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We study the radiative leptonic decays P → lνll0þl0−, where P is a pseudoscalar meson and l and l0

are charged leptons. In such decays the emitted photon is off-shell and, in addition to the “point-like”
contribution in which the virtual photon is emitted either from the lepton or the meson treated as a point-like
particle, four structure-dependent (SD) form factors contribute to the amplitude. We present a strategy for
the extraction of the SD form factors and implement it in an exploratory lattice computation of the decay
rates for the four channels of kaon decays (l, l0 ¼ e, μ). It is the SD form factors which describe the
interaction between the virtual photon and the internal hadronic structure of the decaying meson, and in our
procedure we separate the SD and point-like contributions to the amplitudes. We demonstrate that
the form factors can be extracted with good precision and, in spite of the unphysical quark masses
used in our simulation (mπ ≃ 320 MeV and mK ≃ 530 MeV), the results for the decay rates are in
reasonable semiquantitative agreement with experimental data (for the channels where these exist).
Following this preparatory work, the emphasis of our future work will be on obtaining results at
physical quark masses and on the control of the systematic uncertainties associated with discretization and
finite-volume errors.

DOI: 10.1103/PhysRevD.105.114507

I. INTRODUCTION

The comparison of precise theoretical predictions for
flavor-changing processes, in particular those which are
suppressed in the Standard Model (SM), with experimental
measurements is a fruitful approach to searches for new
physics. For example, there have been experimental results
suggesting the violation of lepton flavor universality which

is an important feature of the SM (see e.g., Refs. [1,2] and
references therein). In order to confirm the presence of new
physics and to elucidate its underlying structure it is
important to study as many such processes as possible.
In this paper we consider weak decays of the form
P → lνll0þl0−, where l and l0 are charged leptons, for
which the decay rates start at Oðα2emÞ.
For each decay P → lνll0þl0−, the computation

of the decay rate requires the knowledge of four structure-
dependent (SD) hadronic form factors, that depend on the
invariant masses of the two leptonic pairs lνl and l0þl0− as
well as of the leptonic decay constant fP [see Eqs. (1)–(5)
below]. The “point-like” (or inner-bremsstrahlung) contri-
bution to the decay rate, inwhich thevirtual photon is emitted
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either from the lepton l or from the meson P treated as a
point-like particle, is readily calculable in perturbation
theory, requiring only the well-known value of fP as the
nonperturbative input. The SD form factors describe the
interaction between the virtual photon and the internal
hadronic structure of the decaying meson and their compu-
tation in lattice quantum chromodynamics is the subject of
this paper. This work is a natural extension of our detailed
studies and computations of isospin-breaking corrections to
leptonic decays [3–6] and to the calculation of leptonic
radiative decays of the type P → lνlγ where γ is a real
photon [7,8].
Experimentally, only a few measurements exist. For the

pion, the only measured decay rate is for the process
πþ → eþνeeþe−, for which the Particle Data Group (PDG)
reports a branching ratio of ð3.2� 0.5Þ × 10−9 [9]. For
kaon decays measurements of the (partial) branching ratios
have been performed by the E865 experiment at the
Brookhaven National Laboratory AGS for the decays
Kþ → eþνeeþe−, Kþ → μþνμeþe− and Kþ → eþνeμþμ−

[10,11]. The branching ratios are found to be of Oð10−8Þ.
For decays with an eþe− pair in the final state a lower limit
of about 150 MeV is imposed on the invariant mass of the
lepton pair. Without such a cut the branching ratio would be
dominated by the point-like contribution in the low eþe−

invariant mass region which is of Oð10−5Þ, so that the
relevant SD contribution would not be detectable. For D
mesons there are no data, while for B mesons there is an
upper bound on BRðBþ → μþνμμþμ−) of 1.6 × 10−8 [12].
In this paper we present the general strategy for the

computation of the SD form factors and then implement
the procedure in an exploratory lattice simulation for kaon
decays, i.e., for P ¼ K. The computation is performed
using a single gauge ensemble of Nf ¼ 2þ 1þ 1 flavors
of twisted mass fermions generated by the European
Twisted Mass Collaboration (ETMC) on a 323 × 64 lattice
with lattice spacing a ¼ 0.0885 fm and with unphysical
light-quark masses such that the pion and kaon masses are
mπ ≃ 320 MeV andmK ≃ 530 MeV. Further details of the
ensemble are given at the beginning of Sec. V. Our
method enables us to determine each of the four SD form
factors contributing to the amplitude with good precision,
and to study their dependence on the kinematic variables.
Using these form factors one can reconstruct separately all
the contributions to the branching ratios: the point-like
contribution, the SD one and that coming from the
interference between the two. There has been one previous
lattice study of these decays, in which a method was
presented and implemented to compute the branching
ratio for the decays K → lνll0þl0− without separating the
point-like contribution and determining the SD form
factors themselves [13]. The exploratory computations
in Ref. [13] were performed on a single gauge ensemble
on a 243 × 48 lattice with a ≃ 0.093 fm and with

quark masses corresponding to mπ ≃ 352 MeV and

mK ≃ 506 MeV.1

In our computation and also that in Ref. [13], the kaon
mass is smaller than twice the pion mass, mK < 2mπ ,
so that there are no contributions of the form
K → ππlνl → lνlγ, with an on-shell ππlνl intermediate
state. With physical quark masses, contributions with such
an intermediate state are present in the region of phase
space in which k2 > 4m2

π , where k is the four-momentum
of the virtual photon. This leads to finite-volume effects
which decrease only as inverse powers of the volume and
not exponentially [14–16]. This effect is particularly
important for the decays of heavy mesons, where there
are many more possible on-shell intermediate states. This
issue, together with a complete study of all the systematic
effects (due to discretization, finite volume and unphysical
quark masses) will be the subject of our future studies.
For kaon decays, in addition to the lattice results from the

computations reported here and in Ref. [13], theoretical
information about the form factors comes from chiral
perturbation theory (ChPT), which has been used at
next-to-leading order (NLO) to estimate their values and
their contribution to the branching ratios [17]. It is worth
noting that at NLO in ChPT the form factors are constants,
i.e., independent of the kinematical variables. In spite of the
unphysical quark masses used in our simulation it has been
interesting and instructive to compare our results with those
from experiment (where available) and from NLO ChPT, as
well as with those from Ref. [13]. Perhaps surprisingly, as
can be seen from Tables IV–VII below, the results are
generally in reasonable semiquantitative agreement but
with some differences. In particular we speculate that the
form factor H1, defined in Eq. (5) may have to increase by
Oð20%Þ in order to get precise agreement with the
experimental data (although there are also discrepancies
in the experimental determination of H1 from different
decay channels). It will be important therefore, after this
successful exploratory computation, to focus our future
work on controlling and reducing the systematic uncer-
tainties in order to obtain robust results at physical quark
masses and in the continuum and infinite-volume limits. It
will then be interesting to see whether the form factor H1

will indeed change or whether there will be a different
explanation for the differences between the experimentally
observed rates and our current results.
For heavy mesons ChPT does not apply, and the one

theoretical prediction was presented in Ref. [18] for B
decays, where a vector meson dominance model has been
used. The prediction for the Bþ → μþνμμþμ− branching
ratio of Ref. [18], however, is almost 4 times larger than the

1After the original version of this paper was posted on the
arXiv, the authors of Ref. [13] updated their results. The values
reported in Tables IV–VII below correspond to the updated
results.
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experimental upper limit obtained in Ref. [12]. It is there-
fore clear that a nonperturbative, model-independent lattice
evaluation of the SD form factors is required.
The plan for the remainder of this paper is as follows. In

Sec. II we define the hadronic tensor and the form factors
into which it is decomposed. These are the main target of
our lattice calculation. This is followed in Sec. III by an
explanation of how the hadronic tensor can be determined
from lattice computations and in Sec. IV by the presen-
tation of our strategy for extracting the four SD form factors
from the hadronic tensor. In Sec. V we present the details of
the numerical computation of the SD form factors and in
Sec. VI we use these form factors to compute (partially)
integrated branching ratios for the four channels of kaon
decays: Kþ → eþνeμþμ−, Kþ → μþνμeþe−, Kþ →
eþνeeþe− and Kþ → μþνμμþμ−. We also compare our
results to the experimental measurements (where these
exist) and to the predictions of ChPT. We present a
summary and our conclusions in Sec. VII. There are two
appendixes. In Appendix Awe collect the formulas used to
obtain the branching ratios from the form factors for the
two channels in which l ≠ l0. The corresponding formulas
for the other two channels, i.e., when l ¼ l0 are too lengthy
to present here, but are available from the authors upon
request. In Appendix B we discuss the nontrivial limit of
the relevant lattice correlation function as the four-momen-
tum of the photon, k, goes to zero, k → 0. This is a key
element in the subtraction of the point-like term from the
hadronic matrix element, which itself is a necessary step to
extract each of the SD form factors.

II. THE HADRONIC TENSOR IN MINKOWSKIAN
AND EUCLIDEAN SPACE-TIME

At lowest order in the electroweak interaction, Pþ →
lþνll0þl0− decays are obtained from the diagrams depicted
in Fig. 1. If l ¼ l0, we also need to consider the diagrams
obtained by interchanging the two identical charged lep-
tons. The diagram in Figure 1(b) can readily be computed
in perturbation theory, with the meson decay constant as the
only required nonperturbative input. In Fig. 1(a) the

nonperturbative hadronic contribution to the matrix
element factorizes, and is encoded in the following tensor:

Hμν
W ðk; pÞ ¼

Z
d4x eik·xh0jT½JμemðxÞJνWð0Þ�jPðpÞi; ð1Þ

where k ¼ ðEγ; kÞ is the four-momentum of the virtual
photon and p ¼ ðE; pÞ is that of the incoming pseudoscalar
meson P. The meson and photon energies satisfy E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

P þ p2
p

and Eγ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k2

p
. The two operators

JμemðxÞ ¼
X
f

qfψ̄fðxÞγμψfðxÞ

JνWðxÞ ¼ JνVðxÞ − JνAðxÞ ¼ ψ̄DðxÞðγν − γνγ5ÞψUðxÞ; ð2Þ

are respectively the electromagnetic hadronic current and
the hadronic weak current expressed in terms of the quark
fields ψf having electric charge qf in units of the charge of
the positron; ψU and ψD indicate the fields of an up-type or
a down-type quark. In Eq. (2) we have written the weak
current, JνW , corresponding to a positively charged meson
Pþ; for a negatively charged meson we make the replace-
ment D ↔ U.
The hadronic tensor can be decomposed into form

factors which are scalar functions encoding the nonpertur-
bative strong dynamics. Following Ref. [19], we write

Hμν
W ¼ Hμν

pt þHμν
SD; ð3Þ

Hμν
pt ¼ fP

�
gμν −

ð2p − kÞμðp − kÞν
ðp − kÞ2 −m2

P

�
; ð4Þ

Hμν
SD ¼ H1

mP
ðk2gμν − kμkνÞþH2

mP

½ðk ·p− k2Þkμ− k2ðp− kÞμ�
ðp− kÞ2−m2

P

× ðp− kÞνþ FA

mP
½ðk ·p− k2Þgμν− ðp− kÞμkν�

− i
FV

mP
ϵμναβkαpβ: ð5Þ

FIG. 1. Diagrams representing the virtual photon emission from the meson (a) and from the charged lepton (b), contributing to the
process Pþ → lþνllþl0−. Wework in the electroquenched approximation in which the sea quarks are electrically neutral so contributions
from disconnected diagrams are neglected (see Fig. 3 and the corresponding discussion).
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With this decomposition we have separated the point-like
contribution to the hadronic tensor from the structure-
dependent one. The former depends only on the meson
decay constant and is obtained by assuming a point-like
meson. The SD contribution describes the interaction
between the virtual photon and the hadronic structure of
the pseudoscalar meson. The SD form factors, H1, H2, FA

and FV , are scalar functions of k2 and ðp − kÞ2. Note that,
compared to our earlier work [see for example Eq. (B4) of
Ref. [19] or Eq. (3) of Ref. [3]], we have modified the
definitions of H1;2 by a factor of mP and introduced the
denominator ðp − kÞ2 −m2

P in the factor multiplying H2.
In these earlier papers we were studying radiative correc-
tions to leptonic decays with a real photon in the final state
for which the form factors H1;2 do not contribute. With the
definitions in Eq. (5) all four form factors are now
dimensionless and finite in the infrared limit. The main
goal of this lattice study is to compute the SD form factors
in order to reconstruct the full matrix element and sub-
sequently the branching ratio for the decay. We do this in a
way which separates the point-like contribution from that
which depends on the hadronic structure.
In order to show how the hadronic tensor can be

extracted from Euclidean correlation functions it is useful
to express Hμν

W ðk; pÞ in terms of the contributions coming
from the two different time orderings. By inserting a
complete set of intermediate states we obtain the contri-
butions from the two separate time orderings [tx < 0 and
tx > 0, where x ¼ ðtx; xÞ] as

Hμν
W ðk; pÞ ¼ Hμν

W;1ðk; pÞ þHμν
W;2ðk; pÞ; ð6Þ

where

Hμν
W;1ðk; pÞ ¼ −i

X
nf∶pnf¼p−k

h0jJνWð0ÞjnfihnfjJμemð0ÞjPðpÞi
ðEγ þ Enf − EÞ ;

ð7Þ

Hμν
W;2ðk; pÞ ¼ −i

X
n∶pn¼k

h0jJμemð0ÞjnihnjJνWð0ÞjPðpÞi
ðEn − Eγ − iϵÞ ; ð8Þ

and the sums over the intermediate states implicitly include
the phase-space integration. The states jnfi have the same
flavor quantum numbers as the initial meson P, while
the states jni have zero additive flavor quantum numbers.
For example, if we consider the decay of a Kþ and
JνW ¼ s̄γνð1 − γ5Þu, then the jnfi have strangeness
S ¼ −1 and the jni have S ¼ 0.
Lattice correlation functions can only be computed in

Euclidean space-time, and thus we have to translate the
Minkowski Green function to the corresponding Euclidean
one. By making the naive Wick rotation t → −it we obtain
the Euclidean expression

Hμν
E ðk; pÞ ¼ −i

Z
d4x etEγ−ik·xh0jT½JμemðxÞJνWð0Þ�jPðpÞi:

ð9Þ

As before, we insert a complete set of intermediate
states and obtain contributions from each of the two time
orderings:

Hμν
E ðk; pÞ ¼ Hμν

E;1ðk; pÞ þHμν
E;2ðk; pÞ; ð10Þ

Hμν
E;1ðk; pÞ ¼ −i

X
nf∶ pnf¼p−k

h0jJνWð0ÞjnfihnfjJμemð0ÞjPðpÞi
Z

0

−∞
dtx e

txðEγþEnf
−EÞ; ð11Þ

Hμν
E;2ðk; pÞ ¼ −i

X
n∶ pn¼k

h0jJμemð0ÞjnihnjJνWð0ÞjPðpÞi
Z þ∞

0

dtx e−txðEn−EγÞ: ð12Þ

If the conditions

Eγ þ Enf − E > 0; ð13Þ

En − Eγ > 0; ð14Þ

are satisfied, the time integrals converge and we have

Hμν
E ¼ −i

X
nf∶ pnf¼p−k

h0jJνWð0ÞjnfihnfjJμemð0ÞjPðpÞi
Eγ þ Enf − E

− i
X

n∶ pn¼k

h0jJμemð0ÞjnihnjJνWð0ÞjPðpÞi
En − Eγ

: ð15Þ
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If the inequalities (13) and (14) are satisfied then the Wick
rotation leaves the hadronic tensor (1) unchanged, and thus
the lattice calculation with Euclidean time can be done
without particular difficulties. In such situations, the iϵ in the
second line of Eq. (8) is also unnecessary. On the other hand
for external momenta such that the inequalities (13)–(14) are
not satisfied the time integrals in Euclidean space-time
diverge at large tx. The above is a consequence of the
analytic structure of the T product in Eq. (1): the presence of
singularities (poles or cuts) in Minkowski space can prevent
the possibility ofmaking a naiveWick rotation. The presence
of such singularities implies the existence of intermediate
states with energies which are smaller than the external ones
resulting in integrals over tx which grow exponentially with
the upper limit of integration. The conditions (13) and (14)
correspond to the requirement that the internal states con-
tributing to the correlation function all have energies larger
than that of the external states (seeRef. [20] formore details).
In the above discussion we have not specified what

the pseudoscalar meson P is but in this paper we apply the
formalism to the decays of a kaon. For tx < 0, i.e., when the
electromagnetic current is inserted before the weak oper-
ator, the internal lightest state is given by a kaon with
spatial momentum p − k, and it can be readily shown that
the condition (13) is satisfied for every choice of the
external momenta p and k. On the other hand, for tx > 0,
i.e., when the weak current is inserted before the electro-
magnetic one, the lowest-energy internal state is given by
two pions with the same spatial momentum k as the virtual
photon. Thus the condition (14) is satisfied only for k2 <
4m2

π and for larger photon virtualities the correlator in
Euclidean time is divergent. On a finite spatial lattice the
spectrum of states jni is discrete and so there is only a finite
number of states with k2 > 4m2

π and in practice the number
of such states is small and the terms with the exponentially
growing exponentials can be explicitly subtracted, thus
extending the validity of the method beyond the region
k2 < 4m2

π . The remaining issue is then the correction for
the nonexponential finite-volume effects (analogous to
those corrected by the Lellouch-Lüscher factor in K →
ππ decays [14]). We postpone a discussion of this issue to a
future publication and for now we restrict our analysis,
presented in Sec. V, to kaon decays with an unphysical pion
mass such that mK < 2mπ . Thus, two-pion internal states
are always heavier than the external states and so conditions
(13) and (14) are both satisfied.
Now that we have discussed the analytic continuation to

Euclidean space-time, we proceed to the presentation of our
strategy for extracting the SD form factors from suitable
three-point lattice correlation functions.

III. THE HADRONIC TENSOR FROM LATTICE
CORRELATION FUNCTIONS

The principal ingredient in evaluating the decay ampli-
tude on a Euclidean lattice, with finite space-time volume
V ¼ L3 × T, is the correlation function

Mμν
W ðtx; t; k; pÞ ¼ ThJνWðtÞĴμemðtx; kÞP̂ð0; pÞiLT; ð16Þ

where h…iLT denotes the average over the gauge field
configurations at finite L and T. Note that in Eq. (16) we
have placed the interpolating operator P̂ð0; pÞ at time 0 and
the weak current JWðtÞ at time t. The three operators in
Eq. (16) are as follows:

(i) P̂ð0; pÞ is the spatial Fourier transform of the inter-
polating operator for the decaying pseudoscalar
meson at time t ¼ 0:

P̂ð0; pÞ ¼
X
z

eip·zPð0; zÞ; ð17Þ

where Pð0; zÞ ¼ iψ̄Uð0; zÞγ5ψDð0; zÞ for a positively
charged meson or Pð0; zÞ ¼ iψ̄Dð0; zÞγ5ψUð0; zÞ for
a negatively charged one and ψU;D indicate the fields
of up-type and down-type quarks respectively. In this
paper we study kaon decays so U ¼ u and D ¼ s.

(ii) The renormalized hadronic weak current, JνWðtÞ ¼
JνVðtÞ − JνAðtÞ is placed at a generic time t and at the
origin in space. The vector and axial currents, JνVðtÞ
and JνAðtÞ respectively, satisfy the continuum Ward
identities (up to discretization effects). In the twisted-
mass discretization of the fermionic action [21], the
vector and axial-vector currents we use are given by

JνVðtÞ ¼ ZAψ̄DðtÞγνψUðtÞ;
JνAðtÞ ¼ ZV ψ̄DðtÞγνγ5ψUðxÞ; ð18Þ

for a positively charged meson or their Hermitian
conjugates for a negatively charged one, where ZA;V
are the renormalization factors ensuring that theWard
identities are satisfied.2

(iii) The electromagnetic current, Jμemðtx; xÞ, is defined by

Jμemðtx; xÞ ¼
X
f

qfJ
μ
fðtx; xÞ; ð19Þ

wheref is the flavor index and the chargeqf is equal to
2=3 for up-type quarks and to −1=3 for down-type
quarks. A possible choice for the lattice electromag-
netic current is the local operator Jμfðtx; xÞ ¼
Zloc
V q̄fðtx; xÞγμqfðtx; xÞ, where Zloc

V is the finite re-
normalization constant of the vector current
(Zloc

V ¼ ZA with twisted mass at maximal twist). We
choose instead to use the exactly conserved lattice
vector current which with twisted-mass Fermions at
maximal twist is given by3

2Note that the renormalization factors to be used in twisted
mass at maximal twist are chirally rotated with respect to those of
standard Wilson fermions [22]. This is a consequence of the fact
that the up-type and down-type quark fields in the action are
discretized with opposite values of the Wilson parameter.

3With twisted boundary conditions we use the corresponding
conserved current given by Eq. (B10) of Ref. [7].

VIRTUAL PHOTON EMISSION IN LEPTONIC DECAYS OF … PHYS. REV. D 105, 114507 (2022)

114507-5



JμfðxÞ ¼ −
�
ψ̄fðxÞ

irfγ5 − γμ

2
UμðxÞψfðxþ μ̂Þ − ψ̄fðxþ μ̂Þ irfγ5 þ γμ

2
UμðxÞ†ψfðxÞ

�
: ð20Þ

In Eq. (20), UμðxÞ are the QCD link variables and rf ¼ �1 is the Wilson parameter of the flavor f [23]. The spatial
momentum k of the current is assigned by defining

Ĵμemðtx; kÞ ¼
X
x

e−ik·ðxþ{̂=2ÞJμemðtx; xÞ: ð21Þ

In order to obtain the decay amplitude, we need to integrateMμν
W ðtx; t; k; pÞ over tx, as seen for example in Eq. (1). To this

end we construct the function

Cμν
W ðt; Eγ; k; pÞ ¼ −iθðT=2 − tÞ

XT
tx¼0

ðθðT=2 − txÞeEγtx þ θðtx − T=2Þe−EγðT−txÞÞMμν
W ðtx; t; k; pÞ

− iθðt − T=2Þ
XT
tx¼0

ðθðT=2 − txÞe−Eγtx þ θðtx − T=2Þe−Eγðtx−TÞÞMμν
W ðtx; t; k; pÞ: ð22Þ

On a lattice with a large but finite temporal extent T, the
required matrix element can be obtained from the first term
in the top line of Eq. (22). This is illustrated in the left-hand
diagram of Fig. 2 and it should be remembered that tx can
also be larger than t. The second term in the second line of
Eq. (22) represents the time-reversed process (we discuss
the properties of the matrix elements under time reversal at
the end of this section) and is illustrated in the right-hand
diagram of Fig. 2 and again it should be remembered that tx
can also be smaller than t. The second term in the top line of
Eq. (22) represents, on a periodic lattice of finite temporal
extent, the ordering where the electromagnetic current acts
at an earlier time than the meson source that, in the
reduction formula to create an initial meson state, should
be asymptotically far in the past. Indeed, the contribution of
this term disappears in the limit T → ∞. On the lattices
used here however, we have found that its inclusion
corrects sizable finite T effects and improves the quality
of the numerical fits of Cμν

W ðt; Eγ; k; pÞ. Similarly, the first
term in the second line of Eq. (22) represents, for the time-
reversed process, the electromagnetic currents acting at a

time larger than the meson source. Its contribution also
disappears in the infinite-T limit, but its inclusion improves
the quality of the fit of Cμν

W ðt; Eγ; k; pÞ.
Figure 3 contains two diagrams presented to illustrate

two important points concerning our numerical calculation
of the correlation functions and of the form factors. The
diagram in the left panel shows a quark-disconnected
contribution to the correlation function originating from
the possibility that the virtual photon is emitted from sea
quarks. In this paper we use the so-called electroquenched
approximation in which the sea quarks are electrically
neutral. In practice this means that we have neglected the
contributions represented by the diagram in the left panel of
Fig. 3. We note that the contribution of these diagrams
vanishes in the limit of exact SUð3Þ flavor symmetry.
The quark-connected diagram in the right panel of Fig. 3

is shown in order to explain the strategy we have used to set
the values of the spatial momenta. We have exploited the
fact that by working within the electroquenched approxi-
mation it is possible to choose arbitrary values of the spatial
momenta by using different spatial boundary conditions for

FIG. 2. Schematic diagrams representing the correlation function Cμν
W ðt; Eγ; k; pÞ used to extract the form factors; see Eqs. (16) and

(22). The interpolating operator for the meson P̂ and the weak current JW are placed at fixed times 0 and t and the electromagnetic
current Ĵem is inserted at tx which is integrated over 0 ≤ tx ≤ T, where T is the temporal extent of the lattice. The left and right panels
correspond to the leading contributions to the correlation functions for t < T=2 and t > T=2 respectively, with mesons propagating with
momenta p or p − k.
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the quark fields [24]. More precisely, we set the spatial
boundary conditions for the “spectator” quark such that

ψðxþ nLÞ ¼ expð2πin · θsÞψðxÞ; ð23Þ

where n is a three-vector of integers and θs is a three-vector
of angles. For the temporal direction we employ antiperi-
odic boundary conditions. For each quark flavor f, we
impose different boundary conditions on qf and q̄f, the two
component fields of Jμf. This is possible at the price of
accepting violations of unitarity that are exponentially
suppressed with the volume [25,26]. By setting the boun-
dary conditions as illustrated in the figure we have thus

been able to choose arbitrary (nonquantized) values for the
meson and photon spatial momenta

p ¼ 2π

L
ðθ0 − θsÞ; k ¼ 2π

L
ðθ0 − θtÞ; ð24Þ

by tuning the real three-vectors θ0;t;s. We find that the most
precise results are obtained with small values of jpj and in
particular with p ¼ 0.
In order to show that it is possible to extract the hadronic

matrix element in Eq. (1) from the function in Eq. (22) we
perform a spectral decomposition of Cμν

W ðtÞ. On the
assumption that the inequalities in Eqs. (13) and (14) are
satisfied, we derive the relation

Cμν
W ðt; Eγ; k; pÞ ¼ ΘðT=2 − tÞ e

−tðE−EγÞhPjPj0i
2E

Hμν
W ðk; pÞ þ Θðt − T=2Þ e

−ðT−tÞðE−EγÞh0jPjPi
2E

½Hμν
W ðk; pÞ�† þ � � � ð25Þ

where Hμν
W ðk; pÞ is the physical matrix element defined in Eq. (1) and the dots represent the subleading exponentials,

suppressed as e−ΔEt or e−ΔEðT−tÞ, where ΔE can be either En þ Eγ − E or En − Eγ. We also see that when t > T=2 the
correlator represents the time reversal of the original process. It is useful to note that, in order to separate the axial and vector
form factors, it is enough to separately compute the correlation functions corresponding to the vector, Cμν

V ðt; Eγ; k; pÞ, and
the axial, Cμν

A ðt; Eγ; k; pÞ, components of the weak current. Moreover, from the properties

½Hμν
A ðk; pÞ�† ¼ Hμν

A ðk; pÞ; ½Hμν
V ðk; pÞ�† ¼ −Hμν

V ðk; pÞ ð26Þ

we deduce the following properties of the corresponding correlation functions under time reversal:

Cμν
A ðT − t; T=2; Eγ; k; pÞ ¼ Cμν

A ðt; T=2; Eγ; k; pÞ; Cμν
V ðT − t; T=2; Eγ; k; pÞ ¼ −Cμν

V ðt; T=2; Eγ; k; pÞ: ð27Þ

We use these time reversal properties of the lattice correlators, to either symmetrize or antisymmetrize the correlators
between the two halves ½0; T=2� and ½T=2; T� of the lattice and then we will work just within the first half of the lattice time
extent, defining

Hμν
L ðt; k; pÞ ¼ 2E

e−tðE−EγÞhPjPj0iC
μν
W ðt; Eγ; k; pÞ ¼ Hμν

W ðk; pÞ þ � � � ð28Þ

FIG. 3. The diagram on the left represents the contributions to the correlation functions arising from the emission of the photon by the
sea quarks. In our numerical simulations we work in the electroquenched approximation and neglect such diagrams. The diagram on the
right explains our choice of the spatial boundary conditions, which allow us to set arbitrary values for the meson and photon spatial
momenta. The spatial momenta of the valence quarks, modulo 2π=L, in terms of the twisting angles are as indicated. Each diagram
implicitly includes all orders in QCD.
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where the subscript L stands for “lattice” and the ellipsis
represents the subleading exponentials. In addition to
decreasing the statistical error, averaging the correlation
function between the two halves of the lattice in this way
ensures OðaÞ improvement, i.e., the reduction of the
discretization errors to ones of Oða2Þ.
In this section we have shown how to obtain the hadronic

tensor from lattice correlation functions and we now
proceed to discuss the extraction of all the structure-
dependent hadronic form factors.

IV. EXTRACTION OF THE STRUCTURE-
DEPENDENT FORM FACTORS

As already stated above, the axial and vector parts of the
hadronic tensor can be evaluated separately in order to
determine the corresponding form factors. In our numerical
study we choose the meson to be at rest, p ¼ 0 (the
correlation functions are less noisy in this case) and the
spatial momentum of the photon to be in the z direction,
k ¼ ð0; 0; kzÞ. The form factors depend on two independent
variables which can be chosen to be the invariants k2, where

k is the four-momentum of the photon, and q2 ≡ ðp − kÞ2.
In Sec. V we present our results in terms of the dimension-
less variables xk and xq defined in Eq. (43) in terms of k2

and q2. In this section however, in which we discuss the
extraction of the form factors from correlation functions
computed in the frame defined above, it is more transparent
to present the discussion with k2 and kz as the independent
variables, together with the energy of the photon Eγ given
by E2

γ ¼ k2 þ k2z.
In the rest frame of the meson and with k ¼ ð0; 0; kzÞ, the

only nonzero elements of the vector component of the
hadronic tensor, Hμν

V , are H12
V and H21

V which are related to
the vector form factor FV by

H12
V ¼ −H21

V ¼ iFVkz: ð29Þ

The axial component of the hadronic tensor, Hμν
A , is

parametrized by the SD form factors FA,H1 andH2, and by
the meson decay constant fP. In the reference frame
defined above, the nonzero elements of Hμν

A are given by

H00
A ¼ −H1

k2z
mP

−H2

k2zðmP − EγÞ
2mPEγ − k2

− FA
k2z
mP

þ fP
2m2

P −mPEγ þ k2z
2mPEγ − k2

; ð30Þ

H03
A ¼ −H1

Eγkz
mP

þH2

kzðE2
γ − k2Þ

2mPEγ − k2
− FA

ðmP − EγÞkz
mP

− fP
kzð2mP − EγÞ
2mPEγ − k2

; ð31Þ

H30
A ¼ −H1

Eγkz
mP

−H2

kzEγðmP − EγÞ
2mPEγ − k2

þ FA
kzEγ

mP
− fP

kzðmP − EγÞ
2mPEγ − k2

; ð32Þ

H33
A ¼ −H1

E2
γ

mP
þH2

Eγk2z
2mPEγ − k2

− FA
EγðmP − EγÞ

mP
− fP

Eγð2mP − EγÞ
2mPEγ − k2

; ð33Þ

H11
A ¼ H22

A ¼ −H1

k2

mP
− FA

ðmPEγ − k2Þ
mP

− fP: ð34Þ

Here and in the following we use continuum notation for the four-vectors but in lattice computations, in order to reduce
the discretization uncertainties, the energy and momentum carried by the electromagnetic current should be understood by
the following replacements:

kz → k̂z ¼
2

a
sin

�
akz
2

�
; Eγ ¼

2

a
sinh−1

"
a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂2z þ

�
2

a
sinh

�
a

ffiffiffiffiffi
k2

p

2

��2
s #

ð35Þ

where kz and
ffiffiffiffiffi
k2

p
are the continuum, physical values for

the photon’s spatial momentum (which here is directed
along the z axis) and for the photon’s virtuality respectively.
To determine the SD axial form factors from knowledge

of the nonzero components of Hμν
A , it is necessary to

subtract the point-like terms proportional to fP. From the

previous equations, it follows that the point-like terms
become dominant in the infrared limit, k → 0, where the
SD part of the hadronic tensor vanishes. This is expected,
since soft photons cannot probe the internal structure of the
meson. However, this poses the problem for the numerical
evaluation of the SD form factors at small k2, that Oða2Þ
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discretization effects in the subtraction of the point-like
contribution result in enhanced artifacts in the determined
values of the SD form factors. Moreover, these artifacts
diverge as k → 0. This problem has already been encoun-
tered in our previous work on P → lν̄lγ decays [7], where
it was found that performing the subtraction using the value
of fP extracted from two-point correlation functions results
in unphysically large values of FA in the soft-photon limit.
In the same paper, we proposed a solution to this problem.
We showed that by exploiting the electromagnetic Ward
identity in the lattice theory, the subtraction of the point-
like contribution can be performed nonperturbatively to all

orders in the lattice spacing, thus avoiding infrared-diver-
gent lattice artifacts in the resulting SD form factors. In
particular, we demonstrated that, for the diagonal spatial
components of the lattice correlation function, which are
smooth in the limit k → 0, this can be achieved by using the
values of fP obtained from the same components evaluated
at zero photon momentum [7].
A similar situation also occurs when the final-state

photon is virtual, albeit in this case the lepton masses
provide an energy-momentum cutoff for the photon.
Proceeding in a similar way, we define the subtracted
quantities for the diagonal components as follows:

H̃33
A ðkz; k2Þ≡H33

A ðkz; k2Þ −H33
A ð0; 0ÞEγð2mP − EγÞ

2mPEγ − k2
¼ −H1

E2
γ

mP
þH2

Eγk2z
2mPEγ − k2

− FA
EγðmP − EγÞ

mP
;

H̃11
A ðkz; k2Þ≡H11

A ðkz; k2Þ −H11
A ð0; 0Þ ¼ −H1

k2

mP
− FA

ðmPEγ − k2Þ
mP

: ð36Þ

Unfortunately the same procedure cannot be used for the other components. The reason for this is that, in the limit k → 0,
the “excited” state consisting of a meson P with momentum −k and a photon with energy Eγ becomes degenerate with the
“ground” state of the meson P at rest. In the k → 0 limit, the off-diagonal components, C30

A and C03
A go to zero; the

contribution of the Pþ γ state cancels that of the ground state (we refer to Appendix B for a detailed discussion on this
point). These components at zero photon momentum cannot therefore be used to subtract the contribution proportional to
fP. Instead we define a linear combination of the two off-diagonal components, which in the continuum cancels the point-
like term proportional to fP; that is

H½3;0�
A ðkz; k2Þ≡H30

A ðkz; k2Þ −H03
A ðkz; k2Þ

�
mP − Eγ

2mP − Eγ

�
¼ −H1

Eγkz
2mP − Eγ

−H2

kzðmP − EγÞ
2mP − Eγ

þ FA
kzmP

2mP − Eγ
: ð37Þ

We have verified that the difference in Eq. (37) does not
give rise to enhanced unphysical infrared effects from the
residual discretization errors. In the present study of K →
lνll0þl0− decays, as mentioned above, we have an infrared
cutoff on the photon virtuality k2, given either by the non-
negligible muon mass or by the experimental cut on the

two-electron invariant mass mee ¼
ffiffiffiffiffi
k2

p
> 145 MeV [10].

Above these cutoffs we observe a smooth behavior
of the form factors as a function of the photon’s momen-
tum without any anomalous increase in the infrared
region.

An alternative possibility, one which we have not
explored in this study, would have been to compute the
correlation function with the meson in motion (p ≠ 0) and
to use different components of the correlation functions to
extract the form factors.
Once we compute three independent linear combinations

of the three axial form factors using lattice QCD, the form
factors themselves are obtained by inverting the matrix of
coefficients. Specifically, our estimators of the axial form
factors, H̄1ðt; k2; kzÞ, H̄2ðt; k2; kzÞ and F̄Aðt; k2; kzÞ, are
obtained from the axial component of the lattice tensor
Hμν

L;Aðt; kÞ≡Hμν
L;Aðt; k; 0Þ of Eq. (28) as follows:

0
B@

H̄1ðt; k2; kzÞ
H̄2ðt; k2; kzÞ
F̄Aðt; k2; kzÞ

1
CA≡ ZðtÞ

0
BBB@

− Eγkz
2mP−Eγ

− kzðmP−EγÞ
2mP−Eγ

kzmP
2mP−Eγ

− E2
γþk2

mP

Eγk2z
2EγmP−k2

E2
γ−2EγmPþk2

mP

k2−E2
γ

mP

Eγk2z
2EγmP−k2

E2
γ−k2

mP

1
CCCA

−10
BB@

H½3;0�
L;A ðt; kÞ

H̃33
L;Aðt; kÞ þ H̃11

L;Aðt; kÞ
H̃33

L;Aðt; kÞ − H̃11
L;Aðt; kÞ

1
CCA ð38Þ
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where ZðtÞ is the factor relating the matrix element of the
bare local axial current, for a meson at rest, fbareP mP, to the
corresponding physical matrix element [up to terms of
Oða2Þ]. With twisted-mass fermions at maximal twist there
is an exact partially conserved vector current relation which
ensures that the physical decay constant can be obtained
from two-point correlation functions of bare local pseudo-
scalar operators [27,28]; this is denoted here by f2ptP . Thus

ZðtÞ ¼ f2ptP

fbareP
¼ −2f2ptP

ðH11
L;Aðt; 0Þ þH22

L;Aðt; 0ÞÞ
ð39Þ

and at sufficiently large t, ZðtÞ is independent of t. We
recall that the diagonal components H̃33

L;A and H̃11
L;A are

defined in Eq. (36) after the subtraction of the point-like
contributions proportional to H33

A;Lðt; 0Þ ¼ H11
A;Lðt; 0Þ ¼

H22
A;Lðt; 0Þ.
At large times t=a ≫ 1 but with t=a ≪ T=2, the estima-

tors H̄1ðt; k2; kzÞ; H̄2ðt; k2; kzÞ and F̄Aðt; k2; kzÞ, tend to the
corresponding form factors. In the limit kz → 0, two of the
components of the vector on the right-hand side of Eq. (38),

H½3;0�
L;A ðt; kÞ and H̃33

L;Aðt; kÞ − H̃11
L;Aðt; kÞ, both go to zero for

all values of k2; see Eqs. (31)–(37). This fact can be used to
define equivalent estimators of the form factors, obtained
by making the following replacement(s) in Eq. (38):

H½3;0�
L;A ðt; kÞ → H½3;0�

L;A ðt; kÞ −H½3;0�
L;A ðt; ð

ffiffiffiffiffi
k2

p
; 0ÞÞ ð40Þ

and/or

H̃33
L;Aðt;kÞ− H̃11

L;Aðt;kÞ→ ðH̃33
L;Aðt;kÞ

− H̃33
L;Aðt;ð

ffiffiffiffiffi
k2

p
;0ÞÞÞ− ðH̃11

L;Aðt;kÞ− H̃11
L;Aðt;ð

ffiffiffiffiffi
k2

p
;0ÞÞÞ:

ð41Þ

The correlated subtraction of the contribution coming from
the kinematic point with the same value of k2 but zero
photon spatial momentum kz, can reduce the statistical
noise of the estimators and improve the corresponding
plateaux and below we use this freedom to improve the
resulting accuracy. The amount of improvement depends
on the kinematic point and on the form factor being
considered.
Finally, for the vector form factor FV, we define the

following estimator:

F̄Vðt; k2; kzÞ ¼
ZA

ZV
ZðtÞH

12
L;Vðt; kÞ −H2;1

L;Vðt; kÞ
2ikz

; ð42Þ

which again for t=a ≫ 1 and t=a ≪ T=2 tends to FV . The
ratio of the axial (ZA) and vector (ZV) renormalization
constants is needed to obtain the properly renormalized
value of FV when using twisted-mass fermions.

Having explained our procedure for extracting the SD
form factors from three-point lattice correlation functions,
we now proceed to presenting our numerical results.

V. NUMERICAL RESULTS FOR THE FORM
FACTORS

In this section we implement the procedure developed in
the preceding sections to study K → lνll0þl0− decays
numerically. The simulations have been performed on the
A40.32 ensemble generated by the ETMC [3] with Nf ¼
2þ 1þ 1 dynamical quark flavors, a space-time volume of
323 × 64 and a lattice spacing of a ¼ 0.0885ð36Þ fm. The
analysis was performed on 100 gauge configurations. The
light quarks are heavier than the corresponding physical ones
and correspond tomπ ≃ 320 MeV andmK ≃ 530 MeV. We
used smeared interpolating sources for the kaon field,
obtained applying 128 steps of Gaussian smearing with
step-size parameter ϵ ¼ 0.1. Moreover, we used four sto-
chastic sources on each time slice when inverting the Dirac
operator. On this ensemble the values of the two renormal-
ization constants areZA ¼ 0.731ð8Þ and ZV ¼ 0.587ð4Þ [3].
The statistical analysis of the lattice data has been performed
employing the jackknife resampling method in order to
properly handle autocorrelation effects and cross correlations
among the different form factors in the computation of the
branching ratios.
Below we will compare our results for the form factors

and branching ratios with those determined in experiment
[10] and chiral perturbation theory. While these compar-
isons are interesting and instructive, it must be remembered
that our computations were performed with unphysical
quark masses, at a single value of the lattice spacing and on
a single volume.4 Until the corresponding systematic
uncertainties are studied in the future, the comparison with
the experimental measurements may be indicative, but
cannot be considered definitive.
As already outlined in Sec. III, we used twisted boundary

conditions in order to evaluate the hadronic tensor for a
range of values of the photon’s spatial momentum k. To
probe the region of the phase-space relevant for the four
K → lνll0þl0− decay channels, with l, l0 ¼ e, μ, we
evaluate the Euclidean three-point functions Cμνðt; Eγ; k; pÞ
for 15 different values of ðEγ; kÞ, with k ¼ ð0; 0; kzÞ, and
restricte our analysis to the kaon rest frame p ¼ 0. We find
it convenient to parametrize the phase space in terms of the
two dimensionless parameters xk and xq, defined as

xk ≡
ffiffiffiffiffiffiffi
k2

m2
K

s
; xq ≡

ffiffiffiffiffiffiffi
q2

m2
K

s
; ð43Þ

4We also compare our results with a previous lattice compu-
tation [13], which was performed on a 243 × 48 lattice with a ≃
0.093 fm with quark masses corresponding to mπ ≃ 352 MeV
and mK ≃ 506 MeV.
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where q is the four-momentum of the lepton-neutrino pair
created by the weak Hamiltonian. In terms of xk and xq the
photon’s four-momentum, ðEγ; 0; 0; kzÞ (in the kaon’s rest
frame), is given by

Eγ ¼
mK

2
ð1þ x2k − x2qÞ;

kz ¼
mK

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2k − x2qÞ2 − 4x2kx

2
q

q
: ð44Þ

The range of values of xk and xq is given in terms of the
lepton masses, ml and ml0 , by

ml

mK
≤ xq ≤ 1 − xk;

2ml0

mK
≤ xk ≤ 1 −

ml

mK
; ð45Þ

so that the phase space has a triangular shape in the
xk-xq plane.
In Fig. 4 we show the positions of the 15 simulated

kinematic configurations, which we take as equally spaced
in the xk-xq plane. For completeness, the corresponding
numerical values of xk and xq are reported in Table I. It
should be noted that our computations are limited to
xk ≥ 0.28. This choice is appropriate to describe both
the cases in which a μþμ− or a eþe− pair is produced in
the radiative decay of the kaon. Indeed, in the first case the
lowest allowed value of xk is given by 2mμ=mK ≃ 0.428,
while for decays in which an eþe− pair is produced,
although very low values of xk are kinematically allowed,
the experimental branching ratios have been determined

with values of the electron-positron invariant mass
ffiffiffiffiffi
k2

p
>

145 MeV (xk > 0.294) for Kþ → μþνμeþe− decays

and
ffiffiffiffiffi
k2

p
> 150 MeV (xk > 0.304) for Kþ → eþνeeþe−

decays [10].
In Figs. 5–7, we present the estimators H̄1ðt; xk; xqÞ,

H̄2ðt; xk; xqÞ, F̄Aðt; xk; xqÞ and F̄Vðt; xk; xqÞ for selected
values of xk and xq. In each figure, the shaded region
indicates the result of a constant fit in the corresponding
time interval. Figures 5 and 6 illustrate the feature that for
kinematics corresponding to small values of kz (i.e., when
xq þ xk ≃ 1) the estimator of the axial form factor FA

becomes somewhat noisy leading to increased uncertainties
in its determination. On the other hand, for other values of
(xk, xq) and for all other form factors, the precision
achieved is very good and typically of the order of
5–10%. To check the stability of our numerical results,
we verified that the values of the form factors remain
consistent within errors by changing the time interval
adopted for the fits by a few units.
In order to evaluate the decay rate, we fit the lattice form

factors, using two different Ansätze to describe their
dependence on xk and xq. The first is a simple polynomial
in x2k and x2q given by

Fpolyðxk; xqÞ ¼ a0 þ akx2k þ aqx2q; ð46Þ

where a0, ak and aq are free fitting parameters. We find that
this simple form represents our data very well and the
corresponding results presented below are obtained using
Eq. (46). However, we have also performed fits using
Ansätzewhich include additional terms which are quartic in
xk and xq, i.e., terms proportional to x2kx

2
q, x4k and x4q. We

find that including all or some of such terms does not
improve the fits, generally results in an overfit of our data
and only negligibly changes the results for the form factors
and decay rates. This is not surprising as the 15 points in the
(xk, xq) plane at which we compute the form factors (see
Table I) cover well the kinematic regions studied in the
E865 experiment [10,11] to which we compare our results
in Sec. VI. We therefore require only minor interpolations
of our results to be able to perform the phase-space
integrations.
The second Ansatz has a pole-like structure of the form

Fpoleðxk; xqÞ ¼
A

ð1 − Rkx2kÞð1 − Rqx2qÞ
; ð47Þ

0.2 0.4 0.6 0.8 1.0 1.2
xk

0.2

0.4

0.6

0.8

1.0

1.2

xq

FIG. 4. The shaded area represents the range of allowed
physical values of (xk, xq) when neglecting lepton masses, so
that 0 < xk < 1 and 0 < xq < 1 − xk. The points correspond to
the 15 choices of (xk, xq) used in this analysis.

TABLE I. Table of the values of xk and xq corresponding to the 15 simulated kinematic points.

Kinematics 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xk 0.28 0.28 0.28 0.28 0.28 0.41 0.41 0.41 0.41 0.53 0.53 0.53 0.65 0.65 0.77
xq 0.12 0.24 0.36 0.48 0.61 0.12 0.24 0.36 0.48 0.12 0.24 0.36 0.12 0.24 0.12
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where again A; Rk and Rq are free fitting parameters. The
resulting fitting curves, along with the lattice data and with
the ChPT prediction, are shown, for all four form factors
H1, H2, FA and FV , in the panels of Figs. 8 and 9, as a
function of xq at fixed xk, and vice versa. The quality of the
fit in all cases is very good, with the reduced χ2 always
smaller than one. The parameters of both the polynomial
and pole-like fits are collected in Table II.
The one-loop ChPT predictions for the form factors H1,

H2, FA and FV of the Kþ meson read [17]

FV ¼ mK

4
ffiffiffi
2

p
π2F

; FA ¼ 4
ffiffiffi
2

p
mK

F
ðLr

9 þ Lr
10Þ;

H1ðk2Þ ¼ 2fKmK
ðFK

V ðk2Þ − 1Þ
k2

;

H2ðk2Þ ¼ 2fKmK
ðFK

V ðk2Þ − 1Þ
k2

; ð48Þ

where F is the ChPT leading-order low-energy constant
(LEC), while Lr

9 and L
r
10 are ChPT LECs at next-to-leading

order. The one-loop ChPT prediction for the kaon electro-
magnetic form factor FK

V ðk2Þ (which depends on F and Lr
9)

can be found in Ref. [17]. In the following we will evaluate
the ChPT predictions for the form factors using the physical
charged kaon and pion masses and setting either F ¼
fπ=

ffiffiffi
2

p
or F ¼ fK=

ffiffiffi
2

p
, where fπ and fK are the physical

values of these decays constants. We label these two
determinations as ChPTðfπÞ and ChPTðfKÞ, respectively.
For the LECs Lr

9 and Lr
10, we use the values

Lr
9 ¼ 6.9 × 10−3; Lr

10 ¼ −5.2 × 10−3; ð49Þ

taken from Ref. [29]. Notice that at this order, the one-loop
prediction for the form factors does not depend on q2.
Moreover, the dependence on the virtuality k2 is very mild
as well, and only enters the prediction for the form factors

FIG. 5. Extraction of the form factors FA, FV , H1, H2 from the plateaux of the corresponding estimator. The data correspond to
xk ¼ 0.41 and xq ¼ 0.48.
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H1 and H2, through the higher-order corrections to
the linear parametrization for the electromagnetic form
factor

FK
V ðk2Þ ¼ 1þ hr2Ki

6
k2 þOðk4Þ; ð50Þ

where hr2Ki is the kaon’s mean-square radius. From the
figures it can be seen that our results are reasonably
consistent with the ChPT prediction. However, note that,
at NLO, ChPT does not include any momentum depend-
ence of the form factors and so the comparison should be
madewith their values at xk ¼ 0 and xq ¼ 0, that is with the
parameters a0 or A. Moreover, even at zero momentum
transfer, on the one hand we do not expect the NLO ChPT

prediction to be exact, while on the other hand our lattice
estimates are affected by systematic errors, such as the
continuum, chiral and infinite-volume extrapolations, that
will be studied in the future.
In Ref. [10], a vector-meson dominance (VMD) Ansatz

was used in order to describe the momentum behavior of
the form factors H1, FA, FV , and was then used in order to
reproduce the experimental data.5 Within the VMD frame-
work, the momentum dependence of the form factors is
assumed to be determined by the masses of the low-lying
resonances created by the electromagnetic and weak

FIG. 6. Extraction of the form factors FA, FV , H1, H2 from the plateaux of the corresponding estimator. The data correspond to
xk ¼ 0.77 and xq ¼ 0.12.

5The authors of Ref. [10] assumed that H2 only contributes
through the kaon’s electromagnetic form factor and neglected the
other unknown SD contributions. These however, are suppressed
in ChPT [17].
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currents. In Ref. [10], for each of the three form factors, the
fitting function has been taken to be of the form

FVMDðxk; xqÞ ¼
Fð0; 0Þ

ð1 − x2km
2
K=m

2
ρÞð1 − x2qm2

K=m
2
K� Þ ; ð51Þ

where Fð0; 0Þ is the only free fitting parameter. In Eq. (51),
mρ is the mass of the ρ meson, while mK� is the mass of the
K�ð1270Þ in the axial channel, and that of theK�ð892Þ in the
vector one. Thus, the VMD model corresponds to fixing, in
the pole-like fit of Eq. (47), Rk ¼ ðmK=mρÞ2 ≃ 0.4116, and
Rq ¼ ðmK=mK�ð1270ÞÞ2 ≃ 0.1513 for the axial channel and
Rq ¼ ðmK=mK�ð892ÞÞ2 ≃ 0.3064 for the vector one.

In Table III, we compare the values of Fð0; 0Þ obtained
from experiment assuming VMD and presented in
Ref. [10], with the corresponding values of the form factors
at zero xk and xq that we obtained from our lattice data
using the pole fit of Eq. (47), i.e., the values for the
parameter A reported in Table II. In Fig. 10 we compare our
lattice data for the form factors H1, FA, FV , with the result
of the experimental VMD fits performed in Ref. [10].
Despite the systematic uncertainties affecting our lattice
computation, the results are in reasonably good agreement.
The largest discrepancy that we observe, which is of
Oð20%Þ, is for the form factor H1.
We also notice that the fitted values of Rk and Rq

reported in Table II, are in qualitative agreement with the

Lattice data Lattice data

Lattice data Lattice data

FIG. 7. Extraction of the form factors FA, FV , H1, H2 from the plateaux of the corresponding estimator. The data correspond to
xk ¼ 0.28 and xq ¼ 0.12.
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FIG. 8. The fitting functions corresponding to the polynomial and the pole-like fits of Eqs. (46) and (47) are plotted, along with the
lattice data, as functions of xq and at a fixed value of xk ¼ 0.28 (panels 1–4) and xk ¼ 0.41 (panels 5–8). The red line corresponds to the
one-loop ChPT prediction with F ¼ fK=

ffiffiffi
2

p
.
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FIG. 9. The fitting functions corresponding to the polynomial and the pole-like fits of Eqs. (46) and (47) are plotted, along with the
lattice data, as functions of xk and at a fixed value of xq ¼ 0.12 (panels 1–4) and xq ¼ 0.24 (panels 5–8). The red line corresponds to the
one-loop ChPT prediction with F ¼ fK=

ffiffiffi
2

p
.
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values predicted by VMD, albeit with large errors. In
particular we are not able to see a clear xk and xq
dependence in the lattice data for FA, while the value of

the fit parameter Rq, for the form factor H1, seems to be
larger than the expectation based on VMD. Concerning the
form factor H2, the dominant contribution from the low-
lying intermediate states comes from the virtual Kþ state
created by the weak current [jnfi ¼ jKþi in Eq. (7)]. The
resulting contribution H2;Kþ to H2 is then proportional to
the electromagnetic kaon form factor FK

V ðxkÞ [17]

H2;Kþ ¼ 2fK
mK

FK
V ðxkÞ − 1

x2k
; ð52Þ

in agreement with the prediction from ChPT presented in
Eq. (48). As shown in Table II and in Fig. 8, we do not see
any clear xq dependence in our lattice data for H2 in

TABLE II. Values of the fit parameters for all the form factors, as obtained from the polynomial and pole-like fits
of Eqs. (46) and (47). In Appendix C we report the correlation matrix among the fit parameters, for each of the two
Ansätze.

a0 ak aq A Rk Rq

H1 0.1755(88) 0.113(30) 0.086(24) 0.1792(78) 0.453(88) 0.40(10)
H2 0.199(21) 0.341(84) −0.03ð3Þ 0.217(17) 0.87(12) −0.2ð2Þ
FA 0.0300(43) 0.04(4) 0.00(1) 0.0320(30) 0.74(50) 0.0(3)
FV 0.0912(39) 0.044(18) 0.0246(59) 0.0921(38) 0.38(13) 0.233(49)

TABLE III. Comparison of the values of the VMD fit param-
eters Fð0; 0Þ for the form factors H1, FA and FV as obtained in
Ref. [10] with the lattice results from this work [using the pole fit
in Eq. (47)].

H1ð0; 0Þ FAð0; 0Þ FVð0; 0Þ
This work 0.1792(78) 0.0320(30) 0.0921(38)
Experiment [10] 0.227(19) 0.035(19) 0.112(18)

FIG. 10. The experimental VMD fits for the form factors H1, FA and FV performed in Ref. [10] are plotted, together with our lattice
data, as functions of xq at a fixed value of xk ¼ 0.28 (top) and as functions of xk at a fixed value of xq ¼ 0.12 (bottom). The red line

corresponds to the one-loop ChPT prediction with F ¼ fK=
ffiffiffi
2

p
.
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agreement with the prediction of Eq. (52).6 Moreover,
making use of Eq. (50) one has that the contribution from
the intermediate kaon to H2 at xk ¼ 0 is given by

H2;Kþðxk ¼ 0Þ ¼ fKmK
hr2Ki
3

: ð53Þ

Using the value from the PDG, hr2Ki ¼ ð0.560� 0.031 fmÞ2
[9] and the physical values of the kaon mass and decay
constant, one obtains H2;Kþðxk ¼ 0Þ ¼ 0.206ð23Þ, which
nicely agrees with the value we obtained for the parameter A
in the pole-like fit ofH2 presented in Table II. Assuming the
dominance of the rho-meson pole in the electromagnetic
form factor FK

V , one has that H2 ∝ 1=ð1 − Rkx2kÞ
with Rk ¼ ðmK=mρÞ2 ≃ 0.4116. In this case, our fitted
value of Rk turns out to be larger than the value predicted
by VMD.
We end this section by comparing the results for the form

factors FV and FA obtained in this paper and extrapolated
to xk ¼ 0 using Eqs. (46) and (47) with those reported on
the same configurations in our earlier paper with a real
photon in the final state, i.e., for the decays K → lνlγ.

7

The comparison is shown in Fig. 11 and shows good
agreement, in spite of the fact that the Ansätze and
parameters in Eqs. (46) and (47) were obtained from fits
to data with xk ≥ 0.28.

VI. K + → l+ νll0+l0− DECAY RATES

From the knowledge of the hadronic tensor Hμν, the
Kþ → lþνll0þl0− decay rate is obtained by integrating
the square of the unpolarized amplitude,

P
spins jMj2, over

the phase space of the final-state charged leptons and
neutrino. When the two positively charged leptons are
different, i.e., when l ≠ l0, the amplitude M is given by

Mðpl0þ ;pl0− ;plþ ;pνlÞ

¼−
GFffiffiffi
2

p V�
us
e2

k2
ūðpl0−Þγμvðpl0þÞ½fKLμðpl0þ ;pl0− ;plþ ;pνlÞ

−Hμν
SDðp;qÞlνðplþ ;pνlÞ�; ð54Þ

where the leptonic vectors are given by

Lμðpl0þ ;pl0− ;plþ ;pνlÞ

¼mlūðpνlÞð1þ γ5Þ
�

2pμ−kμ

2p ·k−k2
−

2pμ
lþ þ=kγμ

2plþ ·kþk2

�
vðplþÞ;

ð55Þ

lμðplþ ; pνlÞ ¼ ūðpνlÞγμð1 − γ5ÞvðplþÞ: ð56Þ

In Eqs. (54)–(56), p is the four-momentum of the kaon,
k ¼ pl0þ þ pl0− , and q ¼ plþ þ pνl . In Eq. (54), the first
term in the square brackets gives the decay rate in the
approximation in which the decaying kaon is treated as a
point-like particle and includes the radiation from both the
meson and charged lepton.8 Except for the kaon decay
constant fK, the nonperturbative contribution to the rate is
entirely contained in the second term of Eq. (54). The SD
part of the hadronic tensor Hμν

SD is defined in Eq. (5).

FIG. 11. Extrapolation of our lattice results for FV (left) and FA (right) to xk ¼ 0 using the polynomial and pole fit Ansätze defined in
Eqs. (46) and (47) (colored bands). The black points correspond to the lattice results for FV and FA obtained directly at xk ¼ 0 in our
study of K → lνlγ decays [7].

6This depends on the choice we made in Eq. (5) for the
kinematic prefactor in the definition of H2 in the decomposition
of the hadronic tensor in terms of form factors. If instead we had
employed the same parametrization as in Ref. [17] or Ref. [19],
we would have had a pole 1=ð1 − x2qÞ in the expression in
Eq. (52).

7The form factors H1 and H2 do not contribute to the
amplitude for K → lνlγ decays.

8This term is frequently referred to as the inner-bremsstrah-
lung contribution.
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When l ¼ l0, since the final-state positively charged leptons are indistinguishable, the exchange contribution, in which
the momenta pl0þ and plþ are interchanged, must be added to the amplitude M resulting in the replacement

Mðpl0þ ; pl0− ; plþ ; pνlÞ → Mðpl0þ ; pl0− ; plþ ; pνlÞ −Mðplþ ; pl0− ; pl0þ ; pνlÞ: ð57Þ

The branching ratio for Kþ → lþνll0þl0− decays is given by

BR½Kþ → lþνll0þl0−� ¼
S

2mKΓKð2πÞ8
Z X

spins

jMj2δðp − plþ − pνl − pl0þ − pl0−Þ
d3plþ

2Elþ

d3pνl

2Eνl

d3pl0þ

2El0þ

d3pl0−

2El0−
; ð58Þ

where ΓK ¼ 5.3167ð86Þ × 10−17 GeV is the total decay rate of the Kþ meson [9] and S is a symmetry factor that takes the
value S ¼ 1 for l ≠ l0 and S ¼ 1=2 for l ¼ l0. Since the phase-space integration is considerably easier for the case l ≠ l0,
in which a significant part of the integration can be performed analytically, we will discuss the two cases separately.

A. Decays with l ≠ l0

When the final-state leptons have different flavors, the integral over the spatial momenta of the final-state particles can be
partially performed analytically using invariance arguments and the fact that in

P
spins jMj2 the form factors only depend on

k2 ¼ ðpl0þ þ pl0−Þ2 and q2 ¼ ðplþ þ pνlÞ2 [30]. This leads to the following simplified expression for the differential decay
rate [17]:

dΓ½Kþ → lþνll0þl0−� ¼ α2G2
FjVusj2m5

K2xkxqGðxk; rl0 Þ
�
−
X
spins

T�
μTμ

�
dxkdxqdy; ð59Þ

where

rl ¼
m2

l

m2
K
; rl0 ¼

m2
l0

m2
K
; y¼ 2pl ·p

m2
K

; Gðxk; rl0 Þ ¼
1

192π3x2k

�
1þ 2rl0

x2k

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4rl0

x2k

s
; Tμ ¼

ffiffiffi
2

p

m2
K
ffKLμ −Hμν

SDlνg:

ð60Þ

The dimensionless integration variables xk and xq have been defined in Eq. (43). The integration domain is given by

A − B ≤ y ≤ Aþ B; ð61Þ

where

A ¼ ð2 − xγÞð1þ x2k þ rl − xγÞ
2ð1þ x2k − xγÞ

; B ¼
ð1þ x2k − xγ − rlÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2γ − 4x2k

q
2ð1þ x2k − xγÞ

; ð62Þ

xγ ≡ 2p · k
m2

K
¼ 1þ x2k − x2q; ð63Þ

and the limits of integration for xk and xq are given in Eq. (45). Since the form factors only depend on the invariant mass of
the lepton-antilepton pair (xkmK) and on the invariant mass of the lepton-neutrino pair (xqmK), the integral over the variable
y can also be performed analytically, leaving the following expression for the double differential decay rate:

∂2

∂xk∂xq Γ½K
þ → lþνll0þl0−� ¼ α2G2

FjVusj2m5
K½Γ00

ptðxk; xqÞ þ Γ00
intðxk; xqÞ þ Γ00

SDðxk; xqÞ�: ð64Þ
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The differential rate is written as a sum of three different
contributions. The first term, Γ00

ptðxk; xqÞ, is the point-like
contribution proportional to f2K and gives the total differ-
ential decay rate in the absence of any SD terms (i.e., if
Hμν

SD ¼ 0). The third term, Γ00
SDðxk; xqÞ, is the contribution

to the decay rate coming entirely from Hμν
SD, and corre-

sponds to a quadratic expression of the form factors H1,
H2, FA, FV . Finally, Γ00

intðxk; xqÞ is the interference term
between the point-like and SD components of the ampli-
tude. It arises from contributions of the form Hμν

SDLμlν in
T�
μTμ and is proportional to fK and depends linearly on the

form factors. Clearly, all the information from the internal
structure of the kaon (i.e., from Hμν

SD) is contained in
Γ00
intðxk; xqÞ and Γ00

SDðxk; xqÞ. The Γ00 functions are all
dimensionless quantities which can be evaluated directly
from the knowledge of the form factors and of the
dimensionless ratio fK=mK , for which we use our lattice
value fK=mK ¼ 0.3057ð11Þ. Their explicit expressions in
terms of H1, H2, FA, FV , and fK=mK are presented in

Appendix A. Using these formulas and the form factors
obtained from the polynomial and pole-like fits described
in the previous section, we are able to evaluate each of the
terms on the right-hand side of Eq. (64). In order to obtain
the total decay rates, we rely on numerical integration using
Gaussian quadrature rules.
For the decayKþ → eþνeμþμ− the differential decay rate

is completely dominated by the SD terms since the point-like
contribution is helicity suppressed (Lμ ∝ me). This is shown
in Fig. 12,wherewe plot, as functions of xk, the contributions
from Γ00

pt, Γ00
int and Γ00

SD to the partially integrated differential
decay rate ∂ΓðxkÞ=∂xk ¼ R

dxq∂2Γ=∂xk∂xq. Furthermore,
we find that the dominant term in the integral of Γ00

SD is that
proportional toH2

1, while the contribution to the rate from the
form factor H2 turns out to be negligible. The remaining
linear and quadratic terms in the form factors give subdomi-
nant contributions to the branching ratio of about 5% in total.
Integrating the double differential decay rate of Eq. (64), we
obtain the following value for the branching ratio:

FIG. 12. The contributions from Γ00
pt, Γ00

int and Γ00
SD to the

differential rate ∂ΓðxkÞ=∂xk, are shown for the decay channel
Kþ → eþνeμþμ−. Although not shown in the figure, all con-
tributions to ∂ΓðxkÞ=∂xk are zero at xk ¼ 2

ffiffiffiffiffi
rl

p ≃ 0.4280 but
grow rapidly as xk is increased.

TABLE IV. Comparison of our result for the branching ratio BR½Kþ → eþνeμþμ−� with the one coming from the
point-like approximation, the result from Ref. [13] and the results for the branching ratio obtained using the NLO
ChPT predictions for the SD form factors [Eq. (48)] setting either F ¼ fπ=

ffiffiffi
2

p
or F ¼ fK=

ffiffiffi
2

p
[denoted by

ChPTðfπÞ and ChPTðfKÞ respectively]. In the last column we show the experimental result from the E865
experiment [11]. We stress that both our lattice result and that from Ref. [13] are affected by systematic uncertainties
due to the missing chiral, continuum and infinite-volume extrapolations.

BR½Kþ → eþνeμþμ−�
This work Point-like approximation Tuo et al. [13] ChPTðfπÞ ChPTðfKÞ Experiment [11]

0.762ð49Þ × 10−8 3.0 × 10−13 0.72ð5Þ × 10−8 1.19 × 10−8 0.62 × 10−8 1.72ð45Þ × 10−8

FIG. 13. The contributions from Γ00
pt, Γ00

int and Γ00
SD to the

differential rate ∂ΓðxkÞ=∂xk, are shown for the decay channel
Kþ → μþνμeþe−. Even if not shown in the figure, all contribu-
tions to ∂ΓðxkÞ=∂xk are zero at xk ¼ 2

ffiffiffiffiffi
rl

p ≃ 0.00207 but grow
rapidly as xk is increased.
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BR½Kþ → eþνeμþμ−� ¼ 0.762ð49Þ × 10−8: ð65Þ

In Table IV we compare this result with the recent lattice
value from Ref. [13], the predictions from ChPT and the
measurement from the E865 experiment at the Brookhaven
AGS [11]. As the table shows, our value of the branching
ratio is in agreement with the updated determination of
Ref. [13], while there is a tension with the experimental
measurement at the level of about 2σ. However, it should be
noted that both our computation and that of Ref. [13] are
limited to a singlevalue of the lattice spacing, a singlevolume
and unphysically large light-quark masses. Given that the
branching ratio is dominated by the quadratic term propor-
tional toH2

1 an increase of about 25% in the value ofH1, due
to the missing continuum, chiral and infinite-volume extrap-
olations, would reduce the tension between our result and the
experimental measurement to about 1σ. It will be very
interesting in the future, once these extrapolations have been
performed, to learn whether H1 does indeed increase. We
also note however, that there is a 1.6σ difference between the
values of H1ð0; 0Þ obtained in Refs. [10,11]. The value of
H1ð0; 0Þ deduced by the E865 Collaboration from the
experimental study of the decay Kþ → eþνeμþμ− is
H1ð0; 0Þ ¼ 0.303� 0.043 [11].9 This value is somewhat
higher than that also obtained, from studies of the decays
Kþ → eþνeeþe− and Kþ → μþνμeþe− in the E865 experi-
ment, H1ð0; 0Þ ¼ 0.227� 0.019 [10], which is quoted in
Table III.
For the decay channel Kþ → μþνμeþe−, the point-like

contribution is not helicity suppressed (Lμ ∝ mμ), and gives
the dominant contribution to the differential decay rate at
small values of the eþe− invariant mass. This is illustrated
in Fig. 13, where we plot the contributions of Γ00

pt, Γ00
int and

Γ00
SD to the partially integrated differential decay rate

∂ΓðxkÞ=∂xk. The contributions from Γ00
pt and Γ00

int þ Γ00
SD

become of similar size at values of xk ≃ 0.3–0.4, which
corresponds approximately to the cut on the eþe− invariant
mass

ffiffiffiffiffi
k2

p
> 145, 150 MeV (xk > 0.294, 0.304) adopted in

the E865 experiment [10]. For such values of the cut on xk,
we find that the contribution to the decay rate from Γ00

int is
greater than that of Γ00

SD and that the contribution from the
form factor H2 is again negligible. Imposing a cut on the
eþe− invariant mass of xk > 0.284, we obtain the following
value for the branching ratio:

BR½Kþ → μþνμeþe−� ¼ 8.26ð13Þ × 10−8: ð66Þ

In Table V we compare our result for the branching ratio
with the lattice determination of Ref. [13], the ChPT
prediction and the experimental result of Ref. [10]. In this
case we find a remarkable agreement with both the
experimental result and the ChPT predictions, while the
lattice result of Ref. [13] is a little larger than ours. In this
case, since the inference term dominates over Γ00

SD, sys-
tematic effects in our determination of the form factors, due
to lattice artifacts and the unphysical quark masses, will
only propagate linearly in the result for the branching ratio;
for example an increase in H1 of 20% would increase the
branching ratio by about 7%.

B. Decays with l=l0

When the final-state leptons have the same flavor, the
exchange contribution must be added as shown in Eq. (57).
In this case

P
spins jMj2, depends on products of form

factors evaluated at k2 ¼ ðpl0þ þ pl0−Þ2 and q2 ¼ ðplþ þ
pνlÞ2 as before, but also at the exchanged invariant masses
k02 ¼ ðplþ þ pl0−Þ2 and q02 ¼ ðpl0þ þ pνlÞ2. It is therefore
not possible to analytically integrate as many variables as
before. For the decay Kþ → lþνll0þl0−, the four-body
phase space dΦ4 can be written in terms of five Lorentz-
invariant quantities xk, xq, y12, y34, ϕ as [13]

dΦ4 ¼
Sλωm4

K

214π6
dxkdxqdy12dy34dϕ; ð67Þ

where ω ¼ 2xkxq, the symmetry factor S ¼ 1
2
for the case

l ¼ l0, λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2k − x2qÞ2 − 4x2kx

2
q

q
and the three addi-

tional integration variables y12, y34 and ϕ, are defined as

TABLE V. Comparison of our result for the branching ratio BR½Kþ → μþνμeþe−� with the one coming from the
point-like approximation, the result from Ref. [13] and the results for the branching ratio obtained using the NLO
ChPT predictions for the SD form factors [Eq. (48)] setting either F ¼ fπ=

ffiffiffi
2

p
or F ¼ fK=

ffiffiffi
2

p
[denoted by

ChPTðfπÞ and ChPTðfKÞ respectively]. In the last column we show the experimental result from the E865
experiment [10], which has been extrapolated from xk > 0.294 to xk > 0.284 using the formula presented in
Ref. [10]. We stress that both our lattice result and that from Ref. [13] are affected by systematic uncertainties due to
the missing chiral, continuum and infinite-volume extrapolations.

BR½Kþ → μþνμeþe−� for xk > 0.284

This work Point-like approximation Tuo et al. [13] ChPTðfπÞ ChPTðfKÞ Experiment [10]

8.26ð13Þ × 10−8 4.8 × 10−8 10.59ð33Þ × 10−8 9.82 × 10−8 8.25 × 10−8 7.93ð33Þ × 10−8

9We have combined the different errors quoted in Eq. (7) of
Ref. [11] in quadrature.
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y12≡ 2

m2
Kλ

ðpl0− −pl0þÞ ·ðplþ þpνlÞ;

y34≡ 2

m2
Kλ

��
1þrl

x2q

�
pνl−

�
1−

rl
x2q

�
plþ

�
·ðpl0þ þpl0−Þ;

sinϕ≡−
16

λωm4
K

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ212−y212Þðλ234−y234Þ

p ϵμνρσp
μ
l0−p

ν
l0þp

ρ
νlp

σ
lþ

ð68Þ

where

λ12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

r0l
x2k

s
; λ34 ¼ 1 −

rl
x2q

: ð69Þ

The integration domain is given by

−λ12 ≤ y12 ≤ λ12; −λ34 ≤ y34 ≤ λ34; ϕ ∈ ½0; 2π�;
ð70Þ

while for xk and xq the limits of integration are as defined in
Eq. (45). In order to determine the decay rate, we have
evaluated the square of the unpolarized amplitude,P

spins jMj2, in terms of the five integration variables using
FeynCalc [31]. As for the case when l ≠ l0, we decompose
the differential rate as a sum of a point-like, an interference
and a quadratic term (SD) in the form factors, i.e., as

∂5Γ
∂xk∂xq∂y12∂y34∂ϕ¼α2G2

FjVusj2m5
K½Γð5Þ

pt ðxk;xq;y12;y34;ϕÞ

þΓð5Þ
int ðxk;xq;y12;y34;ϕÞ

þΓð5Þ
SDðxk;xq;y12;y34;ϕÞ�: ð71Þ

The explicit, very lengthy, expressions for the three con-

tributions Γð5Þ
pt , Γ

ð5Þ
int and Γð5Þ

SD, written in terms of the five
integration variables and the form factors, are not presented
here but are available upon request from the authors. The
total rate can be obtained through standard Monte Carlo
integration of these expressions over the five-dimensional
phase space. This has been done employing the GSL
implementation of the VEGAS algorithm of Lepage [32].

For the decay channel Kþ → μþνμμþμ−, we find that
the point-like contribution corresponds to about 30% of the
total rate. This is shown in Fig. 14, where we plot the
contributions to the decay rate as a function of the lower

cutoff on the invariant mass of the μþμ− pair, from Γð5Þ
pt

alone and from Γð5Þ
int þ Γð5Þ

SD. For decays into identical
leptons, the same cuts are always applied to both invariant
masses

ffiffiffiffiffi
k2

p
¼ mKxk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpl0þ þ pl0−Þ2

q
;ffiffiffiffiffiffi

k02
p

≡mKx0k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðplþ þ pl0−Þ2

q
: ð72Þ

We find that the contribution from the form factor H2 is
again negligible and that the contribution from the vector
form factor FV is also very small. For the total branching
ratio, we obtain the value

BR½Kþ → μþνμμþμ−� ¼ 1.178ð35Þ × 10−8: ð73Þ

Since for this decay channel there is no experimental
measurement available, our result can only be compared

FIG. 14. The contributions from Γð5Þ
pt , and Γð5Þ

int þ Γð5Þ
SD to the

integrated decay rate Γðxk; xk0 > xcutk Þ are shown for the decay
channel Kþ → μþνμμþμ−, as functions of the common lower cut,
xcutk , on the values of xk and x0k.

TABLE VI. Comparison of our result for the branching ratio BR½Kþ → μþνμμþμ−�with the one coming from the
point-like approximation, the result from Ref. [13] and the results for the branching ratio obtained using the NLO
ChPT predictions for the SD form factors [Eq. (48)] setting either F ¼ fπ=

ffiffiffi
2

p
or F ¼ fK=

ffiffiffi
2

p
[denoted by

ChPTðfπÞ and ChPTðfKÞ respectively]. We stress that both our lattice result and that from Ref. [13] are affected by
systematic uncertainties due to the missing chiral, continuum and infinite-volume extrapolations.

BR½Kþ → μþνμμþμ−�
This work Point-like approximation Tuo et al. [13] ChPTðfπÞ ChPTðfKÞ Experiment

1.178ð35Þ × 10−8 3.7 × 10−9 1.45ð6Þ × 10−8 1.51 × 10−8 1.10 × 10−8 …
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with the lattice determination of Ref. [13] and with the
ChPT prediction (Table VI). As the table shows, our result
is in reasonably good agreement with the value predicted
by ChPT, while at this stage the observed discrepancy with
the result obtained by Tuo et al. [13], which is of Oð25%Þ
may perhaps be attributed to the unknown systematics
associated with the missing chiral, continuum and infinite-
volume extrapolations.
Finally, for the decay channel Kþ → eþνeeþe−, we find

again that the point-like contribution is much suppressed
compared to that from the SD terms. This is shown in
Fig. 15, where we plot, as in the previous case, the

contribution from Γð5Þ
pt and Γð5Þ

int þ Γð5Þ
SD to the total decay

rate, as a function of the lower cutoff on the eþe− invariant
masses. Similarly to the case of the decay
Kþ → μþνμeþe−, we find that the dominant contribution
to the rate is given by the term proportional toH2

1, while the
contributions from the form factors H2 and FV are very
small. Employing the cutoffs xk, x0k > 0.284, we obtain the
following value for the branching ratio:

BR½Kþ → eþνeeþe−� ¼ 1.95ð11Þ × 10−8: ð74Þ

In Table VII we compare our determination with the
experimental measurement of Ref. [10], the lattice result
of Ref. [13], and the ChPT prediction. Our result appears to
be significantly smaller than the experimental measurement,
as in the case of the Kþ → μþνμeþe− decay, while being
consistentwith the updated determination ofRef. [13]. Since
the term proportional to H2

1 is also the dominant one in this
case, this finding is consistent with possible systematic
effects of about 20% on our lattice value.

VII. CONCLUSIONS

In this paper we have presented a strategy to compute,
using lattice QCD, the amplitudes and branching ratios for
the decays P → lνll0þl0−, where P is a pseudoscalar
meson and l and l0 are charged leptons. In particular, we
explained how the four structure-dependent form factors
can be determined and separated from the point-like
(“inner-bremsstrahlung”) contribution. Apart from a factor
of the leptonic decay constant fP, the point-like contribu-
tion to the amplitude can be calculated in perturbation
theory, whereas the SD form factors are nonperturbative
and describe the interaction of a generic off-shell photon
with the internal hadronic structure of the meson. The
present work, studying decays with the emission of a
virtual photon, is a natural extension to our recent study of
radiative decays P → lνlγ, with a real photon in the final
state [7] and the subsequent detailed comparison to
experimental results [8].
We applied the formalism developed in Secs. II–IV to the

four channels of K → lνll0þl0− decays, where l and l0 ¼
μ or e, in an exploratory lattice QCD computation at a
single lattice spacing and at unphysical light-quark masses.
We demonstrated that all four SD form factors, FV , FA, H1

and H2 can be determined with good precision and used to
calculate the corresponding branching ratios. In spite of
the unphysical quark masses used in this simulation (our
pion and kaon masses are about 320 and 530 MeV
respectively), it has been interesting and instructive to
compare our results with those from experiment (where
available) and NLO ChPT. Perhaps surprisingly, as can be

FIG. 15. The contributions from Γð5Þ
pt , and Γð5Þ

int þ Γð5Þ
SD to the

integrated decay rate Γðxk; xk0 > xcutk Þ are shown for the decay
channel Kþ → eþνeeþe−, as functions of the common lower cut
xcutk on the values of xk and x0k.

TABLE VII. Comparison of our result for the branching ratio BR½Kþ → eþνeeþe−�with the one coming from the
point-like approximation, the result from Ref. [13] and the results for the branching ratio obtained using the NLO
ChPT predictions for the SD form factors [Eq. (48)] setting either F ¼ fπ=

ffiffiffi
2

p
or F ¼ fK=

ffiffiffi
2

p
[denoted by

ChPTðfπÞ and ChPTðfKÞ respectively]. In the last column we show the experimental result from the E865
experiment [10], which has been extrapolated from xk > 0.304 to xk > 0.284 using the formula presented in
Ref. [10]. We stress that both our lattice result and that from Ref. [13] are affected by systematic uncertainties due to
the missing chiral, continuum and infinite-volume extrapolations.

BR½Kþ → eþνeeþe−� for xk > 0.284

This work Point-like approximation Tuo et al. [13] ChPTðfπÞ ChPTðfKÞ Experiment [10]

1.95ð11Þ × 10−8 2.0 × 10−12 1.77ð16Þ × 10−8 3.34 × 10−8 1.75 × 10−8 2.91ð23Þ × 10−8
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seen from Tables IV–VII, the results are generally in
reasonable semiquantitative agreement.
The comparison of our results with those from exper-

imental measurements results in an interesting observation
to be investigated further in the future. For the decays
Kþ → eþνeμþμ− and Kþ → eþνeeþe− the point-like con-
tribution is negligible as a result of the chiral suppression
due to the small electron mass, and the decay rate is
dominated by the form factor H1. In both cases our results
are somewhat below the experimental measurement (see
Tables IVand VII) and it would require an increase of order
20% in the value of H1 to recover consistency.10 It will be
interesting to see whether such an increase will result after
the continuum, chiral and infinite-volume extrapolations
have been performed in the future.
A complementary exploratory lattice computation of the

branching ratios has been performed by Tuo et al. [13] on a
243 × 48 lattice, with lattice spacing a ¼ 0.093 fm and
with quark masses similar to ours (mπ ¼ 352 MeV and
mK ¼ 506 MeV). The action with Wilson-clover twisted-
mass fermions is different than the one we used which does
not include the clover term. The methodology in Ref. [13]
is also different than ours in that the individual form factors
are not extracted and the point-like contribution is not
separated from structure-dependent terms. The aim of our
paper on the other hand, has been to explicitly determine
the (nonperturbative) structure-dependent contributions to
the decay rate. In Tables IV–VII we also compared our
results with those of Ref. [13], but given the different
systematics, and in particular the finite-volume effects, we
did not speculate on the origin of any differences.
Having demonstrated the feasibility of the method, our

future work will focus on controlling and reducing the
systematic uncertainties and in particular those resulting
from the current absence of continuum, chiral and infinite-
volume extrapolations. We will also work to extend the
method to heavier pseudoscalar mesons, for which the
analytic continuation to Euclidean space gives rise to

enhanced finite-volume effects due to the presence of
internal lighter states. Given the recent results suggesting
the violation of lepton-flavor universality and potential new
interactions involving leptons (see e.g., Ref. [2] for a brief
introduction), we believe that reliable nonperturbative,
model-independent theoretical predictions of decays such
as those studied here will be very useful in unraveling the
underlying theory beyond the Standard Model. In particu-
lar, experimental measurements of ratios of decay rates of
heavy mesons into different final-state leptons, together
with the corresponding lattice calculations, would be a
significant contribution to the general investigation of
lepton-flavor universality.
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APPENDIX A: FORMULAS FOR THE DECAY
RATES WHEN l ≠ l0

In this appendix, we present the functions which
multiply the form factors in the differential decay rates
we computed in Sec. VI A, with different charged leptons
in the final state, i.e., for l ≠ l0.

We start by defining the following quantity:

Δlogðxk;xqÞ

¼ log

0
B@1þ2

x2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4k−2x2kðx2qþ1Þþðx2q−1Þ2

q
−rl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ðx2kþ1Þx2qþðx2k−1Þ2þx4q

q
−x2q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4k−2x2kðx2qþ1Þþðx2q−1Þ2

q
þrl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ðx2kþ1Þx2qþðx2k−1Þ2þx4q

q
þrlðx2k−1Þþx2qð−x2kþx2qþrl−1Þ

1
CA;

ðA1Þ

where xk and xq are defined in Eq. (43) and rl is defined in Eq. (60).

10Note also the discrepancy in the values ofH1ð0; 0Þ in Refs. [10,11] obtained in the E865 experiment. This is discussed in Sec. VI A.
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The point-like contribution to the decay rate is given by

Γ00
ptðxk; xqÞ ¼

f2Krlxq
24π3m3

Kxk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4rl0

x2k

s �
2rl0

x2k
þ 1

��
2

x2q − 1
ð−x2kx2q þ x2k þ x4q − 2x2qrl − 2ðrl − 1Þrl þ 1ÞΔlogðxk; xqÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2k − x2q þ 1Þ2 − 4x2k

q
ðx2q − rlÞ

�
x2kx

2
q − x2krl − 2x4q þ 4x2qrl − 2

ðx2q − 1Þ2x2q
þ 2ðrl − 1Þðx2k þ 2rlÞ
ðx2q − 1Þ2rl − x2kðrl − 1Þðx2q − rlÞ

��
;

ðA2Þ

where rl0 is also defined in Eq. (60).
The interference contribution to the decay rate can be expressed in the form

Γ00
intðxk; xqÞ ¼ ½gVðxk; xqÞFVðxk; xqÞ þ gAðxk; xqÞFAðxk; xqÞ þ g1ðxk; xqÞH1ðxk; xqÞ þ g2ðxk; xqÞH2ðxk; xqÞ�; ðA3Þ

where the interference kernels are

gVðxk; xqÞ ¼
fKrlxq

12π3mKxk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4rl0

x2k

s �
2rl0

x2k
þ 1

�(
ðx2kðx2q − 2rl þ 1Þ − ðx2q − 1Þ2ÞΔlogðxk; xqÞ

þ
ðx2k þ x2q − 1Þðx2q − rlÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2k − x2q þ 1Þ2 − 4x2k

q
x2q

)
;

gAðxk; xqÞ ¼
fKrlxq

12π3mKxkðx2q − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4rl0

x2k

s �
2rl0

x2k
þ 1

�(
ðx2q − 1Þ2ð−x2k − x2q − 2rl þ 1ÞΔlogðxk; xqÞ

þ
ðx2q − 1Þðx2q − rlÞðx2k þ 2x2q þ rl − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ðx2k þ 1Þx2q þ ðx2k − 1Þ2 þ x4q

q
x2q

)
;

g1ðxk; xqÞ ¼
fKrlxkxq
24π3mK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4rl0

x2k

s �
2rl0

x2k
þ 1

�(
4ðx2q þ rl − 2ÞΔlogðxk; xqÞ

−
ðx2q − rlÞðrlð−x2k þ 3x2q þ 1Þ þ x2qðx2k þ 5x2q − 9ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ðx2k þ 1Þx2q þ ðx2k − 1Þ2 þ x4q

q
ðx2q − 1Þx4q

)
;

g2ðxk; xqÞ ¼
fKrlxkxq

24π3mKðx2q − 1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4rl0

x2k

s �
2rl0

x2k
þ 1

�(
2ðx2q − 1Þðx2q − r2lÞΔlogðxk; xqÞ

−
ðx2q − rlÞðrlðx2k − 3x2q − 1Þ þ x2qð−x2k þ x2q þ 3ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2k − x2q þ 1Þ2 − 4x2k

q
x2q

)
: ðA4Þ

The SD contribution to the decay rate can be expressed in the form

Γ00
SDðxk; xqÞ ¼ gVVðxk; xqÞF2

Vðxk; xqÞ þ gAAðxk; xqÞF2
Aðxk; xqÞ þ g11ðxk; xqÞH2

1ðxk; xqÞ þ g22ðxk; xqÞH2
2ðxk; xqÞ

þ gA1ðxk; xqÞFAðxk; xqÞH1ðxk; xqÞ þ g12ðxk; xqÞH1ðxk; xqÞH2ðxk; xqÞ; ðA5Þ
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where the SD kernels are

gVVðxk; xqÞ ¼
1

24π3xkxq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4rl0

x2k

s �
2rl0

x2k
þ 1

�
ððx2k − x2q þ 1Þ2 − 4x2kÞ3=2ðx2q − rlÞ2;

gAAðxk; xqÞ ¼
1

144π3xkx3q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4rl0

x2k

s �
2rl0

x2k
þ 1

�
ðx4k þ x2kð4x2q − 2Þ þ ðx2q − 1Þ2Þðx2q − rlÞ2ð2x2q þ rlÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2k − x2q þ 1Þ2 − 4x2k

q
;

g11ðxk; xqÞ ¼
xk

144π3x5q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4rl0

x2k

s �
2rl0

x2k
þ 1

�
ðx2q − rlÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2k − x2q þ 1Þ2 − 4x2k

q
× ð2x4qð5x2k þ rl − 1Þ þ x2qð2ðx2k − 2Þrl þ ðx2k − 1Þ2Þ þ 2ðx2k − 1Þ2rl þ x6qÞ;

g22ðxk; xqÞ ¼
rlxk

96π3ðx2q − 1Þ2xq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4rl0

x2k

s �
2rl0

x2k
þ 1

�
ððx2k − x2q þ 1Þ2 − 4x2kÞ3=2ðx2q − rlÞ2;

gA1ðxk; xqÞ ¼ −
xk

24π3x3q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4rl0

x2k

s �
2rl0

x2k
þ 1

�
ðx2k þ x2q − 1Þðx2q − rlÞ2ð2x2q þ rlÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2k − x2q þ 1Þ2 − 4x2k

q
;

g12ðxk; xqÞ ¼ −
rlxk

48π3ðx2q − 1Þx3q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4rl0

x2k

s �
2rl0

x2k
þ 1

�
ððx2k − x2q þ 1Þ2 − 4x2kÞ3=2ðx2q − rlÞ2: ðA6Þ

APPENDIX B: THREE-POINT CORRELATION
FUNCTION IN THE INFRARED LIMIT k → 0

In this appendix, we study the behavior of the lattice
Euclidean correlation function Cμνðt; Eγ; k; pÞ in the limit
k → 0 which, as we will see below, is nontrivial. From
spectral decomposition one obtains

Cμνðt; Eγ; k; pÞ ¼ cμν1 e−tEPðpÞ þ cμν2 e−tfEPðp−kÞþEγg þ � � � ;
ðB1Þ

where the dots represent exponentially suppressed contri-
butions with an energy gap which, in the soft-photon limit,
is or order 2mπ. The first exponential corresponds to the on-
shell external meson PðpÞ with spatial momentum p, and
gives the contribution we aim to isolate, while the second
exponential corresponds to the Pðp − kÞ þ γ state, com-
posed of an on-shell meson Pðp − kÞ with spatial

momentum p − k, and a virtual photon with spatial
momentum k and off-shell energy Eγ. When either k or
Eγ are nonzero, it is possible to isolate the matrix element
corresponding to the ground state PðpÞ, since the second
exponential in Eq. (B1) is subleading at large time
separations t. However, in the exact limit k → 0, the
energy-gap between the two states vanishes, and the lattice
Euclidean correlatorCμνðt; 0; 0; pÞ has a nontrivial behavior
which we now discuss, paying special attention to the
leading cutoff effects. This was already done for P → lνlγ
decays, with the emission of a real photon, in Appendix C
of Ref. [7], focusing on the spatial components of Cμν,
which are the only ones relevant in that case. In this
appendix we generalize the analysis of Ref. [7] to the
components C0ν and Cμ0, with μ, ν ¼ 0, 1, 2, 3.
The starting point is the electromagnetic Ward identity

which, for Wilson-like fermions adopted in this study,
reads [7]

X3
μ¼0

2

a
sin ðakμ=2ÞCμν

A ðt; k; pÞ ¼ Cν
Aðt; pÞ − Cν

Aðt; Eγ; p − kÞ; ðB2Þ

where we have defined

Cμν
A ðt; k; pÞ ¼ −i

Z
d4yd3x e−ik·ðyþμ̂=2Þ−ip·xh0jT½JνAð0ÞJμemðyÞPð−t;−xÞ�j0i; ðB3Þ
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Cν
Aðt; pÞ ¼

Z
d3x e−ip·xh0jT½JνAð0ÞPð−t;−xÞ�j0i ¼ pν f̂PðpÞĜPðpÞ

2ÊPðpÞ
e−tÊPðpÞ þ � � � ; ðB4Þ

Cν
Aðt; Êγ; p − kÞ ¼ e−Êγt

Z
d3x e−iðp−kÞ·xh0jT½JνAð0ÞPð−t;−xÞ�j0i

¼ uν
f̂Pðp − kÞĜPðp − kÞ

2ÊPðp − kÞ e−tÊPðp−kÞ−tÊγ þ � � � ; ðB5Þ

and where the ellipsis represents subleading exponentials with an energy gap that, in the infrared limit, starts at order 2mπ.
11 In

Eqs. (B3)–(B5) the integrals are to be read as lattice sums, k ¼ ðiÊγ; kÞ is the Euclidean four-momentum of the photon, the
photon’s four-momentum, while the on-shell (Euclidean) four-momenta of the mesons PðpÞ and Pðp − kÞ are given
respectively by

p ¼ ðiÊPðpÞ; pÞ; u ¼ ðiÊPðp − kÞ; p − kÞ: ðB6Þ

In the previous expressions, the hat symbol denotes lattice quantities, which are related to their continuum counterparts by12

f̂PðpÞ ¼ fP þOða2Þ; ĜPðpÞ ¼ GP þOða2Þ; ÊPðpÞ ¼ EP þOða2Þ; Êγ ¼ Eγ þOða2Þ; ðB7Þ

where fP,GP,EPðpÞ andEγ are respectively the continuum decay constant, the continuummatrix element of the pseudoscalar
density used as the interpolatingoperator (GP ¼ h0jPjPðpÞi), and the continuumenergyof themesonandof thevirtual photon.
We now differentiate Eq. (B2) with respect to kμ and then set k ¼ 0. Since we are considering a generic off-shell photon,

the temporal and spatial components of the photon momentum kμ are treated as independent quantities. When the indices μ
and ν are spatial, one obtains the result quoted in Eq. (C17) of Ref. [7],

Cij
A ðt; 0; pÞ ¼

f̂PðpÞĜPðpÞ
2ÊPðpÞ

e−tÊPðpÞ
�
δij þ pj

�
1

f̂PðpÞ
∂f̂PðpÞ
∂pi þ 1

ĜPðpÞ
∂ĜPðpÞ
∂pi −

�
tþ 1

ÊPðpÞ

� ∂ÊPðpÞ
∂pi

��
þ � � � ðB8Þ

Moreover the Hð3Þ symmetry of the lattice implies

∂f̂PðpÞ
∂pi ¼ pi ×Oða2Þ; ∂ĜPðpÞ

∂pi ¼ pi ×Oða2Þ; ∂ÊPðpÞ
∂pi ¼ pi

EPðpÞ
× ð1þOða2ÞÞ ðB9Þ

so that

Cij
A ðt; 0; pÞ ¼

f̂PðpÞĜPðpÞ
2ÊPðpÞ

e−tÊPðpÞ
�
δij −

pipj

Ê2
PðpÞ

ð1þ tÊPðpÞ þOða2ÞÞ
�
þ � � � ðB10Þ

In the rest frame of the meson, p ¼ 0, which we use in our study, we therefore obtain for the spatial components of the
correlation function

Cij
A ðt; 0; 0Þ ¼ δij

f̂Pð0ÞĜPð0Þ
2ÊPð0Þ

e−tÊPð0Þ þ � � � ðB11Þ

For the component C00
A the same procedure gives

C00
A ðt; 0; pÞ ¼ −tÊPðpÞ

f̂PðpÞĜPðpÞ
2ÊPðpÞ

e−tÊPðpÞ þ � � � ðB12Þ

11We take this opportunity to correct a typographical mistake in Eq. (C6) of Ref. [7]. In that equation, the factor eEγ t should be
replaced by e−Eγ t. This is the corresponding factor to e−Êγ t in the first line of Eq. (B5) above.

12In our twisted-mass formulation, cutoff effects on parity-even observables start at order Oða2Þ.

VIRTUAL PHOTON EMISSION IN LEPTONIC DECAYS OF … PHYS. REV. D 105, 114507 (2022)

114507-27



For the components Ci0
A , for the correlation function with

J0A and Jiem, we obtain

Ci0
A ðt;0;pÞ

¼ f̂PðpÞĜPðpÞ
2ÊPðpÞ

e−tÊPðpÞ

× ÊPðpÞ
�

1

f̂PðpÞ
∂f̂PðpÞ
∂pi þ 1

ĜPðpÞ
∂ĜPðpÞ
∂pi − t

∂ÊPðpÞ
∂pi

�
þ���

¼−
f̂PðpÞĜPðpÞ
2ÊPðpÞ

e−tÊPðpÞ× ÊPðpÞpiðtþOða2ÞÞþ���;

ðB13Þ

which in our reference frame becomes

Ci0
A ðt; 0; 0Þ ¼ 0þ � � � ðB14Þ

Similarly, for the components C0i
A , differentiating equation

Eq. (B2) results in

C0j
A ðt; 0; pÞ ¼ −pjt

f̂PðpÞĜPðpÞ
2ÊPðpÞ

e−tÊPðpÞ þ � � � ; ðB15Þ

which in the rest frame of the meson becomes

C0j
A ðt; 0; 0Þ ¼ 0þ � � � ðB16Þ

As explained in Ref. [7], Eq. (B11) allows one to subtract
the point-like contribution from the diagonal spatial com-
ponents Cii

A nonperturbatively to all orders in the lattice
spacing a. From Eqs. (B14) and (B15), we see that instead
in the limit k → 0 the contribution from the Pðp − kÞ þ γ
state exactly cancels the signal. Hence, for such compo-
nents, it is not possible to extract, in the exact limit k ¼ 0,
the physical matrix element from the Euclidean three-point
function. We remark that in our analysis we have not used
the purely temporal component C00

A , which would make it
difficult to identify the plateaux due to the presence of a
large contribution from the excited state Pðp − kÞ þ γ, at
small values of k.
Finally, it is worth noting the peculiar behavior in t of the

purely temporal component of the lattice three-point
function, C00

A ðt; 0; pÞ. From Eq. (B12) it can be seen that
C00
A ðt; 0; pÞ exhibits a time behavior of type te−tÊPðpÞ, which

is a manifestation of the singular behavior of the correlation
function at large distances, and which gives rise to a double
pole in momentum space. In our simulation we found
numerical evidence for the presence of such a behavior.
This is shown in Fig. 16, where we compare our numerical
data for H00

L;Aðt; 0; 0Þ, defined in Eq. (28), with the
prediction of Eq. (B12).

APPENDIX C: CORRELATION MATRICES FOR
THE FORM FACTOR FIT PARAMETERS

InTablesVIII and IXwe report the correlationmatrices for
the form factor fit parameters, the values of which are
presented in Table II. Since we adopted two different fitting
Ansätze, given in Eqs. (46) and (47), we have two different
12 × 12 matrices. Indeed, there are four form factors, each
one described by a function defined through three param-
eters, and so there are12different parameters for eachAnsatz.
Given two different parameters A and B, the correlation
between them has been computed according to

ρA;B ¼
P

iðAi−μAÞðBi−μBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðAi−μAÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðBi−μBÞ2

p ; μA ¼
1

N

X
i

Ai;

μB ¼
1

N

X
i

Bi; ðC1Þ

whereAi andBi are the jackknife samples for two parameters
and the sum runs over all the jackknifes.
We remark that the lattice analysis is affected by

systematic uncertainties due to the missing chiral, con-
tinuum and infinite-volume extrapolations that will be
studied in future works. As a consequence, all the present
numerical results should be taken as qualitative ones and as
an indication of the feasibility of the method, and not as
physical results.

FIG. 16. Determination of the 00 component of the hadronic
tensor, from the lattice three-point correlation function at k ¼ 0.
The green line is the result of a linear fit in time
aH00

L;Aðt; 0; 0Þ ¼ −αfit0 t, where αfit0 is a fit parameter, and which

is compared with the predicted value, αpred0 , derived from
Eq. (B12). The fit was performed in the interval t ¼ ð4; 21Þ,
away from the center of the lattice where backward-propagating
contributions to the correlation function become significant.
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