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The modification of the ϕ meson spectrum in nuclear matter is studied in an updated QCD sum rule
analysis, taking into account recent improvements in properly treating the chiral invariant and breaking
components of four-quark condensates. Allowing both mass and decay width to change at finite density,
the QCD sum rule analysis determines certain combinations of changes for these parameters that satisfy
the sum rules equally well. A comprehensive error analysis, including uncertainties related to the
behavior of various condensates at linear order in density, the employed renormalization scale and
perturbative corrections of the Wilson coefficients, is used to compute the allowed ranges of these
parameter combinations. We find that the ϕ meson mass shift in nuclear matter is especially sensitive to
the strange sigma term σsN , which determines the decrease of the strange quark condensate in nuclear
matter. Specifically, we obtain a linear relation between the width Γϕ and mass shift Δmϕ given as

Γϕ ¼ aΔmϕ þ bσsN þ c with a ¼ ð3.947þ0.139
−0.130 Þ, b ¼ ð0.936þ0.180

−0.177 Þ and c ¼ −ð7.707þ4.791
−5.679 Þ MeV.

DOI: 10.1103/PhysRevD.105.114053

I. INTRODUCTION

The emergence of hadron masses larger than a few
hundred MeV from quarks lighter than 10 MeV and gluon
dynamics governed by the strong interaction is one of the
still not fully understood phenomena of QCD [1,2]. While
the effect of spontaneous chiral symmetry breaking [3,4]
is widely believed to be at least in part responsible for
the hadronic mass generation [5–8], it remains difficult to
experimentally confirm this theoretical scenario.
One promising experimental strategy that has been

pursued during the past decades is to study the behavior
of hadron masses in extreme conditions such as finite
temperature and/or density, because chiral symmetry is
expected to be at least partially restored in such environ-
ments (see Ref. [9] for a recent review). If hadron masses
are hence really generated even partially by chiral sym-
metry breaking, they should be modified in hot and/or
dense matter. Furthermore, chiral symmetry breaking
can naturally explain the mass difference between chiral

partners [10], so that if chiral symmetry is restored,
the mass difference between them can be expected to
vanish [11,12]. Based on these motivations, worldwide
experiments have indeed been performed attempting to
measure hadronic mass shifts at finite temperature or
density [13–17].
In this work, we focus on the finite density behavior of the

ϕ meson, which has recently attracted much theoretical
[18–26] and experimental [27–35] attention. On the theo-
retical side, following the original works of Refs. [7,36], the
QCD sum rule analysis of Ref. [18] demonstrated that a clear
relation exists between the ϕ meson mass shift in nuclear
matter and the strange sigma term σsN , which governs the
decrease of the strange quark condensate within the linear
density approximation, hs̄siρ ≃ hs̄si0 þ σsN

ms
ρ, where ρ rep-

resents the baryon density andms is the strange quark mass.
Furthermore, Ref. [26] showed that the longitudinal and
transverse modes of the ϕ meson, which at finite density
generally become independent due to the broken Lorentz
symmetry, have different nontrivial dispersion relations,
which could be manifested in distinct peaks in the respective
dilepton spectrum for nonzero spatial momentum with
respect to the nuclear matter rest frame. Moreover,
there is a multitude of recent works studying the ϕ meson
spectral function at finite density using hadronic effective
theories [19–24].
Experimentally, no consensus has yet been reached on

how the ϕmeson behaves in nuclear matter. While the KEK
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E325 experiment measured for the ϕ meson peak both a
negative mass shift and broadening at normal nuclear
matter density [28], no mass shift was seen at HADES
[33], which rather obtained data suggesting only broad-
ening effects, along the line of earlier results reported in
Refs. [27,30,31]. On the other hand, the recent ALICE
measurement of the ϕN correlation function in Ref. [35] led
to a determination of the ϕN channel scattering length with
a large real part corresponding to an attractive interaction
(hence suggesting a negative mass shift) and a small
imaginary part (suggesting weak broadening effects).
Interestingly, the absolute value of the thus obtained
scattering length is much larger than what was measured
in earlier ϕ meson photoproduction experiments [37,38]. It
is hoped that the situation will be clarified at the ongoing J-
PARC E16 experiment, where pA reactions with various
target nuclei will be probed to measure the finite density
dilepton spectrum in the ϕ meson mass region [34]. There
is also a proposal to measure at J-PARC not only the
dilepton, but also the KþK− spectrum from the same pA
reactions, which would serve not only as an important
consistency check, but also provide opportunities for new
measurements thanks to the much higher statistics and to
the larger branching ratio of this channel with different
angular dependencies of the outgoing particles, which
might allow the separation of the longitudinal and trans-
verse modes [39].
For the theoretical study in this paper we make use of the

QCD sum rule method, including the following two major
improvements compared to previous works. First, we take
into account the possibility of broadening in the phenom-
enological parametrization of the spectral function, follow-
ing similar approaches in Refs. [40,41]. As discussed
already in these previous works, the broadening effect
has to be introduced as a new and independent parameter in
the sum rule analysis. It is then no longer possible to
uniquely determine both mass shift and width of the ϕ
meson from the sum rules, but strong correlations between
them. Second, we consider the chiral properties of the four-
quark condensates that appear in the ϕ meson sum rules by
separating them into chiral symmetric (e.g., invariant) and
chiral breaking parts and treating the two contributions
independently. This allows us to study the role of chiral
symmetry restoration not only from the conventional chiral
condensate of mass dimension 3, but also the dimension 6
four-quark condensates [42]. Moreover, it becomes pos-
sible to go beyond the usually applied vacuum saturation
approximation. Two of the present authors have already
applied this advanced treatment of the four-quark conden-
sates to the study the finite density behavior of light vector
and axial-vector mesons and nucleon and delta resonances
[45] and have, for instance, found that the masses of the
chiral partners ρ and a1 become degenerate with a mass of
about 550 to 600 MeV in the vacuum with restored chiral
symmetry [42].

This paper is organized as follows. In Sec. II, we
recapitulate our treatment of the four-quark condensates,
paying attention to the specific condensates needed for the
ϕmeson sum rule. This is followed by a general description
the QCD sum rule approach in Sec. III. The results of this
work are summarized in Sec. IV, starting with a discussion
of the vacuum ϕ meson sum rule in Sec. IVA, which
provides the baseline of the later finite density analysis,
given in Sec. IV B. The main features and physical
consequences of the obtained findings are discussed in
Sec. V, after which the paper is concluded in Sec. VI.

II. SEPARATION OF FOUR-QUARK
CONDENSATES

In this section, we summarize how to separate the four-
quark condensates into chiral symmetric and breaking
parts, which was already used in Ref. [42] to study the
ρ and a1 meson channels. The quark propagator Sqðx; 0Þ≡
Sqðx; yÞjy¼0 appearing inside an expectation value can
always be decomposed into chiral symmetric and breaking
parts by adding and subtracting its chiral partner, which are
also called the chiral even (S) and odd (B) components,
respectively.

Sqðx; yÞ ¼ ðSBq ðx; yÞ þ SSqðx; yÞÞ; ð1Þ

SBq ðx; yÞ ¼
1

2
ðSqðx; yÞ − iγ5Sqðx; yÞiγ5Þ; ð2Þ

SSqðx; yÞ ¼
1

2
ðSqðx; yÞ þ iγ5Sqðx; yÞiγ5Þ: ð3Þ

For the dimension 3 two-quark condensate only the chiral
symmetry breaking part contributes due to the trace,

hq̄qi ¼ −lim
x→0

hTr½SBq ðx; 0Þ�i
¼ −πρð0Þ; ð4Þ

where ρð0Þ the density of zero modes as derived by Casher
and Banks [43].
A four-quark condensate typically has the following

general form, which can be written in terms of disconnected
(dis) and connected (con) pieces of the quark propagator
denoted by the respective subscripts,

hðq̄ΓqÞðq̄ΓqÞi ¼ hTr½SiqΓ�Tr½SiqΓ�idis − hTr½ΓSiqΓSiq�icon;
ð5Þ

where Γ is an arbitrary matrix that can contain Dirac, color
and/or flavor components. The summation in i ¼ B, S does
not include cross terms as the Dirac matrix in Γ will only
allow one type to contribute. As shown in Eq. (4), SBq is

JISU KIM, PHILIPP GUBLER, and SU HOUNG LEE PHYS. REV. D 105, 114053 (2022)

114053-2



proportional to the density of zero modes so that a general
four-quark condensate can be expressed as,

hðq̄ΓqÞðq̄ΓqÞi ¼ hðq̄ΓqÞðq̄ΓqÞiB þ hðq̄ΓqÞðq̄ΓqÞiS; ð6Þ

where the subscript B and S represent the chiral symmetry
breaking and symmetric parts, respectively, and the former
is proportional to ρ2ð0Þ.
Let us now consider the four-quark condensates appear-

ing in the ϕ meson sum rule which are the following three
types:

hðs̄γμλasÞ2i; hðs̄γμγ5λasÞ2i; hðs̄γμλasÞðūγμλauÞi: ð7Þ

For the condensate hðs̄γμλasÞðūγμλauÞi, as is clear from its
flavor structure, only the disconnected term contributes.
Since the symmetry breaking quark propagator vanishes
due to the trace Tr½γμSBq � ¼ 0, it is a chiral symmetric
condensate,

hðs̄γμλasÞðūγμλauÞi ¼ hðs̄γμλasÞðūγμλauÞidis;S: ð8Þ

The other two condensates have contributions from both
the chiral symmetry breaking and symmetric parts. One
first notes that, both have disconnected and connected
contributions. For the connected piece, using the property

iγ5SBs iγ5 ¼ −SBs ; ð9Þ

one can write the breaking part in the two condensates as a
single operator with an overall sign depending on its Dirac
structure. In summary, one finds

hðs̄γμλasÞ2i ¼ hðs̄γμλasÞ2idis;S þ hðs̄γμλasÞ2icon;S
þ hðs̄γμλasÞ2icon;B;

hðs̄γμγ5λasÞ2i ¼ hðs̄γμγ5λasÞ2idis;S þ hðs̄γμλasÞ2icon;S
− hðs̄γμλasÞ2icon;B: ð10Þ

In the following analysis, we will first use the exper-
imental values of the mass and width of the meson of
interest to estimate the value of the four-quark condensates
appearing in its vacuum sum rule. As discussed, the four-
quark condensates will be composed of the chiral sym-
metric and breaking parts. We will then use the vacuum
saturation hypothesis to estimate the values of the four-
quark operators. Within this approximation, the symmetric
operators will vanish, while the breaking operators will
become proportional to the square of the quark condensate,
hq̄qi2. For convenience, we introduce an auxiliary param-
eter κ defined as their ratio.

κ ¼ M
Mv:s:

; ð11Þ

where M is the total magnitude of the four-quark con-
densates extracted from our sum rule method and Mv:s: is
the total magnitude expected from the vacuum saturation
hypothesis. κ ¼ 1 corresponds to the case of using the
vacuum saturation of the four-quark condensates.
For the sum rules of the ðρ; a1Þ mesons that form chiral

partners, the four-quark condensates contributing to the
respective OPE can be shown to have the same contribution
from the chirally symmetric part but a breaking part
contributing with different coefficients. Therefore, both
contributions can be determined uniquely.
It should be noted that not all vector mesons (JP ¼ 1−)

have chiral partners with JP ¼ 1þ. This is so because the
vector meson octet mixes with the singlet. For example, an
ideally mixed ω meson is invariant under SU(2) chiral
rotation, while the ρ mixes with the a1 [44]. This implies
that the number of independent combinations of four-quark
operators appearing in the ðω; fq̄q1 Þ sum rules is more than
two so that determining them from the two parity sum rules
is no longer possible. On the other hand, as the difference
between ðρ; a1Þ and ðω; fqq̄1 Þ sum rules arises due to the
disconnected diagrams, one can estimate these matrix
elements from comparing the respective phenomenology
and thus obtain the values of all combinations of chiral
breaking and symmetric operators appearing in the sum
rules for the latter pair. Furthermore, assuming the con-
tributions of disconnected diagrams to be flavor indepen-
dent, one can estimate the values of chiral symmetry
breaking and symmetric operators appearing in the
ðϕ; fss̄1 Þ as well as all other spin 1 sum rules [45].

III. QCD SUM RULES ANALYSIS

We start with the two-point correlation function of the
interpolating currents, which couple the meson states to be
investigated in this work,

ΠμνðqÞ ¼ i
Z

d4eiqxhT½jμðxÞjνð0Þ�i: ð12Þ

For the ϕ and fss̄1 meson, the currents jμ ¼ s̄γμs and jμ ¼
s̄γμγ5s are used, respectively, where only the transverse
component is taken for the axial vector current [44]. If the
bracket hi has the explicit subscript ρ, it stands for the
expectation value with respect to the ground state of nuclear
matter at density ρ and zero temperature. Otherwise, it
stands for the vacuum expectation value. In both vacuum
and in-medium cases, we only study the contracted
correlation function defined as

Πðq2Þ ¼ 1

3q2
Πμ

μðqÞ; ð13Þ

which is sufficient, as long as we are interested in the case
of the meson at rest with respect to the medium.
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The phenomenological side is constructed using the
following parametrizations of the spectral function ρðsÞ,

ρðsÞ ¼ ρpoleðsÞ þ ρcontðsÞ;

ρpoleðsÞ ¼ 1

π

fΓ
ffiffiffi
s

p
ðs −m2Þ2 þ sΓ2

θðs0 − sÞ;

ρcontðsÞ ¼ 1

π
θðs − s0ÞImΠ̃pertðsÞ; ð14Þ

wherem (Γ) is the single hadron Breit-Wigner mass (width)
and s0 is the threshold parameter. The values ofm and Γ for
the ϕ (fss̄1 ) meson employed to construct the pole structure
are 1019.45 (1426.3) and 4.26 MeV (54.5 MeV), respec-
tively. These will be used to determine the values of the
four-quark operators appearing in the dimension-6 term in
the operator product expansion (OPE) of Eq. (12). After the
Borel transform, the phenomenological side is given by

Π̂pole;contðM2Þ ¼
Z

∞

4mπ

ds e−s=M
2

ρpole;contðsÞ; ð15Þ

where mπ is the pion mass and M the nonphysical Borel
mass. The corresponding Borelized OPE side is obtained as

Π̂OPEðM2Þ ¼ c0 þ
c2
M2

þ c4
M4

þ c6
M6

; ð16Þ

where all terms with dimension 8 and higher are neglected.
The coefficients cn for the ϕ meson sum rules in vacuum
are given as [18]

c0ð0Þ ¼
1

4π2

�
1þ αs

π
þ α2s
π2

×

�
365

24
− 11ζð3Þ − 3

�
11

12
−
2

3
ζð3Þ

���
;

c2ð0Þ ¼ −
3m2

s

2π2

�
1þ 2

3

αs
π

�
4 − 6 log

�
M
μ

�
þ 3γE

��
;

c4ð0Þ ¼
1

12

�
1þ 7

6

αs
π

��
αs
π
G2

�
þ 2ms

�
1þ 1

3

αs
π

�
hs̄si;

c6ð0Þ ¼ −παs
�
hðs̄γμγ5λasÞ2i

þ 2

9

�
ðs̄γμλasÞ

� X
q¼u;d;s

ðq̄γμλaqÞ
���

þm2
s

6

�
1

3

�
αs
π
G2

�
− 8mshs̄si

�
: ð17Þ

The corresponding coefficients for the fss̄1 meson channel
are [44]

cA0 ð0Þ ¼ c0ð0Þ
cA2 ð0Þ ¼ c2ð0Þ

cA4 ð0Þ ¼
1

12

�
1þ 7

6

αs
π

��
αs
π
G2

�
− 2ms

�
1þ 1

3

αs
π

�
hs̄si;

cA6 ð0Þ ¼ −παs
�
hðs̄γμλasÞ2i

þ 2

9

�
ðs̄γμλasÞ

� X
q¼u;d;s

ðq̄γμλaqÞ
���

þm2
s

6

�
1

3

�
αs
π
G2

�
þ 8mshs̄si

�
: ð18Þ

The parameter values used in the numerical analysis, to be
discussed below, are given in Table I.
To eliminate the dependence on the residue f in ρpoleðsÞ

shown in Eq. (14), we conduct an analysis using the ratio
between Π̂phen=OPEðM2Þ and its derivative with respect
to −1=M2. Specifically, we will use the following form
throughout this paper:

Π̂poleðM2Þ0
Π̂poleðM2Þ ¼ Π̂OPEðM2Þ0 − Π̂contðM2Þ0

Π̂OPEðM2Þ − Π̂contðM2Þ ; ð19Þ

where the primes denote the derivative with respect to
−1=M2. In vacuum, the experimental values of the mass
and decay width are used to evaluate the parameter κ. In
nuclear matter, Eq. (19) is used to extract the in-medium
mass of the ϕ meson for varying decay widths.

TABLE I. Parameter values used for the in-vacuum and/or in-
medium numerical analyses, for the two renormalization scales of
μ ¼ 1 GeV and μ ¼ 2 GeV. The quark mass and condensate
value are scaled to μ ¼ 1 GeV from the values at μ ¼ 2 GeV,
using the scale conversion factor 1.35, following Ref. [46]. As

2,
Ag
2, and As

4 can be found in [9]. Details of the twist-4 operators
contained in X are discussed in [47].

μ 1 GeV 2 GeV

ms [46] 125.55 MeV 93 MeV
αs [48] 0.5 0.31
hūui [49] ð−0.246 GeVÞ3 ð−0.272 GeVÞ3
hðαs=πÞG2i [50] 0.012 GeV4 0.012 GeV4

hs̄si=hūui [51] 0.8 0.8
MN 939 MeV 939 MeV
ρ0 0.17 fm−3 0.17 fm−3

σπN 45 MeV 45 MeV
As
2 0.053 0.072

Ag
2 0.367 0.425

As
4 0.00121 0.00122

X 6.40 MeV 6.40 MeV
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To make sure that the various approximations applied to
derive the sum rules are valid, one usually defines an
appropriate range of the Borel mass M (called the “Borel
window”), which we discuss below. On the phenomeno-
logical side, one has to make sure that the contribution from
the pole ρpoleðsÞ dominates over that from the continuum
ρcontðsÞ. The corresponding constraint is

R
∞
s0
ds e−s=M

2

ρcontðsÞR∞
0 ds e−s=M

2

ρpoleðsÞ < 0.5; ð20Þ

which determines the upper boundary Mmax of the Borel
window. On the other hand, to ensure a reasonable
convergence of the OPE, we require the contribution of
the condensate terms to be smaller than that of the
perturbative term. Specifically,

Π̂OPE
cond termsðM2Þ
Π̂OPE

pert termðM2Þ < 0.1; ð21Þ

where Π̂OPE
cond termsðM2Þ and Π̂OPE

pert termðM2Þ are the sum of the
condensate terms considered and the perturbative term on
OPE side, respectively. This condition restricts the Borel
mass M to be larger than Mmin.
The threshold parameter s0 is chosen so that the

minimum mass in the Borel curve for mass is located at
the center of the Borel window. The mass and kappa values
are taken at the extremum point.

IV. RESULTS

A. Vacuum analysis

To apply the method proposed in Ref. [45] to the ϕ
and fss̄1 ð1420Þ meson channels, we need to extend it from
Nf ¼ 2 to the Nf ¼ 3 case. The fundamental difference
between the two is whether or not the strange quark
condensates are considered sensitive to the change of the
zero mode density. Similar to the (ωð782Þ, fqq̄1 ð1285Þ) pair,
they are not exact chiral partners, but parity partners. They
therefore have different chirally symmetric dimension-6
(four-quark) condensates which contribute to their mass
difference in the chiral symmetry restored vacuum. They
read

Mϕ ¼ 7

9
hBssiB þ hðs̄γμγ5λasÞ2idis;S þ hSiS;

Mfss̄
1
¼ −

11

9
hBssiB þ hðs̄γμλasÞ2idis;S þ hSiS; ð22Þ

where

hðs̄γμλasÞ2i ¼ hðs̄γμλasÞ2idis;S þ hðs̄γμλasÞ2icon;S
− hðs̄γμγ5λasÞ2icon;B;

hðs̄γμγ5λasÞ2i ¼ hðs̄γμγ5λasÞ2idis;S þ hðs̄γμλasÞ2icon;S
þ hðs̄γμγ5λasÞ2icon;B;

hBssiB ≡ hðs̄γμγ5λasÞ2icon;B;

hSiS ≡ 11

9
hðs̄γμλasÞ2icon;S þ

2

9
hðs̄γμλasÞ2idis;S

þ 2

9
hðs̄γμλasÞðl̄γμλalÞiS; ð23Þ

and the subscripts are defined as before. Employing the
auxiliary parameter κ, Eq. (22) can be rewritten as

Mϕ ¼ κϕ
112

81
hs̄si2;

Mfss̄
1
¼ −κfss̄

1

176

81
hs̄si2: ð24Þ

The numerical factors appearing above after the κ’s are
obtained from the vacuum saturation hypothesis. As men-
tioned in Sec. II, κϕ ¼ 1, which corresponds to the exact
vacuum saturation, is not likely to be a realistic estimate, due
to the ignored intermediate states, particularly those involv-
ing kaons. Combining Eqs. (22) and (24), we have

κϕ
112

81
hs̄si2 ¼ 7

9
hBssiB þ hðs̄γμγ5λasÞ2idis;S þ hSiS;

−κfss̄
1

176

81
hs̄si2 ¼ −

11

9
hBssiB þ hðs̄γμλasÞ2idis;S þ hSiS:

ð25Þ

To evaluate the chiral breaking and symmetric contri-
butions, we assume that the disconnected condensate
values do not depend on their flavor. The light-flavor
disconnected four-quark condensates appearing in the sum
rules of the ω and fss̄1 channels, were evaluated in Ref. [45].
Taking into account that there are two light flavors
compared to one strange, we get

hðs̄γμγ5λasÞ2idis;S ¼
1

4
hðq̄γμγ5λaqÞ2idis;S;

hðs̄γμλasÞ2idis;S ¼
1

4
hðq̄γμλaqÞ2idis;S; ð26Þ

where q stands for the isospin doublet. The values of
the light flavor four-quark condensates can be obtained
from the following equations, discussed in detail in
Ref. [45].
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ðκω − κρÞ
448

81
hūui2 ¼ 2hðq̄γμγ5λaqÞ2idis;S;

−ðκfqq̄
1
− κa1Þ

704

81
hūui2 ¼ 2hðq̄γμλaqÞ2idis;S: ð27Þ

In the second line, fqq̄1 stands for fss̄1 ð1285Þ, the parity
partner of the ω meson. The two disconnected four-quark
operators on the right-hand side of Eq. (27) are chiral
symmetric operators and are, respectively, the additional
four-quark operators that appear in the ðω; fqq̄1 Þ sum rules.
While these operators are responsible for the difference

between the isospin singlet and triplet currents, and spoil
the chiral parity relation between ðω; fqq̄1 Þ, their values can
be obtained by combining the results from ðρ; a1Þ. The
numerical results of the analysis performed in Ref. [45] are
given in the first four lines of Table II. The 5th and 6th lines
show the results for the κ values in the ϕ and fss̄1 channels
obtained from Eq. (19) with phenomenological inputs for
the corresponding masses and widths. Figure 1 depicts the
Borel curves for κϕ and κfss̄

1
, while Fig. 2 shows the Borel

curve for the corresponding masses, using the obtained κ
values demonstrating a stable Borel curve and thus con-
firming our analysis.

B. Nuclear matter analysis

After having fixed the κ parameters in vacuum, we can
now proceed to the sum rule analysis at finite density. The
modifications of the strange quark and gluon condensates
at leading order in density ρ can be given as [52]

hs̄siρ ≃ hs̄si þ hNjs̄sjNiρ ¼ hs̄si þ σsN
ms

ρ;

�
αs
π
G2

�
ρ

≃
�
αs
π
G2

�
þ hNj αs

π
G2jNiρ

¼
�
αs
π
G2

�
−
8

9
ðMN − σπN − σsNÞρ; ð28Þ

where MN is the nucleon mass, ms the strange quark mass,
ρ the (nucleonic) baryon density, σπN ¼ 2mqhNjq̄qjNi the
πN sigma term and σsN ¼ mshNjs̄sjNi the strangeness
sigma term. Including the twist-2 and -4 operators, the
coefficients of Eq. (17) are at finite density modified as

TABLE II. The values of the κ parameters and four-quark
condensates evaluated from our vacuum analysis, given in units
of GeV. DV and DA stand for ðq̄γμλaqÞ2 and ðq̄γμγ5λaqÞ2,
respectively.

μ 1 GeV 2 GeV

κρð ffiffiffiffiffi
s0

p Þ 2.0532(1.223) 1.6859(1.224)

κa1ð
ffiffiffiffiffi
s0

p Þ 0.4481(1.594) 0.3637(1.593)

κωð ffiffiffiffiffi
s0

p Þ 2.4104(1.203) 1.9884(1.203)

κfqq̄
1
ð ffiffiffiffiffi

s0
p Þ 1.3204(1.621) 1.0756(1.621)

κϕð ffiffiffiffiffi
s0

p Þ 2.0056(1.438) 2.9390(1.448)

κfss̄
1
ð ffiffiffiffiffi

s0
p Þ 0.5495(1.770) 0.8943(1.772)

αshDVidis;S −ð0.2738 GeVÞ6 −ð0.2701 GeVÞ6
αshDAidis;S ð0.2188 GeVÞ6 ð0.2172 GeVÞ6
αshBssiB ð0.2060 GeVÞ6 ð0.2375 GeVÞ6

1 1.5 2 2.5 3

M2 (GeV2)

0

0.5

1

1.5

2

2.5

3

FIG. 1. Borel curves for the auxiliary parameters κϕ (black line)
and κfss̄

1
(red line), obtained from our vacuum sum rule analysis at

the renormalization scale of 2 GeV. The extent of the solid lines
indicate the range of the Borel window for each channel.

1 1.5 2 2.5 3 3.5

M2 (GeV2)

0.6
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1

1.2

1.4

1.6

1.8

m
as

s(
G

eV
)

FIG. 2. Borel curves for the mass of the ϕ (black line) and fss̄1
(red line) mesons in vacuum. The extent of the solid lines indicate
the range of the Borel window for each channel.
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c0ðρÞ ¼ c0ð0Þ;
c2ðρÞ ¼ c2ð0Þ;

c4ðρÞ ¼ c4ð0Þ þ ρ

�
−

2

27
MN þ 56

27
σsN

þ 2

27
σπN þ As

2MN −
7

12

αs
π
Ag
2MN

�

c6ðρÞ ¼ c06 þ ρ

�
−2XM2

N −
104

81
m2

sσsN þ 4

81
m2

sσπN

−
3

4
m2

sAs
2MN −

5

6
As
4M

3
N

�
; ð29Þ

where

c06 ¼ −παs
�
7

9
hBssiB

hs̄si2ρ
hs̄si2 þ hSϕiS

�

þm2
s

6

�
1

3

�
αs
π
G2

�
− 8mshs̄si

�
;

hSϕiS ¼ hðs̄γμγ5λasÞ2idis;S þ hSiS: ð30Þ

Let us here briefly outline our treatment of the density
dependence of the four-quark condensates appearing in the
ϕ meson sum rule. The chiral symmetry breaking operator
hBssiB is assumed to take a form proportional to hs̄si2ρ,
in which hs̄siρ is modified according to Eq. (28). The
behavior of the chiral symmetric operators hSiS at finite
density is much less clear, because the restoration of chiral
symmetry cannot be used here as a guiding principle. To
explore the full range of possibilities, we consider two
extreme cases, which will then be used to estimate the
uncertainties of the final results caused by this unknown
density dependence of hSiS. First, we assume the terms in
hSiS to remain constant at their vacuum value, without any
density dependence. For the second case, we take them to
have the same relative modification as the chiral symmetry
breaking term explained above.
The results of our analysis are shown in Fig. 3, together

with the result reported by the KEK E325 experiment [28]
(red square).
The boundaries of the color bands in this plot are

obtained from two principle sources of error. The first is
the uncertainty coming from the choice of the renormal-
ization scale (μ ¼ 1 GeV or μ ¼ 2 GeV), which dominates
the error for small σsN values. The second is related to the
treatment of the chiral symmetric four-quark condensates.
As discussed above, we consider two extreme cases and
estimate the uncertainty introduced by this choice. The later
error increases with increasing σsN , and hence leads to
thicker error bands for larger σsN values. As can be seen in
Fig. 3, the latter error dominates for σsN ≳ 100 MeV.
Finally, inspecting Fig. 3, one notes that the solutions

that satisfy the sum rules with different mass shift and

decay width values lie on an essentially linear curve, which
allows us to express our result in a simple analytic
expression. By fitting the curves of Fig. 3, we obtain

Γϕ ¼ aΔmϕ þ bσsN þ c; ð31Þ

where a ¼ ð3.947þ0.139
−0.130Þ, b ¼ ð0.936þ0.180

−0.177Þ and c ¼
−ð7.707þ4.791

−5.679Þ MeV.

V. DISCUSSION

The main result of our in-medium analysis is given in
Fig. 3 and Eq. (31). For a fixed value of σsN , we see that the
sum rules allow for either a large increase of the decay
width or (for most cases) a mass reduction for the ϕ meson
in nuclear matter (or a combination of the two). Without
any additional input, it is not possible to distinguish the
different scenarios. However, limiting the in medium decay
width to values below 50 MeV, which lies within pre-
dictions of most effective model calculations [19–24], one
can determine the ϕmeson nuclear matter mass shift with a
precision of about 10 MeV.
Conversely, using the available experimental results on

the ϕ meson decay width and mass shift in nuclear matter,
the result of Fig. 3 allows us to determine a range of σsN
values that are consistent with the sum rules. The finding of
the KEK E325 experiment [28], indicated as a red square in
Fig. 3, can, for instance, be understood to be consistent with
a strangeness sigma term of about σsN ∼ 125 MeV. As
previously pointed out in Ref. [18] and again confirmed
here, this finding does not agree with recent lattice QCD
calculations of this quantity [53–55], which get values of

FIG. 3. The negative mass shift of the ϕ meson versus its
decay width using the value of disconnected four-quark con-
densates from the light meson cases. The red square indicates
the experimental result of the KEK E325 Collaboration [28].
The definition of the left and right boundaries are explained in
the text.
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around σsN ∼ 50 MeV (see also Refs. [9,49] for compila-
tions and detailed discussions of the lattice QCD calcu-
lations). It will be interesting to see whether the J-PARC
E16 experiment and further experimental studies at
HADES and ALICE will confirm the KEK E325 result
and if the above-mentioned inconsistency persists. It is also
possible that the discrepancy can be resolved by allowing a
much larger change in the chiral symmetric four-quark
condensate. In fact, as can be seen in Fig. 4 allowing
the chiral symmetric operator to decrease to about
20% (45%) of the vacuum value with parameters chosen
at μ ¼ 1 ð2Þ GeV, one finds that the KEK E325 result
could be consistent with σsN ∼ 50 MeV. We would then
have to understand the origin of the large medium effect of
the chiral symmetric operators.

VI. CONCLUSION AND OUTLOOK

We have in this work studied the behavior of the ϕ
meson in nuclear matter, making use of a QCD sum rule
approach that takes the chiral properties of the four-quark

condensates properly into account and furthermore allows
for not only an in-medium ϕ meson mass shift, but also
broadening in the phenomenological parametrization of the
spectral function. As a result, we find that while the sum
rules can be satisfied by multiple combinations of mass
shift and broadening scenarios, the range of allowed
modification parameters can be strongly constrained by
the value of the strangeness sigma term σsN . Specifically, an
increasing value of σsN will lead to a larger negative mass
shift, but not much influences the magnitude of the in-
medium decay width (see Fig. 3).
In the future, two major items could be considered to

further improve the accuracy of the QCD sum rule
predictions given in this work. First, nonzero momentum
effects should be taken into account along the lines of
Refs. [26,36], especially in view of the fact that most
experimentally measured ϕ mesons in nuclear matter are
not at rest with respect to the medium and finite momentum
effects therefore should be accounted for. Second, the
finite-density behavior of the chiral symmetric four-quark
condensates are still largely unknown, the related uncer-
tainty hence substantially contributing to the size of the
error bands shown in Fig. 3. It remains a challenging
theoretical task to constrain this behavior through model or
lattice QCD calculations.
On the experimental side, we can expect a lot of new data

coming out during the next few years, not only from the
ongoing J-PARC E16 experiment [34], but also more
precise data becoming available from experiments at
HADES [33] and ALICE [35]. We expect that these
new data, combined with further improved theoretical
calculations, will lead to a more complete understanding
of the behavior of the ϕ meson in nuclear matter and,
eventually, of the relationship between its properties and
chiral symmetry of QCD.
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