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Decay properties of N(1535) in the holographic QCD
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We study one pion emission decay of the first excited state of the nucleon with negative parity
N(1535) = N* in the holographic model of QCD. The excited state is described as a vibrational mode
along the extra z direction in the five-dimensional space-time of the model. We have obtained an analytic

formula for the axial coupling of g}V ". The off diagonal axial coupling is obtained at the decaying pion
momentum |k| = 448 MeV as g\V " ~0.32 and hence, a partial decay width T'y-_, .y ~ 30 MeV, which is
smaller than but reasonably compared to the experimental data.
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I. INTRODUCTION

Baryons at low energies show various features due to the
rich structure of QCD. Ground state properties, such as
masses and magnetic moments, are now computed directly
from QCD by the first principle method of the lattice QCD.
Yet, effective model approaches are useful to describe
dynamical processes, such as resonance formations or
decays. A widely employed model is the quark model,
where resonances emerge as single particle excitations of
quarks [1-4].

When considering dynamical processes, it is important to
include interactions with pions because many resonances are
formed and decay through pions. The importance of the pion
dynamics is also expected by spontaneous breaking of chiral
symmetry [5,6]. One way to include pions in baryon
dynamics is realized by the Skyrme model, where baryons
emerge as solitons of the nonlinear sigma model [7,8]. The
approach has been justified in the large N, limit, where N . is
the number of colors, and various baryon resonances appear
as collective excitations [9—11]. For instance, the A(1232) is
arotational excitation of the deformed hedgehog in the spin-
isospin space, and the Roper resonance N (1440) a monop-
ole vibration of the radial motion [12]. Moreover, negative
parity states may be described as composite states of a
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ground state baryon and a negative parity meson such as KX
for N(1535) and KN for A(1450) [13-15].

A similar, but an alternative approach is the holographic
QCD. A well-known model is the Sakai-Sugimoto model,
which has been used to investigate various nonperturbative
properties of QCD [16,17]. The model is based on flavor
gauge theory in the five-dimensional space, the four-
dimensional added space-time with one extra dimension
(z direction). A solitonic picture for baryons is then realized
by an instanton in that five-dimensional space [18]. As in
the Skyrme model, baryon resonances are described by
collective excitations of the hedgehog [Belavin-Polyakov-
Schwartz-Tyupkin (BPST)] instanton. A somewhat differ-
ently looking feature of this approach is that negative parity
states are described by the collective vibration along the z
direction. Static properties have been investigated, with
reasonable agreement with experimental data [18].

Now concerning dynamical properties, the one-pion
decay of N(1440) was investigated in Ref. [19]. A crucial
point of this approach is that a finite value of the partial
decay width is obtained in the long wavelength limit (of the
pion) with good agreement with data. Moreover, a model
independent relation was found for the axial coupling
constants between the nucleon and Roper resonance.
These features sharply contrast with nonrelativistic quark
model calculations, where the decay is forbidden.!

Now after having observed the good features in the
decay of the N(1440), in this paper, we investigate the
decay of the negative parity baryon N(1535), which is
the first negative parity resonance, in the holographic QCD,
the state is described as a collective vibration along the
z direction. The method of the computation parallels the
previous one [19]. What are new here are the computation

1Higher order terms in the relativistic expansion can make it
finite [20].
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of the zeroth (time) component of the axial current, and the
evaluation of the matrix elements in the z valuable.

This paper is organized as follows. In Sec. II, we present
the action used in this paper and obtain the classical
instanton solution to the equations of motion. We then
define the chiral currents and give their concrete expres-
sions. In Sec. III, we compute the axial coupling and decay
width of N(1535) in comparison with experimental data.
The final section is for discussions and summary.

II. AXTAL CURRENT

A. Classical solutions and collective quantization

We briefly review how baryons are formed in the Sakai-
Sugimoto model. We calculate the classical instanton
solution and use collective coordinate method to obtain
the wave function of baryons. In this model, baryons appear
as quantized five-dimensional instanton.

The Sakai-Sugimoto model is an effective model of
hadrons based on gauge/string duality. It is described by the
U(Ny) Yang-Mills-Chern-Simons theory in curved five-
dimensional space-time, where N is the number of flavors.
The action is given by the Yang-Mills part Syy; and Chern—
Simons part Scg as follows:

S = Sym + Scs. (1)
4 1 2 2
Sym = —k | d*xdztr Eh(z)fﬂy +k(2)Fu | (2)

— Nc
N 247[2 M*<R

s (A). (3)

SCS

Here, y, v=0, 1, 2, 3 are four-dimensional Lorentz
indices, and z is the coordinate of the fifth dimension.
The warp factors k(z) and h(z) are defined as k(z) =
1 + 2% and h(z) = (1 + z?)7'/3, respectively. The number
of colors N, is related to k as

AN,
K=——>=,
21673

where 4 is the ’t Hooft coupling. A = A,dx* = A, dx" +
A.dz(a=0,1,2,3,z) is the five-dimensional U(Nf)
gauge field, and F =1F pdx® Adxl = dA+iA N A
is the field strength. In this paper, we consider the case
of Ny = 2. We decompose U(2) gauge field as

where A is the U(1) part, A the SU(2) part, 7 (a = 1, 2, 3)
the Pauli matrices and /, the 2 x 2 unit matrix. The Chern-
Simons five-form is

_ 2 _bpar_boys
a)5(A)—tr<A7-" JAF 10A>.

In this paper, we mainly work with the unit of the Kaluza-
Klein mass Mgg = 1.

Because of the warp factors k(z) and h(z), it is difficult
to solve the equation of motion in general. However, the
size is small in the large A limit, since the instanton size is
proportional to A=!/2. Then, we can consider the solution
localized at the origin z~0. In this case, we can set
k(z) = h(z) = 1, and the solution is given by the BPST
instanton solution,

ASh(x,2) = —if (&) goug™",

Agl =0,
A —
Al — Ll [1 _L} (4)
0 872a 52 (52 +pz)z ’
with
& (z-Z)-ix-X) 7
f(é)—§2+p2, g(x) = : ,

2
’

e=\e-2P+-X

where X" = (X', X2, X?,Z) = (X,Z) is the positions of
the instanton in four-dimensional space and p is a param-
eter of the instanton size.

Let us quantize the classical instanton solution by the
collective coordinate method. In order to do that, we
introduce time-dependent parameters X(¢), Z(¢), p(t), and
SU(2) orientation V(¢,x,a(t)) with V(z » +o0) — a(1),
where a(t) = ay(t) + ia,(t)r* is a variable representing
rotations in spin or isospin space. In this case, the rotating
SU(2) gauge field is conveniently expressed by the
following gauge transformation [18,21]:

Ay(t,x) = VAS (x; X(1), p(2)) V= =iV, V7L, (5)

where AS} is the classical solution and V satisfies

a

R . a T
—iVIV = XM (1A, + F&979 L

y¢ = —itr(ra”'a).

We insert this gauge field in (1) and integrate with respect
to (x*,z). As a result, the instanton is quantized by the
collective coordinate method. We obtain the collective
Hamiltonian,
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1 1
H=——(%+0d)———0d +Up,2),
2M0(X+ ) 4M0y+ (p.2)
M, N2 1 M,
Ulp,Z) = My +—p% ¢c 4272 6
(p.Z) o+6p+5M0p2+3 (6)

where M, = 82’k is the instanton mass and y, =
pa;(I =0,1,2,3).

The eigenstates of this Hamiltonian are characterized by
quantum numbers (I, I5, s3,7,,n,) and momentum p: [ =
1,3,5, ... arerelated to spin J and isospin / as [/2 = J = I.
Iy and s; are third components of the isospin and spin,
respectively, and n, and n_ the quantum numbers repre-
senting the oscillations in the radial and z directions,
respectively. The ground state with n, =n, =0 is the
nucleon. In addition, the first excited states of n, = 1 or of
n, = 1 corresponds to the N(1440) or N(1535), respec-
tively. The wave functions of the ground states and the
N(1535) resonant state of the spin-upward proton are as
follows [18,22]:

wy < e?XRy(p)yz(Z)(a) + iay),
-  PIR (W2 @ + ian), )

where N* = N(1535) and

Ry(p) = p—1+2\/1+N§/se—M—¢§p2’

wy(Z) = Zyz(2).

B. The asymptotic solution of the instanton

In order to calculate the coupling constant of the
interaction, we need to calculate the current. To define
the current in the holographic model, we need to investigate
the physics of the boundary based on the Gubser-
Klebanov-Polyakov-Witten (GKP-W) method [23,24].

We have already seen the BPST instanton solution which
is localized at z ~ 0 in the large A limit. However, as we will
see later, the current is defined at z — o0, and therefore,
this solution is not appropriate. We need to investigate
properly the behavior of the soliton solution in a large z
region. It is given in Ref. [22] as follows:

A : Gx,;X,2)

=-—Gx.2:X,2),

0 200 » <

N 1 T.. p2 )(“ .. 0 .0 p 0

A= — x4 2 (2 (giei L _5ia L) 12 D
T 2aa | +2(2 X% 9z)  pox

xG(x,2:X,2),

n 1 [. pP?(x* 0 po

A =—|z42 (£ PO VIHx, 22X, 2
“ " 2az | +2<20X“+p62 (x,.5,X,2).

Ay = 4rn*p*iaa'G(x, 2, X, Z)

.. .0 . d .0
2 2.2 a,—1 Xl iaj _—_ _gia ___ 7
+2xpat’a ( <e X 0Z> + dX“)

xGx,2;X,Z),

9 .0
A; = =2n%p*ara” (e"” = 5t i) G(x,z:X,2),

0
A, = =27%p*ar’a™! WH(x, %X.7Z). (8)
Here, i = 1, 2, 3, ¢%*¢ is the completely antisymmetric

tensor, and 6% the Kronecker delta. Green’s functions
G(x,z:X,Z),H(x,72;X,Z) are

Gl 5X.2) =k > (w27, (e — X)),

Hx.2X.2) = x> 4,02V, (x—X]).  (9)
n=0

with

1 eVhr

Y,(r)= r=|x|.

4z r

Here, {y,(2)} (n = 1,2, ...) is a complete set of functions
of z consisting of the eigenfunctions of the eigenequation,

~h(2)7'0.(k(2)0.) = AaWis (10)
with the normalization condition,
K/dzh(Z)WnI/Im = 5mn'

We note that y,,_;(Z) and w,,(Z) are even and odd
function of Z, respectively.

C. Currents
In Ref. [22], the left and right currents J%,J% are

defined by coupling with external fields A, ,, Ag,, respec-
tively, at z = +o0,

Slow, Ay = —2/d4xtr(AL,,J‘z + Ag,JR).  (11)

We introduce the external fields in the GKP-W method,
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Ay (x4, 2) = A (x*, 2) + 6 AL (%, 2),
SA, (X, 2 = +o0) = Ap,(x¥),
SA, (X, 7 = —00) = Ag,(x"), (12)

where A9 is the classical solution and 8.4, an infinitesimal
deviation. Substituting this fields in the action and taking
only liner terms, we obtain

Slop ) = K / &2 (AR FL=H, (13)

7=—00
and so

Ty = —x(k(2) L)
Tru = +K(k(z)fftlz)|

z=+00’

(14)

z=—00"

The axial current is defined by
=T = Tk = (k) FEZLS, (15)

with w((z) = (2/x) arctan z.

We define

jﬂ _ Jau

2+Jﬁ

2°

and use the asymptotic solutions. Thus, we obtain

S(r:X,Z,p,a)
=2n%k[0y(p*ar‘a=")0,H* —2p*iaa~"' G*

arta $(0,0,- 59 H 10,V
Ji(r:X,Z,p.a)
=-2r’kp’at’a”! ((0,0,— 507 H* —€/9,G*). (16)
where
GA(Z.r) = lwo(2)k(2)9.GIZES

== Zga l//2}1

HA(Z,r) = [l//o(Z)k(Z)H]é;f;'é’

Y2n )

Gar = AZnK/th(Z)l//bﬂ//O’

and r = |x — X|. Note that G* and H* are even and odd
function of Z, respectively. In momentum space, we have
the axial current as follows:

7 (k) = / Bk (1), (17)
JOk) = 2x K{lllz r[t?0y(p*ar’a™")]

)

P
+ L p2tr[rearta] <6lb

M,
o-itx N 902
— k* + Ay,
+ (1, - zﬂzxpzﬁeiajk, e—ikxim
) MO ! n=1 k2 + }“211 '
(18)
jfii (k) = Zﬂzsztr(T“arba_l)
: ey \ = G O
X e—1k~X |:<5bi _ b21> %
k n=1 k +’12n
ibik; a¥on 1
~ie ZkZ +/12n:| ( )

where

I i d 0 d
=— — =V, — € Vp— |
a D) V4 aya Ya ay4 abeYb ayc

III. DECAY PROPERTIES OF N(1535)

A. Axial coupling

Let us calculate the axial coupling of the N(1535) — Nz
decay process using the current we have calculated. It is
given by

B @), =2 [ PV e (20

As we can see from (19), the spatial components of the
currents J4/(k) do not contribute to the axial coupling
because of the parity of the wave functions y/(z),y/(z) in
(7) with respect to Z and completely antisymmetric tensor.
This fact is consistent with the following property. In the
nonrelativistic limit, the axial current between N and N*
has the structure,

Up
= (). mowa

T = wnr'wye.
Note that y5 does not appear because of the difference in the
parities of the initial and final states. Then, we see that
spatial component vanishes while the time component
contributes.
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The axial coupling constant at an arbitrary value of k is
calculated by (20) to find the result,

0t ) = [z )y e

. (21)
—1 k2 + /1211
where w,(Z) and y’,(Z) are normalized wave functions.

Before discussing the actual decay at a finite k, we would
like to briefly show the case at k = 0, where some analytic
calculations are possible. Using

Z YGar W2n
/1211

n=1

2
=— arctan Z=wy(2), (22)

we get

gV = / ® 42y 20y 2o 2).

We obtain analytically with the result,

v ﬁTMfQ/%?M) 23)

where erfc(x) is the complementary error function.
For numerical estimate, we choose the parameters,
x = 0.00745,
M KK — 940 MCV,

which are related to

M, = 87’k = 0.588,
T fz

K=—
4M%,

l

and so f, =92.4 MeV. Mg is determined to reproduce
the mass of p(776 MeV) [16]. Using the parameters, we
obtain the value,

AN = 0.42. (24)

B. Decay width

Let us calculate the decay width of the N(1535) — Nz
decay proses from the axial coupling we calculated, and
compare it with the experimental value.

The decay width is given by

1 dSPN d3k
(27)32Ey (27)*2E,
x (2m)*8*(py + k — py-) tfi|27 (25)

FN*—»N;T = m
N

with
tri = (N(=k); z(k)|LIN*(0))
gNN*
E \/EN+mN\/2mN s 9 s
2fﬂ :
-
L=i7 f” PNy 0o Ty,

where my- is the mass of N(1535), my the nucleon mass,

VKk*> +m2, and m, the

Ey the energy of nucleon, E, =
pion mass. Hence, we obtain

NN*

k|E2<EN + mN)

f %mN* '

where k is the momentum of the emitted pion,

Ty vy = 1 o (26)

4 4 4
my. + my + my
2
4my.

_ 2(my.my, + mymz + mymy.)

k| =

1/2

4m? N

Here, to obtain zZNN* coupling constant, we have used the
Goldberger-Treiman relation,
NNe TN =y
T (27)
From PDG, my- = 1510 MeV, my = 940 MeV, m, =
140 MeV, and |k| = 448 MeV, where the mass of N(1535)
is the pole position. In addition, we need to compute g, (k?)
at |[k| = 448 MeV. We have numerically computed the sum
over n in (21) and verified a good convergence for the
maximum value n ~ 15. The result is shown in Fig. 1 in the
form of the form factor, F(k?) = g4(k*)/ga(0), as a
function of k*> = |k|? in units of M%. The actually emitted
pion momentum |k| = 448 MeV corresponds to k> ~ 0.25,
where F(k?) ~0.75. Thus, the value of the axial coupling

F(kZ) T T T
1.0 -

05 —

I I
0 0.5 1.0 1.5

2. : 2
k* in units of M,

FIG. 1. The emitted pion momentum k dependance of the form
factor F,(k?).
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gV at this pion momentum is about ¢V (|k|~
450 MeV) ~ 0.42 x 0.75 ~ 0.32 and the resulting decay
width is Ty, (k| ~ 450 MeV) ~ 30 MeV. This value
is slightly smaller than the experimental value, which
however is acceptable.

By using the form factor, we can also estimate the
distribution (size) of the axial density, the axial radius. It is
defined by

OFA(R?) 1
2 = 5 (28)

which is estimated to be (r?)!/? ~ 0.5 fm. This corresponds

to the axial mass around 1 GeV ~ \/6(r2>;l/ ?_ This value is
close to the mass of the axial vector meson which is

expected to be m, = v2m, ~ 1080 MeV [25].

IV. SUMMARY AND DISCUSSIONS

In this paper, the one-pion emission decay process
N(1535) - zN is investigated using the Sakai-Sugimoto
model, which is a model of holographic QCD. In this model,
baryons are formed as instantons in five-dimensional
spacetime. We defined the axial current according to the

formulation of [22] and calculated the value of the axial
coupling for the N(1535) — =N process. Using the obtained
axial coupling, we calculated the decay width of the
N(1535) — zN process and obtained a value of 30 MeV.
This value is in good agreement with the experimental value
at the level of accuracy that is to be expected for models of
this type.

In general, when the axial coupling constants g, of
various baryons are calculated using a soliton picture-based
model, the obtained values are known to be about 30%
smaller [26]. This tendency is also observed in the
present and the recent studies for resonance properties. In
Ref. [19], the decay of the Roper resonance N(1440) — zN
was estimated to be 64 MeV which is some smaller
than the corresponding experimental partial decay width,
90-140 MeV. Nevertheless, it is amusing that the holo-
graphic approach explains qualitatively well dynamical
properties of baryon resonances as well as static properties.
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