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We study one pion emission decay of the first excited state of the nucleon with negative parity
Nð1535Þ≡ N� in the holographic model of QCD. The excited state is described as a vibrational mode
along the extra z direction in the five-dimensional space-time of the model. We have obtained an analytic
formula for the axial coupling of gNN�

A . The off diagonal axial coupling is obtained at the decaying pion
momentum jkj ¼ 448 MeV as gNN�

A ∼ 0.32 and hence, a partial decay width ΓN�→πN ∼ 30 MeV, which is
smaller than but reasonably compared to the experimental data.

DOI: 10.1103/PhysRevD.105.114057

I. INTRODUCTION

Baryons at low energies show various features due to the
rich structure of QCD. Ground state properties, such as
masses and magnetic moments, are now computed directly
from QCD by the first principle method of the lattice QCD.
Yet, effective model approaches are useful to describe
dynamical processes, such as resonance formations or
decays. A widely employed model is the quark model,
where resonances emerge as single particle excitations of
quarks [1–4].
When considering dynamical processes, it is important to

include interactionswith pions becausemany resonances are
formed and decay through pions. The importance of the pion
dynamics is also expected by spontaneous breaking of chiral
symmetry [5,6]. One way to include pions in baryon
dynamics is realized by the Skyrme model, where baryons
emerge as solitons of the nonlinear sigma model [7,8]. The
approach has been justified in the largeNc limit, whereNc is
the number of colors, and various baryon resonances appear
as collective excitations [9–11]. For instance, theΔð1232Þ is
a rotational excitation of the deformed hedgehog in the spin-
isospin space, and the Roper resonance Nð1440Þ a monop-
ole vibration of the radial motion [12]. Moreover, negative
parity states may be described as composite states of a

ground state baryon and a negative parity meson such asKΣ
for Nð1535Þ and K̄N for Λð1450Þ [13–15].
A similar, but an alternative approach is the holographic

QCD. A well-known model is the Sakai-Sugimoto model,
which has been used to investigate various nonperturbative
properties of QCD [16,17]. The model is based on flavor
gauge theory in the five-dimensional space, the four-
dimensional added space-time with one extra dimension
(z direction). A solitonic picture for baryons is then realized
by an instanton in that five-dimensional space [18]. As in
the Skyrme model, baryon resonances are described by
collective excitations of the hedgehog [Belavin-Polyakov-
Schwartz-Tyupkin (BPST)] instanton. A somewhat differ-
ently looking feature of this approach is that negative parity
states are described by the collective vibration along the z
direction. Static properties have been investigated, with
reasonable agreement with experimental data [18].
Now concerning dynamical properties, the one-pion

decay of Nð1440Þ was investigated in Ref. [19]. A crucial
point of this approach is that a finite value of the partial
decay width is obtained in the long wavelength limit (of the
pion) with good agreement with data. Moreover, a model
independent relation was found for the axial coupling
constants between the nucleon and Roper resonance.
These features sharply contrast with nonrelativistic quark
model calculations, where the decay is forbidden.1

Now after having observed the good features in the
decay of the Nð1440Þ, in this paper, we investigate the
decay of the negative parity baryon Nð1535Þ, which is
the first negative parity resonance, in the holographic QCD,
the state is described as a collective vibration along the
z direction. The method of the computation parallels the
previous one [19]. What are new here are the computation
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1Higher order terms in the relativistic expansion can make it
finite [20].
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of the zeroth (time) component of the axial current, and the
evaluation of the matrix elements in the z valuable.
This paper is organized as follows. In Sec. II, we present

the action used in this paper and obtain the classical
instanton solution to the equations of motion. We then
define the chiral currents and give their concrete expres-
sions. In Sec. III, we compute the axial coupling and decay
width of Nð1535Þ in comparison with experimental data.
The final section is for discussions and summary.

II. AXIAL CURRENT

A. Classical solutions and collective quantization

We briefly review how baryons are formed in the Sakai-
Sugimoto model. We calculate the classical instanton
solution and use collective coordinate method to obtain
the wave function of baryons. In this model, baryons appear
as quantized five-dimensional instanton.
The Sakai-Sugimoto model is an effective model of

hadrons based on gauge/string duality. It is described by the
UðNfÞ Yang-Mills-Chern-Simons theory in curved five-
dimensional space-time, where Nf is the number of flavors.
The action is given by the Yang-Mills part SYM and Chern–
Simons part SCS as follows:

S ¼ SYM þ SCS; ð1Þ

SYM ¼ −κ
Z

d4xdz tr
�
1

2
hðzÞF 2

μν þ kðzÞF 2
μz

�
; ð2Þ

SCS ¼
Nc

24π2

Z
M4×R

ω5ðAÞ: ð3Þ

Here, μ, ν ¼ 0, 1, 2, 3 are four-dimensional Lorentz
indices, and z is the coordinate of the fifth dimension.
The warp factors kðzÞ and hðzÞ are defined as kðzÞ ¼
1þ z2 and hðzÞ ¼ ð1þ z2Þ−1=3, respectively. The number
of colors Nc is related to κ as

κ ¼ λNc

216π3
;

where λ is the ’t Hooft coupling. A ¼ Aαdxα ¼ Aμdxμ þ
Azdzðα ¼ 0; 1; 2; 3; zÞ is the five-dimensional UðNfÞ
gauge field, and F ¼ 1

2
F αβdxα ∧ dxβ ¼ dAþ iA ∧ A

is the field strength. In this paper, we consider the case
of Nf ¼ 2. We decompose Uð2Þ gauge field as

A ¼ Aa τ
a

2
þ Â

I2
2
;

where Â is the Uð1Þ part, A the SUð2Þ part, τa (a ¼ 1, 2, 3)
the Pauli matrices and I2 the 2 × 2 unit matrix. The Chern-
Simons five-form is

ω5ðAÞ ¼ tr

�
AF 2 −

i
2
A3F −

1

10
A5

�
:

In this paper, we mainly work with the unit of the Kaluza-
Klein mass MKK ¼ 1.
Because of the warp factors kðzÞ and hðzÞ, it is difficult

to solve the equation of motion in general. However, the
size is small in the large λ limit, since the instanton size is
proportional to λ−1=2. Then, we can consider the solution
localized at the origin z ∼ 0. In this case, we can set
kðzÞ ¼ hðzÞ ¼ 1, and the solution is given by the BPST
instanton solution,

Acl
Mðx; zÞ ¼ −ifðξÞg∂Mg−1;

Acl
0 ¼ 0;

Âcl
M ¼ 0;

Âcl
0 ¼ 1

8π2a
1

ξ2

�
1 −

ρ4

ðξ2 þ ρ2Þ2
�
; ð4Þ

with

fðξÞ ¼ ξ2

ξ2 þ ρ2
; gðxÞ ¼ ðz − ZÞ − iðx − XÞ · τ

ξ
;

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − ZÞ2 þ jx − Xj2

q
;

where XM ¼ ðX1; X2; X3; ZÞ ¼ ðX; ZÞ is the positions of
the instanton in four-dimensional space and ρ is a param-
eter of the instanton size.
Let us quantize the classical instanton solution by the

collective coordinate method. In order to do that, we
introduce time-dependent parameters XðtÞ; ZðtÞ; ρðtÞ, and
SUð2Þ orientation Vðt; x; aðtÞÞ with Vðz → �∞Þ → aðtÞ,
where aðtÞ ¼ a4ðtÞ þ iaaðtÞτa is a variable representing
rotations in spin or isospin space. In this case, the rotating
SUð2Þ gauge field is conveniently expressed by the
following gauge transformation [18,21]:

AMðt; xÞ ¼ VAcl
Mðx;XðtÞ; ρðtÞÞV−1 − iV∂MV−1; ð5Þ

where Acl
M is the classical solution and V satisfies

−iV−1 _V ¼ − _XMðtÞAcl
M þ χafðξÞg τ

a

2
g−1;

χa ¼ −itrðτaa−1 _aÞ:

We insert this gauge field in (1) and integrate with respect
to ðxμ; zÞ. As a result, the instanton is quantized by the
collective coordinate method. We obtain the collective
Hamiltonian,
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H ¼ −
1

2M0

ð∂2X þ ∂
2
ZÞ −

1

4M0

∂
2
yI þ Uðρ; ZÞ;

Uðρ; ZÞ ¼ M0 þ
M0

6
ρ2 þ N2

c

5M0

1

ρ2
þM0

3
Z2; ð6Þ

where M0 ¼ 8π2κ is the instanton mass and yI ¼
ρaIðI ¼ 0; 1; 2; 3Þ.
The eigenstates of this Hamiltonian are characterized by

quantum numbers ðl; I3; s3; nρ; nzÞ and momentum p: l ¼
1; 3; 5;… are related to spin J and isospin I as l=2 ¼ J ¼ I.
I3 and s3 are third components of the isospin and spin,
respectively, and nρ and nz the quantum numbers repre-
senting the oscillations in the radial and z directions,
respectively. The ground state with nρ ¼ nz ¼ 0 is the
nucleon. In addition, the first excited states of nρ ¼ 1 or of
nz ¼ 1 corresponds to the Nð1440Þ or Nð1535Þ, respec-
tively. The wave functions of the ground states and the
Nð1535Þ resonant state of the spin-upward proton are as
follows [18,22]:

ψN ∝ eip·XRNðρÞψZðZÞða1 þ ia2Þ;
ψN� ∝ eip·XRNðρÞψ 0

ZðZÞða1 þ ia2Þ; ð7Þ

where N� ¼ Nð1535Þ and

RNðρÞ ¼ ρ−1þ2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þN2

c=5
p

e−
M0ffiffi
6

p ρ2 ;

ψZðZÞ ¼ e−
M0ffiffi
6

p Z2

;

ψ 0
ZðZÞ ¼ ZψZðZÞ:

B. The asymptotic solution of the instanton

In order to calculate the coupling constant of the
interaction, we need to calculate the current. To define
the current in the holographic model, we need to investigate
the physics of the boundary based on the Gubser-
Klebanov-Polyakov-Witten (GKP-W) method [23,24].
We have already seen the BPST instanton solution which

is localized at z ∼ 0 in the large λ limit. However, as we will
see later, the current is defined at z → �∞, and therefore,
this solution is not appropriate. We need to investigate
properly the behavior of the soliton solution in a large z
region. It is given in Ref. [22] as follows:

Â0 ¼ −
1

2aλ
Gðx; z;X; ZÞ;

Âi ¼
1

2aλ

�
_Xi þ ρ2

2

�
χa

2

�
ϵiaj

∂

∂Xj − δia
∂

∂Z

�
þ _ρ

ρ

∂

∂Xi

��
×Gðx; z;X; ZÞ;

Âz ¼
1

2aλ

�
_Z þ ρ2

2

�
χa

2

∂

∂Xa þ
_ρ

ρ

∂

∂Z

��
Hðx; z;X; ZÞ;

A0 ¼ 4π2ρ2ia _a−1Gðx; z;X; ZÞ

þ 2π2ρ2aτaa−1
�
_Xi

�
ϵiaj

∂

∂Xj −δ
ia ∂

∂Z

�
þ _Z

∂

∂Xa

�
×Gðx; z;X; ZÞ;

Ai ¼ −2π2ρ2aτaa−1
�
ϵiaj

∂

∂Xj − δia
∂

∂Z

�
Gðx; z;X; ZÞ;

Az ¼ −2π2ρ2aτaa−1
∂

∂Xa Hðx; z;X; ZÞ: ð8Þ

Here, i ¼ 1, 2, 3, ϵabc is the completely antisymmetric
tensor, and δab the Kronecker delta. Green’s functions
Gðx; z;X; ZÞ; Hðx; z;X; ZÞ are

Gðx; z;X; ZÞ ¼ κ
X∞
n¼1

ψnðzÞψnðZÞYnðjx − XjÞ;

Hðx; z;X; ZÞ ¼ κ
X∞
n¼0

ϕnðzÞϕnðZÞYnðjx − XjÞ; ð9Þ

with

ϕ0ðzÞ ¼
1ffiffiffiffiffi
κπ

p 1

kðzÞ ;

ϕnðzÞ ¼
1ffiffiffiffiffi
λn

p ∂zψnðzÞ;

YnðrÞ ¼ −
1

4π

e−
ffiffiffiffi
λn

p
r

r
; r ¼ jxj:

Here, fψnðzÞg ðn ¼ 1; 2;…Þ is a complete set of functions
of z consisting of the eigenfunctions of the eigenequation,

−hðzÞ−1∂zðkðzÞ∂zψnÞ ¼ λnψn; ð10Þ

with the normalization condition,

κ

Z
dzhðzÞψnψm ¼ δmn:

We note that ψ2n−1ðZÞ and ψ2nðZÞ are even and odd
function of Z, respectively.

C. Currents

In Ref. [22], the left and right currents J μ
L;J

μ
R are

defined by coupling with external fields ALμ;ARμ, respec-
tively, at z ¼ �∞,

SjOðAL;ARÞ ¼ −2
Z

d4x trðALμJ
μ
L þARμJ

μ
RÞ: ð11Þ

We introduce the external fields in the GKP-W method,
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Aαðxμ; zÞ ¼ Acl
α ðxμ; zÞ þ δAαðxμ; zÞ;

δAμðxν; z → þ∞Þ ¼ ALμðxνÞ;
δAμðxν; z → −∞Þ ¼ ARμðxνÞ; ð12Þ

where Acl is the classical solution and δAα an infinitesimal
deviation. Substituting this fields in the action and taking
only liner terms, we obtain

SjOðAL;ARÞ ¼ κ

Z
d4x2 ½trðδAμkðzÞF cl

μzÞ�z¼þ∞
z¼−∞ ; ð13Þ

and so

J Lμ ¼ −κðkðzÞF cl
μzÞjz¼þ∞;

J Rμ ¼ þκðkðzÞF cl
μzÞjz¼−∞: ð14Þ

The axial current is defined by

J μ
A ¼ J μ

L − J μ
R ¼ −κ½ψ0ðzÞkðzÞF cl

μz�z¼þ∞
z¼−∞ ; ð15Þ

with ψ0ðzÞ ¼ ð2=πÞ arctan z.
We define

J μ
A ¼ JaμA

τa

2
þ ĴμA

I2
2
;

and use the asymptotic solutions. Thus, we obtain

J0Aðr;X;Z;ρ;aÞ
¼2π2κ½∂0ðρ2aτaa−1Þ∂aHA−2ρ2ia_a−1GA

−ρ2aτaa−1 _Xiðð∂a∂i−δia∂2jÞHA−ϵiaj∂jGAÞ�;
JiAðr;X;Z;ρ;aÞ

¼−2π2κρ2aτaa−1ðð∂i∂a−δia∂2jÞHA−ϵiaj∂jGAÞ; ð16Þ

where

GAðZ; rÞ≡ ½ψ0ðzÞkðzÞ∂zG�z¼þ∞
z¼−∞

¼ −
X∞
n¼1

ganψ2nðZÞY2nðrÞ;

HAðZ; rÞ≡ ½ψ0ðzÞkðzÞH�z¼þ∞
z¼−∞

¼ −
1

2π2
1

kðZÞ
1

r
−
X∞
n¼1

gan

λ2n
∂Zψ2nðZÞY2nðrÞ;

gan ¼ λ2nκ

Z
dzhðzÞψ2nψ0;

and r ¼ jx − Xj. Note that GA and HA are even and odd
function of Z, respectively. In momentum space, we have
the axial current as follows:

J̃μAðkÞ ¼
Z

d3xe−ik·xJμAðrÞ; ð17Þ

J̃a0A ðkÞ ¼ 2π2κ

�
i
ka
k2

tr½τa∂0ðρ2aτba−1Þ�

þ Pi

M0

ρ2tr½τaaτba−1�
�
δib −

kikb
k2

��

× e−ikX
X∞
n¼1

gan∂Zψ2n

k2 þ λ2n

þ
�
Ia − 2π2κρ2

Pi

M0

ϵiajkj

�
e−ikX

X∞
n¼1

ganψ2n

k2 þ λ2n
;

ð18Þ

J̃aiA ðkÞ ¼ 2π2κρ2trðτaaτba−1Þ

× e−ik·X
��

δbi −
kbki
k2

�X∞
n¼1

gan∂Zψ2n

k2 þ λ2n

− iϵibjkj
X∞
n¼1

ganψ2n

k2 þ λ2n

�
; ð19Þ

where

Pi ¼ M0
_Xi;

Ia ¼
i
2

�
y4

∂

∂ya
− ya

∂

∂y4
− ϵabcyb

∂

∂yc

�
:

III. DECAY PROPERTIES OF N(1535)

A. Axial coupling

Let us calculate the axial coupling of the Nð1535Þ → Nπ
decay process using the current we have calculated. It is
given by

gNN�
A ðτaÞI3I03 ¼ 2

Z
d3xhN; I03jJa0A jN�; I3ieik·x: ð20Þ

As we can see from (19), the spatial components of the
currents J̃aiA ðkÞ do not contribute to the axial coupling
because of the parity of the wave functions ψðzÞ;ψ 0ðzÞ in
(7) with respect to Z and completely antisymmetric tensor.
This fact is consistent with the following property. In the
nonrelativistic limit, the axial current between N and N�
has the structure,

JμA ¼ ψ̄Nγ
μψN� ; ψB ¼

�
uB
0

�
; B ¼ N;N�:

Note that γ5 does not appear because of the difference in the
parities of the initial and final states. Then, we see that
spatial component vanishes while the time component
contributes.
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The axial coupling constant at an arbitrary value of k is
calculated by (20) to find the result,

gNN�
A ðk2Þ ¼

Z
∞

−∞
dZψZðZÞψ 0

ZðZÞ
X∞
n¼1

ganψ2nðZÞ
k2 þ λ2n

; ð21Þ

where ψZðZÞ and ψ 0
ZðZÞ are normalized wave functions.

Before discussing the actual decay at a finite k, we would
like to briefly show the case at k ¼ 0, where some analytic
calculations are possible. Using

X∞
n¼1

ganψ2nðZÞ
λ2n

¼ 2

π
arctanZ ¼ ψ0ðZÞ; ð22Þ

we get

gNN�
A ¼

Z
∞

−∞
dZψZðZÞψ 0

ZðZÞψ0ðZÞ:

We obtain analytically with the result,

gNN�
A ¼

ffiffiffi
2

π

r
e

2ffiffi
6

p M0erfc

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ffiffiffi
6

p M0

s �
; ð23Þ

where erfcðxÞ is the complementary error function.
For numerical estimate, we choose the parameters,

κ ¼ 0.00745;

MKK ¼ 940 MeV;

which are related to

M0 ¼ 8π2κ ¼ 0.588;

κ ¼ π

4

f2π
M2

KK
;

and so fπ ¼ 92.4 MeV. MKK is determined to reproduce
the mass of ρð776 MeVÞ [16]. Using the parameters, we
obtain the value,

gNN�
A ¼ 0.42: ð24Þ

B. Decay width

Let us calculate the decay width of the Nð1535Þ → Nπ
decay proses from the axial coupling we calculated, and
compare it with the experimental value.
The decay width is given by

ΓN�→Nπ ¼
1

2mN�

Z
d3pN

ð2πÞ32EN

d3k
ð2πÞ32Eπ

× ð2πÞ4δ4ðpN þ k − pN� Þjtfij2; ð25Þ

with

tfi ¼ hNð−kÞ; πðkÞjLjN�ð0Þi

¼ i
gNN�
A

2fπ
Eπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN þmN

p ffiffiffiffiffiffiffiffiffiffiffi
2mN�

p
δs3s03 ;

L ¼ i
gNN�
A

2fπ
ψ̄Nγ

0
∂0π

aτaψN� ;

where mN� is the mass of Nð1535Þ, mN the nucleon mass,
EN the energy of nucleon, Eπ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

π

p
, and mπ the

pion mass. Hence, we obtain

ΓN�→Nπ ¼
gNN�2
A

16π

jkjE2
πðEN þmNÞ
f2πmN�

; ð26Þ

where k is the momentum of the emitted pion,

jkj ¼
�
m4

N� þm4
N þm4

π

4m2
N�

−
2ðm2

N�m2
N þm2

Nm
2
π þm2

πm2
N� Þ

4m2
N�

�
1=2

:

Here, to obtain πNN� coupling constant, we have used the
Goldberger-Treiman relation,

gπNN� ¼ mN� −mN

2fπ
gNN�
A : ð27Þ

From PDG, mN� ¼ 1510 MeV, mN ¼ 940 MeV, mπ ¼
140 MeV, and jkj ¼ 448 MeV, where the mass ofNð1535Þ
is the pole position. In addition, we need to compute gAðk2Þ
at jkj ¼ 448 MeV.We have numerically computed the sum
over n in (21) and verified a good convergence for the
maximum value n ∼ 15. The result is shown in Fig. 1 in the
form of the form factor, Fðk2Þ ¼ gAðk2Þ=gAð0Þ, as a
function of k2 ¼ jkj2 in units ofM2

KK. The actually emitted
pion momentum jkj ¼ 448 MeV corresponds to k2 ∼ 0.25,
where Fðk2Þ ∼ 0.75. Thus, the value of the axial coupling

0.5 1.0 1.5

0.5

1.0

0

F(k2)

 in units of k2 M2
KK

FIG. 1. The emitted pion momentum k dependance of the form
factor FAðk2Þ.
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gNN�
A at this pion momentum is about gNN�

A ðjkj ∼
450 MeVÞ ∼ 0.42 × 0.75 ∼ 0.32 and the resulting decay
width is ΓN�→Nπðjkj ∼ 450 MeVÞ ∼ 30 MeV. This value
is slightly smaller than the experimental value, which
however is acceptable.
By using the form factor, we can also estimate the

distribution (size) of the axial density, the axial radius. It is
defined by

∂FAðk2Þ
∂k2

¼ −
1

6
hr2iA; ð28Þ

which is estimated to be hr2i1=2 ∼ 0.5 fm. This corresponds
to the axial mass around 1 GeV ∼

ffiffiffi
6

p hr2i−1=2A . This value is
close to the mass of the axial vector meson which is
expected to be ma1 ¼

ffiffiffi
2

p
mρ ∼ 1080 MeV [25].

IV. SUMMARY AND DISCUSSIONS

In this paper, the one-pion emission decay process
Nð1535Þ → πN is investigated using the Sakai-Sugimoto
model, which is a model of holographic QCD. In this model,
baryons are formed as instantons in five-dimensional
spacetime. We defined the axial current according to the

formulation of [22] and calculated the value of the axial
coupling for theNð1535Þ → πN process. Using the obtained
axial coupling, we calculated the decay width of the
Nð1535Þ → πN process and obtained a value of 30 MeV.
This value is in good agreement with the experimental value
at the level of accuracy that is to be expected for models of
this type.
In general, when the axial coupling constants gA of

various baryons are calculated using a soliton picture-based
model, the obtained values are known to be about 30%
smaller [26]. This tendency is also observed in the
present and the recent studies for resonance properties. In
Ref. [19], the decay of the Roper resonanceNð1440Þ → πN
was estimated to be 64 MeV which is some smaller
than the corresponding experimental partial decay width,
90–140 MeV. Nevertheless, it is amusing that the holo-
graphic approach explains qualitatively well dynamical
properties of baryon resonances as well as static properties.
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