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The lattice Sommerfield model, describing a massive vector gauge field coupled to a light fermion in two
dimensions, is an ideal candidate to verify perturbative conclusions. In contrast with continuum exact
solutions, we prove that there is no infinite field renormalization, implying the reduction of the degree of
the ultraviolet divergence, and that the anomalies are nonrenormalized. Such features are the counterpart of
analog properties at the basis of the Standard Model perturbative renormalizability. The results are
nonperturbative in the sense that the averages of invariant observables are expressed in terms of convergent
expansions uniformly in the lattice and volume.
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I. INTRODUCTION

Most properties of the Standard Model are known only at
a perturbative level with series expansions expected to be
generically diverging; in particular its perturbative renor-
malizability (Refs. [1,2]) relies on two crucial properties;
the reduction of the degree of divergence with respect to
power counting and the cancellation of the anomalies [3]
ensured by the Adler-Bardeen theorem [4]. Such properties
are essential to maintain the renormalizability present with
massless bosons. The phenomenon of the reduction of the
degree of divergence can be already seen in a Uð1Þ gauge
theory like QED. Adding a mass to the photon breaks gauge
invariance and produces a propagator of the form

1
k2þM2 ðδμν þ kμkν

M2 Þ; due to the lack of decay of the second
term the theory becomes dimensionally nonrenormalizable.
However the transition in a Uð1Þ gauge theory like QED
from aM ¼ 0 to aM ≠ 0 case is soft and the theory remains
perturbatively renormalizable [5]; the photons are coupled to
a conserved current kμĵμ ¼ 0 so that the contribution
of the nondecaying part of the propagator is vanishing. A
similar reduction happens in the electroweak sector, but the
fermion mass violates the chiral symmetry and leads to
the Higgs introduction; again the renormalizability
proof relies on the fact that the kμkν term in the propagator
does not contribute [2]. The chiral symmetry is generically
violated by anomalies which need to cancel out—such
cancellation is based on the Adler-Bardeen property.

All of the above arguments are valid in perturbation theory
and nonperturbative effects could be missed. This issue
would be solved by a nonperturbative lattice anomaly-free
formulation of gauge theory, which is still out of reach, see
for instance Refs. [6–8]. In particular one needs to get high
cutoff values, exponential in the inverse coupling, a property
which is the nonperturbative analog of renormalizabiliy. The
implementation of the Adler-Bardeen theorem and of the
reduction of the degree of divergence in a nonperturbative
context is however a nontrivial issue, as their perturbative
derivation uses dimensional regularizations, and functional
integral derivations [9] are essentially one-loop results [10].
Therefore, it is convenient to investigate such properties

in a simpler context, and the Sommerfield model [11],
describing a massive vector gauge field coupled to a light
fermion in two dimensions, appears to be the ideal
candidate, see also Refs. [12–14]. More exactly, we
consider a version of this model with nonzero fermionic
mass, but our results are uniform in the mass. The model
can be seen as a d ¼ 2 QED with a massive photon; as in
four dimensions, at the level of perturbation theory the
transition from M ¼ 0 to a M ≠ 0 is soft and the theory
remains super-renormalizable. Again, this follows from the
conservation of currents, which is ensured at the level of
correlations by dimensional regularization; the same regu-
larization provides the anomaly nonrenormalization [12].
In this case however we have access to nonperturbative
information and we can check such conclusions. Exact
solutions are known in the continuum version of the
Sommerfield model (Refs. [11,15–17]). Remarkably, the
above perturbative features are not verified; there is an
infinite wave function renormalization incompatible with
the super-renormalizability, and anomalies have a value
depending on the regularization.
In this paper we consider the Sommerfield model on the

lattice, and we analyze it using the methods of constructive
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renormalization. The lattice preserves a number of sym-
metries, in the form of Ward identities. Our main result is
that there is no infinite field renormalization, which is the
counterpart of super-renormalizability, and that the Adler-
Bardeen theorem holds with finite lattice. Nonperturbative
violation of the above perturbative conclusions is therefore
excluded. Other two dimension models previously rigor-
ously constructed, see Refs. [18–25], lack of these features.
Quantum simulations of two dimension models (Refs. [26–
28]) have been also considered in the literature, but they
regard mostly the Schwinger model, to which the
Sommerfield model reduces when the boson and fermion
mass is vanishing. Our results are nonperturbative, in the
sense that the averages of gauge-invariant observables are
expressed in terms of convergent expansions uniformly in
the lattice and volume.
The paper is organized in the following way. In Sec. II

we define a lattice version of the Sommerfield model. In
Sec. III we derive exact Ward identities for the model. In
Sec. IV we integrate the boson field and in Sec. V we
perform a nonperturbative-multiscale analysis for the fer-
mionic fields. In Sec. VI we prove the validity of the Adler-
Bardeen theorem and in Sec. VII the conclusions are
presented.

II. THE LATTICE SOMMERFIELD MODEL

If γ0 ¼ σ1, γ1 ¼ σ2, we define

hOi ¼ 1

Z

Z Y
x

dψ̄xdψx

Z
R2jΛj

Y
x;μ

dAμ;xe−SðA;ψÞO; ð1Þ

where Z the normalization, x ∈ Λ, with Λ is a square lattice
with step a with antiperiodic boundary conditions and

SðA;ψÞ ¼ SAðAÞ þ SψðA;ψÞ; ð2Þ

with

SAðAÞ ¼ a2
X
x

�
1

4
Fμ;ν;xFμ;ν;x þ

M2

2
Aμ;xAμ;x

�
;

SψðA;ψÞ ¼ a2
X
x

½m̃ψ̄xψx þ a−1Zψðψ̄xγ
þ
μ eiaeAμ;xψxþaμ

− ψ̄xþaμγ
−
μ e−iaeAμ;xψxÞ�; ð3Þ

with aμ ¼ aeμ, e0 ¼ ð1; 0Þ; e1 ¼ ð0; 1Þ, γ�μ ¼ γμ ∓ r
Fμ;ν ¼ dνAμ − dμAν, and dνAμ ¼ a−1ðAμ;xþeνa − Aμ;xÞ,
m̃ ¼ ðmþ 4r=aÞ and r ¼ 1 is the Wilson term. Note
that if 1=a and L are finite then the integral is finite
dimensional.
We generalize the model adding a term ð1 − ξÞa2 ×P
x

P
μðdμAμÞ2, ξ ≤ 1 so that the bosonic action is given

by 1
2
a2

P
xð
P

μ;νðdμAνÞ2 þ ξ
P

μðdμAμÞ2Þ. The original
model is recovered with ξ ¼ 1.

The correlations can be written as derivatives of the
generating function,

eWξðJ;B;ϕÞ ¼
Z

PðdψÞPðdAÞe−VðAþJ;ψÞþðψ ;ϕÞþa2
P

x
BxO; ð4Þ

with O ¼ OðAþ J;ψÞ an observable, and PðdAÞ the
Gaussian measure with covariance

ĝAμ;νðkÞ ¼
1

jσj2 þM2

�
δμ;ν þ

ξσ̄μσν
ð1 − ξÞjσj2 þM2

�
; ð5Þ

with σμðkÞ ¼ ðeikμa − 1Þa−1.
PðdψÞ is the fermionic integration with propagator

ĝψ ðkÞ ¼ Z−1
ψ ðk̃μγμ þ a−1mðkÞIÞ−1 with k̃μ ¼ sinðkμaÞ

a and
mðkÞ ¼ mþ rðcos ak0 þ cos ak1 − 2Þ; finally,

VðA;ψÞ ¼ a2
X
x

½Oþ
μ;xGþ

μ;xðAÞ þO−
μ;xG−

μ;xðAÞ�; ð6Þ

with Oþ
μ ¼ Zψ ψ̄xðγμ − rÞψxþaμ and

O−
μ ¼ −Zψ ψ̄xþaμðγμ þ rÞψx; ð7Þ

and G�
μ ¼ a−1ðe�ieaAμ;x − 1Þ.

If M ¼ 0 the model (1) is invariant under the gauge
transformation Aμ;x → Aμ;x þ dμαx and ψx → ψe−ieαx ; if
M ≠ 0 the invariance is lost.

III. WARD IDENTITIES AND ξ-INDEPENDENCE

If we restrict to observables such that OðA;ψÞ ¼ OðAþ
dα;ψe−ieαÞ (which we call invariant observables) there
is also gauge invariance in the external fields for M ≠ 0,
that is

WξðJ þ dα; e−ieαϕ; BÞ ¼ WξðJ;ϕ; BÞ: ð8Þ

This follows by performing in (5) the change of variables
ψx → ψeieαx , with Jacobian equal to 1 (the integral is finite-
dimensional) and noting that ðeieαψ ;ϕÞ ¼ ðψ ;ϕe−ieαÞ and

SψðAþ J;ψeieαÞ ¼ SψðAþ J þ dα;ψÞ ð9Þ

(8) implies that ∂αWξðJ þ dα; e−ieαϕ; BÞ ¼ 0. We define
Γμ1;…;μn;ν1;::νm as the derivatives of Wξ with respect to
Jμ1;x1 ;…; Bνn;xn . By performing in (8) the derivatives with
respect to α and the external fields we get the Ward
identities (expressing current conservation)

X
μ1

σμ1ðp1ÞΓ̂μ1;…;νnðp1;…; pn−1Þ ¼ 0; ð10Þ

and
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σμðpÞΓ̂μðp:kÞ ¼ ŜðkÞ − Ŝðkþ pÞ; ð11Þ

where Γ̂μðp; kÞ ¼ ∂3W
∂Ĵμ;p∂ϕ̂k∂ϕ̄k−p

j0 is the vertex function and

ŜðkÞ ¼ ∂2W
∂ϕ̂k∂ϕ̄k

j0 is the two-point function.

The conservation of current expressed by the above
Ward identity implies that for invariant observables

∂ξWξðJ; 0; BÞ ¼ 0; ð12Þ

i.e., the averages are ξ independent. This follows from
∂ξ

R
PðdAÞ R Q

x dψxdψ̄xO ¼ 0, with OðA;ψÞ invariant;
indeed

∂ξ

Z
PðdAÞ

Z Y
dψxdψ̄xO

¼ 1

L2

X
p

∂ξĝ−1μ;νðpÞ
Z

PðdAÞAμ;pAν;−p

Z Y
dψxdψ̄xO;

ð13Þ

from which we get, using that Aμ;p ¼ ĝAμ;ρ
∂

∂Aρ;−p

ĝAμ;ρ0 ðpÞ∂ξðĝAðpÞÞ−1μ;νĝAν;ρðpÞ
∂2

∂Ĵρ;p∂Ĵρ0;−p
Z

PðdAÞ

×
Z Y

x

dψxdψ̄xOðAþ J;ψÞj0: ð14Þ

By noting that

∂ðĝAÞ−1 ¼ −ðĝAÞ−1∂ξĝAðĝAÞ−1; ð15Þ

and ∂ξĝA is proportional to σ̄μσν, by using

∂α

Z
PðdAÞ

Z Y
x

dψxdψ̄xOðAþ dα;ψÞj0 ¼ 0 ð16Þ

then (13) vanishes.
Equation (12) ensures that the averages do not depend on

ξ, so that one can set ξ ¼ 0 in the boson propagator, that is
the nondecaying part of the propagator does not contribute.
In perturbation theory, the scaling dimension with ξ ¼ 0
(z ¼ 2) and ξ ¼ 1 (z ¼ 0) is, if n is the order, nA the
number of A fields and nψ the number of ψ fields

dþ ðd − z − 2Þn=2 − ðd − 1Þnψ=2 − ðd − zÞnA=2: ð17Þ

Hence, in d ¼ 2 the theory is dimensionally renormalizable
with ξ ¼ 1 and super-renormalizable with ξ ¼ 0 (in d ¼ 4
one pass from nonrenormalizability to renormalizability).
The lattice regularization ensures that in the theory remains
perturbatively super-renormalizable, as with dimensional
regularization. We will investigate the validity of this
property at a nonperturbative level.

Finally, we define the axial current as j5μ ¼ Z5ψ̄xγμγ5ψx,
where Z5 is a constant to be chosen so that the electric
charge of the chiral and electromagnetic current are the
same, defined as the amputated part of the three-point
correlation at zero momenta (see [10]); that is

lim
k;p→0

∂3W

∂B̂5
μ;p∂ϕ̂k∂ϕ̄k−p

����
0

� ∂3W

∂Ĵμ;p∂ϕ̂k∂ϕ̄k−p

����
0

¼ 1; ð18Þ

where the source term is ðB5
μ; j5μÞ. The axial current is

nonconserved even for m ¼ 0, due to the presence of the
Wilson term, and one has

σμðpÞΓ̂5
μ;νðpÞ ¼ HνðpÞ; ð19Þ

with Γ5
μ;ν the derivative ofW with respect to Bμ;x1 ; Jν;x2 . Hν

is called the anomaly and in the noninteracting case V ¼ 0

one gets if m ¼ 0 Hμ ¼ 1
2π εμ;νpν þOðap2Þ (lattice or

dimensional regularization [12] produce the same result)
and Z5 ¼ 1. In the interacting case HνðpÞ is a series in e
and the nonrenormalization property means that all higher-
order corrections vanishes.

IV. INTEGRATION OF THE BOSON FIELDS

We can integrate the boson field

Z
PðdAÞe−V ¼ e

P
∞
n¼0

ð−1Þn
n! ETAðV;nÞ ≡ eV

Nðψ ;JÞ; ð20Þ

where ET
A is the truncated expectation, that is the sum of

connected diagrams, and VN ¼

a2
X
x

X
ε

a−1e−
1
2
e2a2gAμ;μðx;xÞeiaeJμ;xOε

μ

þ
X
n;m

anþm
X
x;y

X
μ;ε

�Yn
j¼1

O
εj
μj;xj

��Ym
k¼1

G
εj
μj;yjðJÞ

�
Wn;mðx;yÞ:

ð21Þ

Note that a2gAμ;μðx; xÞ ≤ C. We call a ¼ γ−N , where γ > 1 a
scaling parameter.
Theorem 1 The kernels in (21) for n ≥ 2 verify,

jWn;mj ≤ Cnþme2ðn−1ÞγNð2−n−mÞðjgAj1Þn: ð22Þ

Proof.—A convenient representation for ET
A is given by

the following formula [29]

ET
A

�Yn
k¼1

eieεkaAμk;xk

�
¼

X
T∈T

Y
i;j∈T

Vi;j

Z
dpTðsÞe−VT ðsÞ; ð23Þ

where Vi;j ¼ e2a2EAðAμi;xiAμj;xjÞ, T is the set of tree
graphs T on X ¼ ð1.:; nÞ, s ∈ ð0; 1Þ is an interpolation
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parameter, VTðsÞ is a convex-linear combination of
VðYÞ ¼ P

i;j∈Y εiεjVi;j, Y are subsets of X, and dpT is a
probability measure. The crucial point is that VðYÞ is
stable; that is

VðYÞ ¼
X
i;j∈Y

Vi;j ¼ a2e2EA

��X
i∈Y

εiAμi;xi

�
2
�

≥ 0: ð24Þ

Therefore, one can bound the exponential e−VT ðsÞ ≤ 1
finding

jWn;0j ≤ Cna−n
1

n!

X
T∈T

Y
ði;jÞ∈T

a2e2jgAðxi; xjÞj1

≤
1

n!

X
T∈T

Cne2ðn−1Þan−2ðjgAj1Þn

≤ Cne2ðn−1ÞγNð2−nÞðjgAj1Þn: ð25Þ
With m ≠ 0 we get an extra a−Nm, so that one recovers the
dimensional factor γNð2−l=2−mÞ. ▪
For ξ ¼ 0 jgAj1 ≤ CM−2 and jgAj∞ ≤ Cj log aj while for

ξ ¼ 1 jgAj1 ≤ Cj log aj and jgAj∞ ≤ Ca−2. We write
Wn;m ¼ λn−1W̄n with λ ¼ e2 and W̄n bounded. The nor-
malization Zξ in the analog of (1) is analytic everywhere for
finite a, L, and ξ independent; our strategy is to prove that
Z0 ¼ 1þOðλÞ and is analytic together with correlations
for jλj ≤ λ0 with λ0 independent. Hence Z1 is non vanishing
and (1) for ξ ¼ 1 is analytic for jλj ≤ λ0, as the numerator is
analytic everywhere for a, L finite: moreover it coincides
with the value at ξ ¼ 0. It remains then to prove that
the correlations with ξ ¼ 0 are analytic for jλj ≤ λ0
and Z0 ¼ 1þOðλÞ.
The factor D ¼ 2 − n −m is the scaling dimension, and

the terms with D < 0 are irrelevant. The marginal term for
ξ ¼ 0 is ET

AðV; 2Þ ¼X
ε1;ε2

a4
X
x1;x2

eiε1aJμ;x1Oε1
μ;x1e

iε2aJμ;x2Oε2
μ;x2λvμ;ε1;ε2 ; ð26Þ

where λvμ;ε1;ε2 ¼ ET
Aðeiε1eaAμ;x1 ; eiε2eaAμ;x2 Þ and, λ ¼ e2

vμ;ε1;ε2ðx; yÞ ¼ e−
1
2
e2a2gAμ;μðx1;x1Þe−1

2
e2a2gAμ;μðx2;x2Þ

× ðe−a2e2ε1ε2gAμ;μðx1;x2Þ − 1Þe−2a−2: ð27Þ
This can be rewritten asZ

1

0

dtgAμ;μðx1; x2Þe−ṼðtÞ; ð28Þ

with

2ṼðtÞ ¼ a2thðε1Aμðx1Þ þ ε2Aμðx2ÞÞ2i
þ a2ð1 − tÞðgAμ;μðx1; x1Þ þ gAμ;μðx2; x2ÞÞ; ð29Þ

in agreement with (23). For definiteness we keep only the
dimensionally nonirrelevant terms considering

eW1ðJ;B;ϕÞ ¼
Z

PðdψÞeVþGðBÞþðψ ;ϕÞ; ð30Þ

with GðBÞ is a generic source term for gauge invariant
observables and V ¼

a2
X
x

X
ε

a−1ðe−1
2
e2a2gAμ;μðx;xÞeiaeJμ;x − 1ÞOε

μ þ ET
AðV; 2Þ:

ð31Þ

Note that a2gAμ;μ vanishes as a → 0. In the case of the chiral
current

GðB5Þ ¼ a2
X
x

Z5B5
x;μψ̄xγμγ5ψx: ð32Þ

V. INTEGRATION OF THE FERMIONIC FIELDS

Our main result is the following:
Theorem 2 For jλj ≤ λ0M2, with λ0 independent on a,

m, L and Zψ ¼ 1 the correlations of (30) are analytic in λ;
when the fermion mass is vanishing the anomaly
is Hμ ¼ εμνpν

2π þOðap2Þ.
In order to integrate the fermionic fields we introduce a

decomposition of the propagator

gψðxÞ ¼
XN
h¼−∞

gðhÞðxÞ; ð33Þ

ĝhðkÞ ¼ fhðkÞĝðkÞ with fhðkÞ with support in γh−1 ≤
jkj ≤ γhþ1. One has to distinguish two regimes, the ultra-
violet high energy scales h ≥ hM with hM ∼ logM the mass
scale, and the infrared regime h ≤ hM. In the first regime,
one uses the nonlocality of the quartic interation (see
Refs. [19,30,31]). After the integration of the fields
ψN;ψN−1;…;ψh, h ≥ hM one gets an effective potential
with kernels Wh

l;m with l fields (l ¼ 2n) similar to (21),
which can be written as an expansion in λ and in the kernels
Wk

2;0, W
k
4;0,W

k
2;1 with k ≥ hþ 1. Assuming that, for k ≥

hþ 1 one has jWk
2;0j1 ≤ γhλ=M2, jWk

4;0 − vλj1 ≤ λ2=M2

and jWk
2;1 − 1j1 ≤ λ2=M2 then we get

jWh
l;mj1 ≤ Clþmðλ=M2Þdl;mγhð2−l

2
−mÞh; ð34Þ

for dl;m ¼ maxðl=2 − 1; 1Þ if m ¼ 0, and dl;m ¼
maxðl=2 − 1; 0Þ if m ¼ 1. The proof of (34) is based on
the analog of formula (23) for Grassmann expectations

ET
ψ

�Yn
k¼1

ψ̃ðPiÞ
�

¼
X
T∈T

Y
i;j∈T

Vi;j

Z
dpTðsÞ detG; ð35Þ

and the use of Gram bounds for get an estimate on detG;
in addition one uses that jvj1 ≤ CM−2, jghj1 ≤ Cγ−h,
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jghj∞ ≤ Cγh. We proceed by induction to prove the
assumption. One needs to show that there is an improvement
in the bounds due to the nonlocality of the boson propagator.
The kernel of the two-point functionWh

2;0ðx; yÞ can bewritten
as sum over n of truncated expectations; calling ET

h;N the

truncated expectation with respect to Pðdψ ½h;N�Þ we have

Wh
2;0ðx;yÞ¼ λ

X
n

∂
∂ϕþ

x

a4

ðn−1Þ!

×
X
x1;x2

vμ;ε1;ε2E
T
h;N

� ∂
∂ϕ−

y
Oε1

μ;x1O
ε2
μ;x2 ;V;…

�
: ð36Þ

By using the property, if ψ̃ðPÞ ¼ Q
f∈P ψxf

ET
h;Nðψ̃ðP1 ∩ P2Þ…ψ̃ðPnÞÞ ¼ ET

h;Nðψ̃ðP1Þψ̃ðP2Þ…ψ̃ðPnÞÞ

þ
X

K1;K2;K1∪K2¼3;…;n

ET
h;N

�
ψ̃ðP1Þ

Y
j∈K1

ψ̃ðPiÞ
�

× ET
h;N

�
ψ̃ðP2Þ

Y
j∈K2

ψ̃ðPiÞ
�
;

we get, omitting the ε, μ dependence, Wh
2;0ðx; yÞ ¼

λa4
X
z1;z2

vðy; z1Þg½h;N�ðyþ aμ; z2ÞWh
2;0ðz2; xÞW0;1ðz1Þ

þ λa−1ðe−1
2
e2a2gAμ;μð0ÞÞ − 1Þa2

X
z

g½h;N�ðx; zÞWh
2;0ðz; yÞ

þ λa4
X
z1;z2

vðy; z2Þg½h;N�ðyþ aμ; z1ÞWh
2;1ðz2; z1; xÞ: ð37Þ

A graphical representation of (37) is in Fig. 1. The second
term is bounded by

Cλ=M2γhγ−ha log a ≤ λ=M2γh=2 ð38Þ
for a small enough. The first term contains Ŵ1;0ð0Þ ¼ 0.
Regarding the last term we get a bound

sup
z1;z2

ja2
X
y

vðy; z2Þg½h;N�ðyþ aμ; z1Þja2
X
z2;z1

jWh
2;1ðz2; z1; 0Þj:

ð39Þ
By using the inductive hypothesis a2jPðz1;z2ÞWðz2;z1;0Þj≤C
we get for (39) the bound

λC1ja2
X
y

jvg½h;N�j ≤ λC1

�
a2
X
y

jvj3
�1

3

�
a2
X
y

ðg½h;N�Þ32
�2

3

≤ λM−2C2γ
hγ−

4
3
ðh−MÞ ≤ λM−2γh=2;

ð40Þ
for h ≥ hM, for hM ¼ C logM andC large enough. Note that
the above estimates uses crucially that ξ ¼ 0; for ξ ¼ 1

½a2Py jvj3�13 would be nonbounded in N.
A similar computation can be repeated for W2;1; in

particular for the quartic term one uses that the bubble
graph is finite, A ¼ R

dkTrgðkÞγμgðkÞγν so that jW2;1j1 ≤
Cλ=M2ðγh−M þ AjW2;1j1Þ. The above estimates work for
h ≥ hM and it says that the theory is super-renormalizable
up to that scale.
In the infrared regime hm ≤ h ≤ hM, where hm ¼ logγ m

is the fermion mass scale, the multiscale integration
procedure is the same as in the Thirring model with a
finite cutoff [23]. The theory is renormalizable in this
regime and there is wave function renormalization at each
scale Zh ∼ γ−ηh, η ¼ Oðλ2Þ > 0 and an effective coupling
with asymptotically vanishing Beta function. The expan-
sions converge therefore uniformly in a, L,m, and the limit
a → 0; L → ∞ can be taken.

VI. ANOMALY NONRENORMALIZATION

The average of the chiral current Γ5
μ;ν ¼ ∂2W

∂Bμ∂Jν j0 for

m ¼ 0 is expressed by a series in λ. It is convenient to
introduce a continuum relativistic model eW̃ðJ;B;ϕÞ ¼Z

PZ̃ðdψÞe−VþZ̃þðJ;jÞþZ̃−ðB;j5Þþðψ ;ϕÞ; ð41Þ

where PZ̃ðdψÞ has propagator 1
Z̃
χðkÞ
γμkμ

, with χ a momentum

cutoff selecting momenta ≤ γÑ , and

V ¼ Z̃2λ̃

Z
dxdyvðx; yÞjμ;xjμ;y; ð42Þ

with v exponentially decaying with rate rate M−1 and
quartic coupling λ̃. Finally, jþμ;x ≡ jμ;x ¼ ψ̄xγμψx and
j− ¼ ψ̄xγμγ5ψx.
The infrared scales h ≤ hM of the two models differs by

irrelevant terms and one can choose λ̃ and Z̃; Z̃−; Z̃þ as
function of λ so that the corresponding running couplings
flow to the same fixed point for h → −∞. As a result,
defining

Γ̃5
μ;ν ¼

∂2W̃
∂Bμ∂Jν

����
0

; ð43Þ

we get

Γ̂5
μ;νðpÞ ¼ Z5Γ̃5

μ;νðpÞ þ Rμ;νðpÞ; ð44ÞFIG. 1. Graphical representation of (37).
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where Rμ;νðpÞ is a continuous function at p ¼ 0, while
Γ̃5
μ;νðpÞ is not; this provides a relation between the lattice

and the continuum model.
The model (41) has two global symmetries, that is

ψ → eiαψ and ψ → eiαγ
5

ψ , but the Ward identity acquires
extra terms associated with the momentum regularization
[30]. In particular, if τ ¼ λ̃ v̂ð0Þ=4π, in the limit of removed
cutoff Ñ → ∞ (a graphical representation of (45) below is
in Fig. 2)

ð1 ∓ τÞpμΓ̃�
μ ðk; pÞ ¼

Z̃�

Z̃
γ�ðS̃ðkÞ − S̃ðkþ pÞÞ; ð45Þ

where Γ̃�
μ are the vertex correlations of (41) of the current

(þ) and chiral current (−) and γþ ¼ I, γ− ¼ γ5. In the same
way the Ward identity for the current is

pμΓ̃5
μ;ν ¼

Z̃þZ̃−

4πZ̃2

εμνpμ

ð1þ τÞ ; pνΓ̃5
μ;ν ¼

Z̃þZ̃−

4πZ̃2

ενμpν

ð1 − τÞ : ð46Þ

By comparing (45)with theWard identity (11), and using that
the vertex and the two-point correlations of lattice and
continuum model coincide up to subleading term in the
momentum,weget a relationbetween the parameters τ; Z̃þ; Z̃

Z̃þ

Z̃ð1 − τÞ ¼ 1: ð47Þ

Moreover, the condition on Z5 (18) and (45) imply

Z̃þ

Z̃ð1 − τÞ ¼ Z5

Z̃−

Z̃ð1þ τÞ ¼ 1; ð48Þ

from which Z5 ¼ ð1þ τÞ Z̃
Z̃−. By the Ward identity (10) we

get

pνΓ̂5
μ;νðpÞ ¼

Z̃þZ̃−

2πZ̃2

ενμpν

ð1 − τÞ þ pνRμ;νðpÞ ¼ 0; ð49Þ

so that

Rμ;νð0Þ ¼ −
Z̃þZ̃−

2πZ2

ενμ
ð1 − τÞ ¼ −ð1þ τÞενμ=Z5: ð50Þ

Finally,

pμΓ̂5
μ;νðpÞ ¼ Z5pμ½Γ̃5

μ;νðpÞþRμ;νðpÞ�
¼ ½ð1− τÞεμ;ν − ð1þ τÞεν;μ�pμ=4π ¼ 1=2πεμ;νpν

ð51Þ

that is all the dependence of the coupling disappears. ▪

VII. CONCLUSIONS

We have analyzed a lattice version of the Sommerfield
model. Both the reduction of the degree of ultraviolet
divergence, manifesting in the finiteness of the field
renormalization, and the Adler-Bardeen theorem hold at
a nonperturbative level, in contrast with exact solutions in
the continuum. Nonperturbative violation of perturbative
results are therefore excluded. This provides support to the
possibility of a rigorous lattice formulation of the electro-
weak sector of the Standard Model with exponentially
small steps in the inverse coupling, which requires an
analogous reduction of degree of divergence. New prob-
lems include the fact that a multiscale analysis is necessary
also for the boson sector, and the fact that the symmetry is
chiral and anomaly cancellation is required; Adler-Bardeen
theorem on a lattice is exact for nonchiral theories [32,33]
but has subdominant corrections for chiral ones [34].
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