;lml

ðPf; Pi; qfÞ ¼ ½1þ iMlðsfÞρ�
�
iTAB

lml
ðPf; Pi; qfÞ þ

X
l0;m0

l

iWA
lml;l0m0

l
ðPf; PsÞρiHB

l0m0
l
ðPs; PiÞ

�

þMlðsfÞ
X
l0m0

l

X
j

ifjð−q2fÞGA
j;lml;l0m0

l
ðPf; PsÞHB

l0m0
l
ðPs; PiÞ; ð90Þ

where we have added together W=1B and W1B and T=1B and
T1B into single kernels W and T, respectively.
As discussed in Ref. [34], W has K-matrix poles

associated with the rescattering of initial and final states.
A similar behavior is followed by T, except that for this
function the poles are associatedwith the rescattering of final
and intermediate two-particle states. We make the possible
unphysical poles in theK-matrix explicit so that these are not
featured in T 21 by parametrizing these functions as

TAB
lml

ðPf; Pi; qfÞ ¼ KlðsfÞBAB
21;lml

ðPf; Pi; qfÞ
þKlðsfÞ

X
l0;m0

l

AA
22;lml;l0m0

l
ðPf; PsÞ

×Kl0 ðsÞAB
21;l0m0

l
ðPs; PiÞ; ð91Þ

WA
lml;l0m0

l
ðPf; PsÞ ¼ KlðsfÞAA

22;lml;l0m0
l
ðPf; PsÞKl0 ðsÞ;

ð92Þ

where the B21, A21, and A22 are smooth functions and the
second equality is identical to the one used in Ref. [34]. It is
important to emphasize that A22 and A21 are the same
functions that appear in the definition ofH andWdf , given in
Eqs. (4) and (5), respectively.
Using these parametrizations, we can rewrite Eq. (90) in

terms of quantities that do not depend on the unphysical K-
matrix poles,

iT s
21;df;lml

ðPf;Pi; qfÞ ¼ iMlðsfÞBAB
21;lml

ðPf;Pi; qfÞ þMlðsfÞ
X
l0;m0

l

�
iAA

22;lml
ðPf;PsÞ þ

X
j

ifjð−q2fÞGA
j;lml;l0m0

l
ðPf;PsÞ

�

×Ml0 ðsÞAB
21;l0m0

l
ðPs;PiÞ: ð93Þ

This can be further simplified by recognizing that the term inside of the parentheses is exactly equal toWdf , given in Eq. (5).
Making this replacement and adding the exchange diagrams, we arrive at our final expression for T 21;df,

iT 21;df;lml
ðPf; Pi; qfÞ ¼ iMlðsfÞB21;lml

ðPf; Pi; qfÞ þ
X
l0;m0

l

iWA
df;lml;l0m0

l
ðPf; PsÞAB

21;l0m0
l
ðPs; PiÞ

þ
X
l0;m0

l

iWB
df;lml;l0m0

l
ðPf; PuÞAA

21;l0m0
l
ðPu; PiÞ; ð94Þ

where B21 ≡ BAB
21 þ BBA

21 . This is the final and main result of this section.
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C. Generalization to multiple channels
and arbitrary masses

In the derivation above we made a set of simplifying
assumptions, which we proceed to lift here. In general,
one needs to consider the following possibilities: (a) the
particles appearing inside the loops may have different
masses, (b) the current can couple to both intermediate
particles, (c) any number of two-particle channels may be
kinematically open, and (d) the current may couple differ-
ent single-particle states, i.e., 1þ J → 10.
Allowing for different masses is straightforward. The

role of the masses is encoded in the ρ and G kinematic
functions, which have been written in Eqs. (6) and (7) for
arbitrary masses.
If the current can couple to both external single-particle

states, the divergent part of T 21, shown in the first four terms
of Eq. (88), acquires additional pole terms associated with
these couplings. If both of the intermediate single-particle
states also couple to the current, there will be an additional
triangle function contribution to the Wdf, but Eq. (94) as is
written now will remain unchanged.
One can accommodate any number of intermediate two-

particle channels by upgrading the on-shell kernels into
either vectors or matrices in channel space [42,43,46].
More explicitly, if we suppress the angular momentum
indices of the amplitudes, we can rewrite T 21;df for
arbitrary channels as

iT 21;df;aðPf; Pi; qfÞ ¼ iMabðsfÞB21;bðPf; Pi; qfÞ
þ iWA

df;abðPf; PsÞAB
21;bðPs; PiÞ

þ iWB
df;abðPf; PuÞAA

21;bðPu; PiÞ;
ð95Þ

where the “b” index runs over the possible intermediate
channels. We can then label the masses of the two particles
present in the ath channel as ma1 and ma2. The single
particle form factors would also get indices associated with
the particle type, e.g., fj → fj;a1.
Finally, the kinematic factor associated with the Lorentz

decomposition of the current would also have to acquire an
index associated with the particle it is coupling, e.g.,
Kj → Kj;a1. To understand this, it is useful to consider
the case where the current is a vector and the initial and
final states are the same particle with mass ma1.
Considering the triangle diagram, Fig. 10(b), and giving
the spectator particle a momentum k, the on-shell projected
one-body transition would have the standard Lorentz
composition in terms of a single form factor,

iwμ
on;a1ðkf; kiÞ ¼ ðPf þ Pi − 2kÞμjk2¼m2

a2
fðQ2Þ

≡ Kμ
a1ðkf; kiÞfðQ2Þ: ð96Þ

From this example we see two things. First, the mass of the
particles appears as a constraint in kμ. Second, this depends

on the mass of the spectator, not the mass of the particle that
it is coupling to. Despite this, we choose to label the
kinematic factor with the label associated with the particle
that couples to the current.
Equation (95) also accommodates the case where the

current couples different single particle states. The only
subtlety that arises in this case, which was discussed in
Ref. [34], is that the G function will not be diagonal over
channel space.8

V. CONCLUSION

We have presented an on-shell representation for
transition amplitudes from a single-hadron state to a two-
hadron state induced by two external currents. The frame-
work is constructed in a model independent fashion by
summing to all orders in the strong interaction and building
off the previously determined on-shell relations for 2 → 2,
1þ J → 2, and 2þ J → 2 amplitudes [34]. The result
presented here is valid in the kinematic range below the
three-particle threshold where any number of two-hadron
channels may be open for currents with arbitrary Lorentz
structure and spinless hadrons. The resulting amplitudes
contain the usual threshold branch cuts in the final and
intermediate two-particle energies, as well as logarithmic
singularities arising from the triangle diagrams in both
the direct and the exchange channels. In order to
describe reactions of spinful particles further work is
necessary to understand the analytic behavior of each
kernel and loop as a matrix in spin space, particularly
the triangle diagram which in general will be a dense matrix
in this space.
We showed that analytically continuing to the poles in

the unphysical Riemann sheet in the final state energy
allows for access to the Compton-like amplitudes coupling
a single particle to resonant states. Furthermore, by taking
the initial particle together with one of the currents, we
showed that the analytic continuation of their total energy
recovers the definition of the elastic resonance form factors
as found in previous work [34], showing consistency of this
formalism. For the case of conserved vector currents, we
showed the Ward-Takahashi identity places constraints on
the amplitude such that when one of the current momenta
vanishes, the short distance piece may be given in terms of
the subprocess amplitudes.
In the context of precision tests of the Standard Model,

this formalism can contribute to the determination of
hadronic light-by-light amplitudes required to reduce the
theoretical uncertainty on the anomalous magnetic moment
of the muon. Similarly, it supplements the constraints
imposed by χPT in low energy Standard Model observables
such as the rare kaon decay K → ππγ⋆ [94–96]. This
formalism also allows access to better understanding of the

8We do not provide explicit expressions for the G function for
this case, but they can be found in Ref. [34].
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hadronic structure of resonances, for instance through the
analysis of γ⋆γ⋆ → ππ; KK;…, transition amplitudes in
the search for glueballs in the isoscalar sector. When
combined with a future finite-volume framework, we
envision this formalism being a useful tool for lattice
QCD calculations of the aforementioned processes.
Finally, we also emphasize that the Compton-amplitude

reviewed in this work acts as a stepping stone to the
understanding of the two-current amplitude with two
hadrons in the initial and final states. Such amplitudes
would be required for studying Compton scattering of two-
body shallow bound states and resonances as well as
neutrino-less double beta decay. In general this amplitude
will be a function of the allowed subprocesses, thus having
a rigorous understanding of them is crucial.
In summary, the presented formalism is useful for

phenomenological studies probing the Standard Model
as well as for accessing the structure of resonant hadronic
states. Some of these cases may be studied via the use of
lattice QCD, pending a future finite-volume framework,
where this formalism would be immediately relevant as it
would allow for the extraction of physical observables.
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APPENDIX A: LORENTZ DECOMPOSITION OF
COMPTON SCATTERING FOR LOW-ENERGY

PHOTONS

The behavior of the amplitude 1þ J ν → 1þ J μ in the
limit of vanishing initial and final photon energy is deter-
mined by the analytic structure of the amplitude T μν

11 and
gauge invariance. As derived in Sec. IVA and shown in

Eq. (9), within the kinematic region of interest this amplitude
contains an analytic piece and two pole contributions. For
energies well below the two-particle threshold, we can
compactly rewrite the amplitude in the form

iT μν
11ðPf; Pi; qfÞ ¼ iβμν11ðPf; Pi; qfÞ

þ iwμ
onðPf; PsÞiDðsÞiwν

onðPs; PiÞ
þ iwν

onðPf; PuÞiDðuÞiwμ
onðPu; PiÞ;

ðA1Þ

where both s- and u-channel contributions are explicitly
shown and the remainder, which absorbs the smooth
function B11 and the two-body contribution that has been
analytically continued well below threshold, is expressed in
a single smooth function βμν11. Gauge invariance, on the other
hand, imposes that

qfμT
μν
11ðPf; Pi; qfÞ ¼ qiνT

μν
11ðPf; Pi; qfÞ ¼ 0: ðA2Þ

These equations impose constraints on the analytic
piece β11 in terms of the pole pieces. To show this
we first contract the final photon momentum with the
amplitude

qfμiβ
μν
11ðPf;Pi;qfÞ¼−qfμ

�
iwμ

onðPf;PsÞiDðsÞiwν
onðPs;PiÞ

þ iwν
onðPf;PuÞiDðuÞiwμ

onðPu;PiÞ
�
:

ðA3Þ

Assuming the external particle is spinless we can simplify
the right-hand side of this expression with the help of the
Lorentz decomposition of the three point function shown in
Eq. (29),

qfμiβ
μν
11ðPf;Pi; qfÞ ¼ fðQ2

fÞðiwν
onðPs;PiÞ− iwν

onðPf;PuÞÞ;
ðA4Þ

qiνiβ
μν
11ðPf;Pi; qfÞ ¼ fðQ2

i Þðiwμ
onðPf;PsÞ− iwμ

onðPu;PiÞÞ;
ðA5Þ

where the second line is the result of applying the same
procedure to Eq. (A2).
To obtain the behavior at vanishing photon momenta of

the Compton scattering amplitude, we first make the initial
and final external momenta equal Pi ¼ Pf ¼ P, which in
turn enforces that qf ¼ qi ¼ q. By using the explicit
Lorentz decomposition of the single particle transition in
Eq. (29), the Ward identities simplify to

qμiβ
μν
11ðP;P; qÞ ¼ 2iqνfðQ2Þ2; ðA6Þ
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qνiβ
μν
11ðP;P; qÞ ¼ 2iqμfðQ2Þ2: ðA7Þ

Finally, we expand around the limit of the vanishing photon
momentum, and by equating the first term of the series in
each side of both equations, we obtain the result

iβμν11ðP;P; 0Þ ¼ 2igμνfð0Þ2: ðA8Þ

To obtain the behavior of the full amplitude at vanishing
photon momentum we again begin by making the initial
and final external particle momenta equal

iT μν
11ðP;P; qÞ ¼ iβμν11ðP; P; qÞ þ fðQ2Þ2ðið2Pþ qÞμiDðsÞið2Pþ qÞν þ ið2P − qÞνiDðuÞið2P − qÞμÞ ðA9Þ

¼ iβμν11ðP; P; qÞ − ifðQ2Þ2ðð4PμPν þ qμqνÞðDðsÞ þDðuÞÞ þ 2ðPμqν þ PνqμÞðDðsÞ −DðuÞÞ: ðA10Þ

To take the limit of the vanishing photon momentum we
choose the rest frame of the external particle such that the
propagators can be written as

DðsÞ−1 ¼ 2mq0 þ q2 þ iϵ; ðA11Þ

DðuÞ−1 ¼ −2mq0 þ q2 þ iϵ; ðA12Þ

where m is the mass of the external particle. Since we are
interested in the case of real Compton scattering, q2 ¼ 0.
We will distinguish this process with the notation iT μν

11;R.
In this case, the propagators have the behavior

DðsÞ þDðuÞjq2¼0 ¼ 0; DðsÞ −DðuÞjq2¼0 ¼
1

mq0
:

ðA13Þ

Then the leading order behavior of the Compton
amplitude is

iT μν
11;RðP; P; qÞ ¼ 2ifð0Þ2

�
gμν − ðPμqν þ PνqμÞ 1

mq0

�
þOðq20Þ: ðA14Þ

In this case, the amplitude involves real photons, so it needs
to be contracted with the photon wave functions ϵðqÞ0μ and
ϵðqÞν,

ϵμðqÞ0�ϵνðqÞiT μν
11;RðP;P;qÞ¼2ifð0Þ2ϵðqÞ0� ·ϵðqÞþOðq20Þ;

ðA15Þ

and in the limit of zero photon energy we recover the
Thomson amplitude,

ϵμð0Þ0�ϵνð0ÞiT μν
11;RðP;P; 0Þ ¼ 2ifð0Þ2ϵ0� · ϵ; ðA16Þ

where ϵð0Þ is the polarization vector of the initial (final)
photon. For the case of virtual photons we refer the reader
to the discussion made in [97].

APPENDIX B: ON-SHELL PROJECTION
OF SINGLE-PARTICLE STATES

This Appendix describes our prescription to perform the
decomposition of the off-shell transition kernels w and H.
The prescription to decompose the kernel w whenever it
appears within a two-particle state is given in Appendix A
of Ref. [34]. Here we are interested in the case where one of
the external legs of the kernel w or H is an intermediate
single-particle state and may be off-shell. We find that the
decomposition of Ref. [34] for w is also useful in this case,
and we use a similar strategy to decompose H. This
prescription is used in Eqs. (47) and (64) of the main
derivation. Within this Appendix we assume all stable
hadrons have massm, the generalization to different masses
being a straightforward exercise.
We begin with Eq. (47), where the three point function w

appears on both sides of the single-particle intermediate
state

C0ðPsÞ ¼ iwAðPf; PsÞ · iΔðPsÞ · iwBðPs; PiÞ; ðB1Þ

where ΔðPsÞ is the fully dressed single particle propagator
as described in the main text. We make C0 a function of Ps
to emphasize that we are interested in the singularities
arising in the kinematic variable P2

s . A common choice to
split the kinematic and dynamic behavior in transition
amplitudes is to perform a Lorentz decomposition into form
factors and kinematic tensors. For a given Lorentz structure
of the external current in w there will be a finite set of
linearly independent tensors, so that for arbitrary values of
the external momenta we have

iwAðp0; pÞ ¼
X
j

KA
j ðp0; pÞifjðQ2; p02; p2Þ; ðB2Þ

where the form factors fj being Lorentz invariant
can only depend on the Lorentz scalars p02, p2, and
Q2 ¼ −ðp0 − pÞ2. The on-shell counterpart of this decom-
position is given by Eq. (3), from which we can recognize
that the on-shell form factors are simply given by
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ifjðQ2Þ ¼ ifjðQ2; m2; m2Þ: ðB3Þ

The generally off-shell form factor can be written in
terms of the partially and fully on-shell form factors using
the δ operator used in Ref. [34] and references therein,

ifjðQ2; p02; p2Þ ¼ ifjðQ2Þ þ δ½ifjðQ2; p02Þ�
þ ½ifjðQ2; p2Þ�δþ δ½ifjðQ2; p02; p2Þ�δ:

ðB4Þ

In the limit that the initial (final) state is placed on-shell fjδ
(δfj) is defined to vanish.
In the case of Eq. (B1), since Pf and Pi correspond to the

momenta of the external final and initial states, they
eventually will be placed on-shell. Assuming that the
external particles have been placed on-shell, and substitut-
ing Eq. (B4) into Eq. (B2), we obtain

C0ðPsÞ ¼
X
j;l

KA
j ðPf; PsÞifjð−q2fÞiDðP2

sÞKB
l ðPf; PsÞ

× iflð−q2i Þ þ δC0ðPsÞ ðB5Þ

¼ iwA
onðPf; PsÞiDðP2

sÞiwB
onðPs; PiÞ þ δC0ðPsÞ; ðB6Þ

where qfðiÞ ¼ Ps − PfðiÞ is as defined in the main text, and
we have used the definition of won in Eq. (3), where the
kinematic pieces are evaluated with the momenta Ps, which
is not necessarily on-shell. The simple pole piece of the
propagator DðP2

sÞ is given in Eq. (10). From this we can
conclude that the function δCðPsÞ is smooth in the
kinematic region of interest, and this corresponds to the
kernel T11;α of the main text. Any chosen prescription
should not change the singularity content of the amplitude.
In this case, that means the residue of the one-particle pole
in C0 has to be independent of the prescription. This boils
down to ensuring that when the external legs are placed on-
shell we recover the physical transition amplitude

iwA
onðp0; pÞjp02¼p2¼m2 ¼ hp0jJ Að0Þjpi: ðB7Þ

The second case of interest is the one appearing in
Eq. (64). However, before we discuss this on-shell expan-
sion, we need to describe the form factor decomposition of
a generic on-shell 1þ J → 2 amplitude. In particular, we
will focus on the case where the final two-particle state has
been partial-wave projected to a definite angular momen-
tum l and projection in the z-axis ml. In this case, the
amplitude can be decomposed into form factors as follows:

hPf;lmljJ Að0ÞjPii ¼
X
j

KA
j;lml

ðPf; PiÞihj;lðsf; Q2Þ;

ðB8Þ

where Q2 ¼ −ðPf − PiÞ2 and the functions Kj;lml
are the

corresponding kinematic factors that have to reproduce the
Lorentz structure of the current. These differ from the Kj in
the decomposition of w in that they also have to reproduce
the nontrivial dependence on the angular momentum of the
final state. Finally, the functions hj;l are energy-dependent
transition form factors, which are Lorentz scalars irrespec-
tive of the nature of the current. The rotational properties of
a given partial wave are contained within the kinematic
factors, which means that the form factors hj are rotation-
ally invariant and cannot depend on the azimuthal compo-
nent of the angular momentum ml.
As summarized in Eq. (4), the transition amplitudes can

be written in terms of M and the real-valued function A21.
Given thatM is independent of the Lorentz structure of the
current, Eq. (B8) provides the Lorentz decomposition
of A21,

AA
21;lml

ðPf; PiÞ ¼
X
j

KA
j;lml

ðPf; PiÞaj;lðsf; Q2Þ: ðB9Þ

Assuming theKj;lml
tensors have been defined without any

spurious kinematic singularities, the aj;lml
functions are

defined to be real, nonsingular functions. The singularity
behavior of the transition form factors hj;lml

can be found
by substituting Eq. (B9) into the on-shell expansion of
Eq. (4) and equating it to its form factor decomposition

hj;lðsf; Q2Þ ¼ MlðsfÞaj;lðsf; Q2Þ; ðB10Þ

showing that the transition form factors possess a branch
cut at threshold.
Given the form factor expansion of the 1þ J → 2

amplitude, we now turn our attention to the on-shell
expansion of Eq. (64)

C1ðPsÞ ¼ iHA
lml

ðPf; PsÞiΔðPsÞiwBðPs; PiÞ: ðB11Þ

We decompose w as before and follow a similar strategy for
the off-shell amplitude H,

iHA
lml

ðPf;PsÞ¼
X
j

KA
j;lml

ðPf;PsÞihj;lð−q2f;sf;sÞ; ðB12Þ

where sf ¼ P2
f and s ¼ P2

s . This expansion differs from the
expression in Eq. (B8) in that s is not necessarily equal to
m2. Again we can observe that these off-shell form factors
reduce to their on-shell counterparts once the momentum
Ps is on-shell. This implies that the on-shell expansion of
the transition form factors, for arbitrary values of s, take the
form

ihjð−q2f; sf;sÞ ¼ ihjð−q2f; sfÞþ ½ihjð−q2f; sf;sÞ�δ; ðB13Þ
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where the δ operator acts in the same manner as the one
defined in Eq. (B4). This allows us to define the on-shell
projected amplitude

iHA
on;lml

ðPf;PsÞ≡
X
j

KA
j;lml

ðPf;PsÞihj;lð−q2f;sfÞ ðB14Þ

for arbitrary values of Ps. We can now substitute the
expansion of Eq. (B13) into Eq. (B12) to split the singular
part and the smooth functions of s in Eq (B11),

C1ðPsÞ ¼
X
j;l

KA
j;lml

ðPf; PsÞihj;lð−q2fÞiDðP2
sÞ

× KB
l ðPf; PsÞiflð−q2i Þ þ δC1ðPsÞ ðB15Þ

¼ iHA
on;lml

ðPf; PsÞiDðP2
sÞiwB

onðPs; PiÞ þ δC1ðPsÞ: ðB16Þ

The kernel δC1 does not possess any singularities in the
variable Ps within the kinematic region of interest. This
smooth kernel corresponds to T0jR in Eq. (64) once the
dependence on the final state angular momenta has been
exchanged by that of the relative momenta between
the final state particles. This last equation, together with
the definition of Hon are the main results of this section.
We complement this Appendix by providing some
examples for the nontrivial case of a vector current and
the implications of the constraint imposed by gauge
invariance.

1. Examples and gauge invariance constraints

The simplest nontrivial example is that of the 1þ J μ → 1
electromagnetic transition between two single hadron
states, both of mass m. The most general decomposition
is given by

hp0jJ μð0Þjpi ¼ ðp0 þ pÞμf1ðQ2Þ þ ðp0 − pÞμf2ðQ2Þ;
ðB17Þ

where J μð0Þ is the electromagnetic current. Gauge invari-
ance imposes a constraint via the relation

ðp0 − pÞμhp0jJ μð0Þjpi ¼ 0; ðB18Þ

which implies that f2ðQ2Þ ¼ 0.
Whether f2 is fixed to be zero for off-shell kinematics

depends on the chosen on-shell expansion prescription.
Following the prescription described above, the on-shell
projected kernel is given by Eq. (29), but repeated here for
clarity,

wμ
onðp0; pÞ ¼ ðp0 þ pÞμf1ðQ2Þ; ðB19Þ

for momenta p0 and p that need not be on the mass shell.
An alternative prescription could require gauge invariance

to be satisfied by the on-shell projected kernels, in which
case there could be various options, one of them being

ewμ
onðp0; pÞ ¼

�
ðp0 þ pÞμ þ p02 − p2

Q2
ðp0 − pÞμ

�
f1ðQ2Þ:

ðB20Þ

This prescription satisfies the requirement described in
Eq. (B7), and it only requires input from the physical form
factor f1, so in principle they could be chosen for the on-
shell projection. However, it differs from our prescription
because it effectively lets f2 have off-shell dependence

ewμ
onðp0; pÞ ¼ ðp0 þ pÞμf1ðQ2Þ þ ðp0 − pÞμf2ðQ2; p02; p2Þ;

ðB21Þ

f2ðQ2; p02; p2Þ ¼ p02 − p2

Q2
f1ðQ2Þ: ðB22Þ

Note that using this or any equivalent prescription would
modify the function δC0 in Eq. (B6); nonetheless, it will
remain a smooth function of the variable Ps.
A benefit of using Eq. (B19) is that it provides a

relationship between different pieces of the on-shell rep-
resentation of the Compton-like amplitudes [see Eqs. (28)
and (A3)]. This turns out to be convenient in order to
explore the low-photon behavior of the amplitudes. This
allowed us, for instance, to recover the well-known
Thomson amplitude in Appendix A, without needing to
search for all the possible tensor structures that could
describe T 11 and satisfy gauge invariance. Similarly these
kinds of relations can prove useful when studying the
finite-volume effects on matrix elements that are calculated
with lattice QCD (see Ref. [89] for an example of this).
Only for the case of gauge invariant 1þ J → 2 sub-

processes do we need to apply a prescription similar to
Eq. (B20) in order to ensure that the on-shell overall
amplitude T 21 satisfies the Ward identity and that the short
range kernel B21 is an analytic function of the current
virtuality. If Hon did not satisfy the Ward identity for
arbitrary kinematics, an extra term would appear in
Eqs. (33) and (34). However, for an arbitrary prescription
of Hon, this extra term could be finite in the limit of
vanishing current momentum q → 0, implying that the
short range kernel B21 has a pole of the form 1=q2. In order
to avoid this we require the prescription of Hon to satisfy
the Ward identity for arbitrary values of the single hadron
state momentum.
There are four linearly independent tensors that can be

used to decompose this amplitude. However, one of these
terms picks up an extra minus sign under a parity trans-
formation. Hence, the tensors that can be used depend on
the intrinsic parity of the hadrons involved in the reaction.
We separate them according to their parity behavior to get
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hPf; p0jJ μð0ÞjPiiþ ¼ ðPf þ PiÞμh1ðsf; t; Q2Þ þ p0μh2ðsf; t; Q2Þ þ ðPf − PiÞμh3ðsf; t; Q2Þ; ðB23Þ

hPf; p0jJ μð0ÞjPii− ¼ ϵμνσρPf;νp0
σPi;ρh−ðsf; t; Q2Þ; ðB24Þ

where the � subscript indicates the value of the intrinsic
parity of the three hadrons, respectively; e.g., the first
amplitude is appropriate for three scalars, whereas the
second describes a reaction with three pseudoscalars. Here
we use the Lorentz scalar t ¼ ðp0 − PiÞ2 to characterize the
behavior of the scalar energy-dependent transition form
factors hi.
The amplitude of Eq. (B24) satisfies gauge invariance

without further constraints; i.e., we can construct the on-
shell projected amplitude directly in terms of h−,

Hμ
−onðPf; PiÞ ¼ ϵμνσρPf;νp0

σPi;ρh−ðsf; t; Q2Þ: ðB25Þ

For the positive parity amplitude, when the external legs are
on-shell, the relationship

0 ¼ ðP2
f − P2

i Þh1ðsf; t; Q2Þ
þ ðPf · p0 − Pi · p0Þh2ðsf; t; Q2Þ
−Q2h3ðsf; t; Q2Þ ðB26Þ

¼ ðP2
f −m2Þh1ðsf; t; Q2Þ

þ sf þ t − 2m2

2
h2ðsf; t; Q2Þ −Q2h3ðsf; t; Q2Þ ðB27Þ

must exist between the different form factors. In other
words, the gauge invariant matrix element is equal to

hPf;p0jJ μð0ÞjPiiþ ¼
�
ðPfþPiÞμþ

P2
f−m2

Q2
ðPf−PiÞμ

�
h1ðsf;t;Q2Þþ

�
p0μþsfþ t−2m2

2Q2
ðPf−PiÞμ

�
h2ðsf;t;Q2Þ:

ðB28Þ

In order to satisfy our prescription we will let the transition form factor h3 have off-shell dependence on the incoming
hadron momentum. This cannot change any physical observable because when contracted with a photon wave function or
with another tensor associated with the emission of the virtual photon, which itself satisfies theWard identity, this factor will
always vanish. Therefore the explicit form of the on-shell projected transition will be given by

Hμ
þonðPf;p0;PiÞ¼

�
ðPfþPiÞμþ

P2
f−P2

i

Q2
ðPf−PiÞμ

�
h1ðsf;t;Q2Þþ

�
p0μþsfþ t−m2−P2

i

2Q2
ðPf−PiÞμ

�
h2ðsf;t;Q2Þ

ðB29Þ

for arbitrary values of the initial hadron momentum. For the
remainder of this section we will assume that P2

i is in
general different from m2. The main results of this section
are Eqs. (B25) and (B29).
To further describe this amplitude we will explicitly

compute the two lowest partial waves of the final state.
Each partial-wave amplitude can in principle be obtained
from theprojectionwith the corresponding spherical harmonic

Hμ
þon;lml

ðPf; PiÞ ¼
Z

dp̂0⋆ffiffiffiffiffiffi
4π

p Y�
lml

ðp̂0⋆ÞHμ
þonðPf; p0;PiÞ;

ðB30Þ
where p̂0⋆ is the direction of the spatial part of the vectorp0 in
the final state CM frame, and this frame is conventionally

defined such that Pi points toward the positive z-axis.
Because of the rotational properties of the tensors in
Eq. (B29), and the implicit dependence on Pi to define
the z-axis, Eq. (B30) does not provide the most practical
route to expand the form factors into the contributions of each
partial wave. Instead, to extract each partial wave it is
more convenient to first find a Lorentz decomposition of
the partial wave of interest in terms of unknown form
factors hj;l. Then the orthogonality of the different helicity
virtual photon wave functions ϵðq; λÞ can be exploited to
generate a system of equations to solve for each of the hj form
factors.
In the final state CM frame, with Pi pointing toward the

positive z-axis, the virtual photon momentum and wave
functions are equal to
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qμ ¼ 1

2
ffiffiffiffiffisfp ðsf −Q2 − P2

i ; 0; 0;−λ1=2ðsf;−Q2; P2
i ÞÞμ;

ðB31Þ

ϵμðq; 0Þ ¼ 1

2
ffiffiffiffiffiffiffiffiffi
q2sf

q ðλ1=2ðsf;−Q2; P2
i Þ; 0; 0;

− ðsf −Q2 − P2
i ÞÞμ; ðB32Þ

ϵμðq;�1Þ ¼ 1ffiffiffi
2

p ð0;�1;−i; 0Þμ; ðB33Þ

where we have written every component in a Lorentz
invariant fashion and used the Källén triangle function

λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2ac − 2bc: ðB34Þ

The conservation of the azimuthal component of angular
momentum enforces that the transition amplitude is

related to the partial-wave transitions in the following
manner:

ϵμðq;−λÞHμ
þonðPf; p0;PiÞ

¼
X∞
l¼jλj

ffiffiffiffiffiffi
4π

p
Ylλðp̂0⋆Þϵμðq;−λÞHμ

þon;lλðPf; PiÞ; ðB35Þ

where the negative of the photon helicity corresponds to the
azimuthal component of angular momentum because we
defined the final state CM frame with the photon traveling
toward the negative z-axis. To study the lowest two partial
waves we write down the most general Lorentz decom-
position for the S-wave and P-wave amplitudes. For the
S-wave amplitude there are two linearly independent
vectors, while for the P-wave there are three, including
the vector wave function describing the polarization of the
final state, ϵðPf;mlÞ. After imposing gauge invariance
one finds

Hμ
þon;00ðPf; PiÞ ¼

�
ðPf þ PiÞμ þ

P2
f − P2

i

Q2
ðPf − PiÞμ

�
h1;0ðsf; Q2Þ; ðB36Þ

Hμ
þon;1ml

ðPf; PiÞ ¼
�
ðPf þ PiÞμ þ

P2
f − P2

i

Q2
ðPf − PiÞμ

�
½ϵðPf;mlÞ� · Pi�h1;1ðsf; q2Þ

þ
�
ϵμðPf;mlÞ� −

½ϵðPf;mlÞ� · Pi�
Q2

ðPf − PiÞμ
�
h2;1ðsf; q2Þ; ðB37Þ

where the final-state vector wave functions in their CM
frame are simply given by

ϵμðPf;0Þ¼ð0;0;0;1Þμ; ϵμðPf;�1Þ¼ð0;∓1;−i;0Þμ=
ffiffiffi
2

p
:

ðB38Þ

A validation of this decomposition is found by noting
that the P-wave expansion is equivalent to what was found
in [98] to describe the vector-scalar electromagnetic tran-
sition; i.e., it can be described in terms of two independent
form factors. The behavior of higher partial waves follows a

similar pattern to that of l ¼ 1. The key difference is that
the vector wave function needs to be replaced with the one
describing the angular momentum of the final state.
We now substitute Eq. (B29) into the left-hand side of

Eq. (B35), and Eqs. (B36) and (B37) into the right-hand
side of it. Out of the three virtual photon helicities only two
contractions are linearly independent; the ϵμðq;�λÞHμ

þon
amplitudes are related by parity inversion, so that we get
two equations to solve for the form factors h1 and h2 in
terms of hi;l. Following this procedure we find for the
lowest two partial waves

h1ðs; t; Q2Þ ¼ P0ðcosðθ⋆ÞÞ
�
h1;0ðsf; Q2Þ −

ffiffiffi
3

p

2

ffiffiffiffiffisfp
λ1=2ðsf; m2; m2Þ h2;1ðsf; Q

2Þ
�

−
ffiffiffi
3

p
P1ðcosðθ⋆ÞÞ

λ1=2ðsf;−Q2; P2
i Þ

2
ffiffiffiffiffisfp h1;1ðsf; Q2Þ þ � � � ; ðB39Þ
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h2ðs; t; Q2Þ ¼
ffiffiffi
3

p
P0
1ðcosðθ⋆ÞÞ

2
ffiffiffiffiffisfp

λ1=2ðsf; m2; m2Þ
× h2;1ðsf; Q2Þ þ � � � ; ðB40Þ

where Pl is the lth Legendre polynomial and P0
l is its

derivative, while θ⋆ is the angle between vectors Pi and p0
in the final state CM frame. As expected, from the non-
trivial rotational properties of the kinematic tensors chosen
in the decomposition of Hon, the expansion of h1 and h2 is
not given in terms of a single form factor hi;l per l value. In
order to obtain an expansion where only one type of term
contributes to h1 it would be necessary to rewrite the
Lorentz decomposition of Hon in terms of a vector
orthogonal to the �1 photon-helicity wave functions, such
as Pf þ Pi, and another one orthogonal to the zero helicity
wave function, e.g.,

p0μ−
�
1þðsf−Q2−P2

i Þð2tþsf−2m2−P2
i þQ2Þ

λðsf;−Q2;P2
i Þ

�
Pμ
f

2
:

ðB41Þ

To derive this kinematic factor we have written the
cosine of the angle between Pi and p0 in terms of Lorentz
scalars,

cos θ⋆ ¼ sfð2tþ sf − 2m2 − P2
i þQ2Þ

λ1=2ðsf; m2; m2Þλ1=2ðsf;−Q2; P2
i Þ
: ðB42Þ

Similarly, one would require the same orthogonality
properties with the photon wave functions for the Lorentz
decomposition of each of the partial-wave projected am-
plitudes Hon;lml

. This would ensure that the expansion of
each of the t-dependent form factors hi only contains a
single hi;l per l value.

APPENDIX C: COMMON LOOP IDENTITIES

Here we list common identities that are useful in
performing the on-shell derivations of interest. The first
identity relates to how the initial state interactions (ISI) of
two particles manifest as a dressing over a generic smooth
kernel O0,

iOISIðp0; pÞ≡ iO0ðp0; pÞ þ ξ

Z
d4k
ð2πÞ4 iO0ðp0; kÞ

× Δð2ÞðP; kÞiMðk; pÞ; ðC1Þ

where the particles in the final state carry momenta p0 and
P − p0, and p and P − p are the momenta of the initial state
hadrons. As it was shown in [34] we can define a smooth
kernel Oj with j > 0 recursively via the loop identity

ξ

Z
d4k
ð2πÞ4 iOjðp0; kÞΔð2ÞðP; kÞiK0ðk; pÞ

¼ iOjþ1ðp0; pÞ þ
X
l;ml

iOj;lml
ðpÞρiK0;lðpÞ; ðC2Þ

where the jth kernel was partial-wave projected after
intermediate particles are placed on-shell, defined via

Ojðp0; kÞ ¼
X
l;ml

ffiffiffiffiffiffi
4π

p
Oj;lml

ðp0ÞY�
lml

ðk̂⋆Þ; ðC3Þ

where the kmomentum is assumed to be on-shell. By use of
this relation we can show that the initial state interactions
generate the analytic structure

iOISIðp0;pÞ¼
X∞
j¼0

iOjðp0;pÞþ
X
l;ml

X∞
j¼0

iOj;lml
ðp0ÞρiMlðpÞ

ðC4Þ

¼ iO∞ðp0; pÞ þ
X
l;ml

iO∞;lml
ðp0ÞρiMlðpÞ; ðC5Þ

where we defined the smooth kernelO∞ in the last relation.
In the case of final state interactions (FSI) the derivation
follows a similar pattern:

iOFSIðp0; pÞ≡ iO0jnðp0; pÞ þ ξ

Z
d4k
ð2πÞ4 iMðp0; kÞ

× Δð2ÞðP; kÞiO0jnðk; pÞ ðC6Þ

¼ iO∞jnðp0; pÞ þ
X
l;ml

iMlðp0ÞρiO∞jn;lml
ðpÞ; ðC7Þ

where the label n denotes that this kernel could have
dressings in the initial state as well and a similar notation
could be used in Eq. (C4) to distinguish between initial and
final state dressings.
The third identity that will be useful is that of inter-

mediate state interactions (MSI) which arise from two-
particle intermediate states between smooth kernels A0

and B0,

½iA0iB0�MSIðp0; pÞ≡ ξ

Z
d4k
ð2πÞ4 iA0ðp0; kÞΔð2ÞðP; kÞiB0ðk; pÞ

þ ξ

Z
d4k
ð2πÞ4 ξ

Z
d4k0

ð2πÞ4 iA0ðp0; kÞΔð2ÞðP; kÞiMðk; k0ÞΔð2ÞðP; k0ÞiB0ðk0; pÞ: ðC8Þ
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We can use the definition of the FSI kernel to simplify this expression to

½iA0iB0�MSIðp0; pÞ≡ ξ

Z
d4k
ð2πÞ4 iA0ðp0; kÞ × Δð2ÞðP; kÞiBFSIðk; pÞ: ðC9Þ

In this case we need a generalization of the loop relation of Eq. (C2) for two arbitrary different kernels

ξ

Z
d4k
ð2πÞ4 iAjðp0; kÞΔð2ÞðP; kÞiB0ðk; pÞ ¼ iIjþ1ðp0; pÞ þ

X
l;ml

iAj;lml
ðp0ÞρiB0;lml

ðpÞ; ðC10Þ

where Aj satisfies a similar recursive relation as Oj in Eq. (C2) and the kernel Ij is smooth in the kinematic region of
interest. Using identity (C2), we can rewrite the second term in Eq. (C8) as

ξ

Z
d4k
ð2πÞ4 ξ

Z
d4k0

ð2πÞ4 iA0ðp0; kÞΔð2ÞðP; kÞiMðk; k0ÞΔð2ÞðP; k0ÞiB0ðk0; pÞ

¼
X
lml

iA0;lml
ðp0Þρξ

Z
d4k0

ð2πÞ4 iMlml
ðk0ÞΔð2ÞðP; kÞiB0ðk0; pÞ þ ξ

Z
d4k0

ð2πÞ4 iA1ðp; k0ÞΔð2ÞðP; k0ÞiB0ðk0; pÞ

þ ξ

Z
d4k
ð2πÞ4 ξ

Z
d4k0

ð2πÞ4 iA1ðp0; kÞΔð2ÞðP; kÞiMðk; k0ÞΔð2ÞðP; k0ÞiB0ðk0; pÞ; ðC11Þ

where we used the integral equation forM, Eq. (41), in arriving at this equality. This identity allows us to expand Eq. (C8)
to get

½iA0iB0�MSIðp0; pÞ ¼ iI1ðp0; pÞ þ
X
l;ml

iA0;lml
ðp0ÞρiBFSI;lml

ðpÞ þ ξ

Z
d4k
ð2πÞ4 iA1ðp0; kÞΔð2ÞðP; kÞiBFSIðk; pÞ: ðC12Þ

We can iteratively apply Eqs. (C9) and (C12) and the result
of Eq. (C7) to obtain

½iA0iB0�MSI ¼
X∞
j¼1

iIjðp0; pÞ

þ
X
l;ml

iA∞;lml
ðp0ÞρiBFSI;lml

ðpÞ: ðC13Þ

APPENDIX D: ANALYTIC CONTINUATION
OF Wdf AND G IN sf

From the form ofWdf shown in Eq. (5) it can be seen that
this amplitude will contain branch cuts in both sf and si due
to the M amplitudes which appear on either side and the
analytic behavior of the triangle function G. Here we show
the analytic continuation of the amplitude Wdf to the
second Riemann sheet of the variable sf, while leaving
variable si in the physical sheet, as is required for deriving
the analytic form for t1→R shown in Sec. III A. This
naturally also leads to a definition for the triangle function,
G, when it has also been continued to the second sheet in sf
only. For simplicity we assume the case of a scalar current.
We begin by finding the discontinuity of Wdf across the

real sf-axis where the discontinuity is defined to be

Discx1fðx1;…; xnÞ
¼ lim

ϵ→0þ
½fðx1 þ iϵ;…; xnÞ − fðx1 − iϵ;…; xnÞ�: ðD1Þ

Applying this to the definition forWdf given in Eq. (5) and
rearranging terms we find

DiscsfWdfðsf; Q2; siÞ
¼ lim

ϵ→0þ
½ðMðsf;þÞ −Mðsf;−ÞÞA22ðsf;þ; Q2; siÞMðsiÞ

þMðsf;þÞfðQ2ÞGðsf;þ; Q2; siÞMðsiÞ
−Mðsf;−ÞfðQ2ÞGðsf;−; Q2; siÞMðsiÞ�; ðD2Þ

where we have introduced the notation sf;� ≡ sf � iϵ. This
may be further simplified by the use of the unitarity
condition for M which can be written as

Mðsf;þÞ −Mðsf;−Þ ¼ 2iρðsf;þÞMðsf;−ÞMðsf;þÞ; ðD3Þ
as well as the Schwartz reflection principle which states

M�ðsf;þÞ ¼ Mðsf;−Þ; ðD4Þ

where the “*” superscript designates complex conjugation.
Thus, we find that the discontinuity across the sf-axis can
be written as
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DiscsfWdfðsf;Q2;siÞ¼ 2iρðsfÞM�ðsfÞWdfðsf;Q2;siÞ
þM�ðsfÞfðQ2Þ
×DiscsfGðsf;Q2;siÞMðsiÞ: ðD5Þ

Analytically continuing through the sf branch cut gives
the relations

Mðsf;−Þ ¼ MIIðsf;þÞ; ðD6Þ

Wdfðsf;−; Q2; siÞ ¼ WII;I
df ðsf;þ; Q2; siÞ; ðD7Þ

where the superscripts on the amplitudes on the right-hand
side tell us the variable sf is now on the second sheet. Using
these we may rewrite the discontinuity relation as

Wdfðsf;þ; Q2; siÞ −WII;I
df ðsf;þ; Q2; siÞ

¼ 2iρðsf;þÞMIIðsf;þÞWdfðsf;þ; Q2; siÞ
þMIIðsf;þÞfðQ2ÞDiscsfGðsf; Q2; siÞMðsiÞ; ðD8Þ

where the limit as ϵ → 0þ has been left implicit. Solving
this for WII;I

df we find

WII;I
df ðsf;Q2;siÞ¼ð1−2iρðsfÞMIIðsfÞÞWdfðsf;Q2;siÞ

−MIIðsfÞfðQ2ÞDiscsfGðsf;Q2;siÞMðsiÞ
¼MIIðsfÞðA22ðsf;Q2;siÞ
þfðQ2ÞGII;Iðsf;Q2;siÞÞMðsiÞ; ðD9Þ

where to go from the first to second line we used the
following relation between the first and second sheets of the
scattering amplitude:

MIIðsfÞ ¼
1

1þ 2iρðsfÞMðsfÞ
MðsfÞ; ðD10Þ

and GII;I is defined to be

GII;Iðsf;Q2;siÞ¼Gðsf;Q2;siÞ−DiscsfGðsf;Q2;siÞ: ðD11Þ

Finally, we wish to find an explicit form for DiscsfG. For
the case of the S-wave in both initial and final partial waves
with a scalar current, this can be done using the form for the
singularity structure of G given in Eq. (A44) of Ref. [34]
which we show here for convenience,

SingGðsf;Q2; siÞ ¼
i

16πλ1=2ðsf;−Q2; siÞ
�
log

�
ρðsfÞþbf
ρðsfÞ−bf

�

þ log

�
ρðsiÞþbi
ρðsiÞ−bi

��
; ðD12Þ

where

bf¼
Q2þsf−siþ2ðm2

1−m2
2Þð1−ðQ2þsfþsiÞ=ð2sfÞÞ

16πξ−1λ1=2ðsf;−Q2;siÞ
;

ðD13Þ

where the particle with mass m1 couples to the current
while the particle with mass m2 acts as a spectator and λ is
defined in Eq. (B34). There is a similar definition for bi
but with each f subscript replaced with i and vice versa.
The triangle function G is independent of whether the
particles in the loop are identical, so that the function bf=i
necessitates a factor of ξ to compensate for the one
appearing in ρ. Here we are exploiting that Eq. (D12)
contains all of the nonanalytic structure of G; thus to
calculate DiscsfG we can apply Eq. (D1) for the variable sf
to Eq. (D12).
The key to calculating this quantity is to realize that as

we take the limit we need not worry about possible branch
cuts that may arise from λ1=2ðsf;−Q2; siÞ. This can be seen
by expanding the logarithms of SingG to show that it only
depends on odd powers of λ1=2ðsf;−Q2; siÞ. Thus when
combined with the factor out front we only get integer
powers of λðsf;−Q2; siÞ. Therefore, we only need to
consider the behavior of the phase space factors. A
consequence of choosing the branch cut in sf to lie along
the positive real axis is that on either side of the cut
ρðsf;þÞ ¼ −ρðsf;−Þ while ρðsiÞ has no dependence on sf
and therefore will not pick up the same change in sign.
Thus when we take the limit of these functions as they
appear in Eq. (D12) we find

lim
ϵ→0

1

λ1=2ðsf;�;−Q2; siÞ
log

�
ρðsiÞ þ bi
ρðsiÞ − bi

�

¼ 1

λ1=2ðsf;−Q2; siÞ
log

�
ρðsiÞ þ bi
ρðsiÞ − bi

�
; ðD14Þ

lim
ϵ→0

1

λ1=2ðsf;�;−Q2; siÞ
log

�
ρðsf;�Þ þ bf
ρðsf;�Þ − bf

�

¼ � 1

λ1=2ðsf;−Q2; siÞ
log

�
ρðsfÞ þ bf
ρðsfÞ − bf

�
: ðD15Þ

With this in mind we can then apply Eqs. (D1)–(D12) to
calculate DiscsfG to be

DiscsfGðsf;Q2;siÞ¼
i

8πλ1=2ðsf;−Q2;siÞ
log

�
ρðsfÞþbf
ρðsfÞ−bf

�
:

ðD16Þ
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