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Motivated by the prospect of quantum simulation of quantum field theories, we formulate the OðNÞ
nonlinear sigma model as a “qubit” model with an (N þ 1)-dimensional local Hilbert space at each lattice
site. Using an efficient worm algorithm in the worldline formulation, we demonstrate that the model has a
second-order critical point in (2þ 1) dimensions, where the continuum physics of the nontrivial OðNÞ
Wilson-Fisher fixed point is reproduced. We compute the critical exponents ν and η for the OðNÞ qubit
models up to N ¼ 8, and find excellent agreement with known results in literature from various analytic
and numerical techniques for the OðNÞ Wilson-Fisher universality class. Our models are suited for
studyingOðNÞ nonlinear sigma models on quantum computers up to N ¼ 8 in d ¼ 2, 3 spatial dimensions.
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I. INTRODUCTION

Quantum field theory is the best known framework for a
fundamental description of nature, as evidenced by the
success of the standard model of particle physics, and
describes long-distance features of condensed matter sys-
tems close to criticality. While lattice Monte Carlo com-
putations can be used for static properties in cases where
the sign problem can be controlled, studying nonperturba-
tive and nonequilibrium properties of generic (QFTs)
remains an important yet daunting task.
With advancements in quantum technology, there have

been significant advances in making digital and analog
quantum platforms available for widespread use in scien-
tific applications. The hope that quantum computers might
solve the issues which plague classical lattice Monte Carlo
computations of QFTs [1,2] has motivated a surge of
activity with the goal of quantum simulation of QFTs,
with [3–8].
Among the various quantum systems which one might

like to study, QFTs are unique in that many, drastically
different, microscopic descriptions can yield the same
universal physics as one takes the continuum limit [9–
11]. This freedom in choosing a microscopic description
has always been used in constructing better actions for
classical lattice field theory computations [12,13].
However, it becomes even more relevant when one starts

consider the wide variety of quantum hardware. The best
regularization for a given QFTwill certainly depend on the
type of quantum hardware at hand.
A reason to suspect that traditional lattice regularizations

of bosonic field theories might be unsuitable for quantum
computers is the issue of local Hilbert spaces. Traditional
lattice regularizations of bosonic theories, including gauge
theories such as quantum chromodynamics (QCD), have
infinite-dimensional local Hilbert spaces [14], where each
site has an infinite-dimensional harmonic-oscillatorlike
degree of freedom. However, most quantum technologies
being pursued today realize finite-dimensional qubit (or
qudit) systems. Using a traditional lattice regularization,
we are forced to truncate the local field values so that the
local infinite-dimensional Hilbert space maps to, say, a
n-dimensional Hilbert space of the qubits. Even though, in
principle, we would recover the traditional model as
n → ∞, this introduces an additional systematic which
we need to be careful about. Much of the recent effort in the
community has been dedicated to finding sensible trunca-
tions of the local Hilbert space [15–25].
On the other hand, it might be unnecessary to introduce

this systematic. Indeed, it is well known, since Wilson’s
(RG) [9–11], that continuum QFTs with infinite-dimen-
sional local Hilbert spaces can arise close to critical points
of quantum many-body systems with finite-dimensional
local Hilbert spaces. For example, the quantum transverse
field Ising model, with just spin-1=2 local degrees of
freedom, famously reproduces the continuum ϕ4 theory
near a critical point in d ≥ 2 spatial dimensions. Many
other QFTs are also known to arise from continuum limits
of such spin models near critical points. From the point of
view of quantum simulation of QFTs, it has become
an especially relevant and interesting question to find
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nontraditional ways of obtaining continuum QFTs, which
use the available qubits efficiently. To emphasize this, in
Ref. [26], we used the term qubit regularization of a QFT
to denote such a regularization with a finite-dimensional
local Hilbert space, which reproduces a given QFT close to
a quantum critical point. This approach to finding such
unconventional regularizations for QFTs is being pursued
actively [26–31].
The goal of this work is to apply these ideas to the OðNÞ

nonlinear sigma models in D ≥ 3 spacetime dimensions
and construct a lattice regularization in the Hamiltonian
framework with a finite-dimensional local Hilbert space.
The OðNÞ (NLSM) is a QFT, perturbatively defined by the
continuum Lagrangian,

S½ϕ⃗� ¼ −
1

g2

Z
dDx∂μϕ⃗ · ∂μϕ⃗; ð1Þ

where ϕ⃗ðxÞ ∈ RN is an N-component bosonic scalar field
with the constraint jϕ⃗ðxÞj ¼ 1. The OðNÞ NLSMs, for
various N and dimensions, have a rich phenomenology and
many physical applications. In spacetime dimensions
D ¼ 3, they find applications in describing magnetism
[32], the superfluid transition in Helium-4 [33] and the
spontaneous breakdown of chiral symmetry in two-flavor
QCD with light quarks [34]. In D ¼ 2 spacetime dimen-
sions, the OðNÞ NLSM are very special owing to their
integrability [35], offer an excellent toy model for QCD,
displaying features such as asymptotic freedom, dynamical
mass generation and dimensional transmutation, and often
arise as low-energy effective theories of spin chains and
ladders [36–38].
On the lattice, the continuum OðNÞ NLSM has been

extensively studied using the lattice regulated action on a
D-dimensional Euclidean lattice,

S½ϕ⃗� ¼ −β
X
hxyi

ϕ⃗x · ϕ⃗y ð2Þ

where β is a coupling, ϕ⃗x ∈ RN is an N-component real-
valued field with the constraint jϕ⃗xj2 ¼ 1 for all sites x, and
the sum runs over all nearest-neighbor lattice sites x, y. At a
finite critical value of the coupling β ¼ βc, this model is
known to have a second-order phase transition in D ¼ 3, 4
dimensions. ForD ¼ 4 the critical point is described by the
trivial Gaussian fixed point. More interestingly, for D ¼ 3,
the critical point is described by the nontrivial Wilson-
Fisher (WF) fixed point [39]. In D ¼ 2, this model is
asymptotically free with a critical point at βc → ∞.
In Ref. [26], the authors showed that a simple qubit

regularization for theOð3ÞNLSM can be constructed using
just two qubits per lattice site, which reproduces the
continuum physics for D ¼ 3, 4 spacetime dimensions.
Similar models were also used earlier in Ref. [40] to model

pion physics, and in Refs. [41,42] for the Oð2Þ and Oð4Þ
models to study sectors of large charges, which have a
signal-to-noise ratio problem in the conventional formu-
lation of Eq. (2).
In this work, we extend these earlier results to show that

the construction can generalized to the OðNÞ case for
arbitrary N, with an (N þ 1)-dimensional local Hilbert
space. From a Hilbert space perspective, these qubit models
are the simplest and most economical, since they only use
the smallest two representations of OðNÞ. We emphasize
that while it is easy to write down many Hamiltonian
models with an OðNÞ symmetry, it is also important to
show that there is a quantum critical point in the right
universality class for the qubit model to work as a
regularization of a QFT, which in general can be a hard
problem. One attractive feature of our proposed model is
that there is a nice worldline representation which is
amenable to an efficient worm algorithm, which allows
us to use classical lattice Monte Carlo computations to
show that the model indeed has a critical point in the OðNÞ
WF universality class.
Here, we confine ourselves to D ≥ 3 spacetime dimen-

sions, and in particular perform numerical computations for
D ¼ 3, where the OðNÞ NLSM are controlled by the
nontrivial WF fixed point. However, the D ¼ 2 case is
especially interesting as well, due to asymptotic freedom
for N ≥ 3. Even though it is, in principle, possible to obtain
asymptotic freedom from qubit models, it seems to be
nontrivial to find the right critical point. Recently, in
Ref. [28], the authors provided strong numerical evidence
to support that in fact this can be done using just two qubits
per lattice site. The continuum limit Oð3Þ NLSM in 1þ 1
dimensions is achieved with a fixed two-qubit local Hilbert
space. In our preliminary investigations, the OðNÞ qubit
models proposed in this work do not seem to have the right
continuum limit in 1þ 1 dimensions [27] with a finite-
dimensional local Hilbert space. It remains an interesting
open question whether there are OðNÞ qubit models in
1þ 1 dimensions which show asymptotic freedom.
This paper is organized as follows. In Sec. II, we describe

the construction of a Hamiltonian model with OðNÞ
symmetry. In Sec. III, we show how to construct a world-
line representation and develop an efficient worm-
algorithm for it. In Sec. IV, we perform computations
for the OðNÞ qubit models for various N and compare our
results for the critical point with known results in literature.
Finally, in Sec. V, we present our conclusions and comment
on related future work.

II. THE QUBIT MODEL

In this section, we would like to write down a simple
OðNÞ-invariant Hamiltonian, which we will show to have a
critical point in theOðNÞWFuniversality class. The smallest
irreps (irreducible representations) of OðNÞ are the trivial
singlet (1-dimensional) and the vector (N-dimensional)
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representations. We will construct a Hamiltonian model
using only these irreps for the local Hilbert space.
Let jii (where i ¼ 1;…; N for N even, and i ¼

0; 1;…; N − 1 for N odd) be a basis for the fundamental
representation of the OðNÞ group. We take this to be the
“Cartesian basis,” such that rotations acts on the basis
vector jii as

jii → Rijjji ð3Þ

where R ∈ OðNÞ is an N × N matrix satisfying RTR ¼ I.
It will be more convenient for us to work in a basis where

the states diagonalize a Cartan subalgebra (CSA) of the
oðNÞ Lie algebra. Physically, such a basis consists of states
with well-defined OðNÞ charges. To make it easier to
discuss both even and odd N at once, we shall define an
integer n such that N ≡ 2n for N even, and N ≡ 2nþ 1 for
N odd. Let us also define a set of integers KN such that
KN ¼ f0;�1;…;�ng for N odd, and KN ¼ f�1;…;�ng
for N even. We define hi (i ¼ 1;…; n) as the generator of
rotations in the ð2i − 1; 2iÞ plane,

hi ¼ iðE2i;2i−1 − E2i−1;2iÞ for i ¼ 1;…; n; ð4Þ

where Ei;j is an N × N matrix with the ði; jÞth element as
one, and all other matrix elements zero. Clearly, the hi
commute with each other,

½hi; hj� ¼ 0 for all i; j ¼ 1;…; n: ð5Þ

and form a basis for the CSA of the oðNÞ lie algebra.
Since all the Cartan generators commute with each other,

they can be simultaneously diagonalized. Writing the
Cartan generators as a vector h⃗≡ ðh1;…; hnÞ, we let the
simultaneous eigenvectors of the CSA be labeled by an
n-dimensional vector q⃗k ≡ ðqk1;…; qknÞ of eigenvalues,
such that

hjjq⃗ki ¼ qkj jq⃗ki; k ∈ KN: ð6Þ

Explicitly, in terms of the Cartesian basis vectors jii, these
eigenvectors are given by

jq⃗�ki ¼
� 1ffiffi

2
p ðj2k − 1i � ij2kiÞ for k ¼ 1;…; n;

j0i for k ¼ 0 ðif N is oddÞ
ð7Þ

with the eigenvalues

ðq�kÞj ¼
��δkj for k ¼ 1;…; n;

0 for k ¼ 0:
ð8Þ

As mentioned earlier, this basis is convenient for us since
each of the states jq⃗ki have well-defined OðNÞ charges.

That is, under an OðNÞ rotation generated by the Cartan
generators, parametrized by θ⃗ ¼ ðθ1;…; θnÞ, the state jq⃗ki
transforms with just an overall phase,

jq⃗ki → eiθ⃗·h⃗jq⃗ki ¼ eiθ⃗·q⃗
k jq⃗ki: ð9Þ

In this sense, we say that the state jq⃗ki has theOðNÞ charge
q⃗k. We note that, if N is odd, then we also have a state jq⃗0i
which has zero charge,

q⃗0 ¼ ð0;…; 0Þ: ð10Þ

We may call the basis given by Eq. (7) as the “spherical
basis,” in analogy with rotations in three spatial
dimensions.
We can now construct a qubit model for the OðNÞ

NLSM, The full Hilbert space H is the tensor product of
local Hilbert spaces Hx,

H ¼⊗x Hx; ð11Þ

where x varies over all lattice sites. We define the local
Hilbert space Hx to be an (N þ 1)-dimensional vector
space, written as a direct sum

Hx ¼ Hð0Þ
x ⊕ Hð1Þ

x : ð12Þ

where Hð0Þ
x is the one-dimensional singlet representation,

and Hð1Þ
x is the N-dimensional fundamental representation.

Let the singlet Hilbert space Hð0Þ
x be spanned by a

normalized vector j∅i. We will think of this state as the

Fock vacuum. For the fundamental representationHð1Þ
x , we

use the spherical basis jq⃗ki with k ∈ KN . We interpret the

state jq⃗ki ∈ Hð1Þ
x as a “single-particle” state with charge q⃗k.

We can take this interpretation further and define creation
and annihilation operators at each lattice site x, which can
respectively be written as

c†x;k ¼ jq⃗kixh∅jx; and ð13Þ

cx;k ¼ j∅ixhq⃗kjx; ð14Þ

where k ∈ KN . We think of the operators c†x;k and cx;k as
creating and annihilating particles of charge q⃗k at the site x,
respectively.
Note that applying a creation operation twice on a site

will give zero. In other words, we do not allow more than
one particle at a site. So, in a sense, these particles obey a
kind of Pauli exclusion principle. However, these operators
are not truly fermionic since they commute at different
lattice sites. Such particles are often called hard-core
bosons in condensed matter literature.
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Finally, we can now write down a simpleOðNÞ invariant
Hamiltonian with nearest-neighbor terms,

H ¼ J1
X

x
k∈KN

c†x;kcx;k − J2
X
hxyi

k∈KN

ðc†x;kcy;k þ c†y;kcx;kÞ

− J02
X
hxyi

k∈KN

ðc†x;kc†y;−k þ cx;kcy;−kÞ ð15Þ

where x runs over all lattice sites on a d-dimensional spatial
lattice, hxyi runs over all nearest neighbor sites, and
J1; J2; J02 are couplings. Setting N ¼ 3, we can see that
this is exactly the Oð3Þ qubit model that was constructed
in Ref. [26].
To provide some intuition for the Hamiltonian in

Eq. (15), we note that there are three terms. The first
one is simply an on-site term which makes the single-
particle states costly for J1 > 0. The second term is a
hopping term for particles of a given charge. The third term
allows for a particle-antiparticle pair (of charges q⃗k and
−q⃗k) to be created out of the Fock vacuum, or for such a
particle-antiparticle pair to be annihilated into the vacuum.
Of course, this is just one of the infinitely-many OðNÞ-

invariant Hamiltonians we may write down. Here, the idea
is to write down the simplest Hamiltonian with the right
symmetries which can be shown to have the right con-
tinuum limit. Indeed, we can heuristically argue that the
model given in (15) should have a phase transition in d ≥ 2
spatial dimensions. For simplicity, we take J2 ¼ J02 > 0,
and let λ≡ J1=J2. The expected phase diagram for this
model is shown in Fig. 1. First we consider the limit in
which λ is large and positive. In this limit, the fundamental
states are energetically suppressed due to the J1 term in the
Hamiltonian. The ground state of the theory is therefore
dominated by the singlets. In the λ → þ∞ limit, the ground
state is just the OðNÞ symmetric Fock vacuum
jΩi ¼ j∅∅ � � �∅i. Making the λ finite (but still large
and positive) introduces fluctuations in the system in the
form of single-particle states. Since the lowest excited
states consist of an energetically costly N-tuplet of the
OðNÞ particles, the system should be gapped in this regime.
On the other hand, if we take λ large and negative, the

fundamental states jq⃗ki start to dominate the ground state.
In the λ → −∞ limit, the OðNÞ symmetry of the vector

particles suggests that ground state is N-fold degenerate.
However, for d ≥ 2 in the thermodynamic limit, we expect
this OðNÞ symmetry to be spontaneously broken, giving
rise to Goldstone modes. The system must thus be gapless
in this regime.
Therefore, as we tune λ from large and positive to large

and negative, at some critical λ ¼ λc, the system must
undergo a phase transition associated with the spontaneous
breaking of the OðNÞ symmetry. If the phase transition is
second order, then a continuum QFT should emerge at the
critical point, according to the ideas of Wilson’s RG. In
d ≥ 2, we expect the emergent QFT to be precisely the
OðNÞ NLSM, which is controlled by the WF fixed point in
d ¼ 2 and the Gaussian (free) fixed point in d ¼ 3 (with a
marginally irrelevant parameter).
Our aim in this work to is to develop the worldline

formulation and worm algorithm to numerically verify this
heuristic argument. We do this in the next section. If the
continuum QFT is indeed theOðNÞ NLSM, then this opens
up the possibility of studying the physics of the continuum
OðNÞ NLSM using such qubit models, both on classical
and quantum computers.

III. WORLDLINE FORMULATION
AND THE WORM ALGORITHM

A. Worldline formulation

Starting from the Hamiltonian in Eq. (15), we can
construct a worldline formulation which would be ame-
nable to Monte Carlo computations using a worm algo-
rithm. To summarize the result of this section, the worldline
formulation for the Oð2nÞ model gives us a model of
nonintersecting oriented worldlines (in spacetime) with n
colors (corresponding to the various charges), with the loop
weights symmetric across the n colors. For the Oð2nþ 1Þ
model, we get a model of n oriented worldlines and an
additional unoriented worldline, corresponding to the state
of zero charge.
Such a construction is well known and we merely sketch

the procedure (see, for example, Refs. [26,43,44]). We
begin with the partition function

Z ¼ e−βH: ð16Þ

To get the worldline representation, it is convenient to
introduce a spacetime lattice by treating β as imaginary
time and splitting β into LT pieces with β ¼ εLT ,

Z ¼ Tr½e−εH � � � e−εH�: ð17Þ

We write the Hamiltonian as H ¼ H1 þH2, where H1 is a
sum over single-site terms, and H2 is a sum over nearest-
neighbor terms. In the local j∅i; jq⃗ki basis, H1 is diagonal,
while H2 has off-diagonal terms. To exploit this fact, we
approximate the Hamiltonian as

FIG. 1. The zero temperature phase diagram of our qubit
Hamiltonian of Eq. (15) in d ¼ 2, 3 spatial dimensions, with
J2 ¼ J02 > 0 and λ ¼ J1=J2. As λ → ∞, singlets dominate and
the system is in a massive phase. However, as λ → −∞, the
ground state is dominated by the OðNÞ particles and OðNÞ
symmetry must be spontaneously broken, giving rise to massless
Goldstone modes. We expect there to be a second-order phase
transition at some intermediate λ ¼ λc.
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e−εðH1þH2Þ ¼ e−εH1ð1 − εH2 þOðε2ÞÞ: ð18Þ

which is valid for small enough ε. Now, we can evaluate the
trace in our local basis and insert a complete set of states
after each time step, which results in a sum over worldline
configurations,

Z ¼
X
C

W½C� ð19Þ

where C is a worldline configuration on a space-time lattice
(periodic in the time direction), and W½C� is the weight
associated with it. A configuration C is composed of closed
loops, each of which can have a given color and orientation.
For odd N, we can also have a color-neutral unoriented
loop. All loop configurations are allowed as long as they do
not touch each other.
The weight of a configuration is defined as a product of

weights of all the bonds between sites. Each site can be
either empty (Fock vacuum, j∅ix), or have two bonds,
incoming and outgoing. For every spatial bond, regardless
of color, we pick up a factor of Ws ¼ e−εJ1 and for every
temporal bond, we get Wt ¼ εJ2.
The above derivation assumes ε to be small. Therefore,

to recover the exact results we can either develop a
continuous time formulation [45–47] or we must perform
computations at several values of ε and extrapolate to the
ε → 0 limit. However, we can also consider the above
worldline formulation as the definition of an OðNÞ model
on a space-time lattice, and set the weights of the temporal
and spatial hops to be the same. This gives us a “relativ-
istic” model with manifest symmetry between space and
time. Indeed, this relativistic model is sufficient for our
purpose and we shall restrict ourselves to it going forward.

B. Worm algorithm for the OðNÞ qubit model

A major motivation for constructing a worldline repre-
sentation is that such worldline configurations can be
efficiently sampled with local updates using worm algo-
rithms [48,49]. In many cases, worm algorithms with a
worldline representation also solve the sign problem
[50–56]. In this section, we describe a worm algorithm
for the worldline representation constructed above. Our
algorithm is very similar to the one described in
Refs. [26,42], suitably generalized to n colors.
To design a worm algorithm, we consider an extended

partition function

Z0 ¼ Z þ Zw ð20Þ

where Z is the original partition function from Eq. (19), and
Zw is the partition function for the “worm” sector, defined
as follows. The partition function Zw is a sum over
configurations similar to Z, except that they also contain
a creation and annihilation operator insertion at any two

space-time points. Therefore the worldline configurations
in the worm sector will have several closed worldlines and
also one open worldline, with the two ends being the
operator insertions. We refer to the open worldline as the
“worm,” and the two ends of the worm are referred to as
the worm “head” and “tail.”
Aworm algorithm works by introducing the worm head

and tail at a random spacetime site of a configuration in the
default sector Z. This starts the worm update, where we
sample configurations in the Zw sector, by moving the
worm head around using local moves satisfying detailed
balance. After each step, we obtain a new configuration in
the Zw sector. Finally, when the worm head meets the worm
tail, the worm update ends and we end up with a new
configuration in the Z sector.
Our worm algorithm has three types of updates. There is

a begin/end update, which flips between the Z and the Zw
sectors. Once inside the worm sector, we have move
updates, which sample configurations in Zw by locally
moving the worm head. Finally, we have global color/
orientation flip updates which change the color or ori-
entation of an entire closed loop at once. We now describe
each of these updates for the worm algorithm. The updates
described below are for the case of oriented worldlines,
which implies that there is a unique incoming and outgoing
bond at each site. The case of unoriented worldlines can
also be handled with minor modifications.

1. Begin/end updates

Starting from a configuration in the Z sector, we enter the
worm sector using the begin/end update. We first pick a
random spacetime site x to insert the worm head and tail.
We can have two different types of updates depending on
the local configuration around the site x, as shown in Fig. 2.
Detailed balance implies that for each type of begin update
B, the reverse update E must also be allowed, which ends
the worm update. So, we discuss pairs of configurations
B ↔ E, which can transform into each other:
(1) B1 ↔ E1: The first possibility is that the site x is

empty (local configuration B1 in Fig. 2). In this case,
we select a color c at random, and propose to create a
worm head and tail of color c at the site x. The
reverse move is that if the worm head and tail are at
the same site (local configuration E1), then we
propose to exit the worm sector.

(2) B2 ↔ E2: The second possibility is that the ran-
domly chosen site x is already filled—that is, it has
an incoming and an outgoing bond of some color c.
Let the neighbor in the direction of the incoming
bond be y. In this case, we propose to delete the
incoming bond hxyi, place the worm tail at x, and
place the worm head at y. That is, we propose to
create the local configuration E2 to enter the worm
sector. Conversely, the worm update can end at E2, if
we propose to move the worm head to a neighboring
site which contains the worm tail.
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2. Move updates

In the worm sector, we move the worm head around
according to move updates, shown in bottom row of Fig. 2.
For a move update, the first step is to randomly choose a

direction for the worm head to move toward. We do this by
choosing any of the 2D spacetime directions with equal
probability. Let the neighboring spacetime site in the
chosen direction be y. Now, the type of update depends
on the local configuration at y. If y contains a worm tail,
then the updates E1, E2 apply and can end the worm
update, as discussed previously. However, if y does not
contain the worm tail, then the local configuration can be of
type M1, M2 or M3. For each of them, we have the
following moves:

(i) M1 ↔ M2: If the site y is empty (M1), then we
simply propose to move the worm head from x to y.
This will take the configuration to M1 → M2. On
the other hand, the reverse M2 → M1 happens if the
proposed direction is itself toward an incoming
bond. That is, if hxyi is the incoming bond at x,
then we propose to delete the incoming bond hxyi
and move the worm head to y.

(ii) M3 ↔ M30: The other possibility is that the neigh-
boring site y is completely filled. That is, there is
already an incoming and outgoing bond at y. In this
case, we look at the color c0 of the worldline passing
through y. Let c is the color of the worm head. If
c ≠ c0, then we simply reject this proposal. How-
ever, if c ¼ c0, then we do the following. Let the
incoming bond at y be hzyi, where z is a nearest
neighbor of y in the direction of that bond.

We propose to create the bond hxyi, delete the bond
hzyi, and move the worm head to z. The reverse of
this move is an identical move.

Finally, we note that if a worldline is unoriented, then
there is no notion of incoming and outgoing bonds. For
such worldlines, we can use the above updates with small
modifications. For example, whenever we need to select an
incoming or outgoing bond, we instead select one of the
two bonds at random, while making sure that detailed
balance is satisfied.

3. Global color/orientation flip

Finally, in addition to the above local updates, we add
another type of global update. These updates change the
color and orientation of an entire loop at once. These
updates happen in the default sector Z. We start by picking
a site at random. If the selected site does not have a
worldline passing through it, then we do nothing. However,
if the site does have a worldline passing through it, then we
propose to randomly change the color and orientation of the
worldline. Such global updates are very useful since they
make it much easier for the algorithm to explore the
space of worldline configurations. We find that this update
drastically reduces autocorrelation times, especially for
larger N.

C. Observables

The worm algorithm allows to compute many observ-
ables quite efficiently. For this work, the most important
ones are the two-point function susceptibility, and the

FIG. 2. Local configurations for the worm head. We show pairs of configurations that can transform into each other during a worm
update with probabilities obeying detailed balance. B1 and B2 are not worm configurations, but are the two local configurations where a
worm update can begin. All other configurations shown are local configurations around the worm head. E1, E2 are the two ways a worm
update can end. The configuration pairs (M1, M2) and ðM3;M30Þ are local configurations that can transform into each other during the
“move” updates.
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OðNÞ current-current susceptibility. However, we measure
a couple of other useful observables, which also act as
additional nontrivial checks for the code, especially when
comparing against exact results from small lattices.
The first, and the simplest, is the vacuum density, which

we define as the average density of singlet sites

v ¼ 1

Z
Tr
�

1

Ld

X
x

P∅
x e−βH

�
; ð21Þ

where P∅
x ¼ j∅ixh∅jx is the projector onto the singlet state

at the site x, and d is the number spatial dimensions. For a
given worldline configuration, this can be measured simply
by counting the total number of vacuum sites on the
spacetime lattice.
Next, we measure the n types of OðNÞ charges (defined

earlier in Sec. II), given by

hQki ¼
1

Z
Tr

�X
x

Q̂x;ke−βH
�

for k ¼ 1;…; n; ð22Þ

where the operator Q̂x;k measures the local charge q⃗�k at
the site x,

Q̂k;x ¼ c†x;kcx;k − c†x;−kcx;−k for k ¼ 1;…; n: ð23Þ

In our formulation, the worldlines have well-defined
charges by construction. Therefore, we can measure the
OðNÞ charges by picking a spatial slice for each configu-
ration in the default sector Z, and simply counting the
number of worldlines passing through it having some given
color k. Note that for the cases considered in this work, the
expectation value of the OðNÞ charges are zero since the
partition function has an OðNÞ symmetry. However, it can
still be useful to measure this observable because we can
study sectors of fixed nonzero global charge by introducing
a chemical potential for the charges.
An important observable for us is the OðNÞ current-

current susceptibility, which can be computed by measur-
ing the winding number,

ρðkÞs ¼ 1

Ld−2β
hðNðkÞ

w Þ2i; for k ¼ 1;…; n; ð24Þ

where d is the number of spatial dimensions, k ¼ 1;…; n is

a given color, and NðkÞ
w is the winding number of color-k

worldlines in a configuration. The winding number NðkÞ
w is

measured by picking a plane ðx; tÞ, where x can be any
spatial direction and t is the temporal direction, and then
counting the number of worldlines of a given color k
passing through it. In our computations, the OðNÞ sym-

metry ensures that ρðkÞs will be identical for all colors k.
Therefore, we average over all colors k to improve the

statistics. From now on, we drop the color superscript k,
and just denote this color-averaged observable by ρs.
The final observable is the susceptibility of the two-point

correlation function of charge q⃗�k particles,

χk ¼
1

ZβL2d

X
x;y

Z
β

0

dtTrðe−ðβ−tÞHÔy;ke−tHÔ
†
x;kÞ; ð25Þ

for k ¼ 0; 1…; n (omitting k ¼ 0 if N is even), and the
operator Ôx;k, defined as

Ô†
x;k ¼ ðc†x;k þ cx;−kÞ; ð26Þ

creates particles and annihilates antiparticles of charge q⃗k.
The worm algorithm already works as an improved
estimator for this observable, since the worm sector
samples configurations with Ox;k operator insertions.
Therefore, to compute χk, we just have to count the number
of configurations generated in a given worm update. The
expectation value of this number is exactly χk, up to
normalization. As before, we average over all colors to
improve statistics, and denote the color-averaged suscep-
tibility as χ.

IV. RESULTS: WILSON-FISHER FIXED POINT

Using the worm algorithm described in the previous
section, we have performed computations for the OðNÞ
models for various N. To show that the physics of the
continuumOðNÞ NLSM is reproduced in the qubit models,
we locate the critical point and compute the critical
exponents ν and η. We perform computations for N ¼ 2,
4, 6, 8 and lattice sizes up to L ¼ 192. While the model is
well defined for any N, it seems to show some unexpected
behavior for N ≥ 10, which prevented us from pushing the
calculations to higher N. We will comment on this later in
the conclusions.
Near a critical point J ¼ Jc, the two observables ρs and

susceptibility χ should have the scaling behavior

ρsðu;LÞ ¼
1

Ld−2 fðuÞ ð27Þ

χðu;LÞ ¼ L2−ηgðuÞ; ð28Þ

where u ¼ ðJ − JcÞL1=ν is the scaling variable, fðuÞ and
gðuÞ are unknown universal functions, and η and ν are the
critical exponents. We can approximate fðuÞ and gðuÞ by
polynomials and perform a combined fit to ρs and χ, which
helps us extract Jc, ν, η, and the functions fðuÞ and gðuÞ. To
gain better precision and control over the fits, we perform a
few additional steps. Our fitting procedure is described in
detail in the Appendix. The results of these fits to the
scaling behavior in Eq. (28) are shown in Fig. 3. As can be
seen from the figure, we find excellent scaling collapse,
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which lets us obtain the location of the critical point and the
critical exponents.
To establish the universality class, we perform a com-

parison of our computations with existing results in the

literature. The critical properties of the 2þ 1d OðNÞ
NLSM have been studied extensively through several
numerical and analytic techniques. Numerically, precise
results are available from lattice Monte Carlo [33,57–59]

FIG. 3. Scaling collapse for the OðNÞ qubit models close to the critical point, for N ¼ 2, 4, 6, 8. For each N, the top plot shows the
Monte Carlo data for winding-number susceptibility ρs while the bottom plot shows the two–point function susceptibility χ. The
Monte Carlo data is shown for lattice sizes L ¼ Lmin;…; 192, where Lmin ¼ 64 for N ¼ 2, 4 and Lmin ¼ 72 for N ¼ 6, 8. The black line
shows a combined polynomial fit to both ρsðJ; LÞ and χðJ; LÞ for the functions fðuÞ, gðuÞ defined in Eq. (28). The values of η; fð0Þ; gð0Þ
were obtained from the fits shown in Fig. 5 and used as an input here to fit ν, Jc, fðuÞ and gðuÞ in a self-consistent manner. For more
details on the fitting procedure, see Appendix. The obtained values of the critical exponents ν and η are reported in Table I.
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and conformal bootstrap techniques [60,61]. On the ana-
lytic side, even though the 2þ 1d OðNÞ NLSM is a
strongly interacting field theory, several techniques have
been developed to leverage a “hidden” small parameter and
enable analytic control, such as the 1=N and ε expansions.
We summarize our results and show a comparison with
other results from literature in Fig. 4 and Table I.
First, we consider the critical exponents for the OðNÞ

model from the large-N expansion, which is exact in the
N → ∞ limit. In the 1=N expansion, the critical exponent ν
is known up to order N−2 and η up to order N−3 [63],

ν ¼ 1 −
32

3π2
1

N
þ
�
3584

27π4
−
32

π2

�
1

N2
þOðN−3Þ; ð29Þ

η ¼ η1
N

þ η2
N2

þ η3
N3

þOðN−4Þ; ð30Þ

with

η1 ¼
8

3π2
; ð31Þ

η2 ¼ −
8

3
η21; ð32Þ

η3 ¼ η31

�
−
797

18
−
61

24
π2 þ 27

8
ψ 00ð1=2Þ þ 9

2
π2 ln 2

�
; ð33Þ

where ψðxÞ≡ ðd=d ln xÞΓðxÞ is the logarithmic derivative
of the Γ function. We show the large-N results as a solid
line in Fig. 4.
The next analytic technique we compare with is the ε

expansion. Since the ε expansion is a divergent series,
several resummation methods have been employed in the
literature. However, such resummation techniques are
uncontrolled and do not yield precise error estimates.
Hence, we do not show error estimates for the ε-expansion
results in Fig. 4. The values shown are from Ref. [62],
where the authors computed the critical exponents from a

FIG. 4. Comparison of the qubit OðNÞ model against existing results in literature for the WF critical exponents ν, η. The black dots
labeled “qubit model” are from this work. The green boxes for the ε-expansion are from Ref. [62]. The large-N results [63] are shown as
a solid red line, with the shaded band showing expected higher order 1=N contributions assuming they are of natural size. We show the
best numerical results from lattice Monte Carlo and conformal bootstrap as blue diamonds. The numbers for the critical exponents, along
with the references, are listed in Table I. We find excellent agreement with all the other techniques.

TABLE I. Comparison of the qubit model results with literature.

ν η

N 2 4 6 8 2 4 6 8

Qubit modela 0.6670(40) 0.7510(50) 0.8040(40) 0.8350(60) 0.0380(20) 0.0380(20) 0.0280(40) 0.0250(20)
ϵ expansion 0.670 0.738 0.790 0.830 0.039 0.036 0.031 0.027
Large N −0.010 0.612 0.768 0.836 −0.149 0.026 0.031 0.027
Numerical 0.671754(81)b 0.74766(84)c 0.8180(50)d 0.038176(34)b 0.03600(40)c 0.0390(30)d

aThis work.
bConformal bootstrap [60].
cLattice Monte Carlo [64].
dLattice Monte Carlo [66].
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five-loop ε expansion and tabulated the results up
to N ¼ 28.
Finally, we show the best numerical results known to us

for various N. For N ¼ 2, conformal bootstrap yields the
best estimates [61], while higher N ≥ 4 results are from
lattice Monte Carlo computations [59]. In all of these cases,
the state-of-the-art results, while more precise, are in
agreement with our work. It is encouraging that we are
already able to achieve reasonably good precision with the
qubit model and a simple finite-size-scaling analysis. This
suggests that, for the qubit models, a precision comparable
to the best known results should be within reach using a
more sophisticated finite-size scaling analysis.
We consistently find that the critical exponents ν and η

from the qubit models agree very well with the literature up
to N ¼ 8. All the data points are within ∼1σ, except for
N ¼ 6 where there seems to be a small (∼3σ) discrepancy
with the existing Monte Carlo data in the literature. While it
would be good to have verification from another numerical
computation of the Oð6Þ critical exponents, a comparison
with the other analytic techniques and the overall trend
seems to support the results from the qubit model. We also
note that while the errors on ν from our computations are
quite competitive with existing numerical computations
(especially for larger N), the critical exponent η is much
smaller, and therefore has larger error bars on this scale in
Fig. 4. It is harder to extract η to a high relative precision
without a more sophisticated finite-size scaling analysis,
which could be the subject of a future study. However, we
do find that the results from other techniques for η lie within
∼1σ of our computations for all N (except N ¼ 6, as noted
above). Based on all these comparisons, we conclude that
the qubit regularizedOðNÞmodels constructed in this work
indeed have a second-order critical point that lies in the
OðNÞ WF universality class, at least up to N ¼ 8.

V. DISCUSSION AND CONCLUSIONS

In this work, we developed a qubit regularization of the
OðNÞ NLSM for D ≥ 3 spacetime dimensions. We pro-
vided strong numerical evidence that this model has a
critical point in the OðNÞ WF universality class. In
particular, we computed the critical exponents ν, η for
N ¼ 2, 4, 6, 8, and compared these with the available
results in the literature for the WF fixed point from various
other techniques.
A major motivation of this work was to develop the idea

of qubit regularization of QFTs, proposed in Ref. [26].
There, the authors constructed a qubit model for the Oð3Þ
NLSM using two qubits per lattice site. In this work, we
demonstrate the two-qubit Oð3Þ model of Ref. [26] can be
generalized to an OðNÞ model for arbitrary N, although
with a slightly larger Hilbert space (N þ 1 dimensional) at
each lattice site.
A particularly appealing feature of such qubit models is

their suitability for implementation on quantum computers.

When the quantum critical point can be located precisely,
say using classical Monte Carlo computations, then a
continuum QFT is guaranteed to emerge. Close to this
critical point, we may study any number of dynamical
observables on a quantum computer, which would other-
wise be typically inaccessible on classical computers. At
least in the NISQ-era, it will be extremely important to
construct models that use the available qubits economically,
and yet reproduce the physics of a QFT to desired
precision.
While we had hoped to push our calculations for N ≥ 10

as well, we encountered a somewhat puzzling phenome-
non. We found that the higherN qubit models require larger
volumes, which are limited by available computational
resources. This suggests that there may be a new scale in
the problem that is controlled by N. It also looks like, up to
the lattice sizes considered in this work, the N ¼ 10 qubit
model is not in the usual superfluid phase for large negative
λ, as it is in the N ≤ 8 models. Whether this signals a new
kind of phase transition, or is simply an artifact of smaller
volumes, is not clear. It would be very interesting to
systematically explore higher N qubit models. We leave
this for a follow-up work.
Recently, Ref. [29] studied the OðNÞ qubit models from

an algebraic perspective. They made the interesting obser-
vation that the qubit model algebra for the OðNÞ model
with the singlet and fundamental representations (like the
one considered here) reproduces the infinite-dimensional
OðNÞ algebra in the large-N limit. Naively, this might
suggest that the large-N qubit models should converge
faster to the continuum limit, which seems to be in some
tension with the large-N behavior of our models. Perhaps
there might be other large-N qubit models which reproduce
the continuum physics faster, in agreement with the
analysis of the qubit algebras. This would be interesting
to clarify and explore in a future work.
All of this is especially interesting in two spacetime

dimensions, which is a case we did not explore in this work.
This is because the continuum OðNÞ models are known to
be asymptotically free in two spacetime dimensions for
N ≥ 3. The Oð3Þ model also allows for a topological θ
term, and has been long studied as a toy model of QCD.
While it has been long known that the continuum nonlinear
sigma models can be obtained from the spin-S antiferro-
magnetic Heisenberg chain [36–38] in the large-S limit, or
via dimensional-reduction of a 2þ 1d Heisenberg anti-
ferromagnetic within a D-theory approach [67–70], it was
not clear whether the continuum limit of such asymptoti-
cally free theories can be reached with a fixed finite local
Hilbert space. Indeed, in our investigations, theOðNÞ qubit
models considered in this work do not have a second-order
critical point in two-dimensions in the usual limit, as has
also been noted in several other works [22,27,71].
Interestingly, Ref. [28] recently found that a very simple
SUð2Þ-symmetric two-qubit model, called the Heisenberg
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comb, indeed displays signatures of asymptotic freedom. In
the context of our work, this raises the exciting possibility
of obtaining all other OðNÞ models, which are also known
to asymptotically free for N ≥ 3, using such simple qubit
Hamiltonians. It would be interesting to explore the OðNÞ-
invariant qubit model space in D ¼ 2 spacetime dimen-
sions further to find out whether the asymptotically free
OðNÞ critical point can be identified.
In another recent related work [27], the authors showed

that an Oð4Þ model, similar to this work, does in fact
display asymptotic freedom, if considered within a D-
theory approach by introducing a small additional dimen-
sion. Correlation length diverges exponentially as the
length of additional dimension is increased, and the system
approaches the 1þ 1d continuum Oð4Þ NLSM. Based on
those results, it is likely that theOðNÞmodels considered in
this work also show asymptotic freedom for all N ≥ 3 in
1þ 1 dimensions within a D-theory formulation. This
would be interesting to confirm by numerical computations
as well, especially with regards to the question how quickly
the continuum limit is approached for large N.
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APPENDIX: FITS TO THE SCALING BEHAVIOR

Close to a critical point, physical observables exhibit
scaling behavior. In particular, the two observables current-
current susceptibility ρs and susceptibility χ, defined above
in Section III C should behave as

ρsðJ;LÞ ¼
1

LD−2 fðuÞ ðA1Þ

χðJ;LÞ ¼ L2−ηgðuÞ; ðA2Þ

where D is the spacetime dimension, u ¼ ðJ − JcÞL1=ν is
the scaling variable, fðuÞ and gðuÞ are unknown universal
scaling functions analytic at u ¼ 0, and η and ν are the
critical exponents From the data for these observables ρs
and χ at various box sizes L and couplings J close to the
critical value Jc, we can perform a combined fit to
Eqs. (A1) and (A2). We approximate the functions fðuÞ
and gðuÞ by a truncated Taylor series expansion up to a
given order nmax

fðuÞ ¼
Xnmax

n¼0

fnun; ðA3Þ

gðuÞ ¼
Xnmax

n¼0

gnun: ðA4Þ

The coefficients fi, gi become parameters to be fit. Since u
is small close to the critical point, the Taylor series can be
truncated to small values such as nmax ¼ 2, 3, 4. However,
we do need to vary nmax empirically to find an optimal
truncation. This procedure allows us to get a fairly accurate
first estimate for the critical coupling Jc, the critical
exponents ν, η, and the scaling functions fðuÞ and gðuÞ.
However, this nonlinear fitting procedure (with 2nmax þ

5 parameters) is somewhat opaque given its reliance on
the correct range of L and J, good initial guesses for the
parameters and optimal polynomial truncations for the
functions fðuÞ and gðuÞ. Hence, we perform a few addi-
tional steps to make sure that we are indeed in the scaling
regime, and to identify the critical exponents more
precisely.
Once we obtain a precise estimate for the critical point

J ¼ Jc from the above fits, we perform another set of
computations exactly at J ¼ Jc for various L, shown in
Fig. 5. First, we look at the current-current susceptibility
ρsð0;LÞ at J ¼ Jc, which according to Eq. (A1), must
simply behave as

ρsð0;LÞ ¼
fð0Þ
L

: ðA5Þ

for D ¼ 3 spacetime dimensions. We perform a single
powerlaw fit to ρsð0;LÞL ¼ fð0ÞLα to find fð0Þ and the
power α. If we are exactly at the critical point, the exponent
must be α ¼ 0, within errors. So, we repeat this compu-
tation over a range of box sizes L ∈ ½Lmin; Lmax�, until α
becomes consistent with α ¼ 0 within errors. This gives us
the scaling window ½Lmin; Lmax�. These fits are shown in the
top plots for each N in Fig. 5.
Performing the computations at J ¼ Jc also allows for a

clean extraction of the critical exponent η. We perform a
power-law fit of the susceptibility χð0;LÞ to the form

χð0;LÞ ¼ gð0ÞL2−η; ðA6Þ
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obtained by setting u ¼ 0 in Eq. (A2). This gives us our final
value of the critical exponent η. The bottomplot for eachN in
Fig. 5 shows the extraction of η at the critical point.
Now we need to find the critical exponent ν. For this, we

go back and perform the combined fits of Eqs. (A1) and
(A2) again. But this time we use the scaling window L ¼
½Lmin; Lmax� determined above. We also keep η, fð0Þ, and
gð0Þ fixed to the values obtained from the powerlaw fits at
J ¼ Jc in Eqs. (A5) and (A6). This allows us to obtain a

more controlled fit, and a more precise extraction of the
critical exponent ν. This is the value for ν that we finally
report. Additionally, we obtain the critical point Jc, again to
make sure it is consistent with the value we chose in the
previous step. This is an additional check of self-consis-
tency of our fits. Figure 3 shows these combined fits in the
scaling window and the extraction of the critical exponent
ν, the critical point Jc, and the universal scaling functions
fðuÞ and gðuÞ.

FIG. 5. Critical scaling for OðNÞ models with N ¼ 2;…; 8 at the critical point J ¼ Jc. The top plot for each N: We perform a
powerlaw fit for winding-number susceptibility ρsL ¼ fð0ÞLα in a range of box sizes ½Lmin; Lmax� and extract the power α. If the box
sizes are large enough, then we must have α ¼ 0 at the critical points. By choosing the window ½Lmin; Lmax� such that α ≈ 0, we can make
sure our subsequent fits are in the scaling regime. The bottom plot for each N: We then fit the susceptibility to the form χð0;LÞ ¼
gð0ÞL2−η to extract η. We can now use this value of η, as well as fð0Þ; gð0Þ as an input during the extraction of ν from the double fits, as
demonstrated in Fig. 3.
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