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We present a calculation of the heavy quark momentum diffusion coefficients in a quark-gluon plasma
under the presence of a strong external magnetic field, within the lowest Landau level (LLL)
approximation. In particular, we apply the hard thermal loop (HTL) technique for the resummed effective
gluon propagator, generalized for a hot and magnetized medium. Using the derived effective HTL gluon
propagator and the LLL quark propagator we analytically derive the full results for the longitudinal and
transverse momentum diffusion coefficients for charm and bottom quarks beyond the static limit. We also
show numerical results for these coefficients in two special cases where the heavy quark is moving either
parallel or perpendicular to the magnetic field.
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I. INTRODUCTION

It is well known that some stellar objects (e.g., neutron
stars, anomalous x-ray pulsars), where nuclear matter are
assumed to be under extreme conditions, possess large
surface magnetic fields [1]. Such strong fields are also
found to be present in noncentral heavy ion collisions
(HIC), sourced by the fast-moving and positively-charged
protons of the colliding nuclei. Sophisticated numerical
simulations have demonstrated that the initial strength of
this magnetic field can be very high, eB ∼ Ôð1Þm2

π at RHIC
and eB ∼ Ôð10Þm2

π at LHC [2–7], and that on average it
points in the direction perpendicular to the reaction plane.
The presence of the strong and anisotropic magnetic field

in the noncentral HICs could potentially induce observable
effects in these collisions. For example, the magnetic field
could lead to novel transport phenomena such as the chiral
magnetic effect [8–10], chiral magnetic wave [11] as well as
charge-dependent directed flow [12–15]. The influence of
strong magnetic fields on the photon and dilepton produc-
tions from quark-gluon plasma have also been studied
extensively [16–25], which may possibly help explain the

observed large anisotropy of photon emissions by PHENIX
[26]. Such a strongmagnetic field, introducing an extra scale
in the quark-gluon plasma (QGP) in addition to the usual
temperature and chemical potential, has also triggered
significant interest in theoretically understanding the phase
structures and properties of a strongly magnetized medium.
For example, there have been a lot of studies on the finite
temperature magnetic catalysis (MC) [27–29], the inverse
magnetic catalysis (IMC) [30–36], as well as other thermo-
dynamic properties [37,38]. For various developments along
these directions, see recent reviews in, e.g., [39–53].
The dynamical evolution of heavy quarks (HQ) serves as

an important probe for the properties of strongly interacting
hot quark-gluon plasma created in heavy ion collisions.
Because of their large mass compared to the temperature
scale, HQs are generated at the early stage of the initial hard
scatterings and are “external” to the bulk thermal medium.
These heavy quarks traverse through the fireball and
experience drag forces as well as random “kicks” from
the thermal partons in the bulk medium. A widely adopted
approach to describe such HQ dynamics is to use the
Langevin equations for describing HQ in-medium evolu-
tion. The essential theoretical inputs needed for this
approach include the HQ momentum drag and diffusion
coefficients. These parameters are known to sensitively
influence the phenomenological modelings of HQ dynam-
ics and the predictions for experimental observables [54].
Many efforts have been made to compute these HQ
transport coefficients in the quark-gluon plasma. A number
of results were obtained when the heavy quarks are
considered to be static with its much heavier mass as the
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highest scale of the system [55–57], known as the static
limit of the HQ. These computations typically employ the
hard thermal loop (HTL) resummation method for the hot
medium [58–63]. Though it is easier to work within the
static limit, which is a valid approximation for low-
momentum charm and bottom quarks, there is the strong
need for going beyond the static limit, given that current
HIC measurements for heavy flavor sector extend well into
high momentum region where the transverse momentum
scale could be much larger than the charm or bottom quark
masses.
The presence of strong magnetic field brings interesting

new questions about HQ dynamics, namely the magnetic
field effect on the HQ transport coefficients in a highly
magnetized quark-gluon plasma. There have been some
recent developments on the HQ dynamics both within and
beyond the static limit [64–68], also within the holographic
approach [69]. Most of those calculations consider the
lowest Landau level (LLL) approximation, which for a
thermal medium suggests the regime eB ≫ T2. On top of
that, the HQ mass (M) is assumed to be the largest scale of
the system, resulting in the scale hierarchyM ≫

ffiffiffiffiffiffi
eB

p
≫ T.

Similar to Ref. [64], here we also work within a further
constraint αseB ≪ T2, αs being the strong coupling, such
that one can neglect the soft self energy corrections of the
LLL quarks and gluons while evaluating the scattering rate.
The presence of an externalmagnetic field pointing at a fixed
direction also breaks isotropy of the system, therefore even
within the static limit of HQ, there will be two momentum
diffusion coefficients, i.e., in the longitudinal and transverse
directions of the magnetic field. Going beyond the static
limit, therewill be nontrivial interplay between themagnetic
field direction and the HQmomentum direction, making the
problem even more complex and challenging. Clearly, a lot
more needs to be understood for HQ transport coefficients in
a magnetized quark-gluon plasma.
In this paper, we aim to address this important problem,

namely the calculation of the heavy quark momentum
diffusion coefficients beyond the static limit in a quark-
gluon plasma under the presence of a strong external
magnetic field. Considering a HQ moving with a velocity
v⃗ in presence of an anisotropic B⃗ ¼ Bẑ, we analytically
derive the full results for the longitudinal and transverse
momentum diffusion coefficients for charm and bottom
quarks. We will adopt the lowest Landau level (LLL)
approximation for medium quark propagators in the regime
M ≫

ffiffiffiffiffiffi
eB

p
≫ T and use the HTL technique for the

resummed effective gluon propagators generalized for a
hot and magnetized medium. We also show numerical
results for these coefficients in two special cases where the
heavy quark is moving either parallel or perpendicular to
the external magnetic field (v⃗ k B⃗ and v⃗ ⊥ B⃗).
The rest of this paper is organized as follows. In Sec. II

we discuss the basic formalism required to study the HQ
dynamics, both for B ¼ 0 and B ≠ 0, within and beyond

the static limit. In the following section (Sec. III) we
compute the scattering rate for both B ¼ 0 and B ≠ 0
beyond the static limit. In Sec. IV we evaluate the final
expressions for the momentum diffusion coefficients of HQ
in a strongly magnetized medium for both v⃗ k B⃗ and
v⃗ ⊥ B⃗. Section V contains our results and corresponding
discussions. Finally we summarize and conclude in
Sec. VI.

II. FORMALISM

In the present work we focus on the HQ dynamics, where
the HQ is assumed to be relativistic (i.e., beyond the static
limit) in presence of a hot and magnetized medium. Wewill
start the current section by discussing the B ¼ 0 case and
gradually move in to the B ≠ 0 cases, within and beyond
the static limit.

A. HQ dynamics without magnetic field

In absence of the external magnetic field, there is only
one external scale from heavy quarks, i.e., M ≫ T.
Because of the fact that it takes many collisions to
substantially change the momentum of the HQ, the inter-
action of the HQ with the medium can be approximated as
uncorrelated momentum kicks. The corresponding dynam-
ics follows the Langevin equation as

dpi

dt
¼ ξiðtÞ−ηDpi; hξiðtÞξjðt0Þi¼ κδijδðt− t0Þ; ð2:1Þ

where ði; jÞ ¼ ðx; y; zÞ and ξiðtÞ represents the uncorrelated
momentum kicks. ηD and κ are respectively known as the
momentum drag and diffusion coefficient in the static limit
(i.e., with punishingly small p). Assuming t > η−1D , the
solution of the above differential equation can be given as

piðtÞ ¼
Z

t

−∞
dt0eηDðt0−tÞξiðt0Þ: ð2:2Þ

As a result of the random kicks from medium particles, the
HQ momentum broadening (as quantified by the mean
squared value of p) changes at a rate of

d
dt

hp2i ¼ 3κ ð2:3Þ

where 3κ is the momentum diffusion rate (i.e., mean
squared momentum transfer per unit time) with the factor
3 coming from the 3 isotropic spatial dimensions. The
coefficients κ and ηD are connected via the well-known
fluctuation-dissipation relation.
However, in high energy collisions, the charm and

bottom quark spectra suggest a finite transverse momentum
in general. Hence the relativistic case becomes important to
study. For this case, we consider HQ with finite velocity
γv≲ 1. In this kinematic regime, p ¼ γMv ∼M, i.e., the
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HQ momentum and mass are of similar scale. Now,
considering the HQ is moving in a particular direction,
we have the generalized Langevin equation as:

dpi

dt
¼ ξiðtÞ − ηDðpÞpi; ð2:4aÞ

hξiðtÞξjðt0Þi ¼ κijðp⃗Þδðt − t0Þ; ð2:4bÞ

where

κijðp⃗Þ ¼ κLðpÞp̂ip̂j þ κTðpÞðδij − p̂ip̂jÞ; ð2:5Þ

where p̂i is the HQ momentum unit vector along specific
direction i with ði; jÞ ¼ ðx; y; zÞ. κL and κT are the
longitudinal and transverse momentum diffusion coeffi-
cients respectively. Compared with the static case we can
see that the anisotropy generated from the movement of HQ
in a preferred direction breaks down the κ into longitudinal
and transverse parts, i.e., 3κ → κL þ 2κT . These anisotropic
coefficients quantify the momentum diffusion rate due to
scatterings with medium particles in the directions parallel
or perpendicular to the HQ momentum:

1

2

d
dt

hðΔpTÞ2i≡ κTðpÞ; ð2:6aÞ

d
dt

hðΔpLÞ2i≡ κLðpÞ; ð2:6bÞ

with pL and pT representing longitudinal and transverse
momentum components. Note that since the ηD becomes
momentum-dependent, the relevant timescale set by ∼1=ηD
would also become momentum-dependent. Nevertheless
for the kinetic regime we consider (with γv ≲ 1), the HQ
mass and HQ momentum are of similar scale and it is
plausible to expect that the 1=ηD would remain at the same
order of magnitude for the momentum regime of our
interest.
The uncorrelated momentum kicks in a finite temper-

ature medium originate from the scattering processes of
thermally populated light quarks and gluons with the heavy
quark, i.e., 2 ↔ 2 scattering processes qH → qH and
gH → gH (q → quark, g → gluon and H → HQ). At
leading order in strong coupling, these scatterings are
mediated by one-gluon exchange (see Fig. 1), and the
scattering particles can be considered as quasiparticles in
thermally equilibrated matter. In the rest frame of the
plasma, the Compton scattering is suppressed by the scale
T=M and hence both the qH → qH and gH → gH proc-
esses predominantly occur via the t-channel gluon
exchange. Hence the momentum broadening rates i.e.,
κL and κT can be directly expressed through the scattering
rate Γ of the t-channel gluon exchange, as follows:

κL ¼
Z

d3q
dΓ
d3q

q2L; ð2:7aÞ

κT ¼ 1

2

Z
d3q

dΓ
d3q

q2T: ð2:7bÞ

Again the corresponding drag coefficients can be related to
the above coefficients via fluctuation-dissipation relations.
In the following subsections we further discuss the modi-
fication of these coefficients in presence of an external
magnetic field.

B. HQ dynamics with finite magnetic field

Initial arguments in support of the Langevin picture to
describe HQ dynamics in the magnetized medium is similar
to that of the previous section. In presence of an external
magnetic field the heavy quark mass is considered to be
sufficiently large, i.e.,M ≫

ffiffiffiffiffiffi
eB

p
. The value of the external

magnetic field eB will determine the further scale hier-
archies, e.g., M ≫

ffiffiffiffiffiffi
eB

p
≫ T for the lowest Landau level

dynamics. However, because of the spatial anisotropy
introduced by the external magnetic field, we will have
a set of two equations for the longitudinal (z= k) and
transverse (⊥) momenta

dpz

dt
¼ −ηkpz þ ξz; hξzðtÞξzðt0Þi ¼ κkδðt − t0Þ; ð2:8aÞ

dp⃗⊥
dt

¼ −η⊥p⃗⊥ þ ξ⃗⊥; hξi⊥ðtÞξj⊥ðt0Þi ¼ κ⊥δijδðt − t0Þ;
ð2:8bÞ

where ði; j ¼ x; yÞ and A⃗⊥ ¼ ðAx; AyÞ are the transverse
components of the momenta, random forces and drag
coefficients. The drag and diffusion coefficients are related
to each other as:

FIG. 1. The equivalence of the t-channel scattering of heavy
quarks due to thermally generated light quarks and gluons, qH →
qH (left) and gH → gH (right) are shown, as they can also be
expressed as the cut (imaginary) part of the HQ self energy.
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ηk ¼
κk

2MT
; η⊥ ¼ κ⊥

2MT
: ð2:9Þ

Moreover, similarly as the relativistic case at B ¼ 0, for the
magnetized medium also, within the static limit we can
break down κ into longitudinal and transverse parts using
the rotational symmetry

3κ ¼ κk þ 2κ⊥; ð2:10Þ

with

κk ¼
Z

d3q
dΓðEÞ
d3q

q2k; ð2:11aÞ

κ⊥ ¼ 1

2

Z
d3q

dΓðEÞ
d3q

q2⊥; ð2:11bÞ

where dΓðEÞ
d3q can be interpreted as the scattering rate of the

HQ via one-gluon exchange with thermal particles per unit
volume of momentum transfer q.
On the other hand beyond the static limit we have the

finite velocity v⃗ ¼ p⃗=E. Now we have to consider the
direction of v⃗ in the context.

1. Case 1: v⃗ k B⃗

This case is simpler since the magnetic field and the
heavy quark point in the same direction, i.e., z direction for
our case. So the transport coefficients are given by

1

2

d
dt

hðΔpTÞ2i≡ κTðpÞ; ð2:12aÞ

d
dt

hðΔpzÞ2i≡ κLðpÞ; ð2:12bÞ

where Δ signifies the respective variance of the momentum
distributions with the transport coefficients. These trans-
verse and longitudinal momentum diffusion coefficients are
in turn related to scattering rate as follows:

κTðpÞ ¼
1

2

Z
d3q

dΓðvÞ
d3q

q2⊥; ð2:13aÞ

κLðpÞ ¼
Z

d3q
dΓðvÞ
d3q

q2z : ð2:13bÞ

2. Case 2: v⃗ ⊥ B⃗

In this situation as the HQ moves perpendicular to (i.e., x
or y) the direction of the external anisotropic magnetic field
(i.e., z), we have three momentum diffusion coefficients
(i.e., κ1, κ2, κ3) that are different in general:

d
dt

hðΔpxÞ2i≡ κ1ðpÞ; ð2:14aÞ

d
dt

hðΔpyÞ2i≡ κ2ðpÞ; ð2:14bÞ

d
dt

hðΔpzÞ2i≡ κ3ðpÞ; ð2:14cÞ

which are explicitly given as

κ1ðpÞ ¼
Z

d3q
dΓðvÞ
d3q

q2x; ð2:15aÞ

κ2ðpÞ ¼
Z

d3q
dΓðvÞ
d3q

q2y; ð2:15bÞ

κ3ðpÞ ¼
Z

d3q
dΓðvÞ
d3q

q2z : ð2:15cÞ

III. COMPUTATION OF THE
SCATTERING RATE (Γ)

An effective way of expressing the scattering rate, as
proposed by Weldon [70] and demonstrated in Fig. 1, is in
terms of the cut/imaginary part of the HQ self energy ΣðPÞ,

ΓðP≡ E; vÞ

¼ −
1

2E
1

1þ e−E=T
Tr½ðPþMÞImΣðp0 þ iϵ; p⃗Þ�: ð3:1Þ

The advantage of Eq. (3.1) is that one can apply
imaginary time formalism of thermal field theory to extract
ΣðPÞ including the necessary resummations as we will
see soon.
Now, though the hard contribution of ΓðPÞ comes from

cutting the two-loop self energy diagrams shown in Fig. 1.
On the other hand, to include the soft contributions, i.e.,
where the momentum Q flowing through the gluon line is
soft, hard thermal loop corrections to the gluon propagator
contribute at leading order in g. In this case, resummation
must be taken into account. So, instead of two separate
processes (i.e., qH → qH and gH → gH) depicted in
Fig. 1, we will have an effective gluon propagator which
is obtained by summing the geometric series of one-loop
self energy corrections proportional to g2T2 (see Fig. 2).

FIG. 2. Heavy quark self-energy with effective gluon propa-
gator. Resummation takes into account the diagrams for the hard
process (same as Fig. 1) among others.
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A. Scattering rate without magnetic field

For B ¼ 0, one can identify the hard and soft scales as T
and gT respectively which enables us to use the HTL
approximation assuming Q ∼ gT. In this case, the effective
self-energy for the HQ is given by

ΣðPÞ¼ ig2
Z

d4Q
ð2πÞ4G

μνðQÞγμ
1

P−=Q−M
γν

¼−g2T
X
q0

Z
d3q
ð2πÞ3G

μνðq0;q⃗Þγμ
1

P−=Q−M
γν; ð3:2Þ

where Q≡ ðq0; q⃗Þ is the gluonic four-momenta and
GμνðQÞ is the HTL gluon propagator in Coulomb gauge,
given as

GμαðQÞ ¼ −
δμ0δα0

q2 þ ΠL
þ δij − q̂iq̂j

q2 − q20 þ ΠT
: ð3:3Þ

The first term of Eq. (3.3) represents the temporal part of
the gluon propagator G00 (i.e., it would vanish for μ, α ≠ 0)
whereas ði; jÞ in the second term symbolize the spatial
components. ΠL and ΠT are respectively the longitudinal
and transverse coefficients of the HTL gluon self-energies
(ΠL is also equivalent to the temporal componentΠ00 of the
HTL gluon self-energy Πμν), given as

ΠL ¼Π00 ¼ ðm2
DÞg

�
1−

q0
2q

�
ln

�
qþq0
q−q0

�
− iπ

��
; ð3:4aÞ

ΠT ¼ ðm2
DÞg

�
q20
2q2

þ q0ðq2 − q20Þ
4q3

�
ln

�
qþ q0
q − q0

�
− iπ

��
;

ð3:4bÞ

with ðmDÞg being the Debye screening mass without

magnetic field and ðm2
DÞg ¼ g2NcT2

3
, Nc being the number

of colors.
Now, evaluation of the trace in Eq. (3.1) yields

Tr½ðPþMÞΣðPÞ�

¼−4g2T
X
q0

Z
d3q
ð2πÞ3

1

ðP−QÞ2 −M2

× ½GLðQÞðp2
0þp2−p0q0− p⃗ · q⃗þM2Þ

þ 2GTðQÞðp2
0−p0q0þ p⃗ · q⃗− ðp⃗ · q̂Þ2−M2Þ�; ð3:5Þ

where GL and GT are defined as

G−1
L ¼ q2 þ ΠL;

G−1
T ¼ q20 − q2 − ΠT:

To perform the Matsubara sum, the most efficient way is
to use the spectral representations [71] for the fermionic

propagators (P −Q≡ K) and the gluonic form factors.
Spectral representation of the fermion propagator can be
expressed as

1

K2 −M2
¼ 1

k20 −E02

¼ −1
2E0

Z
1=T

0

dτ0ek0τ0 ½nFð−E0Þe−E0τ0 − nFðE0ÞeE0τ0 �;

ð3:6Þ

with E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp⃗ − q⃗Þ2

p
. Similar procedure for the

gluonic form factors yields

GL=TðQÞ ¼ −
Z

1=T

0

dτeq0τ

×
Z þ∞

−∞
dωρL=Tðω; qÞ½1þ nBðωÞ�e−ωτ; ð3:7Þ

where ρL=T are the spectral functions defined as
ρL=Tðω; qÞ ¼ −ImGL=Tðq0 þ iϵ; qÞ=π.
Next, combining Eqs. (3.6) and (3.7) in Eq. (3.5),

evaluating the τ; τ0 integrals and extracting the imaginary
part using the standard formula

Im

�
1

p0 þ iϵ ∓ p

�
¼ −iπδðp0 ∓ pÞ; ð3:8Þ

one can finally obtain

Tr½ðPþMÞImΣðPÞ�

¼−4πg2ð1þ e−p0=TÞ
Z

d3q
ð2πÞ3

Z þ∞

−∞
dω½1þnBðωÞ�

1

2E0

× f½1−nFðE0Þ�δðp0−E0 −ωÞ−nFðE0Þδðp0þE0 −ωÞg
× ½ρLðω;qÞð2p2

0−p0ω− p⃗ · q⃗Þ
þ 2ρTðω;qÞðp2−p0ωþ p⃗ · q⃗− ðp⃗ · q̂Þ2Þ�: ð3:9Þ

Next we can simplify the above expression using the
assumptionsM;p ≫ T. So, the second δ function vanishes
as ω ≈ T. The exponentially suppressed Fermi-Dirac dis-
tribution can also be dropped. Using E0 ≃ p0 − v⃗ · q⃗, the
first δ function becomes δðω − v⃗ · q⃗Þ. Eventually the
expression can be written as

Tr½ðPþMÞImΣðPÞ�
¼−4πg2ð1þe−p0=TÞ

×
Z

d3q
ð2πÞ3

Z þ∞

−∞
dω½1þnBðωÞ�

1

2p0

δðω− v⃗ · q⃗Þ

× ½ρLðω;qÞð2p2
0Þþ2ρTðω;qÞðp2− ðp⃗ · q̂Þ2Þ�; ð3:10Þ
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which gives the expression for the scattering rate from
Eq. (3.1) as [58,62]

ΓðPÞ ¼ 2πg2
Z

d3q
ð2πÞ3

Z þ∞

−∞
dω½1þ nBðωÞ�δðω − v⃗ · q⃗Þ

× ½ρLðω; qÞ þ ρTðω; qÞðv2 − ðv⃗ · q̂Þ2Þ�: ð3:11Þ

This result also reproduces the known result for the
damping rate of a static quark [72] in the static (i.e.,
v → 0) limit. At this point, we would like to note that even
though our HTL approximation within the assumption of
Q ∼ gT is justified for the calculation of the scattering rate,
the Q ∼ T scale also becomes relevant for the evaluation of
momentum diffusion coefficients [58]. Hence for the
results in the eB ¼ 0 case, we have used the same approach
as Ref. [62] where the scattering rate from Eq. (3.11) has
been used to evaluate the momentum diffusion coefficients
within the leading logarithmic accuracy (LLA). Within this
procedure we need an UV momentum cutoff qmax which is
to be further discussed in Sec. V.

B. Scattering rate with finite magnetic field

Under the presence of a finite magnetic field, the usual
counting of scales in hard thermal loop approach gets more
complicated due to the new

ffiffiffiffiffiffi
eB

p
scale. In the present

calculation, we consider T;
ffiffiffiffiffiffi
eB

p
both as hard scales for the

loop momenta and gT as soft scales for the external
momenta. More specifically, note that in the effective
gluon propagator (shown in Fig. 2): for the quark loop
there will be the temperature T scale and additionally theffiffiffiffiffiffi
eB

p
scale will and only will come in via the lowest Landau

level for quarks; for the gluon loop, there will be only the
temperature T as the hard scale. We consider the external
momentum in gluon propagator to be soft scale gT as
usually done in HTL. These scales still respect a hierarchy
of gT ≪ T ≪

ffiffiffiffiffiffi
eB

p
. The effective heavy quark self energy

in a magnetized medium is given by,

ΣðPÞ ¼ ig2
Z

d4Q
ð2πÞ4D

μνðQÞγμSsmðP −QÞγν: ð3:12Þ

In this equation, the fermion propagator in the LLL
approximation SsmðP −Q≡ KÞ is given by [73–75],

iSsmðKÞ ¼ ie−k
2⊥=jqfBj

=Kk þM

K2
k −M2

ð1 − iγ1γ2Þ; ð3:13Þ

where qf is the fermionic charge for a particular flavor f
andK ≡ ðKk; k⊥Þ is the fermionic four momentum (Details
about these k and ⊥ notations can be found in
Appendix A). In strong field approximation or in LLL,
eB ≫ k2⊥, an effective dimensional reduction from (3þ 1)

to (1þ 1) takes place [74,75]. We note that the LLL
approximation works best under the condition eB

M ≫ T.
It shall be noted that there have been considerable new

developments in the exploration of the thermomagnetic
corrections to the correlation functions. Recently the
thermomagnetic correction to the quark-gluon vertex has
been computed in the weak magnetic field limit within the
HTL approximation [76,77]. Also there are several recent
studies on the general structures of the fermion and gauge
boson self-energies with propagators at finite temperature
and in presence of an external magnetic field [78–87].
These studies vary in their approach by their choice of the
independent tensor structures for constructing the two-
point correlation functions. Out of these choices we have
chosen the effective gluon propagator in a hot and mag-
netized medium from [85], i.e.,

DμνðQÞ ¼ ξQμQν

Q4
þ ðQ2 − d3ÞΔμν

1

ðQ2 − d1ÞðQ2 − d3Þ − d24
þ Δμν

2

Q2 − d2

þ ðQ2 − d1ÞΔμν
3

ðQ2 − d1ÞðQ2 − d3Þ − d24

þ d4Δ
μν
4

ðQ2 − d1ÞðQ2 − d3Þ − d24
; ð3:14Þ

with

d1ðQÞ ¼ Δμν
1 ΠμνðQÞ; ð3:15aÞ

d2ðQÞ ¼ Δμν
2 ΠμνðQÞ; ð3:15bÞ

d3ðQÞ ¼ Δμν
3 ΠμνðQÞ; ð3:15cÞ

d4ðQÞ ¼ 1

2
Δμν

4 ΠμνðQÞ; ð3:15dÞ

and

Δμν
1 ¼ 1

ū2
ūμūν; ð3:16aÞ

Δμν
2 ¼ gμν⊥ −

Qμ
⊥Qν⊥
Q2⊥

; ð3:16bÞ

Δμν
3 ¼ n̄μn̄ν

n̄2
; ð3:16cÞ

Δμν
4 ¼ ūμn̄ν þ ūνn̄μffiffiffiffiffi

ū2
p ffiffiffiffiffi

n̄2
p ; ð3:16dÞ

where uμ is the heat bath velocity and nμ is defined
uniquely as the projection of the electromagnetic field
tensor Fμν along uμ. Details about the construction of the
tensor structure and the notations of ūμ; n̄ν; gμν⊥ etc. are
given in Appendix A. ΠμνðQÞ is the HTL gluon self energy
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in a strongly magnetized hot medium which is a combi-
nation of the Yang-Mills contribution Πg

μν and fermionic
loop contribution Πs

μν within LLL approximation. The
expressions for Πs

μν, Π
g
μν and the evaluation of diðQÞ’s

within the LLL approximation are given in Appendix B.
Next we evaluate the trace required for the scattering

rate, i.e.,

Tr½ðPþMÞΣðPÞ�

¼ ig2
Z

d4Q
ð2πÞ4

e−k
2⊥=jqfBj

K2
k −M2

×
X4
i¼1

J iTr½ðPþMÞΔμν
i γμð=Kk þMÞð1 − iγ1γ2Þγν�;

ð3:17Þ

where we are working in a gauge with vanishing gauge
parameters. The coefficients J i’s are given as,

J 1 ¼
ðQ2 − d3Þ

ðQ2 − d1ÞðQ2 − d3Þ − d24
; ð3:18aÞ

J 2 ¼
1

ðQ2 − d2Þ
; ð3:18bÞ

J 3 ¼
ðQ2 − d1Þ

ðQ2 − d1ÞðQ2 − d3Þ − d24
; ð3:18cÞ

J 4 ¼
d4

ðQ2 − d1ÞðQ2 − d3Þ − d24
: ð3:18dÞ

We can now evaluate the individual traces as

Tr½ðPþMÞΔμν
1 γμð=Kk þMÞð1 − iγ1γ2Þγν�

¼ 4

ū2
½2ðū · KÞkðū · PÞ − ū2ððK · PÞk −M2Þ�

¼ 4

ū2

�
2

�
p0 − q0

�
1þ

ðP ·QÞk −Q2
k

Q2

��

×

�
p0 − q0

P ·Q
Q2

�
þ ū2ðM2 − P2

k − p3q3 þ p0q0Þ
�

¼ A1 þ q0B1; ð3:19aÞ

where

A1 ¼
4

ū2
½2p2

0 þ ū2ðM2 − P2
k − p3q3Þ� ð3:19bÞ

and B1 represents rest of the q0 dependent terms.

Tr½ðPþMÞΔμν
2 γμð=Kk þMÞð1 − iγ1γ2Þγν�

¼ −4ðK · PÞk þ 4M2

¼ 4ðM2 − P2
k − p3q3 þ p0q0Þ

¼ A2 þ q0B2; ð3:19cÞ

with

A2 ¼ 4ðM2 − P2
k − p3q3Þ ð3:19dÞ

and B2 represents rest of the q0 dependent term.

Tr½ðPþMÞΔμν
3 γμð=Kk þMÞð1 − iγ1γ2Þγν� ¼

4

n̄2
½2ðn̄ · KÞkðn̄ · PÞ − n̄2ððK · PÞk −M2Þ�

¼ 4

n̄2

�
2

�
−k3 þ

q0q3k0
q2

−
q3
q2

ððP ·QÞk −Q2
kÞ
��

−p3 þ
q0q3p0

q2
−
q3
q2

ðP ·QÞ
�

þ n̄2ðM2 − P2
k − p3q3 þ p0q0Þ

�

¼ A3 þ q0B3; ð3:19eÞ

with

A3 ¼ 4

�
2k3q3
q2

ðp⃗ · q⃗Þ þM2 − p2
0 − p3k3

�
ð3:19fÞ

and B3 represents rest of the q0 dependent terms.
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Tr½ðPþMÞΔμν
4 γμð=Kk þMÞð1 − iγ1γ2Þγν� ¼

4ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p ½ðū · KÞkðn̄ · PÞ þ ðn̄ · KÞkðū · PÞ − 2ðn̄ · ūÞððK · PÞk −M2Þ�

¼ 4ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p
��

p0 − q0

�
1þ

ðP ·QÞk −Q2
k

Q2

���
−p3 þ

q0q3p0

q2
−
q3
q2

ðP ·QÞ
�

þ
�
−k3 þ

q0q3k0
q2

−
q3
q2

ððP ·QÞk −Q2
kÞ
��

p0 − q0
P ·Q
Q2

��

¼ A4 þ q0B4; ð3:19gÞ
with

A4 ¼
4p0ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p
��

−p3 þ
q3
q2

ðp⃗ · q⃗Þ
�
þ k3n̄2

�
ð3:19hÞ

and B4 represents rest of the q0 dependent terms.
Next we compute the sum over q0, for which we

introduce the spectral representations for the propagators.
The spectral representation for the fermionic part can be
obtained using

1

K2
k−M2

¼−
1

2E0
k

Z
1=T

0

dτ0ek0τ0 ½ð1−nFðE0
kÞÞe−E

0
kτ

0
−nFðE0

kÞeE
0
kτ

0 �;

ð3:20Þ

with E0
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þM2

p
. On the other hand, pieces from the

effective gluon propagator appearing in Eqs. (3.18) can be
represented as

J i ¼ −
Z

1=T

0

dτeq0τ
Z þ∞

−∞
dωρiðω; qÞ½1þ nBðωÞ�e−ωτ:

ð3:21Þ

The corresponding spectral functions are given by

ρiðω; qÞ ¼ −
1

π
ImðJ ijq0¼ωþiϵÞ: ð3:22Þ

Detailed evaluations of these spectral functions are given in
Appendix C. Now the sum over q0 can be evaluated from
the combination of the integrals over τ and τ0, using

X
q0

eq0ðτ−τ0Þ ¼ δðτ − τ0Þ; ð3:23aÞ

X
q0

q0eq0ðτ−τ
0Þ ¼ δ0ðτ − τ0Þ: ð3:23bÞ

This subsequently yields

Tr½ðPþMÞΣðPÞ� ¼ ig2
Z

d4Q
ð2πÞ4

e−k
2⊥=jqfBj

K2
k −M2

X4
i¼1

J i½Ai þ q0Bi�

¼ −g2T
X4
i¼1

Z
d3q
ð2πÞ3 e

−k2⊥=jqfBj
Z þ∞

−∞
dω½1þ nBðωÞ�

Z
1=T

0

dτ0
Z

1=T

0

dτep0τ
0−ωτ

×
X
q0

eq0ðτ−τ0Þ½Ai þ q0Bi�
ρiðω; qÞ
2E0

k
½ð1 − nFðE0

kÞÞe−E
0
kτ

0
− nFðE0

kÞeE
0
kτ

0 �

¼ −g2T
X4
i¼1

Z
d3q
ð2πÞ3 e

−k2⊥=jqfBj
Z þ∞

−∞
dω½1þ nBðωÞ�

ρiðω; qÞ
2E0

k
ðAiP1 þ BiP2Þ; ð3:24Þ

where expressions for P1 and P2 are given below.
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P1 ¼
Z

1=T

0

dτ0
Z

1=T

0

dτep0τ
0−ωτδðτ − τ0Þ½ð1 − nFðE0

kÞÞe−E
0
kτ

0
− nFðE0

kÞeE
0
kτ

0 �

¼
Z

1=T

0

dτeðp0−ωÞτ½ð1 − nFðE0
kÞÞe−E

0
kτ − nFðE0

kÞeE
0
kτ�

¼ −
X
σ¼�1

σnFðσE0
kÞ

p0 þ σE0
k − ω

ðeðp0þσE0
k−ωÞ=T − 1Þ: ð3:25Þ

Similarly for P2 we obtain

P2 ¼
Z

1=T

0

dτ0
Z

1=T

0

dτep0τ
0−ωτδ0ðτ − τ0Þ½ð1 − nFðE0

kÞÞe−E
0
kτ

0
− nFðE0

kÞeE
0
kτ

0 �

¼ −
Z

1=T

0

dτ
d
dτ

eðp0−ωÞτ½ð1 − nFðE0
kÞÞe−E

0
kτ − nFðE0

kÞeE
0
kτ�

¼
X
σ¼�1

σnFðσE0
kÞðeðp0þσE0

k−ωÞ=T − 1Þ: ð3:26Þ

At the discrete imaginary energies p0 ¼ ið2nþ 1ÞπT, we can eliminate the p0 from the exponent as ep0=T ¼ −1. Then
after analytic continuation from p0 → Eþ iϵ, the imaginary part of Σ comes from the energy denominator as

Im

�
1

p0 þ σE0
k − ω

�				
p0→Eþiϵ

¼ −iπδðEþ σE0
k − ωÞ: ð3:27Þ

As Eq. (3.26) implies, P2 doesn’t correspond to any imaginary parts. Collecting all these finally we can write down the
evaluation for the trace as

Tr½ðPþMÞImΣðp0 þ iϵ; p⃗Þ� ¼ πg2T
X4
i¼1

Z
d3q
ð2πÞ3 e

−k2⊥=jqfBj
Z þ∞

−∞
dω½1þ nBðωÞ�

ρiðω; qÞAi

2E0
k

×
X
σ¼�1

σnFðσE0
kÞðeðσE

0
k−ωÞ=T þ 1ÞδðEþ σE0

k − ωÞ

¼ πg2Tðe−E=T þ 1Þ
X4
i¼1

Z
d3q
ð2πÞ3 e

−k2⊥=jqfBj
Z þ∞

−∞
dω½1þ nBðωÞ�

ρiðω; qÞAi

2E0
k

×
X
σ¼�1

σnFðσE0
kÞδðEþ σE0

k − ωÞ: ð3:28Þ

Eventually using Eq. (3.1), we can obtain the final
expression for the interaction rate ΓðE; v⃗Þ for a particular
flavor f as

ΓðE; v⃗Þ ¼ −
πg2T
2E

X4
i¼1

Z
d3q
ð2πÞ3 e

−k2⊥=jqfBj

×
Z þ∞

−∞
dω½1þ nBðωÞ�

ρiðω; qÞAi

2E0
k

×
X
σ¼�1

σnFðσE0
kÞδðEþ σE0

k − ωÞ: ð3:29Þ

We can now simplify the expression for the interaction
rate a bit further using the scale hierarchyM ≫

ffiffiffiffiffiffi
eB

p
≫ T.

As E ∼ E0
k ∼M, so the delta function δðEþ E0

k − ωÞ
cannot contribute for ω ≤ T. Also, the Fermi-Dirac dis-
tribution nFðE0

kÞ will be exponentially suppressed. These

changes subsequently simplify the expression of the
scattering rate as

ΓðE; v⃗Þ ¼ πg2T
2E

X4
i¼1

Z
d3q
ð2πÞ3 e

−k2⊥=jqfBj

×
Z þ∞

−∞
dω½1þ nBðωÞ�

ρiðω; qÞAi

2E0
k

δðE−E0
k −ωÞ:

ð3:30Þ
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IV. ENERGY LOSS AND MOMENTUM DIFFUSION
COEFFICIENTS FOR HEAVY QUARK IN A

STRONGLY MAGNETIZED MEDIUM

A. Case 1: v⃗ k B⃗

For this case we only have a nonzero p3ðpzÞ whereas
p1ðpxÞ ¼ p2ðpyÞ ¼ 0. Hence E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þM2

p
and one

can express E0
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp3 − q3Þ2 þM2

p
in terms of E by

expanding

E0
k ≈ E −

p3q3
E

¼ E − v3q3 ð4:1Þ

which results in

ΓðE;v3Þ ¼
πg2T
4E

X4
i¼1

Z
d3q
ð2πÞ3 e

−q2⊥=jqfBj

×
Z þ∞

−∞
dω½1þnBðωÞ�

ρiðω;qÞAð1Þ
i

ðE−v3q3Þ
δðω−v3q3Þ;

ð4:2Þ

where Að1Þ
i corresponds to Ai’s from Eqs. (3.19b), (3.19d),

(3.19f), and (3.19h) with p1 ¼ p2 ¼ 0.
Next within this case we can write down the expressions

for the energy loss and the respective momentum diffusion
coefficients using Eq. (2.13). The energy loss will be
given as

dE
dx

¼ πg2T
4Ev3

X4
i¼1

Z
d3q
ð2πÞ3 e

−q2⊥=jqfBj

×
Z þ∞

−∞
dω½1þ nBðωÞ�ω

ρiðω; qÞAð1Þ
i

ðE − v3q3Þ
δðω − v3q3Þ;

ð4:3Þ

Now, as the spectral functions are odd functions, we can
replace the factor ð1þ nBðωÞÞ with its even part, as

ð1þ nBðωÞÞ →
ð1þ nBðωÞÞ þ ð1þ nBð−ωÞÞ

2
¼ 1

2

resulting

dE
dx

¼ πg2T
8Ev3

X4
i¼1

Z
d3q
ð2πÞ3 e

−q2⊥=jqfBj

×
Z þ∞

−∞
dωω

ρiðω; qÞAð1Þ
i

ðE − v3q3Þ
δðω − v3q3Þ: ð4:4Þ

Similarly the transverse momentum diffusion coefficient
will be given as

κTðp3Þ ¼
πg2T
8E

X4
i¼1

Z
d3q
ð2πÞ3 q

2⊥e−q
2⊥=jqfBj

×
Z þ∞

−∞
dω½1þ nBðωÞ�

ρiðω; qÞAð1Þ
i

ðE− v3q3Þ
δðω− v3q3Þ:

ð4:5Þ

Again as the spectral function is odd, we choose to replace
the factor ð1þ nBðωÞÞ with its odd part, as

ð1þ nBðωÞÞ →
ð1þ nBðωÞÞ − ð1þ nBð−ωÞÞ

2
¼ 1

2
coth

ω

2T

resulting

κTðp3Þ ¼
πg2T
16E

X4
i¼1

Z
d3q
ð2πÞ3 q

2⊥e−q
2⊥=jqfBj

×
Z þ∞

−∞
dω coth

�
ω

2T

�
ρiðω; qÞAð1Þ

i

ðE − v3q3Þ
δðω − v3q3Þ:

ð4:6Þ

Finally the longitudinal momentum diffusion coefficient
will be given as

κLðp3Þ ¼
πg2T
8E

X4
i¼1

Z
d3q
ð2πÞ3 q

2
3e

−q2⊥=jqfBj

×
Z þ∞

−∞
dω coth

�
ω

2T

�
ρiðω; qÞAð1Þ

i

ðE − v3q3Þ
δðω − v3q3Þ:

ð4:7Þ

One may take the v3 → 0 limit to obtain results for the
case of a static heavy quark. It may be noted that the static
limit results here differ from that obtained in [64]. The
origin of such difference comes from the different treatment
of the gluon self energy, for which we include both quark
and gluon loop contributions while [64] considers only the
quark loop. In Appendix D we have shown that excluding
the gluon loop contribution our results agree with that
of [64].

B. Case 2: v⃗ ⊥ B⃗

For this case we have nonzero p1 and/or p2 whereas
p3 ¼ 0. Hence E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þM2

p
and E0

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q23 þM2

p
.

Following similar steps as in subsection IVA and using
Eq. (2.15), we can straightway write down the expressions
for the energy loss and the diffusion momentum coeffi-
cients as
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dE
dx

¼ πg2T
8Ev

X4
i¼1

Z
d3q
ð2πÞ3 e

−k2⊥=jqfBj

×
Z þ∞

−∞
dωω

ρiðω; qÞAð2Þ
i

E0
k

δðω − Eþ E0
kÞ; ð4:8Þ

κ1ðpÞ ¼
πg2T
8E

X4
i¼1

Z
d3q
ð2πÞ3 q

2
1e

−k2⊥=jqfBj

×
Z þ∞

−∞
dω coth

�
ω

2T

�
ρiðω; qÞAð2Þ

i

E0
k

δðω−EþE0
kÞ;

ð4:9Þ

κ2ðpÞ ¼
πg2T
8E

X4
i¼1

Z
d3q
ð2πÞ3 q

2
2e

−k2⊥=jqfBj

×
Z þ∞

−∞
dω coth

�
ω

2T

�
ρiðω; qÞAð2Þ

i

E0
k

δðω−EþE0
kÞ;

ð4:10Þ

κ3ðpÞ ¼
πg2T
8E

X4
i¼1

Z
d3q
ð2πÞ3 q

2
3e

−k2⊥=jqfBj

×
Z þ∞

−∞
dω coth

�
ω

2T

�
ρiðω; qÞAð2Þ

i

E0
k

δðω−EþE0
kÞ:

ð4:11Þ

Here Að2Þ
i corresponds to Ai’s from Eqs. (3.19b), (3.19d),

(3.19f), and (3.19h) with p3 ¼ 0.

V. RESULTS

In the following subsections we discuss our findings for
different momentum diffusion coefficients for heavy charm
and bottom quarks moving through a strongly magnetized
hot medium. For the numerical calculations, we have
used the self-consistent one-loop running coupling gðTÞ,
given as

gðΛÞ ¼
�

48π2

ð33 − 2NfÞ lnð Λ2

Λ2

MS

Þ

�
1=2

; ð5:1Þ

whereΛ andΛMS are the renormalization and theMS scales.
The parameter ΛMS needs to be fixed from a reference
point andwe follow the lattice calculation inRef. [88] giving
the value of αs ¼ g2=4π ¼ 0.326 for the renormalization
scale Λ ¼ 1.5 GeV, which thus suggests a value of
ΛMS ¼ 176 MeV. Given this parameter, we can then obtain
the coupling constant at any temperature T by identifying
Λ → 2πT in the above running coupling formula.We note in

passing that there are recent advances in the determination
of αs while taking into account the magnetic effects
[76,89–91], which may be interesting to incorporate in a
future study.

A. Case 1: v⃗ k B⃗

For the v⃗ k B⃗ case we have only one anisotropic
direction which gives rise to two different momentum
coefficients, namely κL and κT , representing the longi-
tudinal and transverse components. In this case the heavy
quark momentum is only nonvanishing in the B⃗ direction,
which we have chosen to be z. In the following we discuss
our results for κL and κT for charm and bottom quarks
(mass M ¼ 1.28 GeV and M ¼ 4.18 GeV respectively)
moving parallel to an external magnetic field along the z
direction. For most of our numerical results, we have
chosen the HQ momentum p to be 1 GeV. Such a choice
allows us to clearly go beyond the static limit while still
maintaining the scale hierarchy of T ≪ p≲M in con-
sistency with our derivations. While studying the HQ
momentum dependence of the momentum diffusion coef-
ficients, we also show results for a lower value of p, i.e.,
0.5 GeV in comparison with that of 1 GeV. Wewill discuss
more about this later in this section. We have also
compared our finite eB results with the eB ¼ 0 results
obtained from Ref. [62]. We have chosen the Ultra-Violate
(UV) cut-off qmax required for the eB ¼ 0 case as
qmax ¼ 3.1TgðTÞ1=3, as discussed in Ref. [62]. We would
also like to note at this point that for finite eB calculations,
an UV cut-off like qmax is not necessary due to the
e−k

2⊥=jqfBj factor appearing from the fermion propagator
in a magnetized medium.
In Fig. 3 we have plotted the variations of scaled

longitudinal and transverse momentum coefficients,
κL=T3 (left panel) and κT=T3 (right panel) with temper-
ature. In both the plots we have shown the variations
of both charm (solid lines) and bottom (dashed lines)
quarks for three different values of magnetic field, i.e.,
eB ¼ 0; 15m2

π and 20m2
π . It can be observed from Fig. 3

that for increasing magnetic field, both longitudinal and
transverse components of the momentum diffusion coef-
ficients have increased. Although when compared with the
eB ¼ 0 case, the values for κT appear to be significantly
reduced by finite magnetic fields.
Fig. 4 shows a similar variation as in Fig. 3, but this time

we show two different plots for charm (left panel) and
bottom (right panel) quarks and in each plots we present
both κL (solid lines) and κT (dashed lines) together. As was
also evident from Fig. 3, interestingly we observe that
though for finite eB, values of κL are significantly higher
than κT , for eB ¼ 0 the situation is different. For charm
quark (left panel) values of κT at eB ¼ 0 is higher than κL
and for bottom quark (right panel) κL and κT fall on top of
each other.
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We have also shown the variation of κT with temper-
ature for charm quark with two different values of the
external momentum p in Fig. 5, i.e., p ¼ 1 GeV and
p ¼ 0.5 GeV. Again we have chosen two different values
of the magnetic field, eB ¼ 15m2

π and 20m2
π . This plot is

done to check the consistency of our calculation as we
have maintained the scale hierarchy of M ≫ p (M is the
heavy quark mass) and simplified our expressions accord-
ingly. For bottom quark mass M ¼ 4.18 GeV this con-
dition is easily satisfied. But for charm quark mass, since
M ¼ 1.28 GeV, and we have chosen p ¼ 1 GeV for most
of our results, it was necessary to compare with a different
(smaller) value of p. It can be seen from Fig. 5 that the

behavior for two different values of p are almost identical.
At all values of temperature the κT is bigger at larger HQ
momentum for both values of the magnetic field, i.e.,
eB ¼ 15m2

π and eB ¼ 20m2
π .

B. Case 2: v⃗ ⊥ B⃗

For the v⃗ ⊥ B⃗ case we have two anisotropic directions
given by v⃗ and B⃗. These subsequently give rise to three
different momentum coefficients, which we have noted as
κ1, κ2, and κ3 in the present study, representing the
longitudinal (κ3) and transverse (κ1, κ2) components. In
this case the heavy quark momenta can be nonvanishing in
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FIG. 4. Variation of the scaled HQ longitudinal (solid lines) and transverse (dashed lines) momentum diffusion coefficients (for v⃗ k B⃗)
with temperature for three different values of external magnetic field, i.e., eB ¼ 0; 15m2

π ; 20m2
π and for both charm (left panel) and

bottom (right panel) quarks. Charm and bottom quark masses M are specified in the text and HQ momentum p is taken to be 1 GeV.
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FIG. 3. Variation of the scaled charm (solid lines) and bottom (dashed lines) quark momentum diffusion coefficients (for v⃗ k B⃗) with
temperature for three different values of external magnetic field, i.e., eB ¼ 0; 15m2

π; 20m2
π . Left panel shows the variation of the scaled

longitudinal components κL, whereas right panel shows the same for the scaled transverse components κT . Charm and bottom quark
masses M are specified in the text and HQ momentum p is taken to be 1 GeV.
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any of the directions transverse to B⃗ direction (z), i.e., x
and/or y. In the following we choose a particular system
where the heavy quark is chosen to be moving along the x
direction. Hence the heavy quark momentum has only one
nonvanishing component along the x direction. We discuss
our findings for κ1, κ2, and κ3 for charm and bottom quarks
(mass M ¼ 1.28 GeV and M ¼ 4.18 GeV respectively)
moving perpendicular (x direction) to an external magnetic
field along the z direction.
In Fig. 6 we have shown the variation of the scaled heavy

quark momentum diffusion coefficients with temperature
for two different values of external magnetic fields, i.e.,

eB ¼ 15m2
π and 20m2

π . We have presented two separate
plots for the charm (left panel) and bottom (right panel)
quarks. For both the cases we have shown the variations for
scaled transverse components κ1 (solid lines), κ2 (dashed
lines) and longitudinal component κ3 (dotted lines). One
can observe from the plots that for bottom quarks, values of
the longitudinal component κ3 (dotted lines) are the largest,
followed by the transverse component κ1 (solid lines). For
charm quarks, we notice a crossover between κ1 and κ3,
where κ1 dominates at lower T and κ3 at higher T. For both
the plots, values of κ2 (dashed lines), which is basically
transverse to both the magnetic field and the velocity
directions, appear to be the lowest of the plot, almost an
order of magnitude lower than κ1=κ3. Also we can see that
with an increasing magnetic field, values for all the HQ
momentum diffusion components have also increased.
Figure 7 shows the similar variation as in Fig. 6, but this

time the representation is different. Here we have compared
charm (solid lines) and bottom (dashed lines) quark curves
together for three different plots, one each for κ1 (top left
panel), κ2 (top right panel), and κ3 (bottom panel). For all
three components, κ1, κ2, and κ3, the charm quark
momentum diffusion coefficients are found to be consid-
erably larger than that of the bottom quark, especially at
relatively lower temperature region.
Finally in Fig. 8 we have shown the dependence of the

transverse (top two panels) and longitudinal (bottom panel)
momentum diffusion coefficients on HQ momentum p for
two different values of external magnetic fields, i.e., eB ¼
15m2

π and 20m2
π . In each plot we have presented curves for

both charm (solid lines) and bottom (dashed) quarks. The
temperature in these plots is taken to be T ¼ 0.2 GeV. Note
that these κ coefficients characterize the momentum-
squared transfer due to medium kicks, therefore it would
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FIG. 5. Variation of the scaled HQ transverse momentum
diffusion coefficient (for v⃗ k B⃗) with temperature for two differ-
ent values of external magnetic field and two different values of
the HQ momentum p. Heavy quark masses M are specified in
the text.

eB=15 m2

eB=20 m2

1/T3

2/T3

3/T3

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.00

0.02

0.04

0.06

0.08

0.10

0.12

T (GeV)

/T
3

(c
ha

rm
)

eB=15 m2

eB=20 m2

1/T3

2/T3

3/T3

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.00

0.02

0.04

0.06

0.08

0.10

T (GeV)

/T
3

(b
ot

to
m

)

FIG. 6. Variation of the scaled charm (left panel) and bottom (right panel) quark momentum diffusion coefficients (for v⃗ ⊥ B⃗) with
temperature for two different values of external magnetic fields, i.e., eB ¼ 15m2

π and 20m2
π . For both the cases we have shown the plots

for scaled transverse components κ1 (solid lines), κ2 (dashed lines) and longitudinal component κ3 (dotted lines). Charm and bottom
quark masses M are specified in the text and HQ momentum p is taken to be 1 GeV.
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be more meaningful to examine a dimensionless combi-
nation κ

p2T. This ratio is constructed with the following

thinking: the κ multiplying the medium timescale 1=T gives
the average change in momentum-squared hδp2i due to
medium kicks over that timescale, which is to be compared
with the original momentum square p2 of the particle. The
plots for the transverse momentum diffusion coefficients κ1
and κ2 suggest that at lower values of HQ momentum,
bottom and charm quark transverse momentum diffusion
coefficients are almost equal while for higher values of HQ
momentum the charm quark transverse momentum diffu-
sion coefficients become larger than the bottom quark. For
the longitudinal coefficient κ3 the charm quark momentum
diffusion coefficients are always visibly larger than that of
the bottom quark. The results show a monotonic decrease

with increasing HQ momentum, suggesting a reduced
influence of medium kicks for heavy quarks with larger
momenta. The results for eB ¼ 15m2

π and eB ¼ 20m2
π are

fairly close, while both being considerably smaller as
compared with the zero magnetic field case. Such a
behavior may be related to the lowest Landau level
approximation which reduces the available scattering states
of the medium quarks. Phenomenologically, this may
suggest a suppression of the heavy quark diffusion at
the very early stage of the QGP evolution when the
magnetic field is very strong. With future quantitative
simulations of heavy quark transport with magnetic-
field-dependent diffusion coefficients, one could hope
for putting constraints on the lifetime of magnetic field
in these collisions.
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FIG. 7. Variation of the scaled HQ transverse (κ1 and κ2, top 2 panels) and longitudinal (κ3, bottom panel) momentum diffusion
coefficients (for v⃗ ⊥ B⃗) with temperature for two different values of external magnetic fields, i.e., eB ¼ 15m2

π and 20m2
π . In each plot,

we have shown the variations for charm (solid lines) and bottom (dashed lines) quarks. Heavy quark massesM are specified in the text
and momentum p is taken to be 1 GeV.
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VI. SUMMARY

In summary, we have studied the momentum diffusion
coefficients for heavy quarks (charm and bottom) moving in
a hot quark-gluon plasma under the presence of a strong
external magnetic field along the z direction. We have
considered two specific cases, i.e., when the HQ is moving
parallel to the external magnetic field (v⃗ k B⃗) and when the
HQ is moving perpendicular to the external magnetic field
(v⃗ ⊥ B⃗). For these two cases we have evaluated the relevant
momentum diffusion coefficients within the HTL approxi-
mation. To incorporate the soft gluonic momenta in our
evaluation, we have worked with the recently obtained
effective HTL gluon propagator in a hot and magnetized
medium [85]. For v⃗ k B⃗, we have one anisotropic direction
along z which results in two different momentum diffusion
coefficients, longitudinal κL and transverse κT . On the other

hand for v⃗ ⊥ B⃗ we have two different anisotropic direction
(in our case we have chosen that the HQ is moving along x
direction) which results in three different momentum dif-
fusion coefficients along three spatial directions, i.e., κ1, κ2,
and κ3. Considering the B⃗ direction as our reference, we have
called κ3 as the longitudinal and κ1;2 as two transverse
coefficients. For all these different κ’s, we have shown the
variationwith temperature for different values of eB, both for
charm and bottom quarks which revealed some interesting
features. Many of these results are obtained for the first time.
Numerical evaluations demonstrate a considerable influence
of the strong magnetic field on these coefficients for eB
values accessible in high energy heavy ion collisions. It may
be noted that the present calculations can be adapted to
numerically evaluate the fully anisotropic drag coefficients
for theHQvelocity in arbitrary direction. In the present study
we focus on showing results for the momentum diffusion κ
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coefficients and it shall be noted that the corresponding η
drag coefficients can be directly obtained via their relations to
the κ coefficients as in Eq. (2.9).
A natural next step is to go beyond the LLL approxi-

mation adopted in the present work under the assumption
of extremely strong magnetic field. This is a very chal-
lenging task but may be important for realistic applications.
It would also be highly interesting to explore the phenom-
enological implications of our theoretical results. For
example, one could implement the eB and HQ v⃗ dependent
drag coefficients into a Langevin transport code (e.g., [92])
and examine the dynamical HQ in-medium evolution. In
particular, there could be nontrivial consequence of the
anisotropic transport coefficients due to the magnetic field
for experimental observables such as directed and elliptic
flow of the open heavy flavor mesons. We expect to report
progress along these lines in a future work.
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APPENDIX A: GENERAL STRUCTURE OF AN
EFFECTIVE GAUGE BOSON PROPAGATOR IN

A MAGNETIZED MEDIUM

We begin this section by defining Lorentz scalars,
vectors and tensors that characterize the heat bath or hot
medium in a local rest frame:

uμ ¼ ð1; 0; 0; 0Þ;
Qμuμ ¼ Q · u ¼ q0: ðA1Þ

In the rest frame of the heat bath, another anisotropic four-
vector nμ can be defined uniquely as projection of the EM
field tensor Fμν along uμ,

nμ ≡ 1

2B
ϵμνρλuνFρλ ¼ 1

B
uνF̃μν ¼ ð0; 0; 0; 1Þ; ðA2Þ

which represents the z-direction. This also establishes a
connection between the heat bath and the magnetic field.
We first form the transverse four momentum and the

transverse metric tensor as

Q̃μ ¼ Qμ − ðQ · uÞuμ; ðA3aÞ

Qμ
⊥ ¼ Q̃μ þ ðQ · nÞnμ
¼ Qμ − q0uμ þ q3nμ ¼ Qμ −Qμ

k; ðA3bÞ

g̃μν ¼ gμν − uμuν; ðA3cÞ

gμν⊥ ¼ g̃μν þ nμnν ¼ gμν − gμνk ; ðA3dÞ

where

Qμ
k ¼ q0uμ − q3nμ; ðA4aÞ

Q2
k ¼ Qμ

kQ
k
μ ¼ q20 − q23; ðA4bÞ

gμνk ¼ uμuν − nμnν; ðA4cÞ

Qμ
⊥Q⊥

μ ¼Q2⊥ ¼Q2−q20þq23¼Q2−Q2
k ¼−q2⊥; ðA4dÞ

where Q2 ¼ Q2
k þQ2⊥ ¼ Q2

k − q2⊥, Q2
k ¼ q20 − q23, and

q2⊥ ¼ q21 þ q22. We further note that the three independent
Lorentz scalars are q0, q3 ¼ Q · n, andQ2⊥. One can further
redefine four vector uμ as

ūμ ¼ uμ −
ðQ · uÞQμ

Q2
¼ uμ −

q0Qμ

Q2
: ðA5Þ

which is orthogonal to Qμ and similarly nμ as

n̄μ ¼ nμ −
ðQ̃ · nÞQ̃μ

Q̃2
¼ nμ −

q3Qμ

q2
þ q0q3uμ

q2
; ðA6Þ

which is orthogonal to Q̃μ. Now three independent and
mutually transverse second rank projection tensors can be
constructed in terms of those redefined set of four-vectors
and tensors as

Δμν
1 ¼ ūμūν

ū2
; ðA7aÞ

Δμν
2 ¼ gμν⊥ −

Qμ
⊥Qν⊥
Q2⊥

; ðA7bÞ

Δμν
3 ¼ n̄μn̄ν

n̄2
: ðA7cÞ

Next one can construct the fourth tensor as

Δμν
4 ¼ ūμn̄ν þ ūνn̄μffiffiffiffiffi

ū2
p ffiffiffiffiffi

n̄2
p ; ðA8Þ

which satisfies the following properties

ðΔ4ÞμρðΔ4Þρν ¼ ðΔ1Þμν þ ðΔ3Þμν ; ðA9aÞ

ðΔkÞμρðΔ4Þρν þ ðΔ4ÞμρðΔkÞρν ¼ ðΔ4Þμν ; ðA9bÞ

ðΔ2ÞμρðΔ4Þρν ¼ ðΔ4ÞμρðΔ2Þρν ¼ 0; ðA9cÞ
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with (k ¼ 1, 3). Now, one can write a general covariant
structure of gauge boson self-energy as

Πμν ¼
X4
i¼1

diΔ
μν
i ; ðA10Þ

where di’s are four Lorentz-invariant form factors associated
with the four basis tensors given in Eqs. (3.15a)–(3.15d).
The inverse of the effective gauge boson propagator can

be expressed in terms of the Dyson Schwinger equation as,

D−1
μν ¼ ðD0Þ−1μν − Πμν; ðA11Þ

where ðD0Þμν is the gauge boson propagator in vacuum.
Using Eqs. (A10) and (A11) and the fact that
ðDμρÞ−1Dρν ¼ gμν one can write down the general covariant
structure of the gauge boson propagator in covariant gauge
as expressed in Eq. (3.14).

APPENDIX B: FORM FACTORS
WITHIN LLL APPROXIMATION

The fermion propagator within LLL approximation is
given in Eq. (3.13). Using that propagator, the fermionic
contribution of the gluon self energy was computed in
Ref. [85] and given as

Πs
μνðQÞ ¼ −

X
f

e−q
2⊥=2jqfBj

g2jqfBj
2π

× T
X
k0

Z
dk3
2π

Ss
μν

ðK2
k −m2

fÞðR2
k −m2

fÞ
; ðB1Þ

with Q is the external gluon momentum, K is the fermion
loop momentum and R≡ K −Q. The tensor structure Ss

μν

originates from the Dirac trace and given as

Ss
μν ¼ Kk

μR
k
ν þ Rk

μK
k
ν − gkμνððK · RÞk −m2

fÞ
¼ uμuνðk0r0 þ k3r3 þm2

fÞ þ nμnνðk0r0 þ k3r3 −m2
fÞ

− ðuμnν þ nμuνÞðk0r3 þ k3r0Þ: ðB2Þ

On the other hand, the Yang-Mills (YM) contribution of the
gluon self-energy from the ghost and gluon loop is depicted
as Πg

μν, which remains unaffected in presence of magnetic
field and can be written as

Πg
μνðQÞ ¼ −

Ncg2T2

3

Z
dΩ
2π

�
q0K̂μK̂ν

K̂ ·Q
− gμ0gν0

�
; ðB3Þ

and T Q is defined as

T Q ¼ q0
2q

ln
�
q0 þ q
q0 − q

�
: ðB4Þ

The total gluon self-energy is then given by Πμν ¼
Πs

μν þ Πg
μν.

Now we can evaluate the form factors in Eqs. (3.15a)–
(3.15d) in strong field approximation as

d1 ¼ Δμν
1 ðΠg

μν þ Πs
μνÞ ¼ dYM1 þ ds1 ðB5Þ

where

dYM1 ¼ CAg2T2

3ū2
½1 − T Qðq0; qÞ�; ðB6Þ

and

ds1 ¼ −
X
f

e−q
2⊥=2jqfBj

g2jqfBj
2πū2

× T
X
k0

Z
dk3
2π

k0r0 þ k3r3 þm2
f

ðK2
k −m2

fÞðR2
k −m2

fÞ
: ðB7Þ

As is usually done in hard thermal loop (HTL) calcu-
lations [93], one assumes the external momenta to be soft
and small compared with the hard momenta in the loop and
uses the approximation k0 ≈ r0 and k3 ≈ r3 in the last
numerator, thus obtaining:

ds1 ≈ −
X
f

e−q
2⊥=2jqfBj

g2jqfBj
2πū2

T
X
k0

Z
dk3
2π

�
1

ðK2
k −m2

fÞ
þ 2ðk23 þm2

fÞ
ðK2

k −m2
fÞðR2

k −m2
fÞ
�

¼
X
f

e−q
2⊥=2jqfBj

g2jqfBj
2πū2

Z
dk3
2π

�
−
nFðEk3Þ
Ek3

þ
�
nFðEk3Þ
Ek3

þ q3k3
Ek3

∂nFðEk3Þ
∂k3

�
q3k3=Ek3

q20 − q23ðk3=Ek3Þ2
���

¼
X
f

e−q
2⊥=2jqfBj

g2jqfBj
2πū2

Z
dk3
2π

q3k3
Ek3

∂nFðEk3Þ
∂Ek3

�
q3k3=Ek3

q20 − q23ðk3=Ek3Þ2
�
: ðB8Þ
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Using Eqs. (B7) and (B8) one also can directly calculate the
Debye screening mass in a strongly magnetized hot
medium within QCD as

m2
D ¼ ū2d1jq0¼0;q⃗→0 ¼ ðm2

DÞg þ
X
f

δm2
D;f ðB9Þ

where ðm2
DÞg ¼ g2NcT2

3
and

δm2
D;f ¼

g2jqfBj
2πT

Z
∞

−∞

dk3
2π

nFðEk3Þð1 − nFðEk3ÞÞ; ðB10Þ

which matches with the well-known expressions of QED
Debye mass [21,94] without the QCD factors. Now using
Eq. (B10) in Eq. (B8) along with Ek3 ∼ k3, the form factor
d1 can be finally expressed in terms of δmD as

d1 ¼
CAg2T2

3ū2
½1 − T Qðq0; qÞ�

−
X
f

e−q
2⊥=2jqfBj

�
δmD;f

ū

�
2 q23
q20 − q23

: ðB11Þ

For the form factor d2, the fermionic loop does not
contribute, and it yields

d2 ¼ Δμν
2 ðΠg

μν þ Πs
μνÞ ¼ dYM2 þ 0

¼ CAg2T2

3

1

2

�
q20
q2

−
Q2

q2
T Qðq0; qÞ

�
: ðB12Þ

For the form factor d3, we apply the similar procedure as
done for d1 and one obtains

d3 ¼ Δμν
3 ðΠg

μν þ Πs
μνÞ ¼ dYM3 þ ds3

¼ CAg2T2

3

1

2

�
q20
q2

−
Q2

q2
T Qðq0; qÞ

�
þ
X
f

e−q
2⊥=2jqfBj

×
g2jqfBj
2π

q2⊥
q2

T
X
k0

Z
dk3
2π

k0r0 þ k3r3 −m2
f

ðK2
k −m2

fÞðR2
k −m2

fÞ

≈
CAg2T2

3

1

2

�
q20
q2

−
Q2

q2
T Qðq0; qÞ

�

þ
X
f

e−q
2⊥=2jqfBjδm2

D;f
q2⊥
q2

q23
q20 − q23

: ðB13Þ

Finally for the last form factor d4 the YM contribution
vanishes and it can be obtained as

d4 ¼
1

2
Δμν

4 ðΠg
μν þ Πs

μνÞ ¼
1

2
Δμν

4 Πs
μν ¼ ds4; ðB14Þ

where ds4 is given by

ds4 ¼
1

2
Δμν

4 Πs
μν ¼

X
f

ie−q
2⊥=2jqfBj

g2jqfBj
4π

ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p
Z

d2Kk
ð2πÞ2

�−2 ū·n
ū2 ðk20 þ k23 þm2

fÞ þ 4k0k3
ðK2

k −m2
fÞðR2

k −m2
fÞ

�

¼
X
f

e−q
2⊥=2jqfBj

g2jqfBj
4π

ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p
Z

dk3
2π

�
−2

ū · n
ū2

∂nFðEk3Þ
∂Ek3

q23k
2
3=E

2
k3

ðq20 − q23k
2
3=E

2
k3
Þ þ

2∂nFðEk3Þ
∂Ek3

q0q3k23=E
2
k3

ðq20 − q23k
2
3=E

2
k3
Þ
�

≈
X
f

e−q
2⊥=2jqfBj

ffiffiffiffiffi
n̄2

p
ffiffiffiffiffi
ū2

p δm2
D;f

q0q3
q20 − q23

; ðB15Þ

where n̄2 ¼ −q2⊥=q2 and ū2 ¼ −q2=Q2.

APPENDIX C: SPECTRAL FUNCTIONS ρi’S

The explicit expressions for the spectral functions are
given by,

ρ1ðω;qÞ¼−
1

π
ImðJ 1jq0¼ωþiϵÞ

¼−
1

π
Im

� ðQ2−d3Þ
ðQ2−d1ÞðQ2−d3Þ−d24

				
q0¼ωþiϵ

�

¼−
1

πD
½ℑd1ðℑ2

d3
þℜ2

d3
þQ4−2Q2ℜd3Þ

þ2ℑd4ℜd4ðQ2−ℜd3Þþℑd3ðℜ2
d4
−ℑ2

d4
Þ�: ðC1Þ

Here ℑdi and ℜdi respectively depict the imaginary and
real parts of di ’s.

ρ2ðω; qÞ ¼ −
1

π
ImðJ 2jq0¼ωþiϵÞ

¼ −
1

π
Im

�
1

ðQ2 − d2Þ
				
q0¼ωþiϵ

�

¼ −
1

π

�
ℑd2

ℑ2
d2
− ðQ2 −ℜd2Þ2

�
; ðC2Þ

ρ3ðω;qÞ¼−
1

π
ImðJ 3jq0¼ωþiϵÞ

¼−
1

π
Im

� ðQ2−d1Þ
ðQ2−d1ÞðQ2−d3Þ−d24

				
q0¼ωþiϵ

�

¼−
1

πD
½ℑd3ðℑ2

d1
þℜ2

d1
þQ4−2Q2ℜd1Þ

þ2ℑd4ℜd4ðQ2−ℜd1Þþℑd1ðℜ2
d4
−ℑ2

d4
Þ�; ðC3Þ
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ρ4ðω;qÞ¼−
1

π
ImðJ 4jq0¼ωþiϵÞ

¼−
1

π
Im

�
d4

ðQ2−d1ÞðQ2−d3Þ−d24

				
q0¼ωþiϵ

�

¼−
1

πD
½ℑd4ð−ℑd1ℑd3 þℜd1ℜd3

þℜ2
d4
þℑ2

d4
þQ4−Q2ðℜd1 þℜd3ÞÞ

þℜd4ðQ2ðℑd1 þℑd3Þℑd3ℜd1 −ℑd1ℜd3Þ�: ðC4Þ

Here the denominator D is expressed as

D ¼ ½ð−ℑd1Q
2 − ℑd3Q

2 þ ℑd3ℜd1 þ ℑd1ℜd3 − 2ℑd4ℜd4Þ2
þ ð−ℑd1ℑd3 þ ℑ2

d4
þ ðQ2 −ℜd1ÞðQ2 −ℜd3Þ−ℜ2

d4
Þ2�:

ðC5Þ

Next we evaluateℜdi ’s and ℑdi’s, i.e., real and imaginary
parts of di ’s. The imaginary parts of di ’s come from T Q

and the factor q3
q2
0
−q2

3

, which subsequently can be given as

follows

ℑd1 ¼
CAg2T2

3ū2
πω

2q
þ πω

2

X
f

e−q
2⊥=2jqfBj

×
δm2

D;f

ū2
½δðωþ q3Þ þ δðω − q3Þ�; ðC6Þ

ℑd2 ¼
CAg2T2

3

πωQ2

4q3
; ðC7Þ

ℑd3 ¼
CAg2T2

3

πωQ2

4q3
−
πω

2

X
f

e−q
2⊥=2jqfBj

× δm2
D;f

q2⊥
q2⊥ þ ω2

½δðωþ q3Þ þ δðω − q3Þ�; ðC8Þ

ℑd4 ¼
πω

2

X
f

e−q
2⊥=2jqfBj

× δm2
D;f

ffiffiffiffiffi
n̄2

p
ffiffiffiffiffi
ū2

p ½δðωþ q3Þ − δðω − q3Þ�: ðC9Þ

The real parts of di can be expressed in the same way as
Eqs. (B11)–(B14), with replacing lnðq0þq

q0−q
Þ by ln j q0þq

q0−q
j

within T Q and by considering the principle value for the
factor q3

q2
0
−q2

3

.

APPENDIX D: DISCUSSION ON THE
STATIC LIMIT

In this appendix we examine the static limit, which
means taking v⃗ → 0, from our general expression at finite

velocity. Specifically we consider the case-1, i.e., v⃗ k B⃗.
We start with our expression from Eq. (4.6) to compare
with Eq. (4.34) of Ref [64]. In the static, i.e., v → 0 limit, it
can be expressed as

κT jv→0 ¼
πg2T
16E2

X4
i¼1

Z
d3q
ð2πÞ3 q

2⊥e−q
2⊥=jqfBj

×

�
coth

�
ω

2T

�
ρiðω; qÞAð1Þ

i

�
ω→0

ðD1Þ

Now, evaluating the ω → 0 limits of the real and
imaginary components of the spectral functions and

Að1Þ
i ’s, we obtain that the only nonvanishing term comes

from i ¼ 1, i.e.,

�
coth

�
ω

2T

�
ρ1ðω; qÞAð1Þ

1

�
ω→0

¼
�
ðm2

DÞg
πT
q

þ 2πTδðq3Þsðq⊥Þ
�

8E2

ðq2 þℜ0
d1
Þ2 ðD2Þ

with

ℜ0
d1
¼ ℜd1 jω→0 ¼ ðm2

DÞg þ sðq⊥Þ; ðD3Þ

where sðq⊥Þ ¼
P

f e
−q2⊥=2jqfBjδm2

D;f and δm2
D;f ≈

αsjqfBj
π

[using Eq. (B10)]. All the other terms (for i ¼ 2, 3, 4)
vanish in the static limit of ω → 0 either due to vanishing

spectral functions or vanishing Að1Þ
i ’s.

Combining all these we get the expression for the
transverse momentum diffusion coefficient in the static
limit from Eq. (D1) as,

κT jv→0 ¼
πg2T
2

Z
d3q
ð2πÞ3 q

2⊥e−q
2⊥=jqfBj

×

�
ðm2

DÞg
πT
q

þ 2πTδðq3Þsðq⊥Þ
�

1

ðq2 þℜ0
d1
Þ2 :

ðD4Þ

Now if we remove the pure glue part from our expres-
sion, we see that the transverse momentum diffusion
coefficient comes out to be

κqT jv→0 ¼
g2T2

8π

Z
d2q⊥q2⊥e−q

2⊥=jqfBj sðq⊥Þ
ðq2 þ sðq⊥ÞÞ2

; ðD5Þ

which matches with the Eq. (4.34) of Ref. [64].
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