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We study two colors lattice QCD (QC2D) with two flavors of staggered fermions on 404 and 324 lattices
with lattice spacing a ¼ 0.048 fm in the wide range of the quark chemical potential μq. Our focus is on the
confinement-deconfinement transition in this theory. Thus we compute the string tension from the Wilson
loops and the static quark free energy from the Polyakov loops. We find that the deconfinement transition
found earlier in the range μq ≈ 800–1000 MeV is shifted to higher values. This shift is attributed to
decreasing of the lattice spacing used in our simulations in comparison with the earlier study.
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I. INTRODUCTION

The lattice QC2D at nonzero quark chemical potential
was studied quite intensively, see, e.g., [1–21] and refer-
ences therein. Rather high interest in this theory as well as
to other QCD-like theories is due to the similarity of their
properties in some parts of the phase diagram to properties
of QCD. Furthermore, such studies provide a laboratory to
check the methods and approaches which can be also
applied to QCD.
Here we study the deconfinement transition in QC2D.

This transition was studied recently in Ref. [11] where it
was found in the range μq ∼ 800–1000 MeV. It was
concluded in Ref. [11] that the obtained result corre-
sponded to zero temperature. In earlier studies [7] of this

issue it was shown that the transition position depended on
the temperature T ¼ 1=aNt. This study found that the
deconfinement transition position increased from μq ≈
500 MeV up to 800 MeV when temperature varied from
T ≈ 150 MeV down to ≈50 MeV. It should be noted that
the study of Ref. [7] was made at large lattice spacing
a ≥ 0.15 fm, while in Ref. [11] the lattice spacing a ¼
0.044 fm was used. The goal of our study presented here is
to clarify if the position of the deconfinement transition
changes substantially with temperature even at rather small
temperatures using lattices with small lattice spacing.
It should be noted that we are working on a symmetric

lattices which at zero quark density are usually used to
study QCD at zero temperature. As was explained before in
[14,21] at large quark density 1=aNt should be considered
as temperature even on a symmetric lattices.
Furthermore, we present in the Appendix our arguments

explaining why at large chemical potentials even at small T
the results differ substantially from T ¼ 0. Say, at μq >
1 GeV the physics at T ≈ 100 MeV or higher is different
from physics at zero temperature.
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II. LATTICE SETUP

We carry out our study on 404 and 324 lattices for a set of
the quark chemical potentials μq in the range
aμq ∈ ð0; 0.5Þ. These are the largest lattices (in terms of
the number of lattice sites) used so far in the studies of
lattice QC2D. The tree level improved Symanzik gauge
action [22] and the improved staggered fermion action with
a diquark source term [2] were used in simulations. The
explicit expression for the lattice action is as follows

SQC2D ¼ SG þ Sstag; ð1Þ

where

SG ¼ β
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where c0, c1—parameters of improved lattice gauge action,
β—inverse coupling constant, Ux;μ—SUð2Þ link variable,
Sstag has implicit summation over the flavor index, ηx;μ—
staggered sign function [23]. In fact we are using improved
staggered quark Dirac operator changing Ux;μ to stout
smeared variables as described in Ref. [24].
The lattice configurations were generated at β ¼ 1.75

and quark mass in lattice units amq ¼ 0.0075. We used the
diquark source term coupling λ ¼ 0.00075 which was
much smaller than amq. We do not expect essential change

of our results from extrapolation to λ ¼ 0 limit. We found
for the lattice spacing r0=a ¼ 9.8ð2Þ, where r0 is the
Sommer parameter [25]. To introduce the physical units
we chose to use the value r0 ¼ 0.468ð4Þ fm [26]. Then we
get a ¼ 0.048ð1Þ fm and for the lattice size in physical
units L1 ¼ 1.92 fm for 404 lattice and L2 ¼ 1.54 fm for
324 lattice. Respective temperature values are T1 ¼
103 MeV and T2 ¼ 128 MeV. For the pion mass we found
r0mπ ¼ 1.62ð10Þ or mπ ¼ 680ð40Þ MeV. Later we will
also use results of Ref. [11] obtained on lattices with
physical size L3 ¼ 1.4 fm (T3 ¼ 140 MeV) and pion
mass mπ ¼ 740ð40Þ MeV.

III. CONFINEMENT-DECONFINEMENT
TRANSITION IN T − μq PLANE

It is known that the Wilson loop has a tiny overlap with
the broken string state [27]. Thus it can be used to compute
the string tension σ even in a theory with dynamical quarks
when the respective state is the ground state only for
distances up to the string breaking distance rbr. We follow
this strategy to determine μq dependence of σ. We measure
the Wilson loops after one iteration of the HYP [28]
procedure for the links in direction μ ¼ 4 and 100 APE
smearing sweeps [29] for links in all spatial directions. The
HYP procedure allows to decrease substantially the static
source self-energy at the cost of making incorrect the static
potential VðrÞ dependence on r for r < 3a. It is worth
mentioning the technical difficulty in computation of the
static potential at nonzero μq. With increasing μq the gap
between the ground state and the excited state decreases
and it becomes more and more difficult to extract the
ground state value for the large distance r.
The static potential VðrÞ is shown for few values of μq in

the Fig. 1(left) for lattice 404 and in the Fig. 1(right) for
lattice 324. The curves show results of the fit to the function

VðrÞ ¼ V0 þ σrþ α=r ð4Þ
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FIG. 1. The static potential aVðrÞ as function of distance r for few values of μq on 404 lattices (left) and on 324 lattices (right). The
curves show fits (4) or (5) as described in the text.
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for aμq ≤ 0.35 (404 lattices) or for aμq ≤ 0.25 (324 lattices)
or to function

VðrÞ ¼ V0 þ α
e−Er

r
ð5Þ

for higher aμq values.
We plot the string tension σ dependence on μq for these

two lattices in the Fig. 2. Additionally we show the result
from [11]. Note that for all three sets of data σ is normalized
by respective values σ0 at μq ¼ 0. The values of a2σ0
computed on 404 and 324 lattices at the same parameters
are equal within error bars. One can see that for all three
values of temperature there is a range of μq values where
the string tension is not changing. Then it starts to decrease
and goes to zero at some value of μq which can be defined
as a confinement-deconfinement transition point. As it was
found in [11] above this transition the static potential can be
described by the screened potential with screening mass
increasing with increasing μq.

Another way to determine the confinement-deconfine-
ment transition is to use the Polyakov loop and its
susceptibility. The Polyakov loop was used in particular
in Ref. [7]. The Polyakov loop P is defined as (Ns ¼ L=aÞ

P ¼ 1

N3
s

X
x⃗

1

2
Tr

YNt

t¼1

U4ðx⃗; tÞ ð6Þ

To measure the average Polyakov loop hPi and its
susceptibility χ defined as

χ ¼ N3
sðhP2i − hPi2Þ ð7Þ

we used from zero up to five HYP iterations. We found that
without HYP it is not possible to draw any conclusions
about dependence of hPi and χ on μq because of large
statistical errors. One iteration of HYP did not help much.
Starting from two HYP iterations we observed results
which are qualitatively similar to those presented in the
Fig. 3 where we show our results for five HYP iterations.
We found that the relative statistical errors for both hPi and
χ are slowly decreasing with increasing of the number of
HYP iterations. We decided to stop at five HYP iterations
since we did not expect substantial improvement after
further increasing of the number of HYP iterations. One can
see from Fig. 3(left) that the rising of hPi starts earlier for
lattice 324 than for 404. This is consistent with the behavior
of susceptibility χ depicted in Fig. 3(right). The positions of
maxima of χ for both 324 lattice and 404 lattice are in a
good qualitative agreement with values of μqr0 where the
string tension turns zero. Thus the Polyakov loop indicates
the confinement-deconfinement transition at about same
values μq and these values are definitely temperature
dependent.
In Fig. 4 we present our results for the confinement-

deconfinement transition line in the ðμq; TÞ plane. We take
as a central value along the μq axes the minimal μq where
the string tension turns zero and the error bars for this axes
are defined by the distance to the nearest data point. These
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FIG. 2. The string tension σ (divided by respective value
obtained at μq ¼ 0) as function of μq at three values of temper-
ature. The results for T ¼ 140 MeV are taken from [11].
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FIG. 3. The Polyakov loop (left) and its susceptibility (right) for two lattices computed after 5 HYP iterations.
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error bars cover the difference in the transition values
determined from the string tension and from the Polyakov
loop susceptibility. The data point from Ref. [11] is also
used. The transition line is in a qualitative agreement with
result obtained in Ref. [7]. But our result is shifted to higher
μq values by factor two, approximately. We believe this
quantitative difference is due to use of rather large lattice
spacing in Ref. [7]. The fit with quadratic dependence on μq
predicts zero temperature confinement-deconfinement tran-
sition at μq value near to 2.5 Gev. Further studies on lattices
with smaller temperature are needed to check and improve
this prediction.

IV. CONCLUSIONS

Thus we observed that the confinement-deconfinement
transition in the low temperature QC2D is moving to higher
values of μq when the temperature is decreasing. This
phenomenon was demonstrated with the use of three
observables: the string tension computed from the
Wilson loops, the Polyakov loop and its susceptibility.
Our result is in a qualitative agreement with the earlier
result of Ref. [7]. But quantitatively our result for μq value
at transition differs quite substantially, by factor two
approximately. We believe that the reason of this difference
is that we used much smaller (by factor 4 approximately)
lattice spacing. It is interesting to check the temperature
dependence in this low temperature range for other impor-
tant quantities, e.g., for the equation of state. This will be
presented in a forthcoming paper.
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APPENDIX: LOW-ENERGY EXCITATIONS AND
THE FERMI SURFACE

Net quark density of noninteracting gas of massless
quarks has the form

nq ¼
gf
6π2

ðμ3q þ π2T2μqÞ; ðA1Þ

where gf ¼ Nspin · Nc · Nflavor ¼ 8 is the degeneracy factor
and for a rough estimate at low temperatures the second
term can be neglected (the more so taking it into account
would only strengthen our conclusions); quarks of mass
30 MeV at μq ∼ 1 GeV can be cosidered as massless.
Given μq ¼ 1.4 GeV and L ¼ 1.92 fm, we arrive at

nq ∼ 6gf fm−3, that is, all states corresponding to 42 lowest
momenta p⃗ ¼ 2π

L n⃗ are occupied,where n⃗ ¼ ðn1; n2; n3Þ runs
over integer-valued 3D lattice. Thus the Fermi surface
embraces the sites n⃗ ¼ ð0; 0; 0Þ; ð0; 0; 1Þ; ð0; 1; 1Þ; ð1; 1; 1Þ;
ð0; 0; 2Þ aswell as those obtained from themby permutations
of n1, n2, n3 and/or transformations ni → −ni. Only part of
momenta corresponding to ðn1; n2; n3Þ ¼ ð0; 1; 2Þ is
embraced by the Fermi surface. Excitation of lowest nonzero
energy in this case corresponds to the transition of the
type ð0; 1; 2Þ → ð1; 1; 2Þ, its energy is approximately
Emin ≃

pmin
10

≈ 60 MeV, which is even lower than the temper-
ature T ¼ 1

40a ≈
4.11 GeV

40
≈ 103 MeV. Therefore, the temper-

ature on the lattice under consideration cannot be considered
as zero at large quark chemical potentials μq ≳ 1 GeV. It
should also be mentioned that the transitions of the type
ð0; 1; 2Þ → ð1; 1; 2Þ and the like are rather numerous (several
hundred for the Emin only), what enhances the probability of
such excitations.
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FIG. 4. The confinement-deconfinement transition in ðμq; TÞ
plane.
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