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Compact U(1) gauge theory in (3þ 1)-dimensions possesses the confining phase, characterized by a
linear raise of the potential between particles with opposite electric charges at sufficiently large interparticle
separation. The confinement phenomenon is generated by condensation of Abelian monopoles at strong
gauge coupling. We study the properties of monopoles and the deconfining order parameter in zero-
temperature theory in the presence of ideally conducting parallel metallic boundaries (plates) usually
associated with the Casimir effect. Using first-principle numerical simulations in compact U(1) lattice
gauge theory, we show that as the distance between the plates diminishes, the vacuum in between the plates
experiences a deconfining transition. The phase diagram in the space of the gauge coupling and the
interplane distance is obtained.
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I. INTRODUCTION

Physical objects affect fluctuations of quantum fields and
modify dispersion relations of quantum fluctuations in the
vacuum around them. This phenomenon is the essence of
the Casimir effect [1], which predicts that the energy of
vacuum fluctuations is modified by the presence of
physical bodies [2,3]. Moreover, the shift in the energy
of virtual particles has a fundamental physical consequence
as the Casimir effect results in a tiny force between neutral
objects [4] that can be detected experimentally [5–7]. The
Casimir effect is one of the demonstrations of the impor-
tance of vacuum fluctuations and the physical significance
of the mysterious vacuum energy.
Most straightforwardly, the Casimir effect reveals itself

in noninteracting field theories. However, even in the
absence of interactions, the shift in vacuum energy sets
a complex analytical problem apart from a few simplest
geometries of physical bodies. Therefore, the Casimir effect
is usually studied using, for example, the analytical
proximity force approximation [8], or utilizing numerical
tools [9] that include the world line approaches [10] and
first-principle methods of lattice gauge theory [11–18].
In the presence of (self-)interactions of fields, for

example, in quantum electrodynamics (QED), the calcu-
lations of the Casimir interaction become much more

involved. However, in the experimentally relevant cases,
the effect of interactions of fundamental fields is very small
due to the weakness of the QED coupling constant. The
electron-photon coupling affects the Casimir-Polder force
in the second-order of the perturbation theory, thus making
this contribution undetectable with current experimental
techniques [19].
In strongly coupled field theories, interactions can

substantially change the magnitude of the Casimir force
and, unexpectedly, modify the vacuum structure of the
theories themselves. In theories with dynamical matter
fields, the presence of reflective boundaries can affect
vacuum condensates and generate new (and modify
existing) phase transitions such as the chiral phase tran-
sition in the four-fermion effective field theory [20–22].
Interactions can also change the sign of the Casimir-Polder
force in fermionic systems with condensates [23], as well as
in the CPN−1 model [24] (see also [25]).
The Casimir geometry can also affect nonperturbative

phenomena associated with the gauge (vector) fields. For
example, vacua of compact Abelian U(1) gauge theory and
non-Abelian SU(2) gauge theory in two spatial dimensions
lose the confining property at sufficiently small separations
between, respectively, perfectly metallic and chromome-
tallic plates [17,18]. In compact Abelian theory, the
deconfining transition is associated with the binding
transition of the Abelian monopoles, which emerges in
the monopoles plasma due to the presence of the bounda-
ries [17].
Using the first-principle Monte Carlo techniques, we

investigate the influence of two closely spaced, perfectly
conducting boundaries on the phase structure of
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(3þ 1)-dimensional compact U(1) gauge theory. The study
may be relevant to the MIT bag model, which treats the
hadron as a (spherical) deconfinement region separated
from the confining exterior by a (reflective) wall [26,27].
Thermodynamically, the wall is supported from the col-
lapse by a Casimir pressure of this finite-volume system
[28–30]. We also investigate the simplest statistical proper-
ties of the Abelian monopoles in the space between the
plates since these topological objects are responsible for the
confinement of electric charges and mass gap generation in
the compact U(1) gauge theory [31,32].
The structure of this paper is as follows. In Sec. II, we

describe the lattice model, the monopoles, and the defi-
nition of the perfectly metallic Casimir boundary condi-
tions. Then, in Sec. III, we show how the Casimir plates
affect the monopoles. Next, we use the monopole proper-
ties to determine the phase diagram of the model. The
deconfinement order parameter in the inter-plate space are
discussed in Sec. IV. The last section is devoted to our
conclusions.

II. COMPACT ELECTRODYNAMICS ON THE
LATTICE, CASIMIR PLATES AND MONOPOLES

A. The model

We study a (3þ 1)-dimensional compact U(1) gauge
theory in lattice regularization suitable for numerical simu-
lations. The calculations in thermal equilibrium are per-
formed, after Wick rotation, in four Euclidean spacetime
dimensions. Belowwe briefly discuss themodel, topological
defects, and the Casimir boundary conditions, following the
discussion in (2þ 1)-dimensional case [15,16] closely.
The compact U(1) gauge model describes the dynamics

of the lattice gauge (photon) field θx;μ ∈ ½−π;þπÞ, which is
defined on the elementary links l ¼ fx; μg set by its starting
point x and the direction μ. In the continuum limit, a → 0;
the lattice field θxμ ¼ aAμðxÞ is related to the continuum
gauge field AμðxÞ and the lattice spacing a. The lattice
analogue of the field-strength tensor Fμν ≡ ∂μAν − ∂νAμ is
played by the plaquette angle,

θPx;μν
¼ θx;μ þ θxþμ̂;ν − θxþν̂;μ − θx;ν; ð1Þ

constructed from the link fields (link angles) θx;μ. Each
plaquette P≡ Px;μν is set by the position x of one of its
corners and by two vectors of the plaquette plane, μ < ν,
with the axes labeled by the indices μ; ν ¼ 1;…; 4. The
indices μ ¼ 1, 2, 3 correspond to spatial directions, while
μ ¼ 4 marks the imaginary Euclidean time.
In the continuum limit, the plaquette angle (1) reduces to

its continuum analogue θPx;μν
¼ a2FμνðxÞ þOða4Þ for

small (perturbative) fluctuations of the photon field. In
addition to the perturbative fluctuations, the model also
possesses the topological configurations of the gauge
fields, the Abelian monopoles, which correspond to large

variations of the lattice gauge field θx;μ ∼ 1. These con-
figurations are singular in the continuum limit.
The action of the lattice model,

S½θ� ¼ β
X
P

ð1 − cos θPÞ; ð2Þ

is given by the sum over all elementary lattice plaquettes P.
For configurations without monopoles, the lattice action (2)
becomes the standard photon action if one associates the
lattice coupling constant β ¼ 4=e2 with the electric charge
e. In the presence of the Abelian monopole singularities,
the continuum action becomes more complicated as it
includes singular Dirac sheets attached to the worldlines of
the Abelian monopoles. The continuum formulation of the
compact QED has been briefly discussed in one of our
previous papers [16].
The model (2) is also called the “compact” model

because the Abelian gauge group of the theory corresponds
to a compact manifold, S1. The action is invariant under
discrete shifts of the plaquette variable, θP → θP þ 2πnP
with an integer nP ∈ Z. This invariance implies that two
lattice field strengths θP and θ0P ¼ θP þ 2πn with n ∈ Z
are physically equivalent to each other, thus reducing the
physical gauge group to a circle, R=Z ∼ S1. The same
symmetry is also applied to the gauge field itself, θx;μ →
θx;μ þ 2πkx;μ with kx;μ ∈ Z.

B. Magnetic monopoles and electric confinement

The compactness of the model naturally leads to the
appearance of singular configurations of the gauge field,
the Abelian monopoles. In the continuum limit, the
mentioned 2π shifts, which leave invariant the lattice action
(2), correspond to the physically unobservable displace-
ments of the singular Dirac sheets (i.e., the worldlines of the
Dirac strings attached to the Abelian monopoles). The end
points of the open Dirac strings correspond to the trajecto-
ries of the Abelian monopoles, which are physical, gauge-
invariant topological defects.
The monopoles are particlelike objects in the (3þ 1)-

dimensional compact electrodynamics. On the lattice, the
monopole current jx;μ can be determined via a finite-
difference divergence of the physical part,

θ̄P ¼ θP þ 2πkP ∈ ½−π; πÞ; kP ∈ Z; ð3Þ

of the lattice field-strength tensor θP. The monopole
trajectory corresponds to a collection of three-dimensional
cubes Cx;μ, which contain a nonzero magnetic charge,
jx;μ ≠ 0,

jx;μ ¼
1

2π

X
P∈∂Cx;μ

θ̄P ∈ Z: ð4Þ
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Here, the sum goes over all elementary sides P of the cube
Cx;μ, and the index μ specifies the local direction of the
monopole current. The index μ is normal to the three axes
that form the 3d cubeCx;μ. For example, if jx;4 ≠ 0, then the
corresponding three-cube is a spatial cube, which contains
a static segment of the monopole trajectory.
In the continuum limit, the sum in Eq. (4) reduces to the

divergence of the magnetic field, thus signaling violation of
the Bianchi identities for singular field configurations,
ϵμναβ∂νFαβ ≠ 0. The monopole trajectory (4) forms a closed
loop defined at the dual hypercubic lattice (for a review,
see Ref. [33]).
It is convenient to define the global monopole density,

ρ ¼ 1

Vol4

X
x;μ

jjx;μj; ð5Þ

where the sum is performed over the volume Vol4 of the
four-dimensional hypercubic lattice. We will also calculate
the density (5) and the related quantities in restricted
volumes (in between the Casimir plates).
In lattice gauge theories, the Abelian monopoles have

been intensively probed for their possible role in the
phenomenon of the charge confinement, which is, presum-
ably, closely related to the color confinement in non-
Abelian gauge theories, such as QCD [33–35]. The
monopole condensation in an Abelian gauge theory leads
to linear confinement of the electric charges because the
monopole condensate squeezes the electric flux emanating
from the electric charges into a thin electric tube. The tube
plays the role of a confining string. Since the string is a
linear object with a constant energy density σ per string
length, the increasing distance R between the particle-
antiparticle pair leads to a linearly rising potential VðRÞ ≃
σR at large distances. The dimensionful parameter σ has the
sense of string tension.
This confining mechanism is similar (and dual) to the

formation of the Abrikosov vortices in superconductors,
where the electrically charged condensate of electron
Cooper pairs squeezes the magnetic flux into thin vortices.
If a monopole–anti-monopole pair were immersed into the
superconductor, it would be confined due to the appearance
of the Abrikosov vortex stretched between the constituents
of the pair. The mechanism of the charge confinement
based on the monopole condensation is often called the
dual superconductor mechanism [34,35].
The dual superconductor mechanism was shown to work

in the four-dimensional compact electrodynamics, which
possesses the straightforward and unambiguous definition
(4) of the Abelian monopoles [36]. The onset of the
monopole condensation, related to percolation of monopole
trajectories [37], is a well-defined phenomenon in this
model. More complicated, non-Abelian Yang-Mills theo-
ries were also shown to possess the dual superconductivity
phenomenon in low-temperature, confining phase [37–44].

C. Casimir plates for compact gauge fields

In (3þ 1)-dimensions, the Casimir problem is defined,
in general, for three-dimensional physical materials pos-
sessing two-dimensional surfaces. If the surfaces are made
of an ideal metal, then two tangential (to the surface at each
point) components of the electric field and a normal
component of the magnetic field vanish. These boundary
conditions can be written in a covariant form,

εμνλσFνλðxÞvσðxÞ ¼ 0; μ ¼ 1;…4; ð6Þ

where

vμðxÞ ¼ εμνλσ

Z
d3ξ

∂x̄ν

∂ξ1

∂x̄λ

∂ξ2

∂x̄σ

∂ξ3
δð4Þðx − x̄ðξ⃗ÞÞ; ð7Þ

is the dual three-volume element of the world sheet of the
surface. The latter is described by the vector function x̄μ ¼
x̄μðξ⃗Þ parametrized by the three dimensional vec-
tor ξ⃗ ¼ ðξ1; ξ2; ξ3Þ.
In our paper, we consider two static flat plates normal to

the x1 axis set at the positions x1 ¼ l1 and x1 ¼ l2 as shown
in Fig. 1. For each plate, the local volume element of the
corresponding world volume (7) is given by the following
formula:

νμðxÞ ¼ δμ;1δðx1 − laÞ; a ¼ 1; 2; ð8Þ

where the parameter a labels the surfaces. To derive the
above formula, one can use the parametrization of the ath
surface as follows: x̄μa ¼ ðla; ξ1; ξ2; ξ3Þ. Consequently, the
covariant conditions (6), reduce to the three conditions that
include the normal component of the magnetic field and
two tangential components of the (Euclidean) electric field,
respectively,

B1 ≡ F23ðxÞjx1¼la ¼ 0; ð9Þ

E2 ≡ F24ðxÞjx1¼la ¼ 0; ð10Þ

FIG. 1. The geometric setup of two parallel Casimir plates.
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E3 ≡ F34ðxÞjx1¼la ¼ 0: ð11Þ

The definition of the lattice field strength tensor (1) and
its physical part (3), imply that the lattice Casimir con-
ditions (11) read as follows [15,16]:

cos θx;μνjx1¼la ¼ 1; ðμ; νÞ ¼ ð23; 24; 34Þ; ð12Þ

for all possible ðx2; x3; x4Þ and fixed x1 ¼ la with a ¼ 1, 2.
The simplest way to implement the boundary condition

(12) in the path integral formalism is to add a set of
Lagrange multipliers to the standard action (2),

Sε½θ� ¼
X
P

βPðεÞ cos θP: ð13Þ

To this end, we modify the lattice plaquette couplings
βP → βPðεÞ. The inhomogeneous coupling,

βPðεÞ ¼ β½1þ ðε − 1ÞδP;V �; ð14Þ

is a function of the dielectric permittivity ε of the Casimir
plates. Here, we used the notation V to denote the collection
of plaquettes Px;μν belonging to the world volume of the
plates. The plates are effectively absent if ε ¼ 1while in the
limit ε → ∞, the components of the physical lattice field-
strength tensor (3) vanish at the world volume of the plates
and, consequently, the lattice condition (12) is satisfied. In
this limit, the plates become perfectly metallic [2].
We perform our simulations on a 244 lattice correspond-

ing to a zero-temperature compact U(1) gauge model. To
generate and update gauge field configurations, we used the
Monte Carlo heat bath algorithm [45,46]. For each point,
set by gauge coupling constant β and distance between
plates R, we generated 7.5 × 105 trajectories. The first 105

configurations are omitted to achieve thermalization in this
pure gauge model. We notice that alternative, tensor net-
work algorithm can, in principle, be used to include matter
fields and to make the theory closer to a realistic confining
gauge theory such as QCD [47]. In our paper, we restrict
ourselves to the standard Monte Carlo simulations.

III. MONOPOLES AND CASIMIR PLATES

A. Monopole density in the absence of the plates

It is well known that in the strong coupling region of the
theory, β ≲ 1, the monopole trajectory forms a dense
percolating cluster [37]. This cluster corresponds to the
monopole condensate, which, according to the dual super-
conducting scenario, produces the confinement of oppo-
sitely charged electric test particles. The property of
percolation implies that any of two points in space have
a nonzero probability of being connected by a monopole
trajectory. Furthermore, the infrared nature of the monopole

condensate implies that at infinitely large separation
between the points, the nonzero percolation probability
stays constant as the distance between the points increases.
In the weak coupling regime, β ≳ 1, the percolation

cluster breaks down, thus signaling that the monopole
condensate disappears. The confinement property is, con-
sequently, lost. The confining strongly coupled regime and
the weakly coupled deconfining phase are separated by the
first-order phase transition [48,49]. While we do not study
the percolation properties of the monopole cluster in our
paper, the transition point can be deduced from the
behavior of the much simpler quantity, the monopole
density (5).
Before performing calculations of Casimir effects, we

consider case of the homogeneous lattice in the absence of
metallic plates. In Fig. 2, we show the monopole density ρ,
the corresponding susceptibility,

χρ ¼ hρ2i − hρi2; ð15Þ

and the Binder cummulant (with ρ ¼ ρ),

Bρ ¼
hρ4i
hρ2i2 − 3; ð16Þ

as the functions of the lattice coupling β. The quantities
(15) and (16) characterize the fluctuations of the monopole
density ρ.
The monopole density diminishes with the increase of

the coupling constant β. The position of the deconfining
phase transition,

βc ¼ 1.010ð1Þ; ðno platesÞ; ð17Þ

is well visible from the discontinuity in the monopole
density, Fig. 2(a). The discontinuity—which is pertinent to
the first-order phase transition—coincides with high accu-
racy with the positions in the peaks of the susceptibility of
the monopole density, Fig. 2(b), and the corresponding
Binder cumulant, Fig. 2(c).
In the vicinity of the phase transition, we take finely

spaced values of β with the step δβ ¼ 0.001 to achieve
reasonable accuracy of our simulations in evaluating the
(pseudo)critical values of βc. The latter quantities are
calculated as a maximal value of the derivative of the
monopole density with respect to β and as positions of the
peaks of the susceptibility and the Binder cumulant of
monopole density. The presented value of the pseudocrit-
ical coupling (17) marks the position of the maxima of each
of the quantities. For our lattice, the pseudocritical cou-
plings extracted from all quantities coincide within the
systematic error determined by the fineness of the data grid
in the steps of β. Since our paper does not set the aim to
determine the transition points with high accuracy, we do
not employ the fitting methods here. The position of the
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pseudocritical point (17) coincides, within the error bars,
with the infinite-volume result of Ref. [48].

B. Monopole properties with Casimir plates

Perfectly conducting Casimir plates are introduced via
the inhomogeneous coupling (14) which serves as the
Lagrange multiplier that reduces physical fluctuations of
the gauge field at the plates. In practice, we take the
sufficiently large value of the dielectric constant, ε ¼ 103,

which corresponds to the asymptotically large coupling
constant at the plates, βP → ∞. The coupling constant in
bulk (outside and inside the plates) is fixed to take a
homogeneous value β. We consider the separations R≡
jl1 − l2j ¼ 1;…; 8 between the plates.
We immediately notice that closely separated plates

affect the monopoles between them. The effect is readily
visible in the examples of the typical monopole configu-
rations shown in Fig. 3 for two values of the bulk coupling
constant β. The plates tend to diminish the monopole
density in the volume between them compared to the
monopole density outside the plates. The suppression effect
is enhanced for larger values of the coupling constant β (at
weaker coupling), as one can see from comparisons of
Figs. 3(a) and 3(b). The suppression of the monopole
density suggests that the confining property should be
weakened in between the plates, and therefore, the confine-
ment-deconfinement phase transition should occur at
stronger values of the coupling constant (smaller β’s).
This observation will be confirmed below.
The ratio of the monopole density in between the plates

ρins and the monopole density at the same β in the absence
of the plates, ρnpall (here, the superscript “np” means “no
plates”), are shown in Fig. 4 for various separations R. All
couplings β shown in the plot, the shrinking plates lead to
the diminishing monopole density. At weaker coupling
(larger β), the relative monopole density is affected stronger
than at stronger coupling (smaller β). The relative monop-
ole density, ρins=ρ

np
all, has an inflection point at certain R ¼

R� at fixed β. This point moves towards smaller values of R
as the lattice coupling β decreases. The latter fact indicates
that the model may have a β-dependent transition, which
moves towards smaller R as the coupling β gets larger.
In our paper, we provide the results as the function of the

lattice distance R between the plates. We do not express the

FIG. 2. (a) Monopole density ρ, (b) its susceptibility, and (c) the
Binder cummulant (16) for O ¼ ρ vs lattice coupling β in the
absence of plates. The vertical line marks the position of the
phase transition calculated from these observables.

FIG. 3. Typical examples of monopole configurations in (a) the
confining phase (β ¼ 0.8) and (b) the deconfining phase
(β ¼ 0.9) for the plates separated by the distance R ¼ 3. The
monopoles and antimonopoles are represented by the red and
blue dots, respectively. The plates, positioned vertically in the
middle of the lattice, are not shown.
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distance in the physical units since the compact U(1) gauge
theory on a four-dimensional Euclidean lattice does not
possess a well-defined physical scaling towards the con-
tinuum limit. The latter is associated with the absence of the
proper continuum limit in the model since the system does
not possess a second-order phase transition with a divergent

correlation length. The approximate scaling is observed in a
small region of lattice couplings β close to the phase
transition point [50], where the lattice spacing a ¼ aðβÞ
varies, in physical units, in a limited range of lengths. We
study the properties of the model over the full range of the
coupling constant β where the continuum scaling is not
realized.
In Fig. 5, we show the monopole density in between the

plates ρins, its susceptibility, and the corresponding Binder
cumulant for three values of the interplate distance R. One
can immediately make a few qualitative observations from
these figures.
Firstly, we notice that all these quantities behave sim-

ilarly to the case without plates (Fig. 2) implying affinity of
these transitions. Secondly, we notice that for any fixed R,
the monopole density, its susceptibility, and the Binder
cumulant experience the singularities at the same value of
the coupling constant β, highlighting the presence of a
genuine thermodynamic instability. Thirdly, the positions
of these singularities, βc ¼ βcðRÞ, shift towards the strong
coupling region as the distance between R the plates
diminishes. In other words, the closer the plates, the weaker
the monopole component of the vacuum.
The dependence of the critical coupling βc of the inter-

plate distance R is shown in Fig. 6. As we discussed above,

FIG. 4. The ratio ρins=ρ
np
all of the monopole density ρins inside

the Casimir plates to the monopole density in the absence of the
plates, ρnpall, vs the interplate separation R for a fixed set of the
lattice coupling β.

FIG. 5. The monopole density (the left panel), its susceptibility (the middle panel) and the Binder cumulant (the right panel) plotted as
the function of β for three separations between the plates (from top to bottom): R ¼ 2; 4; 8. The corresponding critical coupling
constants, βc ¼ βcðRÞ, are shown in the insets.
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the smaller R the smaller βc. The dependence can be fitted
by the function,

βfitc ðRÞ ¼ β∞c − α exp ½−ðR2=R2
0Þν�; ð18Þ

where the best fit parameter βc ¼ 1.0071ð16Þ gives us the
critical coupling at the infinitely separated plates. This
value is close to the transition point in the absence of the
plates (17), highlighting the self-consistency of our
approach. The other best fit parameters in Eq. (18) are
as follows: α ¼ 3.7ð6Þ, R0 ¼ 0.28ð7Þ, and ν ¼ 0.257ð16Þ.
The best fit function is shown in Fig. 6 by the solid line.
The critical coupling (18) separates the confinement

phase (β < βc) and the deconfinement phase (β > βc). The
phase transition line is a rising function of the interplate
distance R. The critical coupling vanishes, βfitc ðRcÞ ¼ 0, at
the critical distance Rc ¼ 0.47ð7Þ. Formally, at the sepa-
rations smaller than critical value, R < Rc, the theory
cannot reside in the confining phase. Since the interplate
separation is a positive integer number in the discretized
theory, R ¼ 1; 2;…, this asymptotic critical value cannot
be reached on the lattice.
The loss of the confinement property of the vacuum

between the metallic plates in (3þ 1)-dimensions, revealed
by Fig. 6, can be understood using the analogy with the
similar effect in the (2þ 1)-dimensional theory [16].
Namely, the monopoles and anti-monopoles interact with
each other via the long-range massless photon exchange. In
the absence of the plates, this interaction, in (3þ 1)-
dimensions, decays as jxj−2 as the four-dimensional dis-
tance x between the objects increases. In the presence of the
plates, the system experiences the dimensional reduction
from four- to three-dimensional spacetime. In the latter, the
interaction between the (anti)monopoles strengthens and
decays slower, as jxj−1. These two factors lead to the

breaking of the infrared monopole clusters into smaller
clusters and, consequently, to the disappearance of the
monopole condensate.
In the 2þ 1 dimensional model, the same effect leads to

the pairing of monopoles and antimonopoles into the
magnetically neutral monopole pairs (the lower-dimen-
sional counterparts of the small clusters) and to the decay
of the Coulomb monopole gas (the lower-dimensional
analogue of the monopole condensate). The neutral pairs
(the small clusters) cannot support the confinement and
confining property is lost between the sufficiently close
plates [16,17].

IV. DECONFINEMENT ORDER PARAMETER

We determined the nature of confinement and deconfine-
ment phases in the whole phase diagram of Fig. 6 using the
simple fact that these phases at finite separation R are
smoothly connected to the known phases in the R → ∞
limit. In this section, we quantify this assertion by calcu-
lating the deconfinement order parameter, the expectation
of the Polyakov loop, in between the plates.
Usually, the Polyakov loop is determined at a finite

temperature, where the extension of the lattice in the
imaginary time direction is finite. The same order param-
eter can also be used on the zero-temperature lattice with a
finite extension in the temporal direction, NT .
In the Abelian gauge theory, the Polyakov loop Px at the

spatial space point x is given by a cyclic product of
temporal link variables,

Px ¼
YNT−1

x4¼0

eiθx;x4;μ¼4 : ð19Þ

Due to the property of the temporal cyclicity, this quantity
does not depend on the time slice where it is defined.
The expectation value of this gauge-invariant quantity,

P ¼ hPxi serves as a deconfinement order parameter: at an
infinite-volume lattice, P ≠ 0 in the deconfinement phase,
and P ¼ 0 in the confinement phase. At finite lattice (as in
our case), the expectation value of the Polyakov loop is
nonzero in both phases, being small (large) in the confine-
ment (deconfinement) phase.
We compute the expectation value of the modulus of the

operator (19) averaged over a set of lattice points in a fixed
timeslice of the three-dimensional volume V3,

jPj ¼
���� 1

V3

X
x∈V3

Px

����: ð20Þ

The expectation value of the Polyakov order parameter
(20) in the absence of the plate is shown in Fig. 7. We show
the region around the phase transition point (17), where the
change in the behavior is well seen.

FIG. 6. The phase diagram of the vacuum of the compact U(1)
gauge theory in between the perfectly metallic plates separated by
the distance R. The solid line represents the best fit (18) of the
critical coupling βc, which corresponds to the confinement-
deconfinement phase transition at the interplate distance R.
The R → ∞ limit is shown by the dashed horizontal line.
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The order parameter evaluated in the space between the
plates is presented in Fig. 8. We show this quantity, as a
function of the interplate separation R, for the same set of β
values as used in Fig. 4 for the interplate monopole density.
The shrinking plates induce the deconfining phase resulting
in the increase of the Polyakov loop (Fig. 8) in agreement
with the diminishing monopole density (shown in Fig. 4).

The effect appears to work at all values of the coupling
constant β. The similar tendency is seen in Fig. 9, which
shows the same quantity vs β at a set of fixed interplate
separations R.
These results support the phase diagram of Fig. 6.

V. CONCLUSIONS

Using the first-principle numerical simulations, we show
that the structure of the vacuum of confining gauge theory,
the compact U(1) gauge model in (3þ 1)-dimensions, is
affected by closely spaced perfectly conducting parallel
plates. The nonperturbative Casimir effect alternates the
dynamics of Abelian monopoles, modifies the vacuum
state, and leads to the Casimir-induced deconfining phase
transition in between the plates. Our main result, the phase
diagram in the plane “coupling constant”—“distance
between the plates” is given in Fig. 6.
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