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Heavy vector mesons produced in a heavy ion collision are important sources of information about the
quark gluon plasma. For instance, the fraction of bottomonium states observed in a such a collision is
altered by the dissociation effect caused by the plasma. So, it is very important to understand how the
properties of the plasma, like temperature (T), density, and the presence of background magnetic fields
ðeBÞ, affect the dissociation of bottomonium in the thermal medium. Anti–de Sitter/QCD holographic
models provide a tool for investigating the properties of heavy mesons inside a thermal medium. The
meson states are represented by quasinormal modes in a black hole geometry. In this work we calculate the
quasinormal modes and the associated complex frequencies for the four lowest levels of radial excitation
of bottomonium inside a plasma with a magnetic field background. We also calculate the differential
configuration entropy (DCE) for all these states and investigate how the dissociation effect produced by the
magnetic field is translated into a dependence of the DCE on the field. An interesting result obtained in
this study is that the DCE increases with the radial excitation level n. Also, a nontrivial finding of this
work is that the energy density associated with the bottomonium quasinormal modes presents a
singularity near the black hole horizon for some combination of values of T, eB, and n. As we show here,
it is possible to separate the singular factor and define a square integrable quantity that provides a DCE
that is always finite. In addition, we discovered that, working with the potentially singular energy density,
one finds a very interesting way to use the DCE as a tool for determining the dissociation temperature of
the meson quasistates.

DOI: 10.1103/PhysRevD.105.114044

I. INTRODUCTION

One of the most interesting challenges faced by phys-
icists in the present days is to understand the properties of
the quark gluon plasma (QGP). This state of matter, in
which quarks and gluons interact strongly but are not
confined into hadrons, is formed in heavy ion collisions.
For reviews about the QGP, see for example [1–4].
The QGP lives for a very short time and the available
information about it comes from the particles reaching the
detectors after hadronization. Among those particles,
bottomonium vector mesons, which are composed of a

bottom-antibottom quark pair, are particularly important
[5,6]. These particles are created in the collision and then
partially dissociate in the medium when the QGP is formed.
The fraction of bottomonium final states observed in a
heavy ion collision depends on how strong is the disso-
ciation effect caused by the plasma. On the other hand,
thermal dissociation depends on the properties of the
plasma, such as temperature, density, and the presence
of magnetic fields. That is why bottomonium can serve as
an important probe of QGP properties.
The possibility of dissociation in the medium corre-

sponds to a form of instability of bottomonium states. A
very interesting tool to study stability of physical systems is
the configuration entropy (CE). In recent years many
examples appeared in the literature involving various kinds
of physical systems, where an increase in the CE is
associated with an increase in the instability of the system.
For example, the authors [7–10] have analyzed the informa-
tional entropy in compact astrophysical objects and the
field theory. In the setup of anti–de Sitter (AdS)/QCD, the
differential configuration entropy (DCE) has been applied
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to study new features of heavy-quark mesons, baryons,
tensorial mesons, pomerons, odderons, light-flavor mes-
ons, and the deconfinement/confinement behavior of the
hard-wall and soft-wall models [11–21]. Other applications
of the DCE in quantum chromodynamics (QCD), con-
densed matter physics, cosmology, AdS=CFT, and heavy
ion collisions can be found in Refs. [22–36].
The gauge theory in the AdS=CFT correspondence is

conformal and the radial AdS coordinate is interpreted as
the holographic energy scale of the gauge theory. There are
no energy parameters in the AdS=CFT correspondence. In
order to describe the strong interactions, one can build up
phenomenological AdS/QCD models where conformal
symmetry is broken. This can be done in different ways.
In the holographic model that we will consider here this is
done by introducing a background scalar field in the action
integral. As will be shown in Sec. II, this field depends on
three energy parameters.
In this work we use a holographic AdS/QCD model in

order to represent bottomonium states in a plasma. We
calculate the quasinormal modes, the associated complex
frequencies and the corresponding CE for four different
levels of radial excitation of bottomonium quasistates
inside a plasma with a magnetic field background. Then
we investigate how the instability, corresponding in this
case to the dissociation in the thermal medium, is
translated into a dependence of the configuration entropy
on the field.
The CE is a continuous version of the information

entropy introduced by Shannon [37]:

SShannon ¼ −
X
n

pn lnpn: ð1Þ

This quantity represents the amount of information con-
tained in a variable x that can assume discrete values xn,
each of them with a probability pn. Inspired by this
definition, one introduces the configuration entropy [9]
in an analogous way but for continuous variables:

S ¼ −
Z

ddk⃗ϵðk⃗Þ ln ϵðk⃗Þ; ð2Þ

where

ϵðk⃗Þ ¼ jR̃ðk⃗Þj2
MaxðjR̃ðk⃗Þj2Þ

; ð3Þ

is called the modal fraction. It is defined using the
momentum space Fourier transform of a normalizable
(square integrable) function in coordinate space Rðr⃗Þ:

R̃ðk⃗Þ ¼
Z

ddr⃗Rðr⃗Þe−ik⃗·r⃗: ð4Þ

The energy density ρðr⃗Þ of the physical system is usually
taken as the normalizable function Rðr⃗Þ, which defines the
modal fraction. One finds in the literature an alternative
definition for the modal fraction, where in Eq. (3) one uses
the normalization integral of the square of R̃ðk⃗Þ in the
denominator, instead of the maximum value. However, the
alternative definition of the modal fraction can lead to
negative values for the configuration entropy, as pointed out
in Ref. [10]. In contrast, the definition of Eq. (3) for the
modal fraction ensures the positivity of the configuration
entropy for continuous variables. For this reason we will
use the definition of Eq. (3), which is called DCE in
this work.
In Ref. [38], the authors used holography to study the

dissociation of the ground state of charmonium in a plasma
as function of the magnetic field B and calculated the
corresponding configuration entropy. Here we consider
bottomonium, which undergoes dissociation at higher tem-
peratures, and study the dissociation of the different radial
excitation levels, not only the ground state. This way, wewill
be able to analyze the dependence of the configuration
entropy on the excitation level, which was not analyzed in
this previous work. The lowest radial excitations of botto-
monium survive the deconfinement transition and therefore
are also important probes of the plasma properties.
This article is organized this way: in Sec. II we review

the holographic AdS/QCD bottom-up model that describes
bottomonium in a plasma. In Sec. III we obtain the
quasinormal modes as functions of the magnetic field B.
In Sec. IV we use the field that represents the quasiparticles
with corresponding quasinormal frequency to calculate
the energy density of the system. Then, in Sec. V, we
use the results obtained in order to find the configuration
entropy of the system. Then, in Sec. VI, we reexamine the
calculation of the DCE, consider the nonregularized form
of the energy density, and find a way to characterize the
complete dissociation in the medium. Finally, in Sec. VII,
we present a discussion about the results obtained.

II. HOLOGRAPHIC DESCRIPTION OF
BOTTOMONIUM IN A PLASMA WITH

MAGNETIC FIELDS

The study of the kind of holographic model for
heavy vector mesons that we will consider started in
Refs. [39–41]. The model used in Refs. [39–41] for
quarkonium includes one energy parameter associated with
the mass spectrum and another associated with the decay
process. However, the decay constants obtained for J=Ψ
from this model are 40% smaller than the experimental
result. Then an improved version, which we will use here,
was developed in Refs. [42–45] considering three energy
parameters: one associated with the quark mass, other
associated with the string tension and the third one
associated with the nonhadronic decay of the mesons.
This model provides good estimates not only for the
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quarkonium masses, but also for the decay constants. This
is important since we are concerned with the study of
bottomonium in the plasma. The decay constants are
related to the heights of the peaks of the spectral functions.
It is crucial to have an accurate fit for these quantities in
order to describe quarkonium in a thermal medium [42].
For other approaches to the holographic description of
bottomonium see, for example [46,47].
Vector mesons are represented by a five-dimensional

dual vector field Vm with an action integral of the form1

I ¼ −
1

4g25

Z
d4xdz

ffiffiffiffiffiffi
−g

p
L; ð5Þ

with the Lagrangian density L ¼ e−ϕðzÞgmpgnqF�
mnFpq,

where Fmn ¼ ∇mVn −∇nVm ¼ ∂mVn − ∂nVm with ∇m
being the covariant derivative. Notice that the
Lagrangian is unchanged by the gauge transformation
Vμ → Vμ − ∂μΛ, where Λ is an arbitrary function. We take
the magnetic field in the x3 direction and use the perturba-
tive metric in eB [48]. Note that, in the bottom up model
studied in Ref. [48], the relation between the physical
magnetic field, eB, and the magnetic field in their action, B,
was found by matching the action of gauge fields in the soft
wall model normalized by QCD flavor-flavor correlators
and the Maxwell action normalized in [49]. This provides
the relation between the physical magnetic field and the
bulk five-dimensional magnetic field, eB ¼ 1.6B. For this
reason, the factor 1.62 will appear in the metric functions.
For more details see the Appendix in Ref. [48].

ds ¼ R2

z2

�
−fðzÞdt2 þ dðzÞ½ðdx1Þ2 þ ðdx2Þ2�

þ hðzÞðdx3Þ2 þ 1

fðzÞ dz
2

�
; ð6Þ

where2

fðzÞ ¼ 1 −
z4

z4h
þ 2

3

e2B2

1.62
z4 ln

z
zh

; ð7Þ

hðzÞ ¼ 1þ 8

3

e2B2

1.62
z4h

Z
z=zh

0

y3 ln y
1 − y4

dy; ð8Þ

dðzÞ ¼ 1 −
4

3

e2B2

1.62
z4h

Z
z=zh

0

y3 ln y
1 − y4

dy; ð9Þ

R is the AdS radius and zh is the horizon position.3 The
plasma temperature is given by [50,51]

T ¼ jf0ðzhÞj
4π

¼ 1

4π

���� 4zh −
2

3

e2B2

1.62

����: ð10Þ

In the absence of the plasma (zh → ∞) and of a magnetic
field (B → 0), that means, in the vacuum, the space is just a
five-dimensional anti–de Sitter one. The background field
ϕðzÞ used is

ϕðzÞ ¼ κ2z2 þMzþ tanh

�
1

Mz
−

κffiffiffi
Γ

p
�
: ð11Þ

We take the masses and decay constants of bottomonium in
the vacuum from the particle data group table [52] and the
parameters that best fit them are κb ¼ 2.45,

ffiffiffiffiffi
Γb

p ¼ 1.55,
and Mb ¼ 6.2 GeV.
We now choose a Fourier component of the field,

Vmðt; x; zÞ ¼ ηmvðω; q; zÞeþiημνqμxν , with polarization ηm.
We choose the gauge Vz ¼ 0 and consider the vector meson
at rest, so that q ¼ 0. This gives Vμðt; x; zÞ ¼ Vμðt; zÞ ¼
ημvðω; zÞe−iωt.
For transverse polarizations, ημ ¼ ð0; 1; 0; 0Þ and

ημ ¼ ð0; 0; 1; 0Þ, we have

ω2

fðzÞ2vðzÞþ
�
−
1

z
þf0ðzÞ
fðzÞ þ

h0ðzÞ
2hðzÞ−ϕ0ðzÞ

�
v0ðzÞþv00ðzÞ¼0;

ð12Þ

where the prime stands for the derivative with respect to z
and, for simplicity, we use the notation vðzÞ for vðω; zÞ,
omitting the dependency on ω. For longitudinal polariza-
tion, ημ ¼ ð0; 0; 0; 1Þ, we have

ω2

fðzÞ2 vðzÞ þ
�
−
1

z
þ f0ðzÞ

fðzÞ þ
d0ðzÞ
dðzÞ −

h0ðzÞ
2hðzÞ − ϕ0ðzÞ

�
v0ðzÞ

þ v00ðzÞ ¼ 0: ð13Þ

The solutions of Eqs. (12) and (13), with appropriate
boundary conditions, will provide the quasinormal modes.
Note that when eB ¼ 0, Eqs. (12) and (13) are the same and
the two states, longitudinal and transversal, are degenerate.
The presence of the magnetic field breaks this degeneracy.

III. QUASINORMAL MODES

Quasinormal modes are field solutions, with complex
frequencies, that satisfy incoming wave condition on the

1Note that we are not studying the effect the magnetic field
makes over the bottomonium itself, but over the background
plasma. As consequence of it, the metric we use depends on B
and the Lagrangian does not.

2One can find a primitive of ðy3 ln yÞ=ð1 − y4Þ in terms of the
polylogarithm function.

3The authors in Ref. [48] have introduced an extra length
parameter ld in fðzÞ. Independently of the choice of ld, we have a
solution of the Einstein’s equation as discussed in [48]. The
physical quantities are independent of ld because this parameter
can be dropped out. More details can be found in [48].
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horizon and represent the meson quasistates. In order to
find the quasinormal models one needs to analyze the
behavior of the field near the horizon. One can expand the
coefficients of vðzÞ, v0ðzÞ, and v00ðzÞ in (12) and (13) in
powers of ðz − zhÞ and keep only the dominant terms. This
gives, for longitudinal and transversal polarizations

ω2

f0ðzhÞ2ðz−zhÞ2
vhorðzÞþ

1

z−zh
v0horðzÞþv00horðzÞ¼0; ð14Þ

where we used fðzhÞ ¼ 0. In terms of the temperature (10),
we can write (14) as

ω2

ð4πTÞ2 vhorðzÞ þ ðz − zhÞv0horðzÞ þ ðz − zhÞ2v00horðzÞ ¼ 0;

ð15Þ

whose solutions are

�
1 −

z
zh

�þiω=4πT
and

�
1 −

z
zh

�
−iω=4πT

: ð16Þ

The second solution, with the minus sign in the exponent,
corresponds to an infalling wave at the horizon, while the
first solution, with positive sign, corresponds to an outgoing
wave. This becomes clear if one changes to the Regge-
Wheeler tortoise coordinate [53]. The quasinormal complex
frequencies are found by imposing the field to satisfy the
condition of being an infalling wave at the horizon, and the
Dirichlet condition at the boundary vð0Þ ¼ 0 [54,55].
We find the quasinormal field vðzÞ in terms of ω by

solving the complete equations of motion (12) and (13)
numerically with the conditions vðz0Þ ¼ vhor;pðz0Þ and
v0ðz0Þ ¼ v0hor;pðz0Þ, where z0 ¼ zh − ϵ, with ϵ small, and
vhor;p is taken in the form

vhor;pðzÞ ¼
�
1 −

z
zh

�
−iω=4πT Xp

n¼0

an

�
1 −

z
zh

�
n
; ð17Þ

which is the infalling horizon solution vhor times a
polynomial perturbation is introduced in order to calculate
the field at z0 ¼ zh − ϵ. The first coefficient of the
polynomial perturbation is a0 ¼ 1 and the other coeffi-
cients an are determined by substituting (17) into the
equation of motion (12), for longitudinal polarization,
or (13), for transverse polarization. This is how we
impose the infalling wave condition at the horizon in
the numerical calculation.
It is important to note that due to the highly oscillatory

behavior of the factor ð1 − z=zhÞ−iω=4πT near z ¼ zh, ϵ
cannot be too small [54]. On the other hand, the larger is the
value of ϵ, the greater must be p, the order of the
polynomial perturbation in (17). One has to consider this
two factors in order to fix the value of ϵ.
Following this procedure we build a parametric numeri-

cal solution of the equation of motion with parameter ω.
With this parametric numerical solution we impose the
Dirichlet condition at the boundary by numerically solv-
ing the equation vðω; z ¼ 0Þ ¼ 0 for complex ω. This
determines the quasinormal frequency. The numeric
solution of the equation of motion with the value of ω
obtained will then give the field v in the interval from 0
to z0.
The results of quasinormal frequencies for transverse and

longitudinal polarizations as function of the magnetic field
B and for temperature fixed at T ¼ 300 MeV are shown in
Figs. 1 and 2, respectively.
The real part of the quasinormal frequency is interpreted

as the thermal mass of the quasiparticle and the imaginary
part is related to the degree of dissociation. The larger the
absolute value of the imaginary part, the stronger the
dissociation.

FIG. 1. Quasinormal frequencies for transverse and longitudinal polarizations of the different excitation levels as function of the
magnetic field B and for temperature fixed at T ¼ 300 MeV.
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FIG. 2. Quasinormal frequencies for transverse and longitudinal polarizations of the different excitation levels as function of the
magnetic field eB and for T ¼ 300 MeV. All the plots of the real part of ω have the same scale in order to make it easier the comparison
of the variations. The same holds for the plots of the imaginary part.
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IV. ENERGY DENSITY

The energy density ρðzÞ of our system is the T00

component of the energy-momentum tensor that, as in
general relativity, can be calculated from

TmnðzÞ ¼
2ffiffiffiffiffiffi−gp

�
∂ð ffiffiffiffiffiffi−gp

LÞ
∂gmn − ∂p

∂ð ffiffiffiffiffiffi−gp
LÞ

∂ð∂pgmnÞ
	
: ð18Þ

For transverse polarization fields, the energy density
becomes

ρðzÞ ¼ −
e2ImðωÞt

2g25R
2

z2e−ϕðzÞ

dðzÞ ðjωvðzÞj2 þ fðzÞ2jv0ðzÞj2Þ; ð19Þ

and for longitudinal polarization fields, it becomes

ρðzÞ ¼ −
e2ImðωÞt

2g25R
2

z2e−ϕðzÞ

hðzÞ ðjωvðzÞj2 þ fðzÞ2jv0ðzÞj2Þ: ð20Þ

The solutions of the transverse and longitudinal equa-
tions of motion can be written in the form

vðzÞ ¼
�
1 −

z
zh

�
−iω=4πT X∞

n¼0

an

�
1 −

z
zh

�
n
; ð21Þ

which is the limit for p → ∞ of equation (17). Again, a0 ¼
1 and the other an coefficients are determined recursively
from the equation of motion and the numerical evaluation is
actually performed with a finite number of terms that is
determined by checking the convergence of the procedure.
It is possible to write ρðzÞ in the form

ρðzÞ ¼
�
1 −

z
zh

�
ImðωÞ=2πT X∞

n¼0

bn

�
1 −

z
zh

�
n
; ð22Þ

where the series is obtained by substituting the field given
by (21), taking the Taylor series of the factors that
accompany jvj2 and jv0j2, multiplying the series accord-
ingly to (19) or (20) and ordering the terms.
If we now try to compute the integral

R zh
0 ρðzÞdz we

will have a problem: due to the singular4 factor
ð1 − z=zhÞImðωÞ=2πT , the integral diverges for any value of
ImðωÞ whose absolute value is greater than 2πT. In fact,
ð1 − z=zhÞImðωÞ=2πT behaves near z ¼ zh as xImðωÞ=2πT

behaves near x ¼ 0, and
R
b
0 x−adx diverges for a ≥ 1

and for any b. The energy density is, therefore, a non-
normalizable function if jImðωÞj ≥ 2πT and it happens
in the second excited states and above.5 One cannot use a
non-normalizable function to define the modal fraction.

So, we extract the factor ð1 − z=zhÞImðωÞ=2πT, which is
responsible for the divergence, keeping only the regular
factor. This is achieved by simply introducing

RðzÞ¼
�
1−

z
zh

�
−ImðωÞ=2πT

ρðzÞ¼
X∞
n¼0

bn

�
1−

z
zh

�
n
; ð23Þ

whose Fourier transform is

R̃ðkÞ ¼
Z

zh

0

RðzÞe−ikzdz: ð24Þ

Then we define the modal fraction as

ϵðkÞ ¼ jR̃ðkÞj2
MaxðjR̃ðkÞj2Þ : ð25Þ

The maximum value of jR̃ðkÞj2 is at k ¼ 0.
An important detail of the numerical calculation that is

worth noting is that, due to the highly oscillatory behavior
of the factor ð1 − z=zhÞ−iω=4πT near z ¼ zh, we do not
evaluate the field v in the region z0 < z < zh. However, we
can evaluate RðzÞ directly in this region by using the series
expansion in (23) and the fact that the coefficients bn of the
energy density can be written in terms of the coefficients an
of the field.

V. DCE FROMREGULARIZED ENERGY DENSITY

Using the numerical solutions described in the last
section, one obtains the modal fraction ϵðkÞ from
Eq. (25) and then finds the DCE

S ¼ −
Z þ∞

−∞
ϵðkÞ ln ϵðkÞdk: ð26Þ

It is important to remark that the quasinormal mode
solutions, and consequently the DCE, depend on T and
B. We fixed the temperature at T ¼ 300 MeV, which is a
value of T in which the plasma is present but the
bottomonium states are only partially dissociated. The
result obtained for the DCE as function of eB is shown
in Fig. 3, where we plot the four lowest radial modes
n ¼ 0, 1, 2, 3 together in order to show the variation of the
DCE with the excitation level. From this figure it is
observed that the DCE increases with the excitation level.
A result that is consistent with the fact that the higher
order states are more unstable against dissociation in the
thermal medium.
Then, in the four panels of Fig. 4, we show the DCE for

each of the four lowest radial modes, with an expanded
scale in order to make it possible to notice the variation with
the magnetic field and the split between longitudinal and
transverse modes. From this figure one notices that the
DCE increases with the magnetic field, indicating an

4Remember that ImðωÞ is a negative value.
5See Fig. 2. There we can find that for n ¼ 2 and n ¼ 3, is

always bigger than 2π × 300 MeV ≃ 1.88GeV.
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enhancement of the dissociation in the medium. This effect
is slightly larger for the longitudinal polarization case.
Remarkably, the dependence of the DCE on the

field eB is found to be of a simple form. The results
obtained can be fitted by a polynomial of degree 2 in the
magnetic field

S ¼ c0 þ c1ðeBÞ þ c2ðeBÞ2; ð27Þ

with values of the adjusted coefficient of determination,
and R2

adj being very close to 1, which indicates a very nice
fit. We show the results of the fit in Tables I and II.
As an illustration of the quadratic fit, we show in Fig. 5

the actual values of the DCE, represented by points, and a
line corresponding to the fit. We have taken the case of
transverse polarization and n ¼ 0 as an example. The plots
for the other states are similar.

VI. DCE FROM NONREGULARIZED
ENERGY DENSITY

The results obtained in the previous section are con-
sistent with the fact that heavy vector mesons become more
unstable as the background magnetic field increases. The
increase in the DCE obtained from the regularized energy
density of Eq. (23) indeed indicates increase in instability.
However, the continuous increase in the DCE does not tell
us anything about an important physical aspect. Namely,
heavy vector mesons not only become more unstable
but rather they completely dissociate in the medium for
temperatures above some value, which depends on the
magnetic field. The DCE obtained in last section does
not give us any information about the magnitudes of

FIG. 4. Differential configuration entropy for transverse and longitudinal polarizations of the n ¼ 0, 1, 2, 3 excitation levels as a
function of the field eB for T ¼ 300 MeV. All the plots of the DCE have the same scale in order to make it easier the comparison of the
variations.

FIG. 3. Differential configuration entropy for transverse and
longitudinal polarizations of the different excitation levels as a
function of the magnetic field eB at T ¼ 300 MeV.
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temperature and magnetic field where the meson quasis-
tates are no more present in the medium.
The motivation that lead us to define the DCE from the

regularized energy density in the previous section is that the
spatial function R in Eq. (4), which one uses in order to
define the modal fraction, has to be square integrable and
the energy density does not satisfy this requirement in
general. However, since we are dealing with the calculation
of a property of quasiparticles that dissociate when T
and (or) eB increase, it is worth checking what happens
if one uses the nonregularized energy density ρ of
Eqs. (19) and (20), instead of the regularized one.
For this purpose, let us now define

ρ̃ðkÞ ¼
Z

zh

0

ρðzÞe−ikzdz; ð28Þ

and the modal fraction as

ϵðkÞ ¼ jρ̃ðkÞj2
Maxðjρ̃ðkÞj2Þ : ð29Þ

In order to investigate the effect of using this potentially
singular expression for the DCE we start by considering
just a medium with temperature and not with magnetic
field. Calculating numerically the DCE for the modes
n ¼ 0, 1, 2, 3 as a function of the temperature one finds
an interesting result, which we plot in Fig. 6. One notes
that for the mode n ¼ 1 the DCE diverges for
T > T1c ¼ 257 MeV, while for the n ¼ 2 quasistate the
divergence occurs for T > T2c ¼ 174 MeV and the n ¼ 3
diverges for T > T3c ¼ 139 MeV. The DCE calculated
from the nonregularized energy density is not defined for
higher temperatures for these modes. For the n ¼ 0 mode
the same type of divergence occurs at a higher temperature,
of the order of 1 GeV, above the range of temperatures
found in the quark gluon plasma.
One can interpret this result as telling us that the total

dissociation of the quasistates corresponds to infinite
instability and thus to infinite DCE. So, using the non-
regularized energy density one finds a clear trace of the
disappearance of the quasistates when some critical temper-
ature, that depends on the order n of the mode, is reached.
The absence of a definition for the DCE for higher
temperatures can be interpreted as corresponding to the
fact that there is no more quasiparticles in this case.
The values of the critical temperatures T1c; T2c, and T3c

correspond exactly to the values of T, where the
corresponding n ¼ 1, 2, 3, modes satisfy the following
condition:

ImðωÞ=2πT ¼ −0.5: ð30Þ

This happens because the energy density contains, as
shown in Eq. (22), the potentially singular factor
ð1 − z=zhÞImðωÞ=2πT . So the square of the energy density
becomes singular at the horizon when the condition (30) is

TABLE II. Coefficients of the fit of the DCE for longitudinal
polarization of the different excitation levels with the form given
in Eq. (27) for temperature fixed at T ¼ 300 MeV.

n c0 (GeV) c1 (GeV−1) c2 (GeV−3) R2
adj

1 07.86� 0.01 0.53� 0.07 2.28� 0.07 0.9999925
2 18.88� 0.02 0.65� 0.08 2.40� 0.08 0.9999978
3 27.56� 0.02 0.64� 0.08 2.56� 0.08 0.9999990
4 34.78� 0.02 0.71� 0.09 2.86� 0.09 0.9999992

FIG. 5. Quadratic fit of the differential configuration entropy of
bottomonium field with transverse polarizations in the ground
state as a function of the magnetic field eB for T ¼ 300 MeV.

FIG. 6. DCE for the n ¼ 0, 1, 2, 3 modes, obtained from the
nonregularized energy density. The vertical lines correspond to
the temperatures where the DCE diverges.

TABLE I. Coefficients of the fit of the DCE for transverse
polarization of the different excitation levels with the form given
in Eq. (27) for temperature fixed at T ¼ 300 MeV.

n c0 (GeV) c1 (GeV−1) c2 (GeV−3) R2
adj

1 07.87� 0.01 0.46� 0.06 1.95� 0.06 0.9999942
2 18.89� 0.02 0.59� 0.07 2.23� 0.07 0.9999981
3 27.56� 0.02 0.61� 0.08 2.44� 0.07 0.9999991
4 34.78� 0.02 0.66� 0.09 2.77� 0.08 0.9999992
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satisfied. Then, the energy density is no more square
integrable and the DCE is not defined. We plot in
Fig. 7 the variation of the factor −ImðωÞ=2πT as a function
of T for the four modes so that one can see how the
condition (30) is satisfied.
In order to confirm that the critical temperatures indeed

correspond to values of T where the meson quasistates
melt, we plot in Fig. 8 the spectral function for the
temperatures where −ImðωÞ=2πT is equal to 0.5 or 1.0
for the modes n ¼ 0, 1, 2, 3. These spectral functions are
calculated following the lines described in detail in, for
example, Ref. [41]. One notes that at T ¼ 139 MeV the
first peaks, corresponding to n ¼ 0, 1, 2 are very sharp,

FIG. 7. Values of the factor −ImðωÞ=2πT for n ¼ 0, 1, 2, 3 as
functions of the temperature.

FIG. 8. Spectral function for temperatures where −ImðωnÞ=2πT ¼ 1.0 or 0.5 for the different excitation levels n.
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corresponding to the presence of the quasistates in the
thermal medium, while there is a very small ripple in the
position of the mode n ¼ 3 indicating the melting of this
quasistate. At T ¼ 159 MeV one notices that there is no
more trace of the n ¼ 3 quasistate. In the other values of
temperature present in Fig. 8, we repeat the same analysis,
but for the modes n ¼ 2 and n ¼ 1. The result found is
similar. So, the critical temperatures that we found, where
the DCE obtained from the nonregularized energy density
can indeed be associated to a melting temperature.
Now, in order to complete our analysis, let us consider

the case with magnetic field in order to understand how can
the DCE tell us when a meson dissociates by the effect
of the magnetic field. With this purpose we plot in Fig. 9 the
variation of the DCE with the magnetic field eB for
T ¼ 230 MeV, with the same convention of colors for
the transverse and longitudinal cases adopted in Sec. V. The
vertical lines indicate the values of the fields where the

DCE becomes singular, corresponding to the melting of the
heavy vector meson quasistate.
Then, in Fig. 10 we show the variation of the factor

−ImðωÞ=2πT as a function of eB. One notices that as in the
case of the variation with T, this is the factor that controls
the divergence of the DCE and the corresponding repre-
sentation of the complete dissociation process.

VII. CONCLUSIONS

We presented in this paper the results of the numerical
computations of the quasinormal modes associated with the
four lowest radial excitation levels of bottomonium in a
plasma with a constant background magnetic field eB.
Using these solutions we calculated the DCE for these

states. In order to find a result that is finite for all the values
of n, T, and eB we introduced a regularized energy density
that is a square integrable function of the coordinate z. The
result obtained shows that the DCE increases with the radial
excitation level and also with the value of the field eB. As
discussed in the introduction, for many different systems it
has been observed that the DCE works as an indicator of
stability. The more stable the system is, the lower the value
of the DCE. Therefore, our results are consistent with the
fact that the higher excited states of bottomonium are
subject to a stronger dissociation effect in the plasma so that
they are more unstable.
On the other hand, it is known from the calculation

of spectral functions that the presence of magnetic fields
enhances the dissociation effect of bottomonium in a
plasma [45]. So by increasing the eB field it is expected
that the bottomonium quasistates become more unstable.
This is consistent with our finding that the DCE increases
with the magnetic field.
The same kind of behavior was inferred from the

analysis of the imaginary part of the quasinormal frequen-
cies ImðωÞ. As shown in Fig. 2, jImðωÞj increases with the
value of the excitation level n and with the field eB. An
increase in this quantity is associated with an enhance-
ment in the dissociation in the medium and, thus, with
instability. However, the increase in jImðωÞj with the field
obtained here is stronger for the larger values of n. In
contrast, for the DCE the effect of the variation with the
magnetic field is approximately the same for all values
of n. This fact can be seen as an indication that the DCE
should not be taken as a quantitative measure of the
dissociation. We mean that we confirmed for the botto-
monium excited states in a magnetic field background that
the higher is the DCE, the more unstable the system.
However, we noticed that the rate of increase in the DCE
should not be taken as a rate of increase in the degree of
instability.
Finally we explored the possibility of using the energy

density itself in order to calculate the DCE, without the
regularization process. Surprisingly, it emerged that the
result of the DCE becomes singular at some values of n, T,

FIG. 9. DCE as a function of the magnetic field eB for
T ¼ 230 MeV. Vertical lines at eB ¼ 0.53 and 0.56 MeV2.

FIG. 10. Value of the factor −ImðωÞ=2πT for n ¼ 1 as a
functions of the magnetic field eB.
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and eB. We found out that this singular behavior can be
associated with the complete dissociation (melting) of the
quasiparticles. It is natural to associate a situation of
maximum instability to the behavior S → ∞. So the use
of the nonregularized energy density leads one to a DCE
that is capable of identifying the process of complete
dissociation of the vector mesons.
For some alternative interesting approaches to quarko-

nium in a thermal medium, see for example [56,57].
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