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We have derived the analytic solutions of dissipative relativistic spin hydrodynamics with Gubser
expansion. Following the standard strategy of deriving the solutions in a Gubser flow, we take the Weyl
rescaling and obtain the energy-momentum and angular momentum conservation equations in the dS3 × R
space-time. We then derive the analytic solutions of spin density, spin potential and other thermodynamic in
dS3 ×R space-time and transform them back into Minkowski space-time R3;1. In the Minkowski space-
time, the spin density and spin potential including the information of radial expansion decay as ∼L−2τ−1

and ∼L−2τ−1=3 in large L limit, with τ being proper time and L being the characteristic length of the system,
respectively. Moreover, we observe the nonvanishing spin corrections to the energy density and other
dissipative terms in the Belinfante form of dissipative spin hydrodynamics. Our results can also be used as
test beds for future simulations of relativistic dissipative spin hydrodynamics.
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I. INTRODUCTION

A large amount of orbital angular momentum
perpendicular to the reaction plane is generated in non-
central relativistic heavy-ion collisions at Relativistic
Heavy Ion Collider (RHIC). Due to the spin-orbit coupling,
particles produced in collisions are polarized along the
direction of initial angular momentum. Such kinds of
polarization can be measured through the weak decay of
Λ and Λ̄ hyperons [1–3]. The global polarization of Λ and
Λ̄ hyperons measured by STAR Collaboration [4–6] con-
firms the early theoretical predictions [1–3] and is
described by phenomenological models well [7–21]. One
can also see the recent reviews [22–24] and references
therein. Very recently, the global spin polarization at low
energy region attracts lots of attention and needs to be
systematically studied [25–30].
Furthermore, the STAR experiments have also measured

the local spin polarization of Λ and Λ̄ hyperons along the
beam and out-of-plane directions [31,32]. The experimen-
tal data shows that the local spin polarization along the
beam direction as a function of the azimuthal angle is

opposite to the theoretical predictions from both transport
and hydrodynamic models [12,13,18,33–35]. Such differ-
ence can not be explained by feed-down effects [36–38].
It is referred as the “sign problem” in the local spin
polarization. There are also many other approaches, e.g.,
by considering hadronic interactions [39,40], quantum
kinetic approaches [41–53], simulation for the chiral
kinetic theory with side-jump effects [54], and relativistic
spin hydrodynamics [55–71]. Although some approaches
[54,72] agree with the data qualitatively and certain
progress has been made, this problem has not been solved
completely till now and requires further investigation.
One possible problem related to the sign problem is that

the spin degrees of freedom may not reach the global
equilibrium so that the Cooper-Frye formula [9,11] at
global equilibrium fails to reproduce local spin polariza-
tion. It suggests that we need to add the spin degree of
freedom to the current phenomenological frameworks and
consider the off-equilibrium effects [22–24,32,73–77].
Very recently, the shear-induced polarization (SIP) as

one of the off-equilibrium effects [73–77] has been pro-
posed and plays an important role to the spin polarization.
The numerical results from relativistic hydrodynamics
including SIP can give a correct sign in the comparison
with the experimental data in the named the strange quark
equilibrium scenarios [75], or in the isothermal equilibrium
scenarios [77]. On the other hand, the total polarization in
strange quark equilibrium scenarios is also found to be
sensitive to the equation of state, freeze-out temperature,
and other parameters [78]. Similar studies on the parameter
dependence at the

ffiffiffiffiffiffiffiffi
sNN

p ¼ 19.6 GeV collisions are shown
in Ref. [79], and one can also see Refs. [20,80–83] for other
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related discussions. It indicates that the off-equilibrium
effects need to be systematically studied in the future.
Moreover, the modified Cooper-Frye formula including
off-equilibrium effects, such as the effects of collisions [84]
and spin [74] has been discussed.
On the other hand, there are two general ways to add the

spin degree of freedom to the current phenomenological
frames. As a macroscopic effective theory, the relativistic
spin hydrodynamic is one possible way to consider the spin
effects in the heavy ion collisions. In ordinary relativistic
hydrodynamics, spin is not encoded into the conservation
equations of energy, momentum, and net charge or baryon
number. To describe the influence of spin, there are several
ways to construct the relativistic spin hydrodynamics, such
as through effective Lagrangian approaches [85,86],
entropy current analysis [58,64,65,67,68,70], quantum
statistical operators approach [7,87–89], and quantum
kinetic theory [43,55,56,59,69,84,90]. Meanwhile, the
microscopic descriptions for spin dynamics are the quan-
tum kinetic theories for massive fermions with collisions
[41–43,46,48,49,51,52,91,92], which are a natural exten-
sion of chiral kinetic theory [93–107]. Also, see recent
reviews [22,23,66,108,109] and the reference therein.
Moreover, in recent studies [63,74,110], a modified

Cooper-Frye formula with spin potential at local equilib-
rium has been derived, in which the spin potential, just like
the thermal vorticity and shear viscous tensor, contributes
to spin polarization pseudovector.
Although there are intensive discussions on relativistic

spin hydrodynamics, the codes for the numerical simula-
tions have not been developed yet. It results in the lack of
decaying behavior of spin density and spin potential. To see
the influence of spin potential in the modified Cooper-Frye
formula [74,110], we need to know the decaying behavior
of these terms. Meanwhile, the numerical simulations also
require some analytic solutions in special configurations as
the test beds.
To estimate the decay behavior of spin potential and find

the suitable test beds for the future numerical simulations,
we search for the analytic solutions of relativistic spin
hydrodynamics at some certain configurations. Based on
the canonical form of relativistic spin hydrodynamics
[58,64,70], we have already derived the analytic solutions
in Bjorken expansion [71]. Our results show that the spin
density and spin potential decay as τ−1 and τ−1=3, respec-
tively, where τ is the proper time. We also find that only one
component of spin density, Sxy, does not accelerate the
Bjorken velocity. The transverse expansion of the medium
and other components of spin density were not allowed in
our previous study [71].
In this work, we search for the analytical solutions of

relativistic dissipative spin hydrodynamics in Gubser
expansion by following the similar strategy for the rela-
tivistic magnetohydrodynamics [111–116]. The Gubser
flow [117–129], which can describe the radial expansion,

is closer to the reality in heavy-ion collisions. As expected,
our analytical solution in a Gubser flow will contain the
information of transverse expansion.
We emphasize that we derive the analytic solutions of

relativistic spin hydrodynamics with radial expansion in a
Gubser flow and it is different with some other approaches,
in which the Bjorken or Gubser expansion is treated as the
expanding background [129–132].
The paper is organized as follows: In Sec. II, we review

the basic idea of Gubser flow. In Sec. III, we introduce the
canonical form of spin hydrodynamics, the conservation
equations, and constitutive relations in both Minkowski
space R3;1 and dS3 ×R space-time. In Sec. IV, we simplify
the differential equations in a Gubser flow and derive the
analytic solutions. We also discuss the results in the
Belinfante form of spin hydrodynamics in Sec. IV D.
We conclude and summarize this work in Sec. V.
Throughout this work, we choose the metric gμν in

Minkowski space-time with Cartesian coordinates as
diagf−;þ;þ;þg, the normalized fluid velocity uμ satisfy-
ing uμuμ ¼ −1, and the transverse projection operator
Δμν ≡ gμν þ uμuν. In curved space-time, we often use
the covariant derivative ∇μ while ∂μ denotes the ordinary
derivative. In addition, the symbols ∂

μ
⊥ ≡ Δμν

∂ν and
∇μ

⊥ ≡ Δμν∇ν represent projection derivatives. For simplic-
ity, we define the symmetric and antisymmetric parts
of an arbitrary tensor Aμν as AðμνÞ ≡ ðAμν þ AνμÞ=2 and
A½μν� ≡ ðAμν − AνμÞ=2. When considering the viscous ten-
sor, we also introduce the symmetric and traceless part of
Aμν, Ahμνi ≡ 1

2
½ΔμαΔνβ þ ΔναΔμβ�Aαβ − 1

3
ðΔαβAαβÞΔμν. To

avoid being misleading, a physical variable A with a hat,
i.e., Â, denotes that it is defined in dS3 × R space-time.

II. REVIEW ON GUBSER FLOW

In this section, following Refs. [117,118] we briefly
review the main results in a Gubser flow. Besides the
Bjorken boost invariance, Gubser flow can describe expan-
sion with azimuthal symmetry in transverse plane [117,118].
Following [117,118], one can construct Gubser flow by

imposing the “Gubser symmetry” SOð3Þ × SOð1; 1Þ × Z2,
which strongly restricts the profile of fluid velocity. It is
challenging to find the fluid velocity satisfying Gubser
symmetry in Minkowski space-time R3;1. Fortunately, one
can solve the hydrodynamic equations in the manifold
dS3 ×R, in which dS3 refers to the 3-dimensional de Sitter
space-time, and transform the solution back to Minkowski
space-time R3;1 through Weyl rescaling.
We rewrite the metric in Minkowski space-timeR3;1 with

coordinates ðt; x; y; zÞ as

ds2 ¼ −dt2 þ dx2 þ dy2 þ dz2

¼ −dτ2 þ dx2⊥ þ x2⊥dφ2 þ τ2dη2; ð1Þ
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where

x ¼ x⊥ cosφ; y ¼ x⊥ sinφ;

t ¼ τ cosh η; z ¼ τ sinh η: ð2Þ

The coordinates τ; x⊥;φ, and η denote longitudinal proper
time, transverse plane radius, azimuthal angle, and rap-
idity, respectively. We then introduce a timelike hyperbola
embedding into the manifold R3;1. The radius of this
hyperbola is normalized to be 1, i.e.,

−X2
0 þ X2

1 þ X2
2 þ X2

3 ¼ 1; ð3Þ

where Xμ is the Cartesian coordinate in R3;1 and can be
parametrized as:

X0 ¼ −
L2 − τ2 þ x2⊥

2τL
; X1 ¼

x⊥ cosφ
τ

;

X3 ¼
L2 þ τ2 − x2⊥

2τL
; X2 ¼

x⊥ sinφ
τ

: ð4Þ

Here, L is an adjustable parameter with dimension of
length. The line element of dS3 can be expressed as

ds23 ¼
1

τ2
ð−dτ2 þ dx2⊥ þ x2⊥dφ2Þ: ð5Þ

Now, the metric of Minkowski space-time R3;1 can be
transformed into the one of dS3 × R under Weyl rescaling
with factor τ,

dŝ2 ≡ 1

τ2
ds2 ¼ 1

τ2
ð−dτ2 þ dx2⊥ þ x2⊥dφ2Þ þ dη2; ð6Þ

where ds2 is given by Eq. (1). Notice that Weyl rescaling is
not a coordinate transformation [118]. Later, the metric (6)
is rewritten by the Gubser coordinates ðρ; θ;φ; ηÞ,

dŝ2 ¼ −dρ2 þ cosh2ρðdθ2 þ sin2θdφ2Þ þ dη2; ð7Þ

where

sinh ρ ¼ −
L2 − τ2 þ x2⊥

2Lτ
;

tan θ ¼ 2Lx⊥
L2 þ τ2 − x2⊥

: ð8Þ

Calculations in the current work are performed mainly in
these coordinates unless otherwise specified.
Now, we discuss the velocity profile in a Gubser flow.

The Gubser symmetry requires that the normalized velocity
must be

ûμ ¼ ð−1; 0; 0; 0Þ ð9Þ

in dS3 ×R [117,118,133], which means the Gubser flow is
static in the ðρ; θ;φ; ηÞ coordinate system. Under the Weyl
rescaling uμ ¼ τûμ and coordinate transformation, one can
derive the fluid velocity in the ðτ; x⊥;φ; ηÞ coordinates in
Minkowski space-time R3;1,

uμ ¼
�
−

1

cosh ρ
L2 þ τ2 þ x2⊥

2Lτ
;

1

cosh ρ
x⊥
L

; 0; 0

�
; ð10Þ

where ρ is given by Eq. (8). Different with the standard
Bjorken flow, velocity in a Gubser flow depends on
the x⊥.
Meanwhile, it can be proven that the fluid velocity (9)

holds during the space-time evolution of the Gubser flows,
i.e., the space-time covariant derivatives of fluid velocity
(9) always vanish in a Gubser flow.

III. RELATIVISTIC DISSIPATIVE
SPIN HYDRODYNAMICS

In this section, we extend the main equations in
the relativistic dissipative spin hydrodynamics from
Minkowski space-time R3;1 [58,64,65,68,70] to dS3 × R
space-time. Note that, the energy momentum conservation
and spin evolution equations are not invariant under Weyl
rescaling [129,134].

A. Relativistic dissipative spin hydrodynamics
in Minkowski space R3;1

The canonical form of energy momentum tensor Tμν for
dissipative spin hydrodynamics in Minkowski space-time
reads [58,64,70],

Tμν ¼ ðeþ pÞuμuν þ pgμν þ 2hðμuνÞ þ πμν þ T ½μν�; ð11Þ

with energy density e, pressure p, heat flux hμ, and
viscosity tensor πμν. The antisymmetric part T ½μν� is further
decomposed as

T ½μν� ¼ 2q½μuν� þ ϕμν; ð12Þ

where qμ ≡ uαΔ
μ
βT

½αβ� and ϕμν ≡ Δμ
αΔν

βT
½αβ�. The qμ and

ϕμν play a role of the source to produce or absorb the spin.
The main equations for dissipative spin hydrodynam-

ics are

∇μTμν ¼ 0; ð13Þ

∇αΣαμν ¼ −2T ½μν�; ð14Þ

where Σαμν is the rank-three canonical spin component in
the total angular momentum. Note that we have replaced
the ordinary derivative ∂μ with the covariant derivative ∇μ

for the general space-time. The Eq. (14) comes from the
total angular momentum conservation and describes the
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spin evolution. Furthermore, one can decompose Σαμν as
[58,64,70]

Σαμν ¼ uαSμν þ Σαμν
ð1Þ ; ð15Þ

where Sμν ¼ −Sνμ is named as the spin density and Σαμν
ð1Þ is

perpendicular to the fluid velocity uαΣ
αμν
ð1Þ ¼ 0. The above

decomposition for Σαμν is called the a non-anti-symmetric
gauge which has been used in Refs. [55,58,64,65,67,68,85]
and also in spin hydrodynamics for massless fermions
[135]. One can construct a total antisymmetric tensor for
the spin density, which has been used in Refs. [59,70].
We regard Sμν as an independent variable and introduce

the corresponding spin potential ωμν ¼ −ωνμ, which is
conjugate to spin density Sμν. To add the effects of spin, the
thermodynamic relations become

eþ p ¼ Tsþ ωμνSμν;

dp ¼ sdT þ Sμνdωμν; ð16Þ

where T and s denote the temperature and entropy density,
respectively. For simplicity, here we set the particle number
density and the charge or baryon chemical potential are
always zero throughout the current work. To highlight the
spin effect, we also neglect the heat flux hμ in the energy-
momentum tensor Tμν in Eq. (11).
The power counting scheme can be assumed as

ωμν ∼Oð∂1Þ, Sμν ∼Oð∂0Þ, and Σαμν
ð1Þ ∼Oð∂1Þ [64]; or

ωμν ∼Oð∂1Þ, Sμν ∼Oð∂1Þ, and Σαμν
ð1Þ ∼Oð∂2Þ [58,70].

The spin evolution equation (14) becomes

∇αðuαSμνÞ ¼ −4q½μuν� − 2ϕμν: ð17Þ

According to the second law of thermodynamics [58,64]
or the effective theories [70], constitutive equations are
given by

πμν ¼ −ηs∇hμuνi − ζΔμν∇αuα;

qμ ¼ −λ
�
1

T
∇μ

⊥T − uα∇αuμ − 4ωμνuν

�
;

ϕμν ¼ −γð∇½μ
⊥uν� − 2ΔμαΔνβωαβÞ; ð18Þ

where ηs and ζ are the shear viscosity and bulk viscosity,
respectively, and λ, γ are two new transport coefficients
related to the spin. The four coefficients ηs; ζ; λ; γ in the
constitutive relations are all non-negative.

B. Main equations in dS3 × R space-time

In this subsection, we transform the spin hydrodynamic
equations in the previous subsection to the dS3 ×R
space-time.

The Weyl rescaling in Eq. (6) implies that gμν → ĝμν ¼
1
τ2
gμν and gμν → ĝμν ¼ τ2gμν. The Christoffel symbols Γ̂λ

μν

in dS3 × R space-time are related to the one in the
Minkowski space-time Γλ

μν by the following relation
[129,136,137]:

Γλ
μν ¼ Γ̂λ

μν þ
1

τ
ðδλν∇̂μτ þ δλμ∇̂ντ − ĝμνĝλα∇̂ατÞ; ð19Þ

where ∇̂μ is also defined in the dS3 ×R space-time.
Similarly, we introduce the energy-momentum tensor in
the dS3 ×R space-time,

T̂μν ≡ ταTμν; ð20Þ

with α being a constant. The energy-momentum conserva-
tion (13) becomes [136]

∇μTμν ¼ ∂μTμν þ Γμ
μλT

λν þ Γν
μλT

μλ

¼ τ−α½∇̂μT̂
μν − 2τ−1T̂ ½μν�∇̂μτ�

þ τ−α−1½ð6 − αÞT̂λν∇̂λτ − T̂μ
μĝνα∇̂λτ�: ð21Þ

Obviously, only when α ¼ 6 and T̂μ
μ ¼ ταTμ

μ ¼ 0 is trace-
less, the last term proportional to τ−α−1 vanishes. The
traceless condition of T̂μν is satisfied in a conformal fluid
[138–144], in which the bulk viscosity is zero ζ ¼ 0 and
the e ¼ 3p.
For simplicity, following the common strategy in a

Gubser flow [117,118], we choose

α ¼ 6 ð22Þ

and set ζ ¼ 0 from now on. The energy-momentum
conservation (13) then reduces to

∇̂μT̂
μν − 2τ−1T̂ ½μν�∇̂μτ ¼ 0: ð23Þ

In general, the transformation rule for a physical variable
Â in dS3 ×R space-time to its corresponding quantity A in
Minkowski space-time is [118,140,141,145]

Âμ1…μm
ν1…νn ðxÞ ¼ τΔAAμ1…μm

ν1…νn ðxÞ; ð24Þ

where ΔA ¼ ½A� þm − n, and [A] is the mass dimension
of A.
Next, we discuss the spin evolution equation (17). From

Eq. (19), the spin evolution equation (17) is not covariant
under Weyl rescaling. In dS3 ×R space-time, Eq. (17)
becomes

∇̂αðûαŜμνÞ¼ ðûαŜανĝμβþ ûαŜ
μαĝνβþ ûμŜνβ− ûνŜμβÞτ−1∇̂βτ

−4q̂½μûν�−2ϕ̂μν; ð25Þ
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where we have used

∇αðuαSμνÞ¼ τ−6∇̂αðûαŜμνÞ− τ−7ðûαŜανĝμβþ ûαŜ
μαĝνβÞ∇̂βτ

− τ−7ðûμŜνβ− ûνŜμβÞ∇̂βτ: ð26Þ

Equation (25) has several new terms proportional to
τ−1∇̂βτ.
In this subsection, we extend the energy-momentum and

angular momentum conservation equations to the dS3 × R
space-time. Unfortunately, these two kinds of conservation
equations are not conformal invariant, i.e., we find that
there are extra terms∼∇̂μτ in Eqs. (23) and (25) underWeyl
rescaling.
Here, we emphasize that we do not consider the

conformal fluid in the current study. In an ordinary fluid
without spin, the antisymmetric part of energy-momentum
tensor T ½μν� is zero, and Eq. (23) reduces to the simplest
expression ∇̂μT̂

μν ¼ 0. However, as discussed in Sec. III A,
the antisymmetric part of energy-momentum tensor T ½μν� is
nonvanishing in the spin hydrodynamics. We keep the
general expression (23) for energy-momentum conserva-
tion here. Later, wewill solve the conservation equation (23)
in Sec. IV.

C. Constitutive equations in dS3 ×R space-time

In this subsection, we discuss the constitutive
equations (11), (18) in dS3 ×R space-time. The decom-
position of T̂μν in dS3 ×R space-time is similar to
Eq. (11), (12):

T̂μν ¼ ðêþ p̂Þûμûν þ p̂ĝμν þ 2ĥðμûνÞ þ π̂μν

þ 2q̂½μûν� þ ϕ̂μν: ð27Þ

By using Eq. (24), we find that ûμ ¼ uμ=τ, π̂μν ¼ τ6πμν and
thermodynamic variables become

ê ¼ τ4e; T̂ ¼ τT; ŝ ¼ τ3s: ð28Þ

Applying Eq. (19), the transformation of ∇μuν is given
by [141]

∇μuν ¼ τ−1∇̂μûν þ τ−2δνμûλ∇̂λτ − τ−2ûμĝνα∇̂ατ: ð29Þ

It is straightforward to show that the bulk viscosity term
ζΔμν∇αuα does not transform homogeneously. Based on
Eq. (29), we can get [140,141,145]

∇hμuνi ¼ τ−3∇̂hμûνi;

∇½μ
⊥uν� ¼ τ−3∇̂½μ

⊥ûν�; ð30Þ

which lead to a compact form for π̂μν and ϕ̂μν,

π̂μν ¼ τ6πμν ¼ −η̂s∇̂hμûνi

ϕ̂μν ¼ τ6ϕμν ¼ −γ̂ð∇̂½μ
⊥ûν� − 2Δ̂μαΔ̂νβω̂αβÞ; ð31Þ

where

γ̂ ¼ τ3γ; η̂s ¼ τ3ηs: ð32Þ

Therefore, π̂μν and ϕ̂μν have the same structure as πμν and
ϕμν. Note that we deliberately write η̂s and γ̂ as ðη̂s=ŝÞŝ and
ðγ̂=ŝÞŝ, respectively. The η̂s=ŝ and γ̂=ŝ are dimensionless
scalars which do not get modified when passing from
Minkowski space-time R3;1 to dS3 ×R space-time. We
follow the standard strategy in Gubser flows and set

η̂s
ŝ
¼ η

s
¼ constant;

γ̂

ŝ
¼ γ

s
¼ constant: ð33Þ

Unfortunately, q̂μ becomes

q̂μ¼τ5qμ

¼−λ̂
�
1

T̂
∇̂μ

⊥T̂− ûα∇̂αûμ−4ω̂μνûν−2τ−1Δ̂μα∇̂ατ

�
; ð34Þ

where λ̂ ¼ τ3λ. The last term in the bracket−2τ−1Δ̂μα∇̂ατ is
generated by the Weyl rescaling. For simplicity, we need to
set λ ¼ λ̂ ¼ 0 in the current work, i.e., we set

qμ ¼ q̂μ ¼ 0: ð35Þ

In fact, we have also checked that the nonzero q̂μ breaks the
Gubser symmetry and will change the velocity ûμ ¼
ð−1; 0; 0; 0Þ due to the extra term −2τ−1Δ̂μα∇̂ατ.
In this section, we extend the conservation equations and

constitutive equations for the relativistic spin hydrodynam-
ics from Minkowski space-time R3;1 to the dS3 ×R space-
time. We find that neither the energy momentum conser-
vation equation (23) nor the spin evolution equation (25) is
covariant after Weyl rescaling. We also get the constitutive
equations in the dS3 × R space-time shown in Eqs. (27)
and (31). We further set the bulk viscosity ζ ¼ 0 and
q̂μ ¼ 0 for simplicity.

IV. ANALYTIC SOLUTIONS IN GUBSER FLOW

In this section, we derive the analytic solutions of
dissipative spin hydrodynamics in a Gubser flow in high
temperature limit.
We adopt the strategy similar to our previous works

[71,111–116]. First, we consider the thermodynamic rela-
tions and equations of state. We express the energy density
ê and entropy density ŝ in the dS3 ×R space-time as
polynomial functions of temperature T̂ and spin chemical
potential ω̂μν in Sec. IVA. Secondly, in Sec. IV B, we
concentrate on the fluid acceleration equations and search
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for the special configurations for dissipative spin hydro-
dynamics, which do not modify the fluid velocity (9) in
a Gubser flow. After that we succeed in finding self-
consistent analytical solutions for ê and Ŝμν. Finally, in
Sec. IV C, we convert the solutions obtained in dS3 × R
space-time back to Minkowski space-time R3;1 and com-
pare them with the our solutions in a Bjorken flow [71]. We
also discuss the results for the spin hydrodynamics in the
Belinfante form in Sec. IV D. Throughout this section, we
use the Gubser coordinates ðρ; θ;ϕ; ηÞ in dS3 ×R space-
time if not specified.

A. Thermodynamic relations and equations
of motion

According to Eqs. (16) and (24), we rewrite the thermo-
dynamic relations in dS3 ×R space-time:

êþ p̂ ¼ T̂ ŝþω̂μνŜ
μν;

dp̂ ¼ ŝdT̂ þ Ŝμνdω̂μν: ð36Þ

Again, for simplicity, we set the number density and
chemical potential at zero. Following the standard Gubser
flows [117,118], we can assume that the thermodynamic
variables ê; p̂; T̂; ŝ and transport coefficients γ̂; η̂s are only
functions of de Sitter time ρ. It suggests a natural assignment
that ω̂μνŜ

μν depends on ρ only. We emphasize that due to the
nontrivial metric ĝμν ¼ diagf−1; cosh2 ρ; cosh2 ρ sin2 θ; 1g
in the dS3 ×R space-time, Ŝμν and ω̂μν may be the functions
of both ρ and θ.
To close the system, we need the equations of state

besides Eq. (36). In III B, we assume that

ê ¼ c−2s p̂ ¼ 3p̂; ð37Þ

which is a reasonable approximation in the ultrarelativistic
or high temperature limits. Here, c2s is the speed of sound
and usually one can choose c2s ¼ 1=3 for simplicity. We
emphasize that EoS (37) does not imply the system is
conformal invariant. In fact, there is no conformal sym-
metry in our system. More discussion will be shown in the
next subsection. On the other hand, inspired by the relation
between particle number density and chemical potential,
we assume another equation of state in high temperature
limit [71], i.e.,

Ŝμν ¼ aT̂2ω̂μν; ð38Þ

with dimensionless constant a. Equations (37) and (38)
are regarded as two given conditions in the subsequent
discussion.
For convenience, we further define a new auxiliary

variable ω̄2:

ω̄2 ≡ ωμνωμν

T2
¼ ω̂μνω̂μν

T̂2
; ð39Þ

which is a dimensionless scalar and invariant under Weyl
rescaling.
Utilizing these equations of state and transformation rule

Eq. (24), we can rewrite the thermodynamic relations
Eq. (36) as

4

3
ê ¼ T̂ ŝþaT̂4ω̄2;

1

3
dê ¼ ðŝþ aT̂3ω̄2ÞdT̂ þ 1

2
aT̂4dðω̄2Þ: ð40Þ

From Eq. (40), one can express ê ¼ êðT̂; ω̄2Þ and ŝ ¼
ŝðT̂; ω̄2Þ as,

ê ¼ T̂4

�
c0 þ

3

2
aω̄2

�
; ð41Þ

ŝ ¼ T̂3

�
4

3
c0 þ aω̄2

�
; ð42Þ

where

c0 ≡ ê0
T̂4
0

−
3

2
aω̄2

0 ¼
3

4

ŝ0
T̂3
0

−
3

4
aω̄2

0 ð43Þ

is a constant determined by initial values ê0 ¼ êðρ0Þ,
ŝ0 ¼ ŝðρ0Þ, T̂0 ¼ T̂ðρ0Þ, and ω̄2

0 ¼ ω̄2ðρ0Þ.

B. Simplify the differential equations

In this subsection, our task is to find special configu-
ration to hold the fluid velocity in a Gubser flow and
simplify main differential equations (23) and (25).
Contracting the projector Δ̂αν ¼ ĝαν þ ûαûν in the

dS3 ×R space-time with both sides of Eq. (23), yields
the acceleration equation for the fluid velocity:

Δ̂αν½∇̂μT̂
μν − 2τ−1T̂ ½μν�∇̂μτ� ¼ 0: ð44Þ

Plugging Eq. (27) into it, we get

ûμ∇̂μûα ¼ −
1

êþ p̂
½Δ̂μ

α∇̂μp̂þ Δ̂να∇̂μπ̂
μν þ Δ̂να∇̂μϕ̂

μν

− 2τ−1ĝανϕ̂
μν∇̂μτ�: ð45Þ

To compute Eq. (45), we find that only six Christoffel
symbols Γ̂λ

μν in Gubser coordinates ðρ; θ;φ; ηÞ are nonzero,

Γ̂ρ
θθ ¼ cosh ρ sinh ρ; Γ̂ρ

φφ ¼ cosh ρ sinh ρsin2θ;

Γ̂θ
ρθ ¼ tanh ρ; Γ̂θ

φφ ¼ − sin θ cos θ;

Γ̂φ
ρφ ¼ tanh ρ; Γ̂φ

θφ ¼ cot θ: ð46Þ
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Then, it is straightforward to get the nonzero components
of π̂μν and ϕ̂μν from Eq. (31):

π̂θθ ¼ −
1

3
η̂scosh−2ρ tanh ρ;

π̂φφ ¼ −
1

3
η̂scosh−2ρsin−2θ tanh ρ;

π̂ηη ¼ 2

3
η̂s tanh ρ;

ϕ̂ij ¼ 2γ̂ω̂ij; ði; j ¼ θ;φ; ηÞ: ð47Þ

With the assumption that ê and p̂ depend on ρ only, which
leads to Δ̂μ

α∇̂μp̂ðρÞ ¼ 0, Eq. (45) then becomes:

ûμ∇̂μûρ ¼ 0; ð48Þ

ûμ∇̂μûθ ¼ 0; ð49Þ

ûμ∇̂μûφ ¼ 2cosh2ρsin2θ
êþ p̂

�
γ̂

ŝ

�
ŝð−∂θω̂θφ − cot θω̂θφ

þ 2ω̂θφτ−1∂θτÞ; ð50Þ

ûμ∇̂μûη ¼
2

êþ p̂

�
γ̂

ŝ

�
ŝð−∂θω̂θη − cot θω̂θη þ 2ω̂θητ−1∂θτÞ:

ð51Þ

Obviously, when ω̂θφ; ω̂θη ¼ 0, ûμ∇̂μûν ¼ 0, i.e., theGubser
velocity (9) holds during the evolution if ω̂θφ; ω̂θη always
vanish. Later, we will check that ω̂θφ; ω̂θη vanish under
appropriate initial conditions and Gubser velocity (9).
Contacting ûν with both sides of Eq. (23) provides the

conservation equation for energy:

ûν½∇̂μT̂
μν − 2τ−1T̂ ½μν�∇̂μτ� ¼ 0: ð52Þ

Using Eqs. (27), (37), and (47), the evolution of energy
density (52) reads

dê
dρ

þ 8

3
ê tanh ρ −

2

3

�
η̂s
ŝ

�
ŝtanh2ρ ¼ 0: ð53Þ

Equation (53) is the same as the one in ordinary relativistic
hydrodynamics without spin effect in a Gubser flow
[117,118] (also see Refs. [121,123] for extensions).
Third, we compute the evolution of spin following

Eq. (25). After a long and tedious calculation, we even-
tually obtain six independent equations for the evolution of
spin from Eq. (25):

∂ρŜ
ρφ þ 3 tanh ρŜρφ þ Ŝθφτ−1∂θτ ¼ 0; ð54Þ

∂ρŜ
ρη þ 2 tanh ρŜρη þ Ŝθητ−1∂θτ ¼ 0; ð55Þ

∂ρŜ
θφ þ 4 tanhρŜθφ þ cosh−2ρŜρφτ−1∂θτþ 4

�
γ̂

ŝ

�
ŝω̂θφ ¼ 0;

ð56Þ

∂ρŜ
θη þ 3 tanh ρŜθη þ cosh−2ρŜρητ−1∂θτ þ 4

�
γ̂

ŝ

�
ŝω̂θη ¼ 0;

ð57Þ

and

∂ρŜ
φη þ 3 tanh ρŜφη þ 4

�
γ̂

ŝ

�
ŝω̂φη ¼ 0; ð58Þ

∂ρŜ
ρθ þ 3 tanh ρŜρθ ¼ 0: ð59Þ

As mentioned in Eq. (51), the fixed Gubser velocity
requires that ω̂θφ; ω̂θη ¼ 0. This requirement leads to all
Ŝθφ; Ŝθη always being zero during the evolution through the
EoS (38). Unfortunately, Ŝθφ; Ŝθη are coupled to Ŝρφ; Ŝρη

through Eqs. (54)–(57). To satisfy the requirement
from Eq. (51), we have to choose the trivial solutions
of Eqs. (54)–(57), which is Ŝθφðρ; θÞ ¼ Ŝθηðρ; θÞ ¼ 0

and Ŝρφðρ; θÞ ¼ Ŝρηðρ; θÞ ¼ 0.
Remarkably, in the space-time dS3 ×R, there are extra

terms proportional to ∇̂ατ in both energy-momentum
conservation equation (23) and the evolution equations
for spin (25). As mentioned in the previous subsection,
these terms come from the Weyl rescaling and cannot be
neglected in general. Fortunately, in the configuration for
the Gubser flow, all of these terms vanish in Eqs. (53), (58),
and (59). It is of great help for us to derive the analytic
solutions in the relativistic spin hydrodynamics in a Gubser
flow. At last, we only have three independent differential
equations, i.e., conservation equation for energy (53) and
evolution equations for spin (58), (59).

C. Analytic solutions in dS3 ×R and R3;1 space-time

In this subsection, we solve the differential equa-
tions (53), (58), and (59) for the spin hydrodynamics in
a Gubser flow. We then transform our solutions in dS3 × R
space-time to the Minkowski space-time R3;1.
We consider the high temperature limit and the spin

chemical potential is much smaller than temperature in the
relativistic heavy ion collisions, i.e., ωμν ≪ T, or

ω̄2 ¼ ωμνωμν

T2
¼ ω̂μνω̂μν

T̂2
≪ 1: ð60Þ

We emphasize again that η̂s=ŝ and γ̂=ŝ are small constants
and we can assume η̂s=ŝ; γ̂=ŝ ≪ 1. Therefore, we can
consider the ω̄2 and η̂s=ŝ; γ̂=ŝ as small parameters and
expand all the quantities in the power series of ω̄2

and η̂s=ŝ; γ̂=ŝ.
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In leading order of ω̄2, the Eq. (53) becomes

dT̂
dρ

þ 2

3
T̂ tanh ρ −

2

9

�
η̂s
ŝ

�
tanh2ρþOðω̄2Þ ¼ 0; ð61Þ

∂ρŜ
φη þ 3 tanh ρŜφη þ 4

aT̂2

�
γ̂

ŝ

�
ŝŜφη ¼ 0; ð62Þ

∂ρŜ
ρθ þ 3 tanh ρŜρθ ¼ 0; ð63Þ

whose solution is given by

T̂ ¼ T̂0

�
cosh ρ0
cosh ρ

�2
3

�
1þ η̂s

ŝ
BðρÞ

�
þOðω̄2Þ; ð64Þ

with initial value T̂0 ≡ T̂ðρ0Þ. Here, the auxiliary function
BðρÞ is

BðρÞ≡ 2

27

1

T̂0

cosh−
2
3ρ0

�
sinh3ρF

�
7

6
;
3

2
;
5

2
;−sinh2ρ

�

− sinh3ρ0F

�
7

6
;
3

2
;
5

2
;−sinh2ρ0

��
; ð65Þ

where Fða; b; c; zÞ is the hypergeometric function.
Substituting Eq. (64) to Eq. (41), we obtain the expression
for the energy density ê:

ê ¼ ê0

�
cosh ρ0
cosh ρ

�8
3

�
1þ 4

η̂s
ŝ
BðρÞ

�

þO
�
ω̄2;

�
η̂s
ŝ

�
2
�
: ð66Þ

With the EoS (38), the solutions of evolution equations
for spin (58), (59) are

Ŝρθ ¼ c1 cosh−3 ρ; ð67Þ

Ŝφη ¼ fðθÞ cosh−3 ρAðρÞ þOðω̄2Þ; ð68Þ

where

c1 ¼ Ŝρθðρ0; θ0Þ cosh3 ρ0 ð69Þ

is a constant determined by the initial condition and

AðρÞ≡ exp

�
−
4

a

Z
ρ

ρ0

dρ0
�
γ̂

ŝ

�
ŝðρ0Þ
T̂ðρ0Þ2

�
: ð70Þ

The fðθÞ in Eq. (68) is a function of θ. As explained in
Sec. IVA, although the Gubser flow requires the scalars
ω̂μνŜ

μν, and both ω̂μνω̂
μν and ŜμνŜ

μν depend on ρ only, EoS
(38) implies that ω̂μν or Ŝμν could also depend on θ due to

the metric ĝμν ¼ diagð−1; cosh2 ρ; cosh2 ρ sin2 θ; 1Þ. Using
Eq. (67), we find that

ŜμνŜμν ¼ −2 cosh−4 ρ½c21 − 2f2ðθÞ sin2 θAðρÞ2�
þOðω̄2Þ: ð71Þ

Unless

fðθÞ ¼ c2 sin−1 θ; ð72Þ
with a constant

c2 ¼ Ŝφη0 A−1ðρ0Þcosh3ρ0 sin θ0; ð73Þ

determined by initial value of Ŝφη0 ¼ Ŝφηðρ0; θ0Þ, the ŜμνŜμν
would not be independent on θ. Finally, the expression for
the spin density Ŝφη becomes

Ŝφη ¼ c2cosh−3ρsin−1θAðρÞ þOðω̄2Þ: ð74Þ
If the dimensionless quantity γ̂=ŝ can be regarded as a

small constant, i.e., γ̂=ŝ ≪ 1, we can obtain

AðρÞ ¼ 1þ
�
γ̂

ŝ

�
6

a
ŝ0
T̂2
0

cosh
2
3ρ0

�
Sech

2
3ρ0F

�
1

3
;
1

2
;
4

3
;Sech2ρ0

�

−Sech
2
3ρF

�
1

3
;
1

2
;
4

3
;Sech2ρ

��

þO
�
ω̂αβω̂αβ

T̂2
;

�
η̂s
ŝ

�
2

;

�
γ̂

ŝ

�
2

;
γ̂η̂s
ŝ2

�
: ð75Þ

Next, we transform the analytic solutions (64), (66), (67),
(74) in the dS3 ×R space-time to the Minkowski space-
time R3;1. From Eq. (28), the energy density in Minkowski
space-time R3;1 is

e ¼ ê0
τ40

�
τ0
τ

�4
3

�
GðL; τ0; x⊥0Þ
GðL; τ; x⊥Þ

�4
3

×

�
1þ 4

ηs
s
BðρÞ

�

þO
�
ω̄2;

�
ηs
s

�
2
�
; ð76Þ

where we introduce the

GðL; τ; x⊥Þ≡ 4L2τ2 þ ðL2 − τ2 þ x2⊥Þ2; ð77Þ

with an adjustable parameter L defined in Eq. (4), and the
τ0 and x⊥0 stands for the initial proper time and the
transverse position x⊥. Here, we have used the identity

η̂s=ŝ ¼ ηs=s; ð78Þ
since η̂s=ŝ is a scalar under the Weyl rescaling. Using the
same method, it is straightforward to get the expression for
temperature T from Eq. (64). The T as a function of τ; x⊥ is
similar to the eðτ; x⊥Þ.
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Next, we take the Weyl rescaling and the coordinate
transformation to the spin density. By using Eqs. (8) and
(24), the nonzero spin density Sμν in the ðτ; x⊥;φ; ηÞ
coordinate system of Minkowski space-time R3;1 is
given by

Sτx⊥ ¼ c1
4L2

τ
GðL; τ; x⊥Þ−1;

Sφη ¼ c2
4L2

x⊥τ2
GðL; τ; x⊥Þ−1AðρÞ: ð79Þ

We find that the exponential factor AðρÞ in Eq. (70) is
always less than 1. It means that dissipative effects ∝ γ̂
accelerate decaying. Furthermore, we express the spin
density in Cartesian coordinates ðt; x; y; zÞ by coordinate
transformation Eq. (2), i.e.,

S0x ¼ 4L2

τ
CþGðL; τ; x⊥Þ−1; ð80Þ

S0y ¼ 4L2

τ
C−GðL; τ; x⊥Þ−1; ð81Þ

Sxz ¼ 4L2

τ
DþGðL; τ; x⊥Þ−1; ð82Þ

Syz ¼ 4L2

τ
D−GðL; τ; x⊥Þ−1; ð83Þ

where we introduce that

C�ðt;x;y;zÞ¼ c1 coshηcosφ�c2 sinhηsinφAðρÞ; ð84Þ

D�ðt;x;y;zÞ¼−c1 sinhηcosφ�c2 coshηsinφAðρÞ; ð85Þ

and η;φ; ρ are the functions of ðt; x; y; zÞ given by Eqs. (2)
and (8). The other two components, S0z and Sxy vanish.
Let us comment on our results here. In large L limit, i.e.,

x⊥; τ ≪ L, we have GðL; τ; x⊥Þ ∼ L4 and the energy
density and temperature become,

e ∝ τ−4=3; T ∝ τ−1=3: ð86Þ

The spin density in Eqs. (80)–(83) reduces to

S0x; S0y; Sxz; Syz ∝ L−2τ−1: ð87Þ

From EoS (38), the spin chemical potential ωμν decays like

ω0x; ω0y; ωxz; ωyz ∝ L−2τ−1=3: ð88Þ

The decay behavior of e, T, in large L limit is the same as
those in the spin hydrodynamics in a Bjorken expansion
[71]. Meanwhile, due to the dissipative effects, the spin
density and spin potential can decay more rapidly. We find
that the exponential factor AðρÞ in Eq. (70) is always less
than 1. It means that dissipative effects ∝ γ̂ accelerate
decaying.
Notably, in a Bjorken flow, we only get the nonzero

solutions for the spin component Sxy [71]. Here, there are
four nonvanishing spin density components found in the
current work due to the radial expansion in a Gubser flow.
Before we end this section, let us discuss the terms in the

modified Cooper-Frye formula. As discussed in recent
works for shear induced polarization [73–77] (also see
Refs. [74,84,110] for other terms related to spin density),
the thermal vortical Ωμν and thermal shear tensor ξμν

Ωμν ≡ 1

2
∇νðuμ=TÞ − 1

2
∇μðuν=TÞ;

ξμν ≡ 1

2
∇μðuν=TÞ þ 1

2
∇νðuμ=TÞ; ð89Þ

and spin potential ωμν ¼ Sμν=ðaT2Þ appear in modified
Cooper-Frye formula.
From Eqs. (10), (24), (64), we find the nonzero compo-

nents of Ωμν are Ωτx⊥ and Ωx⊥τ. Note that, in dS3 × R
space-time, the nonzero thermal vortical tensors Ω̂τx⊥ and
Ω̂x⊥τ come from the space-time derivatives of the temper-
ature and the extra terms proportional to ∇̂μτ shown in
Eq. (29) from Weyl rescaling. In the R3;1 space-time, the
∇μuν with uμ given by Eq. (10) is obviously nonzero and
can contribute to Ωτx⊥ and Ωx⊥τ.
We now analyze the evolution behavior of thermal

vortical and shear tensors.
In large L but small η=s, γ=s limits, by using Eqs. (10),

(38), (64), (79), we notice that

cosh ρ ∝ Lτ−1; uτ ∝ τ0; ux⊥ ∝ L−2τx⊥; ð90Þ

and obtain the evolution behavior of nonzero components
of Ωμν and ξμν listed in Table I. We find that the only
nonzero component of thermal vortical tensor, Ωτx⊥ , is
much smaller than the maximum component of thermal

TABLE I. Evolution behavior of nonzero components for thermal vortical tensor Ωμν and shear tensor ξμν and spin potential ωμν in
R3;1 space-time in large L but small η=s, γ=s limits.

Nonzero components Ωτx⊥ ξττ ξτx⊥ ξx⊥x⊥ ξφφ ξηη ω0x;ω0y;ωxz;ωyz

Evolution behavior in large L
and small η=s, γ=s limits L−2τ1=3 L0τ−2=3 L−2τ1=3 L−2τ4=3 L−2τ4=3 L0τ−8=3 L−2τ−1=3
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shear tensor, ξττ, but it has the same order of magnitude as
the spin potential in Eq. (88).
From Eq. (18), in the global equilibrium, one of the most

important conclusions for spin hydrodynamics is that the

∇½μ
⊥uν� − 2ΔμαΔνβωαβ ¼ T½ΔμαΔνβΩαβ − T−1ΔμαΔνβωαβ�

should be zero [58,64,88]. Here, we compare the evolution
behavior of the following quantities:

ΔμαΔνβΩαβ ∝ L−2τ1=3;

ΔμαΔνβξαβ ∝ L0τ−2=3;

T−1ΔμαΔνβωαβ ∝ L−2τ0: ð91Þ

We conclude that in large L but small η=s, γ=s limits the
thermal shear tensor is more important than than spin
potential and thermal vortical tensor.
We also discuss the evolution behavior at finite L case.

We follow the in-viscid case of Gubser flow in
Ref. [117,118] and take ê0 ¼ 880 at ρ0 ¼ 0 with ηs ¼ 0,
c0 ¼ 11 and T̂0 ¼ ðê0=c0Þ1=4, and L ¼ 4.3 fm. To see the
power law behavior, we plot d½logðA=A0Þ�=d½logðτ=τ0Þ� as
a function of τ. Here, we choose A ¼ Ωτx⊥ ; ξτx⊥ ;ωτx⊥ , and
A0 stands for the value of these quantities at initial proper
time τ0. In Fig. 1, we choose x⊥ ¼ 0.5 fm for simplicity.
We have checked numerically that the power law behavior
of these quantities for other fixed x⊥ (≲4 fm) is almost the
same. The maximum proper time is chosen as 4 fm=c.
After 4 fm=c, the temperature will be less than the typical
freeze out one [117,118].
In Fig. 1(a), we find that within 4 fm=c the Ωτx⊥ and

ωτx⊥ always increases or decreases, respectively. While the
thermal shear tensor ξτx⊥ increases as ∝τ1=3 at early time
but decreases rapidly as ∝ τ−1 after 2.3 fm=c. Surprisingly,
the thermal shear tensor decays much faster than the spin
potential in this model. As a comparison, when L ¼ 50 fm
in Fig. 1(b), we observe a consistent result as expected in
Table I.
We conclude that in finite L case, the evolution behavior

of the quantities mentioned above depends on the param-
eters L. Therefore, we can not naively drop any one of them

in the modified Cooper-Frye formula. To clarify it further,
studies based on spin hydrodynamics are needed in the
future.

D. Results for Belinfante form

Different from the canonical form of energy-momentum
and angular-momentum tensors, one can define the energy-
momentum tensor in Belinfante form T μν through the
pseudogauge transformation:

T μν ¼ Tμν þ ∂λKλμν; ð92Þ

where

Kλμν ¼ 1

2
ðΣλμν − Σμλν þ ΣνμλÞ; ð93Þ

and Σλμν is given by Eq. (15). The Belinfante total angular
momentum reads

J αμν ¼ Jαμν þ ∂ρðxμKραν − xνKραμÞ
¼ xμT αν − xνT αμ: ð94Þ

It is obvious that both T μν and J αμν are conserved.
After a short calculation, up to Oð∂1Þ, one gets [64]

T μν ¼ euμuν þ pΔμν þ 1

2
∇λðuμSνλ þ uνSμλÞ

¼ ðeþ δesÞuμuν þ ðpþ δΠsÞΔμν þ 2δhðμs uνÞ

þ ðπμν þ δπμνs Þ; ð95Þ

where

FIG. 1. We plot d½logðA=A0Þ�=d½logðτ=τ0Þ� with A ¼ Ωτx⊥ ; ξτx⊥ ;ωτx⊥ as functions of proper time τ at x⊥ ¼ 0.5 fm for (a) L ¼ 4.3 fm
and (b) L ¼ 50 fm. The parameters are chosen as ê0 ¼ 880 at ρ0 ¼ 0 with ηs ¼ 0, c0 ¼ 11, and T̂0 ¼ ðê0=c0Þ1=4 [117,118]. The red
dotted, blue dashed, and green solid lines stand for the cases of A ¼ Ωτx⊥ ; ξτx⊥ ;ωτx⊥ , respectively.
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δes ¼ −uμ∇λSμλ;

δhμs ¼ 1

2
ðΔμ

β∇λSβλ − uβSβλ∇λuμÞ;
δπμνs ¼ ∇λðuhμSνiλÞ;

δΠs ¼
1

3
Δρσ∇λðuρSσλÞ ð96Þ

are the spin corrections to the energy density, heat flow, shear
viscous tensor, and bulk viscous pressure, respectively.
In our previous work [71], all of these spin corrections

vanish in a Bjorken flow. Inserting our results (79) with
Gubser velocity (10) into Eq. (96) yields the spin correc-
tions to the energy density:

δes ¼ 4c1τ−1x−1⊥ L2ðL2 þ τ2 − 3x2⊥ÞGðL; τ; x⊥Þ−3=2; ð97Þ

where G and constant c1 are given by Eqs. (77) and (69),
respectively. We get the other nonvanishing spin correc-
tions in the ðτ; x⊥;ϕ; ηÞ coordinates:

δhτs¼16c1L2τx⊥GðL;τ;x⊥Þ−2;
δhx⊥s ¼8c1L2ðL2þx2⊥þτ2ÞGðL;τ;x⊥Þ−2;

δπττs ¼−
64

3
c1L2τx3⊥GðL;τ;x⊥Þ−5=2;

δπx⊥x⊥s ¼−
16

3
c1L2τ−1x⊥ðL2þx2⊥þτ2Þ2GðL;τ;x⊥Þ−5=2;

δπφφs ¼8

3
c1L2τ−1x−1⊥ GðL;τ;x⊥Þ−3=2;

δπηηs ¼8

3
c1L2τ−3x⊥GðL;τ;x⊥Þ−3=2;

δπτx⊥s ¼δπx⊥τs ¼−
32

3
c1L2x2⊥ðL2þx2⊥þτ2ÞGðL;τ;x⊥Þ−5=2;

δπφηs ¼δπηφs ¼1

2
Sφητ−1ðL2þx2⊥−τ2ÞGðL;τ;x⊥Þ−1=2;

δΠs¼−
8

3
c1L2τ−1x⊥GðL;τ;x⊥Þ−3=2: ð98Þ

One may wonder why the spin correction to the bulk
pressure δΠs in Eq. (98) is nonzero and may break the
conformal invariance. Again, we comment that EoS (37) is
the leading order one in the ultra high temperature limits
and is not related to the conformal invariance directly.
Therefore, there is no inconsistency between the finite δΠs
and EoS (37). The δΠs comes from the pseudogauge
transformation and belongs to the Belinfante energy
momentum tensor T μν. In the canonical form, if the initial
bulk pressure is zero, the bulk pressure is always vanishing
in the presence of spin potential. Since the spin hydro-
dynamics in Belinfante form can be quite different from
those in canonical form (one can find examples in
Ref. [64]), it is not surprising that we have different bulk
pressure in two forms.

Now, we turn to estimate how large these spin correc-
tions will be. In the large L limit, we find energy density
e ∼ τ−4=3 and its spin corrections δes ∼ 1=ðτx⊥L2Þ. It gives
limL→∞ δes=e ∝ τ1=3=L2 → 0 at late proper time; i.e., the
spin correction to the energy density δes is a small
correction to the energy density e.
For a realistic model for Gubser flow, we choose

ê0 ¼ ð5.55Þ4 at ρ0 ¼ 0 with ηs=s ¼ 0.268, c0 ¼ 11, T̂0 ¼
ðê0=c0Þ1=4, and the parameter of characteristic length L as
4.3 fm [117,118]. Note that due to the differences of
notations, ηs=s in this work is twice as much as that in
Refs. [117,118]. Since the proper time is larger than
4.0 fm=c, the temperature is less than the typical freeze
out temperature T ≤ 150 MeV. We choose the range
of proper time as 0.5–4.0 fm=c similar to the standard
Gubser flow [117,118]. Although total energy correctionR
dx⊥x⊥δes is finite, δes ∝ x−1⊥ may be divergent as

x⊥ → 0. To avoid the divergent behavior of δe, we have
imposed the constraint x⊥ > 0.5 fm in Eq. (99). The
parameter c1 defined in Eq. (69) should not be too large
due to our power counting scheme in Eq. (60) in Sec. IV C.
Here, we choose jc1j ≤ 2 as a reasonable test. Using these
parameters and Eqs. (10), (18), (37), (76), (97), (98), we
obtain

jδes=ej< 0.1; at x⊥ ∈ ½0.5;4.0� fm; τ∈ ½0.5;4.0� fm=c;

ð99Þ

jδπμνs =πμνj; jδΠs=pj < 0.1; at x⊥ ∈ ½0.0; 4.0� fm;

τ ∈ ½0.5; 4.0� fm=c: ð100Þ

We comment that Eqs. (97) and (98) are the evidence to
show that spin corrections in the Belinfante form of spin
hydrodynamic exist. These spin corrections are expected
in Ref. [64].

V. CONCLUSION

In this work we have obtained the analytical solutions for
the dissipative spin hydrodynamics with radial expansion in
a Gubser flow.
After a short review on the standard Gubser flow, we

briefly discuss the relativistic dissipative spin hydrody-
namics in the Minkowski space-time R3;1 and extend the
main equations to the dS3 ×R space-time under Weyl
rescaling. Unfortunately, we find that there are extra
contributions∝ ∇̂μτ fromWeyl rescaling to both the energy
momentum conservation Eq. (23) and angular momentum
conservation Eq. (25). We emphasize that the energy-
momentum conservation equation is no longer conformal
invariant in the current work due to its antisymmetric
components. For simplicity, we drop the bulk viscous
pressure and q̂μ. We further assume the transport
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coefficients η̂s=ŝ and γ̂=ŝ are small constants similar to the
ordinary Gubser flow.
We then discuss the thermodynamic relations (36) and

the equations of state (37), (38) in the dS3 ×R space-time.
For convenience, we introduce a dimensionless scalar ω̄2 in
Eq. (39). Next, we derive the special configuration for the
fluid, in which the fluid velocity in a Gubser flow holds.
Fortunately, the extra terms from Weyl rescaling ∼∇̂μτ in
energy momentum and angular momentum conservation
equations vanish in this configuration. In the power series
expansion of small ω̄2; η̂s=ŝ; γ̂=ŝ, we have derived the
analytic solutions for the dissipative spin hydrodynamics
in the dS3 ×R space-time. The evolution of energy density
and spin density Ŝρθ; Ŝφη are shown in Eqs. (66), (67), (68)
in dS3 ×R space-time. We also transform these physical
quantities back to the Minkowski space-time R3;1.
Our main results for the energy density e and spin

density S0x; S0y; Sxz; Syz in Minkowski space-time R3;1 are
given by Eqs. (76), (80)–(83). There are two remarkable
differences between the solutions found here and in a
Bjorken flow [71]. The first thing is that the solutions in a
Gubser flow provide the additional information for trans-
verse expansion of the systems, which is missing in a
Bjorken flow [71]. Meanwhile, now we have derived four
nonzero components S0x; S0y; Sxz; Syz in spin density tensor
in current work, while we only have one nonzero compo-
nent Sxy in Bjorken flow [71]. It indicates that our current
findings are not a simple extension of Bjorken flow.

In large L and small η=s, γ=s limits we find that
e ∝ τ−4=3; T ∝ τ−1=3; Sμν ∝ L−2τ−1;ωμν ∝ L−2τ−1=3, which
are similar to the behavior in Bjorken expansion [71].
Moreover, Sμν decays much faster in the cases of a finite L
and with nonzero dissipative effects than in large L and
perfect fluid limit.
In our model, we find that in large L and small η=s, γ=s

limits the thermal shear tensor ξμν may be more important
than spin potential ωμν and thermal vortical tensor Ωμν, but
in finite L case their evolution behavior depends on the
parameters L strongly. We can not naively drop any one of
them in the modified Cooper-Frye formula. To clarify it, we
need further studies based on spin hydrodynamics in the
future.
At the end, after the pseudogauge transformation, we

discuss the results for spin hydrodynamics in the Belinfante
form. We observe that the spin corrections to the energy
density and other dissipative terms do not vanish in a
Gubser flow, which is quite different with the results in a
Bjorken flow.
Our analytic solutions also provide the test beds for the

future numerical simulations of relativistic dissipative spin
hydrodynamics.
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