
Hyperbolic lattice for scalar field theory in AdS3

Richard C. Brower,1,2,* Cameron V. Cogburn ,1,† and Evan Owen1,‡
1Department of Physics, Boston University,

590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
2Center for Computational Science, Boston University,
3 Cummington Mall, Boston, Massachusetts 02215, USA

(Received 29 March 2022; accepted 24 May 2022; published 3 June 2022)

We construct a tessellation of AdS3, by extending the equilateral triangulation of AdS2 on the Poincaré
disk based on the (2,3,7) triangle group, suitable for studying strongly coupled phenomena and the
AdS=CFT correspondence. A Hamiltonian form conducive to the study of dynamics and quantum
computation is presented. We show agreement between lattice calculations and analytic results for the free
scalar theory and find evidence of a second-order critical transition for ϕ4 theory using Monte Carlo
simulations. Applications of this anti–de Sitter Hamiltonian formulation to real time evolution and quantum
computing are discussed.
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I. INTRODUCTION

The study of strongly coupled quantum field theories
(QFTs) is difficult, even before putting them in anti–
de Sitter (AdS) space. Yet there are compelling reasons
to understand the full nonperturbative consequences [1]
of doing so. The general AdS=CFT duality maps any
UV renormalizable field theory in bulk AdSdþ1 to a
d-dimensional conformal field theory (CFTd) on the
boundary. Despite the spectacular results of the conformal
bootstrap program in bounding CFTs with a conserved
stress tensor (e.g., [2,3]), there is still a huge landscape of
nonperturbative field theories in AdS yet to be explored
with potential applications to particle and condensed matter
physics. Moreover, in three dimensions AdS3 gives the
interesting and special case of a two-dimensional boundary
CFT2. It is also the minimum dimensionality needed to
study the map between nontrivial pure weak gravity and
CFT with a conserved stress tensor.
The best developed numerical framework for solving

strongly coupled QFTs at the moment is lattice field theory.
This method has benefited from decades of development of
efficient algorithms and high performance architectures to
produce extremely precise predictions for physical systems

such as quantum chromodynamics [4]. To best utilize this
framework, lattice QCD and similar problems are posed as
a path integral in flat Euclidean space, which benefits from
a regular lattice with a uniform UV cutoff and a positive
definite measure allowing for the efficient use of paral-
lelized Monte Carlo algorithms.
Adapting lattice field theory to AdS space presents

two new problems: (i) lattices must conform to a curved
manifold and (ii) the finite lattice volume must have a
boundary that maps to a CFT at infinite distances. The first
problem (i) has largely been addressed in the Quantum
Finite Element (QFE) program by introducing a simplicial
lattice complex weighted by the discrete exterior calculus
[5–8]. QFE is proving to give accurate results for the ϕ4

Ising CFT in 2D on the Riemann sphere S2 and in 3D for
the radially quantized cylinder R × S2.
The extension of the QFE to a hyperbolic manifold

was presented in [9] for AdS2. In addition, for AdS2 the
second problem (ii) of convergence as a function of the UV
cutoff to the boundary CFT was shown to be feasible at
finite volumes. In this work we extend this investigation by
choosing a foliation for global Euclidean AdSdþ1 that
defines the Hamiltonian (dilatation) operator dual to the
boundary CFT in the radially quantized formulation on
R × Sd. In 3D this particular AdS3 geometry allows for the
reuse of the basic lattice scaffolding of the Poincaré disk H2

by tessellating each 2D slice via the triangle group at fixed
time. This lattice field theory approach to the nonpertur-
bative study of QFTs in AdS space is complementary to
the S-matrix bootstrap approach [10,11] as well as increas-
ingly powerful Hamiltonian truncation methods [12–14].
The use of the Hamiltonian formulation of lattice field
theory opens up potential applications to Minkowski space

*cogburn@bu.edu
†brower@bu.edu
‡ekowen@bu.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 105, 114503 (2022)

2470-0010=2022=105(11)=114503(11) 114503-1 Published by the American Physical Society

https://orcid.org/0000-0003-0294-4972
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.114503&domain=pdf&date_stamp=2022-06-03
https://doi.org/10.1103/PhysRevD.105.114503
https://doi.org/10.1103/PhysRevD.105.114503
https://doi.org/10.1103/PhysRevD.105.114503
https://doi.org/10.1103/PhysRevD.105.114503
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


complementary to the light cone truncation method [15,16]
and generally to quantum computing algorithms.
This article begins in Sec. II with a general discussion of

the AdS manifold and our lattice construction of AdS3.
Section III details the Hamiltonian and Lagrangian formu-
lation of ϕ4 theory on the lattice. Section IV focuses on the
free theory, where we compute various propagators directly
to compare the lattice to the continuum and as a check
of our Monte Carlo methods. Section V then uses these
methods to demonstrate evidence for the existence of a
second-order critical point in ϕ4 theory in AdS3. We finish
in Sec. VI with a discussion of future directions for high
precision Monte Carlo simulations for both ϕ4 and Ising
spins in AdS3 to probe the AdS=CFT correspondence, as
well as using the Hamiltonian form as a prototype for
quantum computing algorithms.

II. ANTI-DE SITTER SPACE

We begin with a general discussion about AdS space and
its various foliations before proceeding to its latticization.
Euclidean AdSdþ1 with curvature radius l is a space of
constant negative curvature defined as the hyperboloid

−X2
0þ X⃗ · X⃗¼−X0X0þ

Xdþ1

i¼1

XiXi¼−l2; X0>0; ð2:1Þ

embedded in R1;dþ1 and possessing the isometries of the
Euclidean conformal group SOð1; dþ 1Þ. Between any
two points X, X0 on the manifold, there exists a unique
geodesic given by

l2 coshðσðX;X0ÞÞ ¼ X0X0
0 − X⃗ · X⃗0 ≥ 0; ð2:2Þ

which, when projected onto the hyperbolic surface, is a
positive spacelike distance as seen by the alternative
expression 4l2sinh2ðσ=2Þ ¼ ðX⃗ − X⃗0Þ2 − ðX0 − X0

0Þ2.
Before constructing a lattice it is useful to think about the

choice of coordinates taken on the hyperbolic surface [17].
Three conventional ones are the upper half-plane,
the Poincaré ball, and the AdS cylinder (see Fig. 1). The
boundary CFTs for these three coordinate systems are
on different manifolds: Euclidean Rd, the sphere Sd, and
the cylinder R × Sd−1, respectively. For each choice,
the hyperbolic manifold remains unchanged while the
boundary CFT maps to different manifolds related by
Weyl factors. This well known fact is emphasized by
Witten [18] but is sometimes obscured by referring to both
the Weyl equivalences and isometries of AdS space as
“conformal.”
Euclidean AdSdþ1 has the topology of a cylinderR × Hd

with its metric being the sum of two terms,

ds2 ¼ g00dt2 þ ds2
Hd ; ð2:3Þ

which separates Euclidean time t ∈ ð−∞;∞Þ from the
spatial metric on Hd. Time translation is generated by the
dilatation operator D ¼ −∂t (or AdS Hamiltonian) with
unitary evolution in Minkowski space corresponding to the
replacement t → −it. The temporal metric component g00
is a function of a radial coordinate on Hd, but causal
propagation in the bulk is consistent with causality in the
boundary CFT [19].
A particularly nice foliation for AdS is given by global

coordinates,

ds2 ¼ �l2cosh2ρdt2 þ l2ðdρ2 þ sinh2ρdΩ2
d−1Þ; ð2:4Þ

where ρ ∈ ½0;∞� is the geodesic from the origin of Hd at
fixed time with g00ðρÞ ¼ l2 coshðρÞ and dΩ2

d−1 is the line
element of the unit sphere Sd−1.1 The minus sign is for
Minkowski AdS whereas the plus sign gives Euclidean
AdS. For AdS3 this is then

ds2 ¼ l2ðcosh2ρdt2 þ dρ2 þ sinh2ρdθ2Þ; ð2:5Þ

with dΩ2
1 ¼ dθ2 on S1.

In global coordinates the conformal boundary is at
ρ ¼ ∞. By compactifying the radial coordinate through
r ¼ tanhðρ=2Þ we obtain the Poincaré disk coordinates,

ds2 ¼ l2

ð1 − r2Þ2 ðð1þ r2Þ2dt2 þ 4ðdr2 þ r2dθ2ÞÞ; ð2:6Þ

which include the conformal boundary at r ¼ 1. This form
of the line element makes particularly clear the cylindrical

Conformal
boundary

Time Anti-de Sitter space

FIG. 1. AdS3 spacetime with our choice of coordinate system
looks like a solid cylinder. At fixed time the space is the
hyperbolic disk, which can be tessellated using equilateral
hyperbolic triangles. Here, (2,3,7) triangles are used.

1In general dΩ2
d−1 is determined by the recursion relation

dΩ2
n ¼ dθ2n þ sin2ðθnÞdΩ2

n−1.
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topology, i.e., the time translation and SOð2Þ symmetry. In
practice, a UV cutoff ϵ ¼ 1 − rmax ¼ Oðe−ρmaxÞ is intro-
duced for the boundary CFT at r ¼ 1. A picture of AdS3
spacetime is shown in Fig. 1.
We note that for AdS2 with d ¼ 1, the cylindrical form of

the metric is reduced to an infinite strip via the change
of variables cosh ρ ¼ 1= cosðσÞ. The metric (2.4) is then
given by

ds2 ¼ l2ðcosh2ρdt2 þ dρ2Þ ¼ l2

cos2σ
½dt2 þ dσ2�; ð2:7Þ

with σ ∈ ½−π=2; π=2�, and the 1D conformal quantum
mechanics exist on the boundary at σ ¼ �π=2. This form
is convenient for the Hamiltonian truncation methods
presented in [13].

A. Choosing the spatial lattice

A lattice field theory calculation replaces the continuum
manifold with a finite lattice spacing a (UV cutoff) and
a finite volume V (IR cutoff). For example, for the
d-dimensional flat space cubic lattice with toroidal boun-
dary conditions with V ¼ OðL1L2 � � �LdÞ and OðLμ=aÞ
lattice sites on each axis, the lowest mass m ∼ 1=ξ (or gap)
must obey a ≪ ξ ≪ Lμ in the numerical extrapolation to
the continuum, a → 0, Lμ → ∞. In principle, to obtain the
correct boundary CFT these limits precede the conformal
limit ξ → ∞. Since AdS space contains an intrinsic radius
of curvature, l, we can only access the critical point with
the proviso that a ≪ l ≪ ρmax.
Given the orthogonality in the metric (2.3), it is natural to

foliate Euclidean AdS into fixed time slices transverse to
the spatial Hd metric and then subsequently introduce a
spatial lattice for each time slice. For AdS3 the spatial
tessellation is identical to the lattice realization for H2

detailed in [9]. The hyperbolic disk can then be tessellated
using equilateral triangles of the ð2; 3; qÞ triangle group for
q > 6. Throughout this work we use q ¼ 7 because it gives
the smallest equilateral hyperbolic triangle edge length
(relative to l), which minimizes the curvature defects at the
vertices. A complementary way to latticize AdS3 using a
regular tessellation of H3 is done in [20].
This construction, not unlike the tessellation of the flat

plane with equilateral triangles (q ¼ 6), gives an infinite
lattice with a discrete subgroup of the AdS2 isometries:
invariance under translations along the edges and q-fold
rotations about each vertex. On a hyperbolic lattice, these
symmetries are then broken by finite volume effects when
introducing an IR cutoff ρx ≤ ρmax with an arbitrary center
at ρ ¼ 0. Using the triangle group, the lattice spacing is
now fixed relative to the curvature. For example, for
ð2; 3; qÞ the deficit angle fixes the equilateral triangle
area to AΔ ¼ ðπ − 6π=qÞl2 and the lengths of the triangles
to coshða=2lÞ ¼ ð2 sinðπ=qÞÞ−1. For q ¼ 7 this gives the

minimum values AΔ ¼ 0.448799l2 and a ¼ 1.090550l.
In principle, using the finite element method (FEM) [21]
each triangle can be subdivided into n2 flat equilateral
triangles with edges a=n subsequently projected onto the
hyperbolic surface using the same QFE procedure [5,6,8]
for the 2D de Sitter manifold S2.
In practice, the finite volume is tessellated layer-by-layer

from the origin at ρ ¼ 0. There is an exponential growth
in the number of points on the lattice boundary as a
function of the number of spatial “layers” L of the lattice,
nbdry ∼ eρ ∼ eL, as expected from holography. The effective
UV lattice boundary cutoff is given by ϵ ≃ 2e−0.97lL, where
we assume an average rmax for the lattice boundary as
opposed to the actual jagged, position-dependent lattice
boundary generated by this construction (see Fig. 2).
We note that if we were to introduce FEM refinement this
would not change the UV cutoff on the boundary and incurs
only a polynomial growth in the number of sites.
The boundary field ϕ̃ with scaling dimension Δ is

defined as

ϕ̃ðxÞ ¼ ϵ−Δϕðx; σÞ: ð2:8Þ

Here x are boundary coordinates and σ is the geodesic
distance from the center. We then impose Dirichlet
boundary conditions. This suppresses the leading term
ϕ̃0 of the field

ϕðx;σÞ¼e−Δþσ½ϕ̃1ðxÞþOðe−σÞ�þe−Δ−σ½ϕ̃0ðxÞþOðe−σÞ�;
ð2:9Þ

leaving ϕ̃1 as the dynamical fluctuations. For the free
field, Δ� ¼ ðd=2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd=2Þ2 þm2

p
, and ϕ̃0 and ϕ̃1

are boundary sources. The scaled field of the boundary
CFT is then ϕ̃1ðxÞ ¼ limσ→∞eΔþσϕðx; σÞ or ϕ̃1ðxÞ ¼
limϵ→0ϵ

−Δþϕðx; ϵÞ.
The scaling relationship is thus accurate to OðϵÞ.

However, as seen in Table I, moderate volumes from
just a few layers L give quite small values for the UV
cutoff ϵðLÞ, from which we can then extrapolate to zero
to identify boundary phenomena. Specifically for q ¼ 7,
as L increases the number of nodes on the disk grows
exponentially as NðLÞ ≃ 5.086e0.96L relative to the
number of nodes on the outer edge EðLÞ ≃ 3.13e0.96L with
the ratio approaching the inverse of the golden ratio,
EðLÞ=NðLÞ → ð1 − ffiffiffi

5
p Þ=2 ¼ 0.618034… as the number

of layers increases.

III. AdS3 HAMILTONIAN FOR ϕ4 THEORY

To study ϕ4 theory on a simplicial triangulation of H2

with continuous time t, we begin with the continuum action
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S¼
Z

dt
Z

d2x
ffiffiffi
g

p �
1

2
gμν∂μϕ∂νϕþ

1

2
m2ϕ2þλϕ4

�
: ð3:1Þ

The resulting spatially discretized action is

S ¼
Z

dt
X
x

�
1

2

X
y∈hx;yi

cosh ρx
2

Kxyðϕx − ϕyÞ2

þ ffiffiffiffiffi
gx

p
cosh ρx

�
1

2cosh2ρx
ð∂tϕxÞ2 þ

1

2
m2ϕ2

x þ λϕ4
x

��
;

ð3:2Þ

where the notation y ∈ hx; yi indicates a sum over all
the nearest neighbors of site x in the AdS2 graph, and we
have inserted the discretized metric coefficients

ffiffiffi
g

p ¼
cosh ρx

ffiffiffiffiffi
gx

p
and g00x ¼ 1=cosh2ρx. The coefficients

ffiffiffiffiffi
gx

p
and Kxy can be determined using the FEM. This method
sets the weight of each site

ffiffiffiffiffi
gx

p
to the volume of the dual

site, and the kinetic weight of each link Kxy to the ratio of
the dual link length (the Hodge star of the link) to the length
of the link itself.
At present we do not introduce further QFE refinement.

Therefore the weights
ffiffiffiffiffi
gx

p
and Kxy are constant,

ffiffiffiffiffi
gx

p ¼ q
3
AΔ; Kxy ¼

4AΔ

3a2
; ð3:3Þ

with the lattice space a given by

coshða=2lÞ ¼ cosðπ=3Þ
sinðπ=qÞ ¼

1

2 sinðπ=qÞ : ð3:4Þ

As mentioned in Sec. II, the curvature defects on the lattice
are minimized for q ¼ 7 with the minimal lattice spacing
a ¼ 1.090550l. Although this might suggest that refine-
ment is necessary to get sensible results, it was shown in [9]
that excellent long-distance propagators can be obtained
without refinement. By virtue of the IR/UV map in the
AdS=CFT correspondence, this even suggests the possibil-
ity that this discrete lattice might give exact continuum
CFTs on the boundary in the infinite volume limit.
On the infinite lattice there exists a Hamiltonian form

equivalent to the lattice Lagrangian (3.2),

Ĥ ¼
X
x

�
1

2

X
y∈hx;yi

cosh ρx
2

Kxyðϕ̂x − ϕ̂yÞ2

þ ffiffiffiffiffi
gx

p
cosh ρx

�
1

2
π̂2x þ

1

2
m2ϕ̂2

x þ λϕ̂4
x

��
; ð3:5Þ

TABLE I. The total number of nodes on the disk NðLÞ, the number of edge nodes EðLÞ on the outside layer, and the associated UV
cutoff ϵ ¼ 1 − rmax as a function of the number of layers L with q ¼ 7.

Layers L 0 1 2 3 4 5 6 7 8

Disk nodes NðLÞ 1 8 29 85 232 617 1675 4264 11173
Edge nodes EðLÞ 1 7 21 56 147 385 1008 2639 6909
UV cutoff ϵ 1 0.50 0.23 0.097 0.038 0.015 0.0057 0.0022 8.3 × 10−4

FIG. 2. The full hyperbolic disk H2 and an enlarged view of the edge, tessellated with three layers (L ¼ 3) of (2,3,7) triangles. The
dashed circle near the lattice edge is the effective lattice boundary rmax and the larger, solid circle the conformal boundary at r ¼ 1. The
UV lattice cutoff is ϵ ¼ 1 − rmax.
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which avoids the subtleties associated with discretizing
time while keeping a regular tessellation of the disk. The
operators obey the canonical commutation relation

½ϕ̂ðxÞ; π̂ðx0Þ� ¼ i
δ2ðx − x0Þffiffiffiffiffiffiffiffiffi

gðxÞp → ½ϕ̂x; π̂y� ¼ i
δxyffiffiffiffiffi
gx

p : ð3:6Þ

The transverse lattice can be restricted to finite volume with
a cutoff ρ ≤ ρmax as before. Practically speaking there are
worm cluster algorithms appropriate for doing Monte Carlo
simulations for Ising and similar spins systems in continu-
ous time [22]. This approach also provides the framework
for going to Minkowski space and the possibility of unitary
algorithms suited to a quantum computer.

A. Continuous vs discrete time

To proceed with the Lagrangian simulation we must
discretize (3.2) with the spacing Δt ¼ at. Our Euclidean
lattice action on AdS3 is then

S ¼ at
X
x;t

�
1

2

X
y∈hx;yi

cosh ρx
2

Kxyðϕx;t − ϕy;tÞ2

þ ffiffiffiffiffi
gx

p
cosh ρx

�
1

2a2t cosh2ρx
ðϕx;t − ϕx;tþ1Þ2

þ 1

2
m2ϕ2

x;t þ λϕ4
x;t

��
; ð3:7Þ

with the lattice sites labeled by integer x, t. As in [9],
we can make this expression more convenient by intro-
ducing the dimensionless parameters m2

0 ¼ c2qm2 and λ0 ¼
3c4qλ=qatAΔ in terms of an effective lattice spacing
c2q ¼ ffiffiffiffiffi

gx
p

=Kxy ¼ qa2=4. We are also free to choose the
ratio of the spatial to temporal lattice spacing a=at. In this
work we always set at ¼ cq so that the coefficients of the
spatial and temporal kinetic terms are the same. In the next
section we will discuss the implications of this choice.
After these substitutions and an appropriate rescaling of the
field ϕ, the lattice action becomes

S ¼
X
x;t

�
1

2

X
y∈hx;yi

cosh ρx
2

ðϕx;t − ϕy;tÞ2

þ 1

2 cosh ρx
ðϕx;t − ϕx;tþ1Þ2

þ cosh ρx

�
1

2
m2

0ϕ
2
x;t þ λ0ϕ

4
x;t

��
: ð3:8Þ

It is important to note that because of the factors of
cosh ρx in (3.8), the lattice weights (which were constant on
the disk lattice) become position-dependent on the AdS3
lattice. Classically this comes from the cosh2 ρdt2 term in
the metric (2.5) which indicates that there is a gravitational

force pushing particles towards the center in this foliation
due to the increased energy cost needed to move radially
outwards (Fig. 3).
We can check that the Hamiltonian (3.5) is consistent

with the Lagrangian form (3.7) in the limit that the temporal
lattice spacing goes to zero. The time-ordered partition
function Z ¼ Tr exp½−tĤ� is then factorized into terms,

Zx ¼ hϕxðtþ δtÞje−cxπ̂2xδt=2jϕxðtÞi

¼
Z

dπxhϕxðtÞjπxie−cxπ̂2xδt=2hπxjϕxðtþ δtÞi; ð3:9Þ

with

cx ¼
ffiffiffiffiffi
gx

p
cosh ρx; hϕxðtÞjπxðtÞi ¼ e−i

ffiffiffi
gx

p
πxϕx : ð3:10Þ

To understand the factor of
ffiffiffiffiffi
gx

p
we rewrite the commutator

using (3.6) so that in flat space
ffiffiffiffiffi
gx

p
π̂x is the generator of

translations in ϕ. Completing the square gives

Zx ¼
Z

∞

−∞
dπxeiπx

ffiffiffi
gx

p ½ϕxðtþδtÞ−ϕxðtÞ�−cxπ̂2xδt=2

∼ exp

�
−
δt
2
cosh ρx

ffiffiffiffiffi
gx

p
g00x ð∂tϕxðtÞÞ2

�
; ð3:11Þ

as we would expect.

B. Lattice simulations

The AdS3 lattice is constructed by taking the hyperbolic
disk lattice discussed in Sec. II A with L spatial layers and

FIG. 3. A general bulk geodesic between two points bends into
the bulk due to the time dilation of the coefficient g00ðρÞ in the
metric (2.3) when moving toward the boundary of the AdS3
cylinder.
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duplicating it to create Nt time slices. Dirichlet boundary
conditions are imposed on a fictitious (Lþ 1)th layer
whereas periodic boundary conditions are taken in the
time direction. Given that the AdS3 lattice is an extension
of the hyperbolic disk lattice it shares many of the same
properties. Foremost, it shares the same exponential growth
in points moving radially towards the boundary, as
expected from holography: Ntot ¼ Nt × Nx ∼ Nt × eL,
where Nx is the number of spatial points. We do not refine
the lattice for reasons similar to those discussed for the
2D case.
A crucial difference is that the lattice weights are now

position-dependent, as discussed below (3.8). A conse-
quence of this is that when traversing radially on the lattice
towards the boundary, the time direction becomes expo-
nentially stretched. This increases discretization effects
close to the boundary, and makes probing the boundary
theory a subtle task. We can adjust this stretching by
varying the ratio a=at, which determines how stretched the
temporal lattice spacing is relative to the spatial lattice
spacing. Because we are only studying bulk physics in this
work, we fix this ratio for all simulations. However, we note
that in order to accurately explore the critical boundary
theory it would be beneficial to vary this ratio to produce a
more regular discretization of sites on the approach to the
lattice boundary. We save this for future work.

IV. THE FREE THEORY

Since the free theory in the continuum has a simple
analytical solution, we use it to check the fidelity of
our lattice discretization and the convergence of the

Monte Carlo simulation. For a given mass-squared m2,
the analytic bulk Green’s function GbbðX;X0Þ between two
points X and X0 in AdSdþ1 is the solution to the equation

ð−∇2 þm2ÞG ¼ 1ffiffiffi
g

p δdþ1ðX − X0Þ: ð4:1Þ

Here ∇μ is the covariant derivative and ∇2 ¼ ∇μ∇μ ¼
1ffiffi
g

p ∂μ
ffiffiffi
g

p
gμν∂ν is the Laplace operator. The Green’s function

is given by [23,24]

GbbðσðX;X0ÞÞ¼e−Δσ2F1

�
Δ;

d
2
;Δþ1−

d
2
;e−2σ

�
; ð4:2Þ

where σ is the geodesic between X and X0 and the scaling
dimension is related to the mass throughm2l2 ¼ ΔðΔ − dÞ
with l being the AdS radius. For d ¼ 2 the bulk Green’s
function in AdS3 has the simple closed form

GbbðσÞ ¼
e−Δσ

1 − e−2σ
; ð4:3Þ

with the geodesic distance given by

coshðσÞ ¼ coshðt − t0Þ coshðρÞ coshðρ0Þ
− sinhðρÞ sinhðρ0Þ cosðθ − θ0Þ ð4:4Þ

in global hyperbolic coordinates (2.5). The free discretized
Green’s function equation (4.1) satisfies the matrix equa-
tion Mxt;x̃ t̃Gðx̃; t̃; x0; t0Þ ¼ δx;x0δt;t0 :

X
y∈hx;yi

1

2

� ffiffiffiffiffiffi
gx00

p þ
ffiffiffiffiffiffi
gy00

q �
ðGðx; t; x0; t0Þ −Gðy; t; x0; t0ÞÞ þm2

0

ffiffiffiffiffiffi
gx00

p
Gðx; t; x0; t0Þ

þ 1ffiffiffiffiffiffi
gx00

p ð2Gðx; t; x0; t0Þ −Gðx; tþ 1; x0; t0Þ −Gðx; t − 1; x0; t0ÞÞ ¼ δx;x0δt;t0 ; ð4:5Þ

where
ffiffiffiffiffiffi
gx00

p ¼ coshðρxÞ. This is equivalent to the Gaussian
path integral hϕðt; xÞϕðt0; x0Þi≡Gðx; t; x0; t0Þ, allowing
us to check the Monte Carlo convergence against the exact
matrix inverse M−1 at λ0 ¼ 0.
For the massless case, we compute the lattice propagator

Gx̃ t̃;x0t0 ≡Gðx̃; t̃; x0; t0Þ via matrix inversion and compare it
with the form of the analytic propagator Gbb. We compute
the lattice propagator between all lattice points, as well as
between only pairs of points with zero temporal or spatial
separation. To avoid boundary effects, the Lth layer is not
included in measurements. We check the Klebanov-Witten
form m2l2 ¼ ΔðΔ − dÞ from holography. The results are
shown in Fig. 4 and show good agreement with the
expected value of Δ ¼ 2 for the massless case. We note

that similar to AdS2 in [20], there is a small mass
renormalization yielding an effective mass m2 > 0 and a
slightly larger scale, Δ > 2.
In Fig. 5 we compare the propagators from direct

inversion to measurements from a Monte Carlo simulation
of the same lattice. We see good agreement for all
measurements larger than the statistical error in the
Monte Carlo data, which is of order 10−6.

V. THE INTERACTING THEORY

To go beyond the free theory of Sec. IV we use the action
(3.8) with λ0 ≠ 0. We are specifically interested in deter-
mining if our lattice supports a critical point. This is the first
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step in being able to eventually determine what type of CFT
is produced on the boundary at criticality.

A. The ϕ4 critical point

To study the theory (3.8) with nonzero λ0 and tachyonic
mass μ20 ¼ −m2

0, we perform a lattice Monte Carlo simu-
lation using a combination of Metropolis [25], overrelax-
ation [26], and the Brower-Tamayo cluster algorithm [27]

with single cluster Wolff updates [28]. The critical point
will depend on the two parameters, λ0 and μ20, so we set
λ0 ¼ 1 and sweep over μ20 values to find the critical μ2c,
which we define below. We repeat this process for an
increasing number of lattice layers. For each lattice size we
choose the number of time slices Nt to be equal to the
number of points on the outermost spatial layer L so that
the lattice boundary has N2

t points.

FIG. 5. Checks between the direct inversion and Monte Carlo simulation for propagators for the massless case with L ¼ 4. All of the
fits shown are from the direct inversion data. Left: propagator from the center point to all other spatial points on the same time slice.
Right: propagator along the center axis of the cylinder to all other temporal center points.

FIG. 4. Checks in the noninteracting regime of the AdS3 lattice realization from a direct inversion of the massless Green’s function
GbbðσÞ for L ¼ 4. Top left: the propagator for all pairs of points with zero temporal separation (i.e., pairs of points in the same time
slice). Top right: the propagator for all pairs of points with zero spatial separation. Bottom: all-to-all propagator.
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To analyze the critical behavior of the theory we measure
two bulk quantities: the magnetic susceptibility χ and the
Binder cumulant [29]. The magnetic susceptibility χ is
defined as

χ ¼ 1

V
ðhm2i − hjmji2Þ; ð5:1Þ

where we have introduced the lattice volume V ¼
Nt

P
x cosh ρx and the magnetization m¼P

x;tcoshρxϕx;t.
At a second-order phase transition we expect to see a peak in
the susceptibility that grows with the lattice volume. The
fourth-order Binder cumulant U4,

U4 ¼
3

2

�
1 −

hm4i
3hm2i2

�
; ð5:2Þ

serves to determine whether the system is in the disordered
phase ðU4 ¼ 0Þ or the ordered phase (U4 ¼ 1). At a second-
order phase transition, we expect the Binder cumulant to
approach a step function at the critical temperature as the
lattice volume goes to infinity.
We perform a finite-size scaling analysis [29–31] by

scaling χ and T by powers of the volume, Vyχ and VyT ,
respectively. We then adjust the exponents yχ and yT so that
the data for the different lattice sizes collapses onto a single
curve, as shown in Fig. 6. The observed behavior is clear
evidence of a second-order phase transition. We note that
the traditional finite-size scaling formalism is designed
for uniform lattices in flat space, and without a careful
discussion of finite-size scaling in hyperbolic space we do
not attempt to relate this scaling to conventional critical
exponents for either a bulk transition or a transition for a
CFT at the boundary. Indeed, since a large fraction of the
total number of lattice sites are on the last layer at ρ ≃ ρmax,
distinguishing between bulk and boundary criticality may
be difficult at best; they may well be tied to each other as a
consequence of the AdS=CFT correspondence. We defer to

a later work the study of scaling for correlators and the goal
to find the proper finite-size formalism for AdS space.
We contrast the present discussion with the very inter-

esting investigation in [32] on the critical Ising model in
hyperbolic space with periodic boundary conditions. With
periodic boundary conditions, these hyperbolic triangula-
tions on closed Riemann manifolds in 2D are the analogue
of the Platonic solids on spheres for genus g ¼ 0 and the
finite triangulated torus for genus g ¼ 1. For Riemann
surfaces at higher genus (g > 1), the finite equilateral
triangulations correspond to negative curvature manifolds.
The smallest classic example is the famous g ¼ 3 Klein
quartic [33] triangulated by 56 (2,3,7) equilateral triangles
with 168 proper symmetries. Remarkably, this is the
first in an infinite sequence of larger volumes and higher
genuses [34].
Given the highly connected graph as the genus increases,

it is not surprising to find critical behavior with mean field
exponents as in [32]. This paper also finds mean field
exponents for the 3D hyperbolic Ising lattice with periodic
boundary conditions. Moreover, periodic boundary con-
ditions are interesting for applications to interacting par-
ticles in physical systems and necessary for experimentally
realizing toric codes for quantum computing. Nonetheless,
this investigation [32] can not be directly compared with
the critical properties seen in Fig. 6 on our AdS tessellation
approaching the hyperbolic surface with Dirichlet boun-
dary conditions at infinity. Instead this article focuses on
the AdS=CFT correspondence with the goal to understand
the nonperturbative relation between bulk and boundary
critical behavior.

VI. DISCUSSION

Adapting the power of Euclidean lattice field theory to
AdS space offers new possibilities for exploring strongly
coupled phenomena. In this article we choose the simplest
case of scalar ϕ4 theory. However, by implementing the
simplicial construction advocated in the Quantum Finite

FIG. 6. Evidence for a second-order phase transition for bulk ϕ4 theory in the Euclidean AdS3 cylinder at λ0 ¼ 1. Left: the magnetic
susceptibility χ. Right: the fourth-order Binder cumulant U4. We have scaled χ and T by the lattice volume raised to an exponent, with
the exponents chosen so that the data collapses onto a single curve.
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Element framework [8], we believe general field theories,
including fermions [5,35] and gauge fields [36] coupled to
each other or to scalars, can be realized on any smooth
Riemann manifold. By constructing the lattice for AdS3 in
a Euclidean cylinder geometry, we are able to foliate time
with spatial sections on the Poincaré disk H2 using the
triangle group [9], which is a discrete subgroup of the full
conformal group. The triangle group fixes the bulk UV
lattice cutoff but the finite lattice volume imposes an
arbitrary center point breaking the discrete isometries of
AdS space. However, due the IR/UV connection of the
AdS=CFT correspondence, the IR cutoff ρmax implies an
exponentially small UV cutoff ϵ ∼ expð−ρmaxÞ for the
boundary CFT. This raises the intriguing possibility of
convergence to a continuum boundary CFT that does not
require UV completion in the bulk—perhaps an echo of the
basic concept of holography for gauge/gravity duality.
We checked the free theory propagators using both direct

matrix inversion as well as Monte Carlo methods and see
scaling consistent with the continuum theory. By looking at
the magnetic susceptibility and the Binder cumulant we
found strong evidence that there is a bulk critical point for
ϕ4 theory on our AdS3 lattice. Further simulations of the
correlators are ongoing to understand the subtleties of the
phase transition and to determine the approach to the CFT
boundary (2.8). We seek to relate our finite volume scaling
result to local operators as well as address the issue of the
nature of the boundary CFT and whether it is a short- or
long-range Ising model [37,38], or something else. To
determine the scaling exponents requires more precision,
but this is easily achieved. With efficient cluster algorithms
[27], high statistics Monte Carlo simulations for ϕ4 theory
on lattice volumes up to Oð106Þ sites are feasible.
Comparison with Table I implies that lattices exceeding
L ¼ 8with a number of time slices on the order ofNðLÞ are
reasonable. These methods naturally apply to the Ising
model, which is presumably universally equivalent to ϕ4

theory approaching the transition.
Another feature of our lattice is to introduce the

Hamiltonian operator in Euclidean AdS space. For the
Ising representation we can treat time exactly using con-
tinuous time loop algorithms [22]. For both AdS3 and AdS2
the Ising Hamiltonian takes the conventional form

ĤAdS ¼ −
X
i

coshðρiÞσxi − t
X
hiji

coshðρiÞσziσzj; ð6:1Þ

where the sum is over the transverse spatial links. For AdS3
the boundary at ρ ¼ ρmax is topologically a circle S1 with
θ ∈ ½−π; πÞ. For AdS2 this topology is even simpler: it is a
strip (2.7), reminiscent of open strings but with 1D con-
formal quantum mechanics at each end: θ ¼ 0; π. This
geometry is amenable to many analytical methods as high-
lighted in [13]. It is also the simplest geometry in which to
calculate bulk and boundary phenomena in the presence of
differing boundary conditions [39]. So both Hamiltonian
AdS3 and AdS2 are ideal test systems.
The dynamics of the Ising model in hyperbolic space

are more interesting and less well understood than in flat
space, but even the classical Ising model on H2 is
interesting [40–42]. Here the Kij weights for the regular
triangle group lattice are constant, so in principle there is
no need for counterterms to restore the isometries at a
second-order phase transition. We note that in (1þ 2)-
dimensions we can use the Hamiltonian to go to
Minkowski space and study unitary time evolutionUðtÞ ¼
expð−itĤÞ suited to quantum computing. One approach is
to simulate this on a digital quantum computer with the
standard Trotter expansion. An intriguing alternative is
specific hardware being introduced [43–47] that purports
to realize the discrete H2 lattice.
Finally, time evolution for gravity is an interesting and

challenging problem. Recently in Ref. [48], similar FEMs
were introduced in Minkowski space to address the
interesting problem of unitarity in an expanding universe.
However, to enter the realm of gravity in our context
requires dynamical metric fluctuations for bulk gravity dual
to a boundary CFT with a conserved energy momentum
tensor. A natural framework is causal Regge calculus
allowing for a change in the simplicial geometry [35].
With our construction a first step is to consider weak
gravitational fluctuations around a fixed curved manifold
by allowing the bonds to fluctuate. This is yet another
possible extension of this modest proposal in utilizing
lattice field theory in an AdS background.
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