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Quantum simulations of QCD require digitization of the infinite-dimensional gluon field. Schemes for
doing this with the minimum amount of qubits are desirable. We present a practical digitization for SUð3Þ
gauge theories via its discrete subgroup Sð1080Þ. Using a modified action that allows classical simulations
down to a ≈ 0.08 fm, the low-lying glueball spectrum is computed with percent-level precision at multiple
lattice spacings and is shown to extrapolate to the continuum limit SUð3Þ results. This suggests that this
digitization scheme is sufficient for precision quantum simulations of QCD.
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I. INTRODUCTION

Numerous observables remain firmly beyond the reach
of numerical nonperturbative field theory [1–3] due to the
sign problem. Sign problems arise when the imaginary time
(Euclidean) action of the system is complex or when a real
time representation is required. Finite density problems
(like the calculation of the equation of state of dense QCD
matter or the Hubbard model away from half-filling) are
famous examples of the first case; thermalization is an
example of the second.
Due to the importance of these problems much effort has

been spend on solving or bypassing the sign problem.
Quantum computers are a promising avenue leading to a
solution to these problems. The time development of the
quantum system can be directly mapped into the time
evolution of the quantum computer obviating the need for
imaginary time calculations. The subtle interference pat-
terns appearing on real time evolution are mimicked by the
same pattern inside the quantum computer.
Besides the obvious technological difficulty of building

quantum computers, conceptual questions must be
answered before quantum field theory can be simulated.
First, the state of the system needs to be mapped into a
finite—and likely small—quantum register. Then the initial

state needs to be prepared, the Hamiltonian evolution coded
in terms of elementary gates and, finally, observables must
be measured. This paper focuses on the first step, the
encoding of the states in the quantum register. The difficulty
arises mainly in bosonic theories. Indeed, purely fermionic
theories have an infinite dimensional Hilbert space but the
usual discretization of space into a finite lattice suffices to
reduce the dimensionality to a finite numbermappable into a
quantum register. However, the Hilbert space of a bosonic
fields defined in a single lattice point is already infinite
dimensional. Thus, further discretization of field space is
required to map bosons into a digital quantum register.
A wide array of solutions exist [4–14]. Different digitiza-
tions break different symmetries of the model [5,5,7,15].
With these reductions, the universality class of the lattice
model may differ from the original theory [16–23] making
the continuum space limit problematic. Recently, studies
quantified the truncation errors for quantum simulations of
lattice theories froma computational complexity perspective
[12,24–26].
Here, we will investigate the discrete subgroup approxi-

mation [27–30] using classical lattice simulations in the
action formulation. In contrast, a quantum simulation is
likely to be performed in the Hamiltonian formulation. The
connection between the two formulations can be derived
theoretically via the transfer matrix [31–35] or numerically
through taking the anisotropic limit of the action [36–41].
Further, while our simulations were performed in imagi-
nary time, this nonperturbative study of truncation errors is
known to be related to those in real time [42–44], thus
providing us access to much larger systems than with
current quantum devices. Discrete subgroups were studied
in the early days of lattice field theory when memory
limitations restricted the feasible lattice volumes due to the
cost of storing SUð3Þ elements.
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Replacing a continuous symmetry with a discrete (and
smaller) may easily destroy the proper (spacetime) con-
tinuum limit. In asymptotically free theories like QCD, the
continuum limit is obtained as the inverse coupling β
diverges while the lattice spacing a goes to zero. However,
for a smaller than a certain threshold af the discrete theory
differs drastically from the one with a continuous group
(although there are counterexamples [45]). In the language
of euclidean path integrals, the field configurations are
“frozen” on the configurations with the minimal action,
with the other configurations, due to the gap in action,
being exponentially suppressed. This freezing is not nec-
essarily fatal provided we reach the scaling regime: realistic
lattice calculations are performed on classical computers
with a finite a and extrapolated to a → 0. In these
calculations, a should be smaller than typical hadronic
scales with modern values of Oð0.1 fm).
Subgroups of Uð1Þ [46–48] and SUðNÞ [49–56] gauge

fields—including with fermions [57,58]—were tested with
differing degrees of success. In particular, all five crystal-
like subgroups of SUð3Þ freeze before the scaling regime
with the Wilson action [28,51,53]. Subsequent work
increased the phase transition by including the midpoints
between elements of Sð1080Þ [54]. However, this pro-
cedure breaks gauge symmetry. An alternative proposal
studied for Uð1Þ chooses an optimized subset of group
elements [59,60].
Introducing new terms to the discrete action can decrease

af. The new action has formally the same continuum limit,
but it is different at finite lattice spacing. The net effect is
that the gap δS between the lowest action configurations
is lowered and the freezing af is reduced. Classical
Monte Carlo calculations were performed in [28], finding
that a ≈ 0.08 fm is possible with the addition of a single
term to the action. We must check empirically that this
action generates the same physics as SUð3Þ by reproducing
continuum IR observables. The previous work [28] dem-
onstrated that the deconfining temperature of pure-glue
SUð3Þ was reproduced in the continuum from Sð1080Þ to
subpercent accuracy. In order to argue for the usefulness of
this approach to quantum simulations we need verify that
the Sð1080Þ is capable of reproducing the hadronic
spectrum. Here, we show that percent-level accuracy can
be achieved for the low-lying glueball states, the massive
excitations of pure-glue SU(3).

II. THEORY

In this work, we use the action proposed in [28]:

S½U� ¼ −
X

p

�
β0
3
ReTrðUpÞ þ β1ReTrðU2

pÞ
�
; ð1Þ

where Up is a plaquette and βi are coupling constants.
Modified actions like Eq. (1)were observed forUp ∈ SUð3Þ

to have milder lattice spacing errors [35,61–64] with
the same continuum limit as the Wilson action (SW ¼
− βW

3

P
p ReTrUp).

The inability of the discrete field fluctuations to be made
arbitrarily small lead to a phase boundary fβig beyond
which Sð1080Þ gauge links become frozen to 1 while the
SUð3Þ gauge links remain dynamical. In this phase, no
clear connection between Sð1080Þ and SUð3Þ exists. That
is what limits the lattice spacing to a > af. By setting
β1 < 0 the gap between the values of the frozen and
dynamical discrete links is reduced and thus af decreased.
In [28] the trajectory β1 ¼ −0.1267β0 þ 0.253 was

found to allow for lattice spacing down to a≳ 0.08 fm
when computing the Wilson flow parameter t0 [65]. This
trajectory was chosen to avoid the freezing transition in a
small 24 lattice. This value of a≳ 0.08 fm is clearly in the
scaling regime where the correlation lengths are much
smaller than a and lattice artifacts are small.

III. METHODOLOGY

To extract glueball masses we need to measure two-point
functions of operators with the appropriate quantum
numbers. Gluon correlators are noisy and the extraction
of gluon masses hinge on a good choice of interpolating
fields and a a variational calculation employing a large set
of operators. Fortunately, a sophisticated technique has
been developed that we can use for glueball spectroscopy
[66–71].
While the traditional approach for SUð3Þ glueball

spectroscopy involves anisotropic lattices [68], we used
isotropic lattices, to avoid the complication of tuning the
anisotropy. These operators need to be gauge invariant and
are constructed from traces of loops, sets of links that track
paths that return to the starting point. The basic seed paths
we used for this study are one 4-link long, three 6-link long,
and 18 8-links long (Fig. 1). Generically an n-link loop
operator is given by

FIG. 1. Seed loops for the operator constructions, using 4, 6,
and 8 links.
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½x; μ1;…; μn�≡ Tr
Yn

i¼1

Uμi

�
xþ

X

j<i

μj

�
: ð2Þ

Above, x is the starting point for the loop and μi are spatial
displacements for the loop. Since this is a loop, the
displacements satisfy

P
k μk ¼ 0. The linksUμðxÞ represent

a Wilson line connecting x and xþ μ. As the lattice spacing
is reduced the loops are enlarged by blocking, that is,
repeating the steps in the loop, so that the size of the loops
in physical units stays constant. For example ½μ1; μ2;…; μn�
can be replaced with ½μ1; μ1; μ2; μ2;…; μn; μn�.
We will consider only zero-momentum operators result-

ing from summing (2) over x. These operators have
symmetries that we use to make their calculation more
efficient: they are invariant under circular permutations of
the steps, and the opposite orientation loop is related to the
original one via a complex-conjugation.
The loop operators must be projected onto the appro-

priate irreducible representations (irreps) of the finite-
volume symmetry group Oh (we consider only cubic
boxes), a subgroup of the infinite-volume symmetry group,
Oð3Þ. These projectors are given by:

PΓ
λλ0l≡ dΓ

jGj
X

g∈G
½DΓ

λλ0 ðgÞ��RðgÞl; ð3Þ

where l ¼ ½μ1;…; μn� and Rl ¼ ½Rμ1;…; Rμn� is the loop
transformed by R. Above, dΓ is the dimension of the irrep
Γ, jGj is the number of elements in the group, DΓðgÞ is the
matrix associated with element g in irrep Γ and RðgÞ is the
three-dimensional representation of Oh (these are the same
matrices asDT−

1 ðgÞ.) The groupOh has 24 proper rotations,
and 24 rotations combined with an inversion. There are 10
irreps: A�

1 , A
�
2 , E

�, T�
1 , and T

�
2 with dimensions 1, 1, 2, 3,

and 3. The multiplets of Oð3Þ can be decomposed into
smaller invariant multiplets of Oh. For instance, the scalar
(J ¼ 0) irrep corresponds to the A1 irrep of Oh while the
J ¼ 2 breaks down into E ⊕ T2. The parity is the same for
both infinite volume and finite volume irreps.
The other quantum number relevant for operator con-

struction is the charge parity. Charge conjugation for
the glue fields is given by UμðxÞ → UμðxÞ�, so the loop
operators transform similarly l → l�. The even-charge
operators, which we consider here, correspond to the real
part of l and the odd ones to the imaginary parts. Finally, in
order to increase the overlap of the loop-operators with the
glueball states we stout smear the links [72].
In our calculation, we used the following operator basis.

All loops were computed using smeared operator on
blocked links. We used 16 different combinations. For
each gauge-configuration we repeatedly smeared the links
generating four different smearing levels with nsmear ¼ 2, 4,
6, 8. For each smearing set of links we evaluated the loops
using blocked links with nblock ¼ 2, 4, 6, 8.

Since the gluon correlators becomes noisy at fairly small
time separations, a delicate fitting procedure is required to
extract the glueball masses. Finite-volume glueball energies
are best extracted by computing matrices of temporal
correlators,

CijðτÞ ¼
X

τ0

h0jOiðτ þ τ0ÞOjðτ0Þ†j0i; ð4Þ

for large sets of glueball operators OðτÞ ¼ OðτÞ−
h0jOðτÞj0i. In practice, the vacuum subtraction only needs
to be performed for operators with vacuum quantum
numbers, i.e., the Aþþ

1 sector. We construct the matrix

C̃ðτÞ ¼ U†Cðτ0Þ−1=2CðτÞCðτ0Þ−1=2U; ð5Þ

where the columns of U are the eigenvectors of GðτdÞ ¼
Cðτ0Þ−1=2CðτdÞCðτ0Þ−1=2. The parameters τ0 and τd, named
the pivot and diagonalization times, are chosen such that
C̃ðτÞ remains (approximately) diagonal for τ > τd, and the
extracted energies are insensitive to parameter variations.
The spectrum is then extracted by fitting the diagonal
elements C̃kkðτÞ to the ansatz Ak½e−Ekτ þ e−EkðT−τÞ�, with T
the extent of the Euclidean lattice time. The ground state is
associated with the largest eigenvalue of GðτdÞ, the first
excited state with the second largest eigenvalue, and so on.
From the 22 seed loops in Fig. 1, 626 linearly indepen-

dent operators are produced across the 20 ΓC symmetry
sectors. Performing the smearing and blocking process
leads to 10,016 independent operators for the 16 sets of
links. While the full set of operators for a given irrep can be
used, in practice it is often necessary to carefully prune the
operator basis. This is done by removing operators with
poor overlap onto the states of interest, and those whose
correlators have a low signal-to-noise ratio. Unlike modern
QCD calculations [73,74] here we are only interested in the
ground state in a given irrep. Therefore, while pruning is
helpful in simplifying the analysis to smaller matrices, we
find our results insensitive to it.

IV. RESULTS

Our results are obtained from three Sð1080Þ ensembles
using the same couplings as [28]. The parameters were
chosen to scan a set a ∈ ½0.08; 0.16� fm. The lattice spacing
was determined from t0, the Wilson flow time [65]. A
detailed list of parameters is in Table I. These ensembles
were generated using a multihit Metropolis update algo-
rithm, which we found to be as efficient as a heat-bath in
terms of autocorrelation length but significantly cheaper to
implement. For each ensemble we generated around
650,000 independent configurations with sufficient decor-
relation steps. Computing time was dominated by meas-
uring the loop-operators, so we used a conservative number
of update steps between measurements.
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To verify that our operator basis overlaps well with
the glueballs and that our fitting method is sound, we
carried out a calibration run using an SUð3Þ ensemble.
We generated a set of SUð3Þ Wilson-gauge configurations
for β ¼ 6.0625 and compare our results with the state-of-
the-art calculations of [71] for one value of β that is near the
lattice spacing on one of our Sð1080Þ ensembles. We
generated similar statistics to the Sð1080Þ ensembles and
used the same set of operators. The full set of parameters
for this run is included in the last row of Table I.
For analysis we binned the measurements in groups of

500, both to remove the possible autocorrelation effects and
to make the data analysis more manageable. We fit a single
exponential function, A½e−mτ þ e−mðT−τÞ�, to the ground
state correlator in the time range τ ∈ ½τi; τf�. The relevant
parameters for these calculations are in Table II. The
masses and their errors were extracted using a correlated
fit to take into account the covariance of the correlator at
different times. The covariance matrix for the correlator
was estimated using the jackknife method. The results are
plotted in Fig. 2 and included in Table I.

TABLE I. Input parameters. The top three lines are for Sð1080Þ and the forth is the SUð3Þ calibration run. The parameters are: ρ the
stout smearing parameter, ndecorr the number of updates between measurements, nρ and nb the number of smearing and blocking levels
respectively. For Sð1080Þ, the couplings β0 and β1 are normalized as in Eq. (1), and follow the trajectory in the text, whereas for SUð3Þ
simulations β0 is the Wilson coupling. Observables are quoted in lattice units, with statistical errors only. For SUð3Þ the value of ffiffiffiffi

t0
p

=a
is from [75].

β0 β1 n3x × nt ntherm ndecorr ρ nmeas nbins
ffiffiffiffi
t0

p
=a amAþþ

1
amA−þ

1
amEþþ

9.154 −0.9065 163 × 16 200 40 0.2 652500 1305 1.016(3) 1.272(14) 2.201(35) 1.986(17)
12.795 −1.3677 163 × 16 200 40 0.2 650000 1300 1.508(3) 0.859(13) 1.386(22) 1.296(16)
19.61 −2.2309 163 × 16 200 40 0.2 647500 1295 2.000(4) 0.6498(84) 1.071(11) 0.9644(82)
6.0625 � � � 163 × 16 200 5 0.2 567500 1135 1.962(1) 0.6352(79) 1.088(12) 0.9649(84)

TABLE II. Analysis parameters for the Sð1080Þ calculation
(top rows) and the SUð3Þ calibration run (bottom). Included are
the pivot time τ0, the diagonalization time τd, the fit range ½τi; τf�,
and the χ2 per degree of freedom.

β0 Irrep τ0 τd τi τf χ2=dof

9.154 Aþþ
1

0 1 2 7 0.94
A−þ
1

1 2 1 15 0.82
Eþþ 0 1 1 15 1.37

12.795 Aþþ
1

0 1 3 8 1.24
A−þ
1

0 1 2 7 0.96
Eþþ 0 1 2 8 1.91

19.61 Aþþ
1

0 1 3 8 1.47
A−þ
1

0 1 2 5 1.11
Eþþ 0 1 2 8 0.83

6.0625 Aþþ
1

2 3 3 10 1.01
A−þ
1

0 1 2 7 0.90
Eþþ 1 2 2 8 1.07

FIG. 2. Masses for Aþþ
1 (JPC ¼ 0þþ), A−þ

1 (JPC ¼ 0−þ), and
Eþþ (JPC¼2þþ) glueballs vs a2=t0. Our Sð1080Þ (filled red
diamond) and SUð3Þ (filled black circle) results compared to
SUð3Þ results from [71] (open gray circle). Another continuum
SUð3Þ result [70] (gray cross) is presented to estimate systematic
errors.
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We extracted the glueball masses corresponding to the
ground states in the Aþþ

1 , Eþþ, and A−þ
1 irreps, corre-

sponding to the lowest lying glueballs. The SUð3) cali-
bration run results are included in Fig. 2 and are consistent
with those from Ref. [71]. The A−þ

1 point differs from the
corresponding mass from Ref. [71], yet we note that at this
point the results from Ref. [71] have large error bars and are
at tension with their own continuum extrapolation. Our
Sð1080Þ results are extrapolated to a ¼ 0 assuming the
expected quadratic form mðaÞ ffiffiffiffi

t0
p ¼ mð0Þ ffiffiffiffi

t0
p þ ca2=t0.

These extrapolations are indicated in Fig. 2 with a red
line and compared with the SUð3Þ extrapolations from
Refs. [70,71]. For our calculations we use

ffiffiffiffi
t0

p
=a values

measured directly on these ensembles [28] (see Table I).
For the SUð3Þ results we used the parametrization of

ffiffiffiffi
t0

p
=a

as a function of β for the pure glue Wilson action included
in a recent study [75] and we perform the same continuum
extrapolation as in Ref. [71]. To gauge the systematics of
the SUð3Þ calculation, we included the results from an
independent calculation [70]. The extrapolation results are
included in Table III. As we can see, the results agree
within their statistical errors at the percent level. Compared
to previous results for the deconfining temperature
T0

ffiffiffiffi
t0

p ¼ 0.2489ð11Þ, our results probe nearly an order
of magnitude higher in energym

ffiffiffiffi
t0

p
∼ 2 finding agreement

with SUð3Þ in the continuum. This supports the claim
that this modified action reproduces SUð3Þ physics below
2.5 GeV−1.

V. CONCLUSIONS

These results provides strong evidence that Sð1080Þ can
replace SUð3Þ in quantum simulations of observables

which cannot be computed using classical lattice tech-
niques in imaginary time e.g. [76]. This includes some key
QCD phenomena that have remained mysterious up to now
like the mechanism of thermalization in heavy ion colli-
sions that is believed to be driven mostly by gluons. The
Oð102Þ qubit savings from using an 11-qubit Sð1080Þ
register instead of SUð3Þ compare favorably to other
digitizations [14,77–80]. Even with the small lattice sizes
dominating the error due to the limited number of qubits,
the model studied here represents a sufficient approxima-
tion of SUð3Þ for a≳ 0.08 fm in classical simulations.
Future work should investigate what effect taking the
anisotropic limit has on the minimum lattice spacing, as
this has a direct connection to the Hamiltonian. As quantum
computers get larger, smaller lattice errors may become
desirable. In such case, systematic improvements are
possible. Including additional terms in the action propor-
tional to other characters [29,55,56] can allow for smaller a,
while improved actions, in the spirit of the Symanzik
program, can reduce the systemic error for fixed a [81–83].
The relative cost of these two improvements is left for
future work. Finally, including dynamical fermions into
discrete subgroups simulations should be performed to
understand how this full theory compared to QCD. While
there is no conceptual issue in including fermions, the
numerical value of the minimum lattice size achievable will
depend on the number of dynamical quarks.
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