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We undertake the challenging task to reveal the properties of dressed light-quarks in the space- and time-
like regions. For that aim, we solved the Dyson-Schwinger equation (DSE) in Minkowski space for the
quark propagator in a QCD inspired model, focusing on the realization of dynamical chiral symmetry
breaking in the large coupling regime. The DSE is considered in the quenched approximation within the
rainbow-ladder truncation with a massive gluon and a Pauli-Villars term, which is used to tune the IR
physics of the model. The solution of the DSE in Minkowski space is performed by resorting to the integral
representation of the quark self-energy and propagator, which leads to a coupled set of closed self-
consistent equations for the spectral densities, taking into account finite on-mass-shell renormalization. The
parameters of the model are chosen such that the gluon mass scale is consistent with recent lattice QCD
calculations, the Pauli-Villars mass is lowered down to about 1 GeV to concentrate strength in the infrared
momentum region, and the coupling constant and renormalized mass are tuned to reproduce lattice QCD
results for the quark mass function in the Landau gauge. Future application to study the pion consistently
with dynamical chiral symmetry breaking within the Bethe-Salpeter framework with self-energies in
Minkowski space is also delineated.
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I. INTRODUCTION

It is a challenge to establish how dynamical chiral
symmetry breaking (DCSB) [1–3] manifests in Minkowski
space for the light quarks starting with the Dyson-Schwinger
framework. The dressing builds the constituent quark and
gluon degrees of freedom associated with a nontrivial
propagator, as has been obtained in lattice QCD calculations
(see e.g., [4,5]). This understanding is essential to provide
insights on the partonic structure of the dressed quark, which
migrates from a massive constituent particle at infrared (IR)
scales to the partonic description in the UV region, as the
building blocks of the Goldstone bosons associated with
DCSB, like the pion and kaon, as well as the nucleon in

continuous formulations of quantum chromodynamics
(QCD) (see e.g., [6,7]). In this context, one main problem
is the shaping of the hadron structure by the nonperturbative
dynamics of QCD, which is under intense investigation both
theoretically and experimentally. It is expected that the study
of 3D imagingwill clarify thehadron content,which is among
the motivations for the proposal of future facilities as the
Electron-Ion-Collider [8].
The enhancement of the QCD interaction strength at

long-distances is associated with color confinement and
DCSB. It builds at the same time the dressed quark and
gluon degrees of freedom, as well as the effective inter-
action among them. The quark dressing is the theory basis
to justify the widely used constituent quark picture (see
e.g., the review of the quark model in [9]). Extensively
explored are models formulated on the light front (LF) built
with constituent degrees of freedom of partonic nature and
applied to study the hadron structure and mass spectrum
[10,11]. In particular, this conceptual framework permits to
formulate confining LF Hamiltonian models for constituent
quarks and gluons, where the corresponding hadron eigen-
states are found by diagonalization using the basis light-
front quantization method [12]. Contemporary applications
of this approach to light mesons [13,14] and the nucleon
[15] explore their partonic structure.
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The nonperturbative complexity of the QCD dynamics
appears in the LF wave function, which is expanded in an
infinite sum of Fock components, each of them with well-
defined number of particles and an associated probability
amplitude, and these components are dynamically coupled
by the interaction [11]. In principle, such a physically
motivated representation of the hadron state and dynamics
in Minkowski space is confronted by the Haags theorem
[16,17], which implies that the formulation of the interacting
and free quantum field theories can only be done on
inequivalent Hilbert-space representations of the field
algebra. Therefore, at the fundamental level Haag’s theorem
could turn questionable the construction of the Fock-space
basis from the free LF QCD Hamiltonian to describe
interacting hadron states. Recently, this issue was overcome
in [18] by proving the equivalence of the scattering theory
formulated in instant and light-front quantum field theories,
based on a two-Hilbert space representation, without requir-
ing the existence of a free dynamics on the Hilbert space.
The one-particle basis is built from the interacting theory,
which also defines the asymptotic states. Regardless that
quarks and gluons are confined and cannot be asymptotic
states of QCD, this work may suggest the dressed degrees of
freedom as the constituents of the hadron LF wave function.
Indeed in [19], it is proposed to build the LF probability
amplitudes for n-partons directly from the matrix elements
between the vacuum and the hadron state of correlators built
with field operators in different positions on the light front
connected by gauge links. For example, in practice the pion
LF valence wave function was obtained from the Bethe-
Salpeter amplitude projection onto the null-plane hypersur-
face computed in an interacting model with DCSB, where
the quarks are dressed [20,21].
The main motivation for our work is to model dynami-

cally the dressing of the light quarks in Minkowski space,
which in continuum representations of QCD are the
constituents of light hadrons, like the pion and nucleon.
We model the kernel of the Dyson-Schwinger equation
(DSE) for the quark propagator to incorporate its enhance-
ment in the IR region tuned to the relevant scales of QCD,
as the gluon mass [22] and quark-gluon vertex [23–26],
and set the parameters taking into account the lattice QCD
results for the quark mass function [4]. We explore the
rainbow-ladder formulation of the DSE, where the Dirac
structure of the quark-gluon vertex is approximated only
by γμ, with a massive gluon-exchange in different covariant
gauges including the Pauli-Villars regularization, which is
tuned in a way to strengthen the kernel in the IR region at
the QCD scale. The method adopted to solve the DSE in
Minkowski space is based on the Källén-Lehmann repre-
sentation of the propagator and the Nakanishi integral
representation (NIR) [27] of the self-energies, which has
been established as a viable tool to solve the problem.
As a matter of fact, the NIR has been already applied

with success to the solution of the fermionic Bethe-Salpeter

(BS) equation in Minkowski space since the pioneering
work in Ref. [28] and then further developed in [29,30],
where the end-point singularity were explicitly treated.
These works consolidate the technique to permit the
application of NIR to solve the pion BS equation, where
it was chosen an interacting kernel tuned to the QCD scale
with constituent quarks and gluons, and a dressed quark-
gluon vertex [31]. It explored the momentum distributions
and 3D image of the LF valence wave function obtained by
projecting the BS amplitude onto the null-plane hypersur-
face, also finding a probability of about 70% for this
Fock component of the pion state. Following it, the pion
electromagnetic form factor was studied in [32], showing a
nice reproduction of the experimental data, and a fresh
study with this model investigates the pion parton distri-
bution function [33]. We should mention that other recent
methods are being developed to obtain the valence wave
function from the Bethe-Salpeter amplitude via contour
deformations [34].
One of the first attempts to study the dynamical mass

generation of the fermion propagator in Minkowski space
was made by Bicudo [35]. The mass gap equation for
spontaneous chiral symmetry breaking was solved by using
an analytical approach, and approximate solutions were
obtained for the quark masses in a Yukawa model. The
implications of analyticity to the solution of the DSEs in
Minkowski space was explored in [36]. Later on, Ref. [37]
considered a gauge theory in a quenched approximation
with the massive gauge boson transverse mode, where
the effective coupling was regulated by a Pauli-Villars
regulator. According to this work, in the limit where
M=Λ ≪ 1 (Λ is the Pauli-Villars mass) the analytical
structure of the exact propagator is given by the
Lehmann representation with one real pole. They also
found that when this ratio increase, the adequate form of the
exact propagator is composed by the two pole Ansätze plus
the generalized integral representation.
The solutions to DSE in Minkowski space using the

spectral representation, for the fermion propagator within
quenched QED and on-shell renormalization conditions in
the Landau gauge was investigated in Refs. [38,39]. They
obtained the analytic solutions using a renormalizable
version of the gauge technique Anzatz for the fermion-
photon vertex. Using a similar method, we extend the
calculations to the strong coupling regime, where the
dynamical symmetry breaking is realized. In contrast to
what was made in [38], where the authors used a massless
gauge boson, in this work we approximate the dressed
gluon propagator by a massive one and include a Pauli-
Villars regulator with mass Λ, which is equivalent to
modeling the usual renormalized coupling αsðq2Þ of QCD.
The fermion DSE for a QED-like theory was also

investigated in Ref. [40] within the rainbow-ladder trunca-
tion and Pauli-Villars regularization, using methods based
on the analytic continuation of the Euclidean DSE into the
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complex momentum plane towards the timelike region.
In the first approach, properly called “un-Wick rotation,”
the energy component of the Euclidean four-momentum is
rotated in the complex plane towards the Minkowski
metric. In the second approach, the Euclidean spacelike
four-momentum is rotated towards the timelike one through
the transformations k → e−iδk, dk → e−iδdk. When the
angle δ ¼ π=2 these transformations retrieves the DSE in
Minkowski space. The results for the model described in
this work shows an excellent agreement when compared to
those methods in the weak coupling regime in the Feynman
gauge, for both time and spacelike momentum regions [41].
The complex analytic structure of the quark propagator

in Minkowski space taking into account the possible
existence of poles and branch cuts at timelike momenta,
was studied in [42], where they solve nonperturbatively the
DSE in the strong interaction regime, using the spectral
representation of the propagator and self-energy. The
derived model-independent self-consistent integral equa-
tions for the spectral functions were renormalized by
momentum-subtraction scheme. This approach was then
applied to solve the DSE in a schematic model for the
quark-gluon scattering kernel.
In a recent publication [43] the coupled system of

fermion and photon gap equations in Minkowski space
were formulated within the Nakanishi integral representa-
tion method. They derive a coupled system of self-
consistent integral equations that allows us to determine
the three Källén-Lehmann weights for the dressed fermion
and photon propagators, and they provide a consistency
check by taking the first iteration of these equations.
The rest of this work is organized as follows. In Sec. II,

we briefly present the formulation of the coupled set of self-
consistent integral equations for the spectral weights asso-
ciated with the quark propagator and self-energy for covar-
iant gauges obtained from the DSE with a massive gluon and
a Pauli-Villars term in the rainbow-ladder truncation. The
condition for the finite on-mass-shell renormalization and
the relation between the spectral densities of the self-energy
and propagator are supplied in the Appendix, which are
essential to close the coupled set of self-consistent equations
(see e.g., Ref. [44] for the on-mass-shell renormalization in
the context of heavy quarks). In Sec. III, we present our
quantitative results, which exhibit DCSB in the Landau
gauge. We first set the model parameters at the QCD scale,
for gluon and Pauli-Villars mass in order to be consistent
with values suggested by lattice (LQCD) calculations and
inferred from studies of the quark-gluon vertex, to provide
the enhancement of the kernel below 1 GeV, and reproduce
to some extend the LQCD quark mass function in the
spacelike region. We show results for the spectral densities,
the quark mass function and wave function renormalization
in the timelike region. In Sec. IV we give the final remarks
on our exploratory study of DCSB and the quark dressing in
Minkowski space.

II. DSE IN MINKOWSKI SPACE

In what follows, we revise briefly the derivation of the
self-consistent equation for the spectral densities of the
quark propagator and self-energies in the rainbow-ladder
truncation and including the Pauli-Villars term. These set of
integral equations were also used in [40,41]. This section is
accompanied by the Appendix, where we present the
relations between the spectral densities of the quark self-
energy and propagator, as well as the on-mass-shell
renormalization condition. The model adopted for the
DSE for the quark propagator is written as

S−1q ðkÞ ¼ =k−mBþ ig2
Z

d4q
ð2πÞ4Γμðq;kÞSqðk−qÞγνDμνðqÞ;

ð1Þ

wheremB is the quark bare mass, g is the coupling constant,
Γμðq; kÞ is the dressed quark-gauge-boson vertex. In this
work we consider Γμðq; kÞ ¼ γμ (rainbow-ladder approxi-
mation) and DμνðqÞ is the propagator of the dressed gauge
boson in a covariant gauge, which here is approximated by
the massive gluon propagator [45]

DμνðqÞ ¼ 1

q2 −m2
g þ {ϵ

�
gμν −

ð1 − ξÞqμqν
q2 − ξm2

g þ {ϵ

�
; ð2Þ

where we have introduced an effective gluon mass mg, as
suggested by LQCD calculations [22]. The quark propa-
gator can be written as

SqðkÞ ¼ ½=kAðk2Þ − Bðk2Þ þ iϵ�−1; ð3Þ

and the vector and scalar self-energies are given by the NIR,
respectively, as

Aðk2Þ ¼ 1þ
Z

∞

0

ds
ρAðsÞ

k2 − sþ iϵ
; ð4Þ

Bðk2Þ ¼ mB þ
Z

∞

0

ds
ρBðsÞ

k2 − sþ iϵ
: ð5Þ

The self-energy normalization conditions are such that
Að�∞Þ ¼ 1 and Bð�∞Þ ¼ mB. In our model the finite
bare mass is identified with the current quark mass.
The pole of Eq. (3) is the renormalized mass m̄0. The on-

mass-shell renormalization condition relates the bare mass
mB with m̄0 through

A2ðm̄2
0Þ − B2ðm̄2

0Þ ¼ 0; ð6Þ

which is written in terms of m̄0, mB and the spectral
weights, ρA and ρB, and it is explicitly given by Eq. (A15).
The quark propagator is then written in terms of the

vector, Svðk2Þ, and scalar, Ssðk2Þ, components in the form:
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SqðkÞ ¼ =kSvðk2Þ þ Ssðk2Þ;

¼ R
=kþ m̄0

k2 − m̄2
0 þ iϵ

þ =k
Z

∞

0

ds
ρvðsÞ

k2 − sþ iϵ

þ
Z

∞

0

ds
ρsðsÞ

k2 − sþ iϵ
; ð7Þ

where R is the residue at the renormalized mass pole, which
is one of the inputs in the model.
Introducing Eq. (3) in (1) after standard Dirac algebra it

is possible to write the vector and scalar self-energies in a
covariant gauge ξ as

k2Aðk2Þ ¼ iα
Z

d4q
4π3

�
R

ðk − qÞ2 − m̄2
0 þ {ϵ

þ
Z

∞

0

ds
ρvðsÞ

ðk − qÞ2 − sþ {ϵ

�
−2k2 þ 2ðk · qÞ
q2 −m2

g þ {ϵ

−
ð1 − ξÞð2ðk · qÞ2 − k2q2 − q2ðk · qÞÞ

ðq2 −m2
g þ {ϵÞðq2 − ξm2

g þ {ϵÞ
��

− ½mg → Λ�; ð8Þ

and

Bðk2Þ ¼ −iα
Z

d4q
4π3

�
Rm̄0

ðk − qÞ2 − m̄2
0 þ {ϵ

þ
Z

∞

0

ds
ρsðsÞ

ðk − qÞ2 − sþ {ϵ

×
1

q2 −m2
g þ {ϵ

�
4 −

q2ð1 − ξÞ
q2 − ξm2

g þ {ϵ

��

− ½mg → Λ�; ð9Þ

where we have made use of Eq. (7) with the Källén-
Lehmann spectral representation of the scalar and vector
components of the quark propagator. In these equations
α ¼ g2=ð4πÞ, with g being the quark-gluon coupling
constant. We introduce a Pauli-Villars regulator by sub-
tracting a term with mg replaced by Λ in the integrand
of Eqs. (8) and (9), which also cancels the logarithmic
divergences in the loop momentum integrals. In particular,
in the Landau gauge, ξ ¼ 0, and Feynman gauge, ξ ¼ 1,
the contribution of the Pauli-Villars regulator can be
effectively associated with the form factor of the γμ

component of quark-gluon vertex:

λ1ðq2Þ ¼
m2

g − Λ2

q2 − Λ2 þ iϵ
; ð10Þ

which gives us a guidance on the range of values around
Λ ∼ 1 GeV to be used in the calculations performed in this
work, following the study from Refs. [23–25].

Although we will specifically present numerical results
for the Landau gauge, as the model will be parametrized to
reproduce LQCD results in that gauge, the equations are
derived for arbitrary covariant ones, and due to that it is
useful to redefine the equations above as

Aðk2Þ ¼ AFðk2Þ þ Aξðk2Þ;
Bðk2Þ ¼ BFðk2Þ þ Bξðk2Þ; ð11Þ

where AF, BF correspond to Feynman gauge (ξ ¼ 1) and
Aξ, Bξ correspond to the ξ-gauge contributions.
Using the Feynman parametric formula it is possible to

perform the momentum integrals in Eqs. (8)–(9). After that
by evaluating the imaginary part of both sides of these
equations, taking into account the integral representation
of Aðk2Þ and Bðk2Þ given in Eqs. (4) and (5), respectively,
one finds that

ρAðγÞ ¼ RKξ
0Aðγ; m̄2

0; m
2
gÞ

þ
Z

∞

0

dsKξ
Aðγ; s; m2

gÞρvðsÞ − ½mg → Λ�; ð12Þ

ρBðγÞ ¼ Rm̄0K
ξ
0Bðγ; m̄2

0; m
2
gÞ

þ
Z

∞

0

dsKξ
Bðγ; s; m2

gÞρsðsÞ − ½mg → Λ�; ð13Þ

where Kξ
0Að0BÞ ¼ KAðBÞ þm−2

g K̄ξ
AðBÞ is the driving term.

The kernel is

Kξ
Aðγ; s;m2

gÞ ¼ KAðγ; s;m2
gÞΘ ðs− ðm̄0 þmgÞ2Þ

þm−2
g K̄ξ

Aðγ; s;m2
gÞΘ ðs− ðm̄0 þ

ffiffiffi
ξ

p
mgÞ2Þ;
ð14Þ

with the analogous formula for Kξ
B. We define the variable

Δ ¼ γ −m2
g þ s, and with that the kernels are written as

KAðγ; s; m2
gÞ ¼ −

α

4π

Δ
γ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − 4γs

q
Θ ½γ − ðmg þ

ffiffiffi
s

p Þ2�;

ð15Þ

KBðγ; s; m2
gÞ ¼ −

α

4π

4

γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − 4γs

q
Θ ½γ − ðmg þ

ffiffiffi
s

p Þ2�;

ð16Þ

which corresponds to the Feynman gauge kernel, ξ ¼ 1,
and
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K̄ξ
Aðγ; s; m2

gÞ ¼ −
α

4π

ðγ − sÞ2 −m2
gðγ þ sÞ

2γ2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − 4γs

q
Θ ½γ − ðmg þ

ffiffiffi
s

p Þ2�
− ½m2

g → ξm2
g�; ð17Þ

K̄ξ
Bðγ; s; m2

gÞ ¼
αm2

g

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − 4γs

p
γ

× Θ½γ − ðmg þ
ffiffiffi
s

p Þ2� − ½m2
g → ξm2

g�; ð18Þ

which is nonzero in arbitrary ξ gauges, except for the
Feynman one. It is worth to mention that the Heaviside step
function Θ in the kernels defines the upper limit for the
integration in s in the definitions of ρA and ρB.
Furthermore, due to the theta functions in the kernel and

driving terms of Eqs. (12) and (13), we have that

ρvðγÞ ¼ ρsðγÞ ¼ ρAðγÞ ¼ ρBðγÞ ¼ 0; ð19Þ

for γ < ðm̄0 þ
ffiffiffi
ξ

p
mgÞ2 in the case of Λ > mg. It is

important to observe that our formalism is valid for ξ ≥ 0.
The residue of the propagator R is evaluated as

R−1 ¼ 1þ
Z
�

∞

0

ds
ρAðsÞ
m̄2

0 − s
− 2m̄2

0

Z
�

∞

0

ds
ρAðsÞ

ðm̄2
0 − sÞ2

þ 2m̄0

Z
�

∞

0

ds
ρBðsÞ

ðm̄2
0 − sÞ2 ; ð20Þ

where the symbol
R� represents the Cauchy principal value.

The details about the derivation of this expression as well as
the relation between the spectral densities ρvðγÞ; ρsðγÞ;
ρAðγÞ, and ρBðγÞ are given in the Appendix.

III. RESULTS IN THE LANDAU GAUGE

The dynamical quark massMðk2Þ and the wave function
renormalization Zðk2Þ are defined, respectively, as

Mðk2Þ ¼ Bðk2Þ
Aðk2Þ and Zðk2Þ ¼ 1

Aðk2Þ : ð21Þ

Within a phenomenological perspective, the parameters of
the model will be tuned for a comparison with LQCD
results in the Landau gauge [4] for the quark mass function
and wave function renormalization, as expressed by the
parametrizations shown in [25]. This allows the possibility
to explore dynamical chiral symmetry breaking in
Minkowski space at the QCD scale. For this model one
may expect that chiral symmetry is broken when the bare
mass mB ≃ 0 and Bðk2Þ ≠ 0 [37]. It is worthwhile to
emphasize that in this approach we use the renormalized
mass m̄0 as the input, while the bare mass mB is evaluated
from Eq. (A15).

We present in Table I three different sets of parameters
for our model with results for the quark mass function
comparable to the fit to LQCD calculations [24,25]. The
main guidance to our search of the parameters is the gluon
effective mass around 0.6 GeV [22] and the parameter Λ
around 1 GeV. The renormalized quark mass and the
effective α are found to reproduce to some extend the
LQCD quark mass function in the spacelike region and in a
way also to provide the small bare masses of about 10 MeV.
We should mention that in Refs. [24,25] it was found an

infrared enhancement of the quark-gluon vertex by com-
bining the DSE with Slavnov-Taylor identities and lattice
simulations, with a peak of αsλ1 ∼ 5.5 for momentum
around ΛQCD, which can be related to our kernel para-
metrization as follows. The quark-gluon form factor in
Eq. (10) at q2 ¼ 0 gives for the kernel strength
αð1 −m2

g=Λ2Þ, which is 10, 10.1, and 8.48 for sets 1, 2,
and 3, respectively, these values are somewhat of the order
to what were found in the quoted references.
The infrared physics within the model effectively

parameterizes the main phenomena of the DCSB. Such a
finding is consistent with the studies of Refs. [24–26],
where the relevance of the infrared physics appeared
through the enhancement of the longitudinal components
of the quark-gluon vertex for momenta around ΛQCD.
In these studies the longitudinal components were con-
strained by the Slanov-Taylor identity in consistence with
the Dyson-Schwinger equation for the quark self-energy
and the corresponding LQCD results. We also compare the
renormalized mass pole and residue to the fitting of the
mass function with a monopolelike form [46], which has
the lowest mass pole at 0.327 GeV with residue 1.49,
comparable to the present results shown in Table I.
Figure 1 compares our results for the quark mass

function and wave function renormalization in the space-
like momentum region for the three sets of Table I to the fit

TABLE I. Different sets of input parameters: renormalized
mass, m̄0, gluon mass mg, Pauli-Villars mass Λ, and α used in
the figures for Landau gauge. The parameters are adjusted in
order to get the running mass close to the fit to the Lattice QCD
results in Landau gauge, as shown in Fig. 1. The output
quantities, the bare mass mB and residue of the propagator R
at the renormalized mass m̄0.

Set m̄0 (GeV) mg (GeV) Λ (GeV) α

1 0.42 0.84 1.20 19.70
2 0.38 0.78 1.10 20.30
3 0.35 0.60 1.00 13.25

Set (Outputs) mB (MeV) R

1 9.06 2.22
2 8.53 2.09
3 12.25 2.64
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of LQCD calculations [4]. While set 1 (thin solid curve)
well reproduces the mass function in the low momentum
region, in the range 0 ≤ k≲ 1 GeV, set 3 (dashed curve)
shows better agreement with lattice results for k
above 1 GeV. At large momentum the calculated mass
function tends to the bare mass around 10 MeV. The
strong IR effects captured by the model is still found at
momentum somewhat above the ones exhibit by LQCD
calculations.
From the comparison of the wave function renormaliza-

tion in the lower panel of Fig. 1, we see that the model
presents a pronounced dip around 1 GeV—a qualitative
property found in LQCD calculations close to k ¼ 0. In
addition, we observe that the minimum of our solution
for Zðk2Þ is dislocated to lower values from set 1 to 3, as
both m̄0 and Λ decreases (cf. Table I). This suggests that
effectively the IR scale accommodated within the model is
somewhat larger than ΛQCD. This also explains why the
model is not able to simultaneously reproduce the mass
function in the IR and for k around 1–2 GeV: if we privilege
this last region then we miss the IR behavior of LQCD
results as in set 3. On the contrary, if the mass function

reproduces the IR region then it overestimates the mass
function of above 1 GeV, as happens for set 1.
This behavior can be understood by inspecting the kernel

of the self-consistent integral equations (12) and (13), which
in the Landau gauge is nonvanishing above γ ¼ m̄2

0, due to
the theta functions in Eq. (14). Obviously, the region below
m̄0 ∼ ΛQCD is not explored by the model. That is why the
minimum of wave function renormalization is shifted to
larger values around m̄0 ≲ kmin ≲ Λ. Indeed, by decreasing
m̄0 and Λ we observe that the minimum is driven to lower
values of the spacelike momentum seen in the lower panel of
Fig. 1, as we have already pointed out before.
In Fig. 2 we show the results for the self-energy and for

the propagator spectral densities obtained with parameter
set 2 from Table I. The driving terms of Eqs. (12) and (13)
for ξ ¼ 0 due to the theta functions have the first threshold
at γ¼ m̄2

0, followed by γ¼ðm̄0þmgÞ2 and γ ¼ ðm̄0 þ ΛÞ2,
which are represented by the vertical lines in the figure.
In the upper panel of the figure one sees that the spectral
densities for the self-energy present discontinuities in their
derivatives at the thresholds.

FIG. 1. Landau gauge results for the running mass Mðk2Þ and
quark wave function Zðk2Þ as functions of spacelike momentum
k, using the sets of parameters given in Table I. Solid thick curves
are the fit of LQCD calculations for the mass function and wave
function renormalization given in [4].

FIG. 2. Spectral densities for the self-energy (upper panel) and
for the propagator (lower panel) as functions of γ, computed for
set 2 from Table I. The vertical lines are m̄2

0, ðm̄0 þmgÞ2 and
ðm̄0 þ ΛÞ2 from the thresholds of the driving terms in Eqs. (12)
and (13) (γ1 ¼ 0.216 GeV2, see text).
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In the lower panel of Fig. 2, we observe two peaks/
depths on both ρv and ρs located at γ1 ¼ 0.216 GeV2 and
γ2 ¼ 2.66 GeV2. Notice that

ffiffiffiffiffi
γ1

p
ρv ≈ ρs, which can be

checked by comparing the solid line with the dotted line.
This suggests that we interpret

ffiffiffiffiffi
γ1

p ¼ 0.465 GeV as
somewhat analogous to a mass pole, if you compare the
spectral density with the one for the Dirac propagator of a
structureless fermion, with, however, a negative residue,
which violates the positivity constraints [45]. Interestingly
enough the solution to Eqs. (12) and (13) pile-up strength
attempting to produce a second mass pole but with an
unphysical negative residue. The quark is not an asymptotic
state of QCD as it is confined and therefore such a feature
of the model interaction is not at odds with the physics we
want to describe. The integral of ρvðγÞ around the negative
peak at 0.465 GeV gives−1.42, comparable to the residue of
−0.58 at the second mass pole of 0.644 GeVobtained from
the fitting of the quark mass function with a monopolelike
form [46]. It is noteworthy that in Ref. [38] the scalar weight
is also negative, as well as in [43], which was attributed to
the choice of the renormalization scheme.
The sharp increase and subsequent peak at γ ∼ γ1ðγ2Þ in

ρBðγÞ can be traced back to the peaks and depth on ρs, at γ1
and γ2 (

ffiffiffiffiffi
γ2

p ¼ 1.63 GeV). We observe peaks in ρB at γ ∼ 3

and ∼7.37 GeV2, which are located close to ð ffiffiffiffiffi
γ1

p þ ΛÞ2 ¼
2.4 GeV2 and ð ffiffiffiffiffi

γ2
p þ ΛÞ2 ¼ 7.5 GeV2, respectively. As a

conclusion, the “shark fin” behavior seen in ρBðγÞ (upper
panel) could be qualitatively related with the two new
“thresholds” at ≈2.4 and 7.5 GeV2. Such a result is
associated with the Pauli-Villars contribution to the kernel.
A similar behavior is observed in ρAðγÞ, but with the
opposite sign. The subtraction of the Pauli-Villars term in
the kernel of Eqs. (12) and (13) has the physical effect of
concentrating its strength in the IR region characterized by
the lowest threshold m̄2

0 < γ ≲ ðm̄0 þ ΛÞ2, corresponding
to 0.38 <

ffiffiffi
γ

p ≲ 1.48 GeV, which has a visible effect in
both ρA and ρB below ∼2 GeV2. Furthermore, the equiv-
alent quark-gluon vertex form factor λ1 in the Landau
gauge, Eq. (10), has a characteristic momentum scale of
Λ ¼ 1.1 GeV for our analysis of set 2 (cf. Table I).
We have to add that in Ref. [41] the authors solved the

DSE with the rainbow-ladder truncation in Minkowski
space, also using Pauli-Villars regularization in the weak
coupling regime. In that reference the bare mass mB was
given as the input, while the renormalized mass was
evaluated from the self-energy relations. The remaining
method was very similar to the approach used here, and it
was shown that in the weak coupling regime the structure of
the propagator is consistent with a simple pole and branch
cuts in the timelike region.
From the Fig. 3 one may see that the imaginary parts of

the running massMðk2Þ and wave function renormalization
Zðk2Þ become nonzero in the timelike momentum region
(k2 > 0), and present discontinuities in their derivatives.

The kinks related to these discontinuities occur at the
thresholds already discussed for the spectral densities and
are indicated by the vertical lines. In these panels we also
show the results in the spacelike region (k2 < 0). The inset
shows both curves in the range 0 ≤ k2 ≤ m̄2

0, and the
vertical lines indicates the threshold of spectral densities.
The source of the rich structure in both Zðk2Þ andMðk2Þ in
the timelike region is associated with the localized strength
of the interaction DSE kernel in the IR region below
∼1 GeV, as given by the quark-gluon vertex form factor in
Eq. (10). It is interesting to observe that the Im½Mðk2Þ� has a
pronounced peak for the timelike momentum around the
third threshold ∼1.5 GeV. It is noteworthy to mention that
this value is comparable to the position of the pole at
0.846 GeV of the monopole form fitted to the quark mass
function [46].
The Phragmn-Lindelöff theorem [47] applies to the

Nakanishi integral representation of the self-energies which
are bounded, leading to the prediction that the asymptotic
values for space- and timelike regions are identical at
high momentum (see e.g., [48]), namely Aðk2 ¼ þ∞Þ ¼
Aðk2 ¼ −∞Þ and Bðk2 ¼ þ∞Þ ¼ Bðk2 ¼ −∞Þ and they

FIG. 3. Real and imaginary parts of Mðk2Þ (upper panel)
and Zðk2Þ (lower panel), for space- and timelike momenta.
The vertical lines are m̄2

0, ðm̄0 þmgÞ2 and ðm̄0 þ ΛÞ2 from the
thresholds of the driving terms in Eqs. (12) and (13).
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tend to their asymptotic values uniformly. Such properties
should be fulfilled by our results, and indeed we observe in
Fig. 3 the mathematical consistency of our numerical
calculations, by checking that the above properties are
verified forMðk2Þ and Zðk2Þ at the large momentum region
shown in the figure.

IV. FINAL REMARKS

The phenomena of the mass generation is studied in
Minkowski space in a Dyson-Schwinger model, which
incorporates physical scales inspired by lattice QCD
results. The DSE is formulated in the quenched approxi-
mation in covariant gauges within the rainbow-ladder
truncation with a massive gluon, and a Pauli-Villars
subtraction, which tunes the infrared physics of the model.
The scalar and vector components of the quark propagator
and scalar and vector self-energies are described by the
Källén-Lehmann and Nakanishi integral representations,
respectively. The associated spectral densities are the
solution of a set of inhomogeneous self-consistent equa-
tions free of singularities. The essential ingredient to close
these equations is the relation between the spectral densities
of the self-energy, propagator, and the residue at the
renormalized mass pole. In the Landau and Feynman
gauges the Pauli-Villars term is equivalent to the intro-
duction of a form factor to the quark-gluon vertex, which
turns the interpretation of the results more direct. The
kernel of the self-consistent equations presents a strong
enhancement concentrated in the IR region, mimicking
what is expected from the nonperturbative physics of QCD.
A detailed numerical study has been performed to

explore the dynamical chiral symmetry breaking in the
strong coupling constant regime. Solutions were found for
the spectral densities in Minkowski space, with the gluon
and Pauli-Villars masses inspired by lattice QCD results for
the gluon dressing function and the quark-gluon vertex. In
addition, the coupling constant and renormalized mass
pole, are tuned to LQCD results for the quark mass function
in the Landau gauge, concomitantly with a bare mass
around 10 MeV. The spectral densities of the scalar and
vector components of the quark propagator show a pro-
nounced negative peak at 0.465 GeV concentrated around a
small region between the first threshold at the renormalized
mass of 0.38 GeV extending up to ∼0.6–0.7 GeV. The
positivity constraints [45] are violated in this region.
Furthermore, the ratio of these scalar and vector densities
in this region is found to be the position of the peak,
resembling a single mass pole contribution to the propa-
gator. We found that, curiously, the residue at the renor-
malized mass pole and the analogous integral over the
vector density are similar to what was found for a quark
propagator model with a mass function described by a
monopole form factor fitted to LQCD results [46].
As the quark is not an asymptotic state the spectral

densities can in principle violate the positivity constraints,

as we see in this model. The positivity violation in this case
is not necessarily equivalent to the confinement, since the
latter is a very subtle relation to define in the presence of
dynamical quarks [49,50]. Therefore, despite being a
powerful discriminating tool, this criterion should be
understood as a sufficient, but not necessary, condition
for the confinement [51]. The wave function renormaliza-
tion is more critical to be fitted, although our results reflect
the IR enhancement of the interaction kernel by the
minimum of Zðk2Þ ∼ 0.8 around 1 GeV.
The spectral densities associated with the self-energies

also show a dominant region in infrared, and dominated by
the thresholds appearing in the self-consistent equations
both in the driving terms as well as in the interaction kernel.
These thresholds are defined by the renormalized quark
mass pole, gluon and Pauli-Villars masses, which were
tuned to approximately reproduce lattice QCD results. We
found a curious structure in the scalar densities, namely a
“shark fin” form reflecting the attempt to build two addi-
tional mass poles. Furthermore, we have explored the
analytic structure of the mass function and wave function
renormalization in the space- and timelike regions. The
imaginary part of the mass function seems to suggest a
dominant structure with a pronounced peak at timelike
momentum of 1.5 GeV, which suggests the possibility that
the mass function could have the presence of a mass pole,
as the monopolelike form adopted in the QCD-inspired
model in [46] to fit the LQCD quark mass function.
The present model can be improved in many ways, with

a more realistic gluon dressing function and a quark-gluon
vertex, which can reproduce LQCD results and at the same
time be written in terms of Nakanishi integral representa-
tion, for example the analytic forms like the one proposed
in [5]. In the near future we plan to apply the model to the
pion taking into account DCSB, by incorporating dressed
constituents with momentum dependent self-energies in the
interaction kernel of the Bethe-Salpeter equation. That
gives the relevant physical ingredients to further develop
the BS approach for the pion state proposed in [31] to
continue the exploration of the Minkowski space structure
of this fundamental meson.
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APPENDIX: SPECTRAL DENSITIES RELATIONS
AND RESIDUE OF THE PROPAGATOR

The connection formulas between ρAðγÞ; ρBðγÞ and
ρvðγÞ; ρsðγÞ are obtained by relating the first line of
Eq. (7) with the definition of S−1f given by Eq. (3) with
the self-energies Aðk2Þ and Bðk2Þ expressed by their
integral representations, and using the trivial relation
S−1f Sf ¼ 1. One may write

SvðγÞ ¼
R

γ − m̄2
0 þ {ϵ

þ
Z

∞

0

ds
ρvðsÞ

γ − sþ {ϵ

¼ AðγÞ
γA2ðγÞ − B2ðγÞ þ {ϵ

: ðA1Þ

and

SsðγÞ ¼
Rm̄0

γ − m̄2
0 þ {ϵ

þ
Z

∞

0

ds
ρsðsÞ

γ − sþ {ϵ

¼ BðγÞ
γA2ðγÞ − B2ðγÞ þ {ϵ

; ðA2Þ

which can be rewritten as

SvðγÞ ¼
fAðγÞ − {πρAðγÞ

DðγÞ ;

SsðγÞ ¼
fBðγÞ − {πρBðγÞ

DðγÞ : ðA3Þ

Here we used the definitions

DðγÞ ¼ γðfAðγÞ − {πρAðγÞÞ2 − ðfBðγÞ − {πρBðγÞÞ2; ðA4Þ

and

fAðγÞ ¼ 1þ
Z
�

∞

0

ds
ρAðsÞ
γ − s

; ðA5Þ

fBðγÞ ¼ mB þ
Z
�

∞

0

ds
ρBðsÞ
γ − s

; ðA6Þ

where the functions fAðBÞðγÞ are real and contain principal
value integrals.
After the real and imaginary part of Svðk2Þ and Ssðk2Þ are

separated, and performing some manipulations, it is found
that

Rδðγ − m̄2
0Þ þ ρvðγÞ

¼ δ

�
Re½DðγÞ�
fAðγÞ

�
Im½DðγÞ�¼0

þ ρAðγÞ
N1ðγÞ
dðγÞ − 2fAðγÞ

N2ðγÞ
dðγÞ ;

ðA7Þ

and

Rm̄0δðγ − m̄2
0Þ þ ρsðγÞ

¼ δ

�
Re½DðγÞ�
fBðγÞ

�
Im½DðγÞ�¼0

þ ρBðγÞ
N1ðγÞ
dðγÞ − 2fBðγÞ

N2ðγÞ
dðγÞ ;

ðA8Þ

where

N1ðγÞ ¼ γf2AðγÞ − π2γρ2AðγÞ − f2BðγÞ þ π2ρ2BðγÞ;
N2ðγÞ ¼ γρAðγÞfAðγÞ − ρBðγÞfBðγÞ;
dðγÞ ¼ 4π2½N1ðγÞ�2 þ ½N2ðγÞ�2: ðA9Þ

From Eqs. (A7) and (A8) we identify

ρvðγÞ ¼ ρAðγÞ
N1ðγÞ
dðγÞ − 2fAðγÞ

N2ðγÞ
dðγÞ ; ðA10Þ

ρsðγÞ ¼ ρBðγÞ
N1ðγÞ
dðγÞ − 2fBðγÞ

N2ðγÞ
dðγÞ : ðA11Þ

The spectral densities, ρvðγÞ and ρsðγÞ, in these equations
are different for zero from γ ≥ ðm̄0 þ

ffiffiffi
ξ

p
mgÞ2, as derived

from the support of ρAðγÞ and ρBðγÞ.
The residue of the propagator may be evaluated as

follows. Comparing the two sides of (A7) and (A8),
we find that

γ − m̄2
0 ¼ R

Re½DðγÞ�
fAðγÞ

¼ Rm̄0

Re½DðγÞ�
fBðγÞ

ðA12Þ

for Im½Dðγ ¼ m̄2
0Þ� ¼ 0. This means that

m̄2
0ρAðm̄2

0ÞfAðm̄2
0Þ − ρBðm̄2

0ÞfBðm̄2
0Þ ¼ 0; ðA13Þ

which is solved by ρAðm̄2
0Þ ¼ ρBðm̄2

0Þ ¼ 0, or by having
γ ≥ m̄2

0 such that the spectral densities ρAðγÞ and ρBðγÞ,
vanishes for γ ≤ ðm̄0 þ

ffiffiffi
ξ

p
mgÞ2. Then, the argument of the

delta appearing in Eqs. (A7) and (A8) vanishes if

m̄2
0f

2
Aðm̄2

0Þ − f2Bðm̄2
0Þ ¼ 0:

This condition can be achieved once we have

m̄0fAðm̄2
0Þ ¼ m̄0 þ m̄0

Z
�

∞

0

ds
ρAðsÞ
m̄2

0 − s
;

¼ fBðm̄2
0Þ ¼ mB þ

Z
�

∞

0

ds
ρBðsÞ
m̄2

0 − s
; ðA14Þ
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from where the value of the bare mass mB may be obtained
from Eq. (A14), and it reads

mB ¼ m̄0 þ m̄0

Z
�

∞

0

ds
ρAðsÞ
m̄2

0 − s
−
Z
�

∞

0

ds
ρBðsÞ
m̄2

0 − s
: ðA15Þ

Therefore, once the solution of the self-consistent equa-
tions, (12) and (13), are found with the input of the
renormalized mass the value of the bare one, mB, is
immediately obtained by the above relation. Further
manipulation of Eqs. (A5) and (A6), taking into account
the Eq. (A14) to eliminate mB, leads to

fAðγÞ¼1þ
Z
�∞

0

ds
ρAðsÞ
m̄2

0−s
−ðγ−m̄2

0Þ
Z
�∞

0

ds
ρAðsÞ

ðm̄2
0−sÞðγ−sÞ ;

ðA16Þ

fBðγÞ ¼ m̄0 þ m̄0

Z
�

∞

0

ds
ρAðsÞ
m̄2

0 − s

− ðγ − m̄2
0Þ
Z
�

∞

0

ds
ρBðsÞ

ðm̄2
0 − sÞðγ − sÞ : ðA17Þ

From the real parts of the denominator DðγÞ when
γ → m̄2

0, and taking into account the previous formulas,
one may finally write

R−1 ¼ 1þ
Z
�∞

0

ds
ρAðsÞ
m̄2

0 − s
− 2m̄2

0

Z
�∞

0

ds
ρAðsÞ

ðm̄2
0 − sÞ2

þ 2m̄0

Z
�

∞

0

ds
ρBðsÞ

ðm̄2
0 − sÞ2 ; ðA18Þ

which finally close our set of self-consistent integral
equations, (12) and (13), for the spectral densities.
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