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We present a novel relativistic density-functional approach to modeling quark matter with a mechanism
to mimic confinement. The quasiparticle treatment of quarks provides their suppression due to a large quark
self energy already at the mean-field level. We demonstrate that our approach is equivalent to a chiral quark
model with medium-dependent couplings. The dynamical restoration of the chiral symmetry is ensured by
construction of the density functional. Supplemented with the vector repulsion and diquark pairing, the
model is applied to construct a hybrid quark-hadron equation of state of cold compact-star matter. We study
the connection of such a hybrid equation of state with the stellar mass-radius relation and tidal
deformability. The model results are compared to various observational constraints, including the NICER
radius measurement of PSR J0740þ 6620 and the tidal deformability constraint from GW170817. As a
striking result, we present selected parametrizations for which the hybrid star sequence reaches masses in
the range 2.5–2.67 M⊙ of the lighter object in the merger GW190814, which therefore might be interpreted
as the heaviest neutron star with to date.
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I. INTRODUCTION

The quest for a reliable description of the deconfinement
transition from hadronic to quark matter is highly actual.
A description from first principles is possible by simu-
lations of quantum chromodynamics (QCD) as a lattice
gauge theory, but at present, it is restricted to the case of
small baryochemical potentials μ ≲ 2.5T [1], where T is the
temperature.
In order to address the modern challenges of a descrip-

tion of the equation of state of matter created in the beam
energy scan programs of present heavy-ion collision (HIC)
experiments at CERN and RHIC as well as those planned at
FAIR and NICA, and in the interiors of neutron stars as well
as their mergers, one needs to develop effective approaches.
These should be guided by the lattice QCD studies, neutron
star phenomenology and HIC experiments. Awide class of
such models are the so-called two-phase approaches which
model the hadronic and the quark matter phases separately
and then perform constructions to describe the transitions
between them.
Prominent examples, in particular for hybrid neutron

star matter, are the Maxwell construction for locally
conserved charges and the Glendenning construction [2]
for several, globally conserved charges. Both are based on
the Gibbs principles of phase equilibrium. They can be
unified by invoking the formation of finite-size structures

(pasta phases) in the coexistence phase of quark and
hadronic matter [3–5]. The application of these construc-
tions assumes that the equation of state (EoS) models for
the two phases are applicable in the region of thermody-
namic parameters where the Gibbs conditions for the
transition are fulfilled. Should these conditions not be
fulfilled or not make sense, this is a good signature for the
inapplicability of the corresponding EoS models in that
region. In that case, interpolation constructions have
recently been suggested [6–12]. Such an agnostic approach
can be understood as a shortcut subsuming three steps in
the description of the hadron-to-quark matter transition: (1)
the account for the quark substructure of hadrons, which
leads to quark exchange interactions among hadrons (quark
Pauli blocking), (2) the account for confining interactions
and color superconductivity, and (3) pasta phases in the
coexistence region of quark and hadronic matter phases.
The present work is devoted to investigating the conse-

quences of the inclusion of diquark interactions, and thus,
the formation of a color superconducting phase on the
structure of the EoS and hybrid neutron star properties in a
generalization of the density functional approach [13] with
a confining mean field that was motivated by the string-flip
model (SFM) [14,15] of quark matter. We would like to
stress that strangeness in the density functional approach is
an interesting question, which deserves a separate study.
The first steps in this direction have been done recently
[16]. However, even with the simplifications adopted in that
study, the consideration remains quite complicated in the
presence of color superconductivity. Since for a large class
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of chiral quark models, at zero temperature, strange quarks
are reported to appear sequentially, after the light ones
[17,18], we use this as an argument to justify the neglect of
strange quarks at the hadron-to-quark matter transition in
the present work. This assumption also keeps the consid-
erations sufficiently transparent.
The paper is organized as follows. A general description

of the relativistic density functional approach to quark
matter within the mean field approximation is given in
the next section. Section III presents a treatment of the
pseudoscalar mode needed to determine parameters of the
model with the known mass and decay constant of the pion
that is obtained within a Gaussian approximation to the
expansion beyond the mean field. The density functional of
the confining interaction potential used in this work is
described in Sec. IV.We discuss normalization of the model
in Sec. V. In Sec. VI, we give a treatment of cold quark
matter. In Sec. VII, we construct a hybrid quark-hadron
EoS and apply it for modeling compact stars with quark
matter cores. The conclusions are given in Sec. VIII.

II. RELATIVISTIC DENSITY
FUNCTIONAL APPROACH

A general scheme to treat quark matter within the density
functional formalism under the mean-field approximation
has been presented in Ref. [13]. In the case of two quark
flavors and three colors, the effective interaction in quark
matter is accounted for by the potential U given in terms of
quark bilinears of the form q̄ Γ̂q. Here, q ¼ ðu; dÞT is a
quark spinor and the vertex operator Γ̂ acts in color, flavor,
and Dirac space. In the present study, we attribute scalar
and pseudoscalar interaction channels to the density func-
tional U. The chiral invariance of the quark interaction is
ensured by requiring U to depend on a chirally symmetric
argument. In the two flavor case, the latter can be chosen as
ðq̄qÞ2 þ ðq̄iγ5τ⃗qÞ2. Clearly, U can include a dependence on
other quark bilinears as it was considered in Ref. [13].
These complications, however, are not necessary to main-
tain the proper chiral dynamics of quark matter. Due to
this, we prefer to consider the simplest U with the above
mentioned chirally symmetric argument. Vector and
diquark pairing interaction channels, which are important
for the compact star phenomenology, are incorporated to
the model within the standard framework [8]. Thus, the
total Lagrangian reads

L ¼ q̄ði=∂ − m̂Þq − U

− GVðq̄γμqÞ2 þ GDðq̄iγ5τ2λAqcÞðq̄ciγ5τ2λAqÞ; ð1Þ

where the diagonal matrix m̂ ¼ diagðmu;mdÞ represents
current masses of the corresponding states. Below they are
labeled with the subscript index f ¼ u; d. The charge
conjugate quark field is given by qc ¼ iγ2γ0q̄T, while
summation over the color index A in the last term of

Eq. (1) and elsewhere in this paper is performed for the
antisymmetric Gell-Mann matrices λA with A ¼ 2; 5; 7. The
strength of the interaction in vector and diquark channels is
controlled by the couplingsGV andGD, respectively, which
are treated as free parameters of the approach.
A Taylor expansion of the interaction potential around

the expectation values of the corresponding quark bilinears
gives an efficient way of treating the present density
functional theory. The linear order of the expansion
corresponds to the self consistent mean-field level [13],
which is applied to all interaction channels considered in
this work. However, as an additional constraint to the
density functional U that was not considered in [13], we
require the present model to reproduce the mass and decay
constant of the pion in accordance with QCD vacuum
phenomenology, thus going beyond the mean-field level in
the scalar-pseudoscalar sector. The corresponding mesonic
correlations can be introduced to the model by expanding U
up to the second order in deviations of quark bilinears from
their mean field expectation values hq̄qi and hq̄iγ5τ⃗qi ¼ 0.
Below all the quantities defined at these expectation values
are denoted with the subscript index “MF.” Then, the
second order expanded potential energy density functional
obtains the form,

Uð2Þ ¼ UMF þ ðq̄q − hq̄qiÞΣMF

− GSðq̄q − hq̄qiÞ2 −GPSðq̄iγ5τ⃗qÞ2; ð2Þ

where the expansion coefficients are

ΣMF ¼
∂UMF

∂hq̄qi ; ð3Þ

GS ¼ −
1

2

∂
2UMF

∂hq̄qi2 ; ð4Þ

GPS ¼ −
1

6

∂
2UMF

∂hq̄iγ5τ⃗qi2
: ð5Þ

They represent the mean-field part of the quark self-energy
ΣMF, while GS and GPS are medium dependent effective
couplings in the scalar and pseudoscalar channels, respec-
tively. The mean field self-energy of quarks renormalizes
their mass resulting in the medium-dependent effective
massm�

f ¼ mf þ ΣMF. It is important to note that the scalar
GS and pseudoscalar GPS couplings coincide up to constant
positive factors with the second derivatives of the
Lagrangian L with respect to scalar hq̄qi and pseudoscalar
hq̄iγ5τ⃗qi condensates. Positiveness of these derivatives
provides that the mean-field solution corresponds to a
minimum of the thermodynamic potential. Thus, we
require GS > 0 and GPS > 0.
The Lagrangian (1) with the density functional expanded

up to the second order terms (2) yields Lð2Þ ¼ LU¼0 − Uð2Þ,
which is quadratic in all quark bilinears present in the
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model. With this Lagrangian, the partition function of the
present model can be given the form of the functional
integral over the quark fields,

Z ¼
Z

Dq̄Dq exp

�Z
dxEðLð2Þ þ qþμ̂qÞ

�
: ð6Þ

Hereafter, integration over the Euclidean space-time dxE ¼
dτdx is limited to the system volume V ¼ R

dx and inverse

temperature 1
T ≡ β ¼ R β

0 dτ. The diagonal matrix μ̂ ¼
diagðμu; μdÞ acting in the flavor space represents the quark
chemical potentials μf ¼ μB

3
þQfμQ. They are expressed in

terms of the baryonic (μB) and electric (μQ) chemical
potentials as well as the baryonic (1=3) and electric (Qf)
charges of the quarks. The partition function provides direct
access to the thermodynamic potential Ω ¼ −ðT=VÞ lnZ
from which all equations of state can be derived.
To proceed further we bosonize Lð2Þ by means of the

Hubbard-Stratonovich transformation in the spirit of
Ref. [19]. This introduces collective scalar σ, pseudoscalar
π⃗, vector ωμ, and complex scalar diquarkΔA fields, coupled
to q̄q − hq̄qi, q̄iγ5τ⃗q, q̄γμq, and q̄iγ5τ2λAq, respectively.
Then, the partition function becomes

Z ¼
Z

DσDπ⃗DωμDΔADΔ�
ADq̄Dq

× exp

�Z
dxEðLbos þ qþμ̂qÞ

�
: ð7Þ

The bosonized Lagrangian Lbos can be expressed through
the Nambu-Gorkov bispinor quark fieldsQT ¼ 1ffiffi

2
p ðqqcÞ as

Lbos þ qþμ̂q ¼ Q̄S−1Q − UMF þ hq̄qiΣMF þ σhq̄qi

−
σ2

4GS
−

π⃗2

4GPS
þ ωμω

μ

4GV
−
Δ�

AΔA

4GD
: ð8Þ

Here, the inverse Nambu-Gorkov quark propagator is

S−1 ¼
�
S−1þ − σ − iγ5τ⃗ · π⃗ iΔAγ5τ2λA

iΔ�
Aγ5τ2λA S−1− − σ − iγ5τ⃗T · π⃗

�
; ð9Þ

with S−1� ¼ i=∂� =ω −m� � γ0μ̂. The quark fields in Eq. (7)
can be integrated out since Lbos is quadratic with respect to
them. This yields the partition function,

Z ¼
Z

DσDπ⃗DωμDΔADΔ�
A

× exp

�
1

2
Tr lnðβS−1Þ −

Z
dxE

�
UMF − hq̄qiΣMF

− σhq̄qi þ σ2

4GS
þ π⃗2

4GPS
−
ωμω

μ

4GV
þ Δ�

AΔA

4GD

��
: ð10Þ

From now on, we prefer to work in the momentum
representation rather than in the coordinate one. Thus,
for the quark propagator in Eq. (9), we use the Fourier
transformed bosonic fields and S−1� ¼ =k − m̂� with
k0 ¼ izn � μ̂� and zn ¼ ð2nþ 1ÞπT being a fermionic
Matsubara frequency. The trace in Eq. (10) is performed
in the Nambu-Gorkov, Dirac, flavor, and color spaces,
as well as over three-momentum and Matsubara indices.
We note that the factor 1

2
compensates the artificial

doubling of quark degrees of freedom in the Nambu-
Gorkov formalism.
This work is focused on the mean field treatment of the

present model. In this case, the functional integration over
the bosonic fields is dropped, while the fields themselves
are replaced by their values at the extremum of the
Euclidean action. These expectation values can be deduced
from the gap equations obtained by averaging the corre-
sponding Euler-Lagrange equations,

σ ¼ −2GSðq̄q − hq̄qiÞ; ð11Þ

π⃗ ¼ −2GPSq̄iγ5τ⃗q; ð12Þ

ωμ ¼ −2GVq̄γμq; ð13Þ

ΔA ¼ 2GDq̄ciτ2γ5λAq: ð14Þ

We note that the equation for Δ�
A is equivalent to the

Hermitian conjugate of Eq. (14). It follows from the
equations for (pseudo)scalar fields that hσi ¼ hπ⃗i ¼ 0
under the mean field approximation. Therefore, the con-
tribution of σ and π⃗ to the thermodynamic properties of the
present model is neglected at this level. Below, however, we
study the pseudoscalar mode within the Gaussian approxi-
mation in order to normalize our approach to the vacuum
phenomenology of QCD. The expectation values of the
vector and diquark fields can be obtained by averaging
Eqs. (13) and (14), respectively. By a proper Lorentz
transform, the vector field attains the form hωμi ¼ gμ0ω.
The constant ω ¼ −2GVhqþqi is absorbed to the effective
chemical potential of quarks μ�f ¼ μf þ ω. Furthermore,
we perform a global color rotation leaving Δ2 the only
diquark field with a nonvanishing expectation value. Only
its modulus Δ ¼ 2GDjhq̄ciτ2γ5λ2qij appears in the expres-
sions for thermodynamic quantities. This nonvanishing
diquark field is conjugated to Gell-Mann matrix λ2 pairing
only red and green quark states, while leaving the blue one
unpaired. We label these states with the subscript index
c ¼ ðr; g; bÞ. The corresponding single particle energies
shifted by the effective chemical potential μ�f can be found
from the condition detðS−1

MFÞ ¼ 0 as

ϵ�kfc ¼ sgnðϵkf ∓ μ�fÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵkf ∓ μ�fÞ2 þ Δ2

c

q
; ð15Þ
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where the subscript index k labels quark momentum states,

ϵkf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm�2

f

q
and Δr ¼ Δg ¼ Δ, Δb ¼ 0 are intro-

duced for unifying the notations. Hereafter, the superscript
indices “þ” and “−” correspond to quarks and antiquarks,
respectively. It follows from this expression that finite Δ
generates a gap in the dispersion relation of red and green
quarks at μ�f > m�

f and antiquarks of the same colors at
μ�f < −m�

f.
With the above notations, the mean-field thermodynamic

potential can be written as

Ω ¼ Ωq þ UMF − hq̄qiΣMF −
ω2

4GV
þ Δ2

4GD
: ð16Þ

Its quark part,

Ωq ¼ −
T
2V

Tr lnðβS−1
MFÞ

¼ −2
X

f;c;a¼�

Z
dk

ð2πÞ3
�
gk
2
ϵakfc − T ln ð1 − fakfcÞ

�
; ð17Þ

includes the single particle distribution function f�kfc ¼
½eβϵ�kfc þ 1�−1. The zero point terms in Eq. (17) are
regularized by the form factor,

gk ¼ exp

�
−
�
k2

Λ2

�
ξ
�
; ð18Þ

with constant ξ > 1=2 and Λ defining a momentum
scale. This form factor has an inflection point at jkj ¼
Λð1 − 1

2ξÞ1=2ξ. In this work, we use its Gaussian form with
ξ ¼ 1. Regularization with a sharp momentum cutoff cor-
responds to ξ → ∞ yielding gk → θðΛ − jkjÞ. However,
we omit this sharp regularization scheme since it leads to
unphysical irregularities in the behavior of various thermo-
dynamic quantities of the 2SC phase. In order to show this,
we consider the number density hfþfi ¼ −∂Ωq=∂μf for a
given quark flavor f. Differentiation of sgnðϵkf ∓ μ�fÞ in
the dispersion relation of (anti)quarks produces the Dirac
delta-function δðϵkf ∓ μ�fÞ. The part of hfþfi, which
include this delta function, is

δhfþfi ¼ 2
X
c;a¼�

a
Z

dk
ð2πÞ3

�
fakfc −

gk
2

�
2ΔcδðϵakfbÞ

¼ 2μ�fkfΔ
π2

ð1 − gkÞjkj¼kf
; ð19Þ

where kf ¼ θðμ�2f −m�2
f Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�2f −m�2

f

q
is the Fermi momen-

tum of a given quark flavor. From this expression, it is clear
that any discontinuity of the form factor gk translates to
behavior of quark number density if Δ ≠ 0. The same

conclusion holds for any thermodynamic quantity of the
2SC phase. This explains the choice of the momentum form
factor gk.
The mean-field equation for the zeroth component of

vector field is

ω ¼ 2GV

X
f

∂Ωq

∂μf

¼ 4GV

X
f;c;a¼�

a
Z

dk
ð2πÞ3

�
gk
2
− fakfc

�

×
�
2ΔcδðϵakfbÞ þ

ϵakfb
ϵakfc

�
: ð20Þ

The pairing gap equation can be derived in a similar way,

Δ ¼ −2GD

X
f

∂Ωq

∂Δ

¼ 4GD

X
f;c;a¼�

Z
dk

ð2πÞ3
�
gk
2
− fakfc

�
Δc

ϵakfc
: ð21Þ

This equation has two solutions. The trivial one, Δ ¼ 0,
corresponds to the normal phase. Under suitable condi-
tions, Eq. (21) also has a nontrivial solution, Δ ≠ 0,
signaling the formation of a color superconducting phase
of quark matter. Due to the presence of an attractive quark-
quark interaction, according to the Cooper theorem [20],
the occurrence of such a phase is inevitable at sufficiently
low temperatures and high quark number densities. Finally,
the equation for the chiral condensate reads

hq̄qi ¼
X
f

∂Ωq

∂mf

¼ 2
X

f;c;a¼�

Z
dk

ð2πÞ3
�
fakfc −

gk
2

�

×

�
2ΔcδðϵakfbÞ þ

ϵakfb
ϵakfc

�
m�

ϵkf
: ð22Þ

Equations (20)–(22) provide the stationarity of the
thermodynamic potential. Having these conditions solved,
the pressure, the number density of a given quark flavor, the
entropy density, and the energy density can be found using
standard thermodynamic identities such as p ¼ −Ωþ Ω0,
nf ¼ ∂p=∂μf, s ¼ ∂p=∂T, ε ¼ P

f μfnf þ Ts − p, respec-
tively. Hereafter, the subscript “0” denotes the quantities
defined in the vacuum, i.e., at μ̂ ¼ T ¼ 0.

III. SCALAR AND PSEUDOSCALAR MODES

We now proceed to the analysis of the (pseudo)scalar
fluctuation modes Σ ¼ Σσ þ Σπ with
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Σπ ¼ −
�
iγ5τ⃗ π⃗ 0

0 iγ5τ⃗T π⃗

�
; Σσ ¼ −

�
σ 0

0 σ

�
; ð23Þ

that appear beyond the mean field approximation as
dressing of the inverse Nambu-Gorkov quark propagator
S−1 ¼ S−1

MF þ Σ. Within the Gaussian approximation, Σ is
assumed to be small compared to S−1

MF. Thus, the logarithm
of the inverse dressed quark propagator can be expanded as

ln ðβS−1Þ ¼ ln ðβS−1
MFÞþ lnð1þSMFΣÞ

¼ ln ðβS−1
MFÞþSMFΣ−

ðSMFΣÞ2
2

þOðΣ3Þ: ð24Þ

The trace of the pion contribution in the first order term in
this expansion vanishes due to the tracelessness of the
flavor Pauli matrices. The trace of SMFΣσ exactly cancels
the term

R
dxEσhq̄qi in Eq. (10), and therefore, both terms

vanish. The pion-sigma cross contribution ∝ ΣσΣπ in the
second order term also vanishes due to traceless character
of the Pauli matrices. The remaining second order terms
∼Σ2

σ and ∼Σ2
π are quadratic in the quark propagator and

represent one-loop polarization operators of scalar and
pseudoscalar modes at four-momentum p,

Ππ ¼ −
1

2βV
Trðiγ5SMFÞ2 ¼ −

hq̄qi
m� þ p2Iðp2Þ; ð25Þ

Πσ ¼ −
1

2βV
TrðSMFÞ2 ¼ −

hq̄qi
m� þ ðp2 − 4m�2ÞIðp2Þ:

ð26Þ

Here, the integral Iðp2Þ has been introduced as

Iðp2Þ ¼ 2
X

f;c;a¼�

Z
dk

ð2πÞ3
gk − 2fakfc

2ϵkfð4ϵ2kf − p2Þ : ð27Þ

For the sake of simplicity, we evaluatedΠσ andΠπ atΔ ¼ 0,
which is sufficient to define the vacuum properties of
the (pseudo)scalar modes. The details of the derivation
can be found in Refs. [19,21–24]. These polarization
operators enter the inverse of the Fourier transformed
mesonic propagators as

D−1
σ ¼ 1

2GS
− Πσ; D−1

π ¼ 1

2GPS
− Ππ: ð28Þ

These two-dimensional matrices act in the momentum-
Matsubara space. The poles of Dσ and Dπ at p ¼ 0 define
mesonic masses being solutions of

M2
σ ¼

�
1

2GS
þ hq̄qi

m�

�
I−1ðM2

σÞ þ 4m�2; ð29Þ

M2
π ¼

�
1

2GPS
þ hq̄qi

m�

�
I−1ðM2

πÞ: ð30Þ

With the effective quark mass expressed as m� ¼ m−
2GPShq̄qi, the equation for M2

π can be given a form of the
Gell-Mann-Oakes-Renner relation [25] M2

πF2
π ¼ −mhq̄qi

with the pion decay constant,

F2
π ¼ m�ðm� −mÞIðM2

πÞ: ð31Þ

Equations (29)–(31) give a direct access to the vacuum
phenomenology of QCD.

IV. DENSITY FUNCTIONAL

The confining aspect of the quark interaction is modeled
within our approach by a large and positive scalar
quark self-energy ΣMF in the confining region. The SFM
argument implies that the quark mass grows proportional
to the mean interquark separation or, equivalently,
Σ ∝ D0ðqþqÞ−1=3 [14,15], with D0 being proportional to
the string tension. It is worth mentioning, that an alternative
prescription for the low density behavior of the effective
quark mass implies m� ∝ hqþqi−1 [26]. For the reader’s
convenience, we demonstrate in the Appendix A how this
result can be obtained under some simplifications when
compared to our approach. According to Eq. (3), the SFM
behavior of Σ corresponds to U ∝ ðqþqÞ23. In the confining
region of low temperature and chemical potential, the quark
number density and the chiral condensate are connected
by the approximate relation hq̄qi ≃ hq̄qi0 þ hqþqi. This
motivates U ∝ ðhq̄qi0 − q̄qÞ23. At the same time, the chiral
invariance of the Lagrangian (1) is ensured within our
approach by the appropriate choice of the argument
ðq̄qÞ2 þ ðq̄iγ5τ⃗qÞ2 in the ansatz for the density functional
U. In order to provide such a property of the chirally
symmetric interaction mimicking confinement by a sig-
nificant growth of the quark self-energy, we consider the
parametrization,

U ¼ D0½ð1þ αÞhq̄qi20 − ðq̄qÞ2 − ðq̄iγ5τ⃗qÞ2�ϰ; ð32Þ

where D0 is the coupling strength and α is a constant
parameter regulating the value of the quark mass in the
vacuum. Setting ϰ ¼ 1=3 is in accordance to the SFM
prescription adopted in [13]. At zero baryonic density,
Eq. (32) reproduces the parametrization used in Ref. [13] if
the no-sea approximation is applied which neglects the
quark vacuum term in the thermodynamic potential and
the pseudoscalar interaction channel is neglected. Indeed,
in this approximation, the chiral condensate coincides up to
the sign with the quark scalar density; i.e., ns ¼ −hq̄qi and
hq̄qi0 ¼ 0. This makes Eq. (32) of the present work
equivalent to Eq. (23) of Ref. [13]. The role of α becomes
clear from considering effective quark mass in the vacuum
when hq̄qi ¼ hq̄qi0 and hq̄iγ5τ⃗qi ¼ 0. With the definition
m̂� ¼ m̂þ ΣMF and the mean field self energy of quarks
given by Eq. (3), we obtain
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m̂�
0 ¼ m̂þ 2

3
D0α

−2=3hq̄qi−1=30 ; ð33Þ

At high α, the effective quark mass coincides with the
current one, which means that quark interaction in the
(pseudo)scalar channels is suppressed. On the other hand,
at α ¼ 0, the vacuum effective mass diverges making any
excitations of quark degrees of freedom energetically
disfavored. At small positive values of this parameter,
m̂�

0 remains finite but large leading to sufficient suppression
of quarks. This simple physical mechanism provides an
effective phenomenological confinement within the present
model. In order to illustrate the role of α, we show in Fig. 1,
the dependence of the effective quark mass on the baryon
density found for cold symmetric quark matter in the
absence of diquark pairing. This m� decreases with grow-
ing nB and vanishes asymptotically. Larger α parameters
correspond to a faster decrease of m� and to its smaller
vacuum value, which remains finite at all α > 0. At α ¼ 0,
the effective quark mass in the vacuum diverges similarly to
the case of the SFM [13] shown for the sake of comparison.
Equation (32) provides m̂� ¼ m̂ − 2GPShq̄qi with GPS

defined by Eq. (5). This relation is similar to the one of the
NJL model [21]. For ϰ ¼ 1, the two models coincide. The
insignificant constant term −D0ð1þ αÞhq̄qi20 in the expres-
sion for the Lagrangian can be eliminated by α ¼ −1. In
our approach, however, effective couplings are medium
dependent. As is seen from Fig. 2, they decrease with
temperature and chemical potential, which is in line with
the weakening of the strong interaction due to the running

of the QCD coupling [27–29]. It is worth mentioning, that a
large value of GPS is another reason for high quark masses
in the confining region.
Furthermore, contrary to the NJL model, the couplings in

the scalar and pseudoscalar channels of the present model
do not coincide in the general case; i.e., GS ≠ GPS. This
signals the violation of the chiral symmetry on the level
of the Lagrangian Lð2Þ and is a direct consequence of

FIG. 1. Effective quark mass m� as functions of baruonic
density nB at different values of the parameter α. Calculations are
performed for cold symmetric quark matter and GV ¼ GD ¼ 0,
while the rest of the model parameters except α have the values
from Table I. Blue long dotted line is obtained within the SFM
with αSFM ¼ 0.39 fm−3 (see Ref. [13] for details).

FIG. 2. Scaled effective scalar GSΛ2 (thin solid curves) and
pseudoscalar GPSΛ2 (thick solid curve) couplings as functions of
temperature T at μB ¼ 0 (upper panel) and baryonic chemical
potential μB at T ¼ 0 (lower panel). Dotted curves on the lower
panel demonstrate unstable parts removed by applying the
Maxwell construction. Dashed line represents the NJL value
GNJLΛ2

NJL ¼ 2.14 from Ref. [30]. Calculations are performed for
symmetric quark matter and GV ¼ GD ¼ 0, while the rest of the
model parameters have the values from Table I.
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expanding U around the mean-field solution, which is
known to break the chiral symmetry. As can be seen from
Fig. 2, at certain values of T and/or μB, however, these
couplings converge to the same constant value G∞ as a
consequence of the dynamical restoration of the chiral
symmetry. The value for G∞ is independent of the
coupling constants in the vector and diquark channels.
For the model parameters from Table I, the model yields
G∞ ¼ 6.6 GeV−2. It is remarkable that this asymptotic
value of scalar and pseudoscalar couplings corresponds to
G∞Λ2 ¼ 2.16, which is very close to the valueGNJLΛ2

NJL ¼
2.14 obtained in the NJL model [30].

V. PARAMETRIZATION OF THE MODEL

The model has six independent parameters: the current
quark mass m which is degenerate for the two flavors,
the parameters of the density functional, α and D0, the
momentum scale parameter Λ, the vector coupling GV , and
the diquark coupling GD. The first four of them define the
vacuum state of the model, while the coupling constantsGV
and GD are free parameters determining its high-density
behavior. The consideration of the present section is limited
to the vacuum state. Most important for the parametrization
of the model are the properties of the pseudoscalar meson,
the pion. Namely, its massMπ and decay constant Fπ , with
their well-known values given in Table I. The vacuum value
of the chiral condensate per flavor hl̄li0 ¼ hq̄qi0=2 is
another important quantity. Predictions for hq̄qi0 from
chiral quark models of NJL type with a soft cutoff [31]
like in Eq. (22) are in tension with the result obtained from
QCD sum rules at the renormalization scale of 1 GeV,
which is [32] jhl̄li1=30 jj1 GeV ¼ 242� 15 MeV. Therefore,
we allow a deviation of this quantity from hl̄li0j1 GeV. The
scalar meson mass Mσ is also considered. Despite possibly
being the lightest scalar meson f0ð500Þ has rather large
width 500–1000 MeV [33], which makes its relevance to
the vacuum phenomenology quite doubtful. Therefore, for
our analysis, we use the f0ð980Þ meson with a width
≲100 MeV [33]. Its mass is varied within the range from
880 MeV to 1080 MeV. We use the following strategy. For
a given value of the effective quark massm� in the vacuum,
we fit m and Λ to Mπ and Fπ . This allows us to find hl̄li0
as well as the pseudoscalar coupling GPS ¼ ðm −m�Þ=
ð2hq̄qi0Þ. Having the above parameters fitted and varying
Mσ within the mentioned interval, we can calculate the

scalar coupling GS from Eq. (29). Figure 3 shows GPS and
GS as functions of m�. The calculations are performed for
different m�, which provide GS > GPS, and thus, represent
a range of physical values of the model parameters. Indeed,
we can show by direct calculations that in the vacuum,

GS −GPS ¼
2D0

9ð1þ αÞ5=3hq̄qi4=30

> 0: ð34Þ

This quantity vanishes only for α → ∞ since finite scalar
and pseudoscalar couplings require D0 ≠ 0. Thus, α
remains finite only when the effective quark mass m�
exceeds some value, which mildly depends on the mass of
the scalar mode. It is seen from Fig. 3 that this value grows
with Mσ .
For a given set of the model parameters, the pseudoc-

ritical temperature TPC can be found according to its
definition as the peak position of the chiral susceptibility,
which is defined as the temperature derivative of the chiral
condensate at vanishing chemical potential. This quantity
depends on both the effective quark mass m� and mass of
scalar mesonMσ in the vacuum. Note that TPC calculated in
such a way is just a preliminary result since it is limited to
the approximation that is employed when calculating the
chiral condensate. When the mean-field approximation is
used then it does not account for the hadronic correlations
of quarks. Such correlations are known to contribute to
the melting of the chiral condensate in the pseudocritical
region [22,23] and lead to a lowering of the pseudocritical
temperature. Therefore, we require our TPC to exceed the
lattice QCD result T lQCD

PC ¼ 156.5� 1.5 MeV [1]. Figure 4
shows jhl̄li0j1=3 and TPC as functions of m�. At large

TABLE I. Parameters of the model used and resulting physical
quantities.

m [MeV] Λ [MeV] α D0Λ−2

4.2 573 1.43 1.39
Mπ [MeV] Fπ [MeV] Mσ [MeV] hl̄li1=30 [MeV]
140 92 980 −267

FIG. 3. Dimensionless scalar (GSΛ2, thin curves) and pseudo-
scalar (GPSΛ2, thick curve) couplings as functions of the effective
quark mass m� calculated for the vacuums state.
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effective quark mass, the chiral condensate is too high at
any value of the scalar meson mass. Therefore, we require
m� ≲ 800 MeV. At the same time, we prefer to have m�
high enough to provide an efficient suppression of quarks
in the confinement region. This excludes low Mσ, since in
this case either TPC < T lQCD

PC or m� is not high enough. On
the other hand, for Mσ ¼ 1080 MeV, the pseudocritical
temperature TPC of the model exceeds the one from lattice
QCD T lQCD

PC by more than 10%. Due to this, we use the
central value of Mσ ¼ 980 MeV. At m� ¼ 718 MeV, this
value of the scalar meson mass leads to a reasonable value
of TPC ¼ 163 MeV and jhl̄li0j1=3 ¼ 267 MeV compatible
with results of other chiral models [31]. The corresponding
values of the model parameters are summarized in Table I.
It is worth mentioning that a relatively large value of the
vacuum effective quark mass in our approach is quite in line
with the results of an analysis of the data on the lattice
QCD thermodynamics performed with the quark quasipar-
ticle model yielding m�

0 ¼ 610–950 MeV [34] or even
m�

0 > 1 GeV [35].
First principle information about vector and diquark

couplings is absent at the moment. The argumentation
based on a Fierz transformation of the (massive) vector
boson exchange interaction model, which yields GV ¼
0.5GS and GD ¼ 0.75GS [24], is not directly applicable to
the present model since its (pseudo)scalar couplings are not

constant. Therefore, GV and GD are treated as free
parameters. We use the vacuum value of the scalar coupling
GS0 ¼ 18.1 GeV−2 in order to parametrize them by ηV ≡
GV
GS0

and ηD ≡ GD
GS0

. The model parametrizations considered
below are labeled with a pair of numbers corresponding to
scaled couplings ηV and ηD. For example, (0.2,1.5) stands
for a quark matter EoS obtained for ηV ¼ 0.2, ηD ¼ 1.5 and
other parameters from Table I.

VI. COLD QUARK MATTER

From now on, we consider the case of zero temperature,
which is of interest for the astrophysical applications. The
first question we address is related to onset of the 2SC
phase. It occurs when two solutions of Eq. (21) coincide
provided by

∂
2Ω
∂Δ2

����
Δ¼0

¼ 0: ð35Þ

Solving this equation with respect to baryonic chemical
potential yields its critical value μcB, corresponding to the
onset of color superconductivity. Figure 5 shows it as a
function of the scaled diquark coupling for the case of
symmetric quark matter with μQ ¼ 0. At chemical poten-
tials below this critical value, quark matter exists in a
normal state, while μB > μcB corresponds to 2SC phase.
Larger diquark couplings lead to stronger pairing among
quarks and, consequently, yield smaller μcB. At a certain
value of the diquark coupling η�D, the critical chemical
potential vanishes, meaning that color superconductivity
is supported by the vacuum. Numerical analysis yields

FIG. 4. Chiral condensate per flavor jhl̄li0j1=3 (thick curve) and
pseudocritical temperature TPC (thin curves) as functions of the
effective quark mass m� in the vacuum. Filled circles represent
the lowmass edges of the intervals where parameters of the model
attain physical values (see description in the text). The orange
shaded area covers the range of TPC generated by the considered
vacuum values of m� and Mσ . Dashed horizontal lines and grey
shaded areas represent jhl̄li1 GeV

0 j1=3 and T lQCD
PC along with the

corresponding error bars obtained with QCD sum rules and lattice
QCD, respectively.

FIG. 5. Baryonic chemical potential of the 2SC phase onset μcB
as a function of the scaled diquark coupling ηD. The calculations
are performed for symmetric quark matter and ηV ¼ 0.
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η�D ¼ 0.78. We note that this result is not affected by the
value of ηV since vector repulsion is irrelevant in the
vacuum. In order to prevent formation of color super-
conductivity in the vacuum we set the constraint ηD < η�D.
It is interesting to compare η�D to the maximal value of
the diquark coupling for which color superconductivity
in the vacuum is still excluded. In the NJL model, this is
ð3m�=½2ðm� −mÞ� ≃ 3=2 [36]. Our value of η�D is about
twice smaller than the NJL one. This difference is due to the
adopted definition of ηD. It can be exactly compensated by
rescaling ηD by the factor GS0=GPS0. Indeed, in the vacuum
f�kfc ¼ 0 and Eq. (22) at vanishing temperature, chemical
potential and diquark pairing gap yields

hq̄qi ¼ −6
X
f

Z
dk

ð2πÞ3 gk
m�

ϵkf
: ð36Þ

Here and all along the derivation of η�D, we omit the
subscript “0” where it is applicable for the sake of short-
ening notations. Using this relation, we obtain by a
straightforward calculation,

∂
2Ω
∂Δ2

����
Δ¼0

¼ 1

2GD
− 4

X
f

Z
dk

ð2πÞ3
gk
ϵkf

¼ 1

2GD
þ 2hqqi

3m� ¼ 0; ð37Þ

This equation can be solved with respect to GD. The
corresponding solution combined with m�¼m−2GPShq̄qi
and the definition of ηD yields

η�D ¼ 3

2

m�

m� −m
GPS

GS
: ð38Þ

This expression coincides with the one of the Nambu–Jona-
Lasinio (NJL) model only if GS ¼ GPS, which is violated
by the vacuum solution of the present model. At the same
time, we would like to stress that the absolute value of
G�

D ¼ η�DGS0 is about twice larger compared to the maxi-
mal value of the diquark coupling in the NJL model. This
provides the present approach with a unique possibility to
access the region of strong diquark pairing that is interest-
ing from the phenomenological point of view.

VII. COMPACT STARS WITH QUARK CORES

In order to model compact stars as astrophysical objects
observable as pulsars, we need the T ¼ 0 EoS under the
conditions of electric neutrality and β equilibrium. The
former is provided by a proper amount of noninteracting
electrons with the chemical potential μe and the negligible
mass me ¼ 0.511 MeV, while the latter is ensured by
μe ¼ μd − μu ¼ −μQ. The effective quark mass and the
diquark pairing gap calculated under these conditions are
shown as functions of the baryonic chemical potential in

Fig. 6. At small μB, chiral symmetry is broken, which leads
to high quark masses and the absence of color super-
conductivity, as is indicated by a vanishing pairing gap.
At a certain value of the chemical potential μB, the effec-
tive mass m� drops and the diquark pairing gap Δ attains a
finite value. The discontinuous character of this change
signals a first order phase transition. A further increase of
μB leads to a relatively slow decrease of effective mass and
a further growth of the pairing gap. At asymptotically high
densities holds m� ∝ ðΔP

f μ
�
fÞ−1 and Δ ∝

P
f μ

�3
f , see

the Appendix B for the details. In full agreement with the
discussion of μcB, an increase of the diquark coupling lowers
the chemical potential of the chiral symmetry restoration
and color superconductivity onset. This picture holds for
any value of the vector coupling, which simply renorm-
alizes μB.
Having vector field, diquark pairing gap, and chiral

condensate self consistently found from Eqs. (20)–(22), we
can construct the EoS of electrically neutral β-equilibrated
quark matter. The hybrid EoS of stellar matter is obtained
by merging this quark matter EoS to the hadronic one via
the Maxwell construction corresponding to the first order
phase transition. The position of this transition is defined by
requiring equal pressures of quark and hadron phases at the
same value of baryonic chemical potential. In this case, the
baryon number and energy densities experience a discon-
tinuous change along the transition. Its details are sensitive to
the values of vector and diquark couplings. In this work,
hadronic matter is described by the DD2 EoS in its for-
mulation and parametrization from Ref. [37]. We use its
version with hyperons DD2npY-T [38] that is supplemented

FIG. 6. Effective quark mass m� (thick curves) and diquark
pairing gap Δ (thin curves) as functions of baryonic chemical
potential μB calculated for electrically neutral β-equilibrated
matter and ηV ¼ 0.
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with a crust EoS. This relativistic density functional
model introduces interaction between nucleons via meson
exchange. Besides reproducing the properties of normal
nuclear matter, the DD2 EoS is in a good agreement with
the low density calculations of the chiral EFTapproach [39].
The high density behavior of the DD2npY-T model can be
improved with the excluded volume correction [40]. Within
our approach, however, this correction is neglected since at
high densities hadronic degrees of freedom are replaced by
the quark ones. Figure 7 shows the hybrid quark-hadron EoS
in the plane of energy density and pressure. Notably, the
onset of the 2SC phase in quark matter occurs at densities
typical for the hadron branch of the hybrid EoS. Therefore,
the quark matter branch is already color superconducting.
Values of densities of the 2SC phase onset in quark matter
depend on the vector and diquark couplings and are given in
the caption of Fig. 7. As is seen from its upper panel, larger
diquark couplings lead to an earlier onset of quark matter.
The width of the mixed phase region, however, depends on
ηD only weakly. We would like to stress, that the later the
quark matter onset, the softer is its EoS. At vanishing ηV , the
quark part of the EoS is too soft and inconsistent with
constraints obtainedwithin themultipolytrope analysis of the
observational data of PSR J1614þ 2230 [41] and PSR
J0740þ 6620 [42]. This redundant softening can be com-
pensated by the vector mean field repulsion in quark matter.
The corresponding effect is seen on the lower panel of Fig. 7.
It is remarkable, that the stiffening of the quark EoS can be so
strong that the corresponding pressure can sizably exceed the
hadronic one. This yields a positive feedback to the problem
of reaching the two solar mass limit by compact stars. The
corresponding sets of the vector and diquark couplings lead
to an early onset of quark matter with the densities either
lower or very close to the one atwhich hyperons appear in the
purely hadronic matter (white circles on Fig. 7). As a result,
within our approach, the hyperon puzzle [43] is resolved by
early onset of quarkmatter, which already has been proposed
as a possible solution; see [44] for a recent work and more
literature cited therein. As a generic feature of the present
model, we can conclude that the stiffness of the quark matter
EoS is controlled by the vector coupling, while the diquark
one regulates the quark matter onset density. Our hybrid EoS
is in a good agreement with the constraints from Ref. [41].
A similar constraint from Ref. [42] is fulfilled by the present
approach only at high densities. Some discrepancy at small
densities is caused by the strong phase transition from
hadrons to quarks. This allows us to conclude about the
limited ability of multipolytropic EoS to catch a strong first
order phase transition from hadronic to quark matter. It is
worth mentioning that a nonvanishing ηV narrows the mixed
phase region when compared to the case of ηV ¼ 0.
The stiffness of an EoS can be quantified by the

(squared) speed of sound c2S ¼ dp=dε. As is shown in
the Appendix B, at high densities and ηV ¼ 0, color
superconducting quark matter is characterized by

c2S → 1=5, while a finite ηV yields c2S → 1. Figure 8 shows
this quantity as a function of energy density. In the absence
of vector repulsion and at densities typical for the compact
star interiors, the squared speed of sound of quark matter
varies within the range 0.3–0.35.

FIG. 7. Hybrid EoS of cold electrically neutral β-equilibrated
quark-hadron matter in the plane of energy density ε and pressure
p. Empty circles on the hadronic curves indicate the hyperon
onset. The calculations are performed for ηV ¼ 0 (upper panel)
and ηV ≠ 0 (lower panel). The nuclear matter constraints repre-
sented by the shaded areas are discussed in the text. Arrows
indicate the energy densities of the 2SC phase onset in pure quark
matter EoS, being a part of the hybrid EoS curve of the corres-
ponding color. These energy densities are 706 MeV fm−3,
657 MeV fm−3, 582 MeV fm−3, and 546 MeV fm−3 for the
upper panel and 422 MeV fm−3, 370 MeV fm−3, 347 MeV fm−3,
and 313 MeV fm−3 for the lower one.
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At vanishing vector coupling only the second of these
scenarios can be realized if quark matter onsets before two
saturation densities provided by ηD > 0.45. However, this
range of values of the diquark coupling is inconsistent with
the constraints on the stellar matter EoS from Refs. [41,42].
This discrepancy can be resolved by applying finite vector
couplings. The lower panel of Fig. 8 indicates that the
speed of sound increases when the vector coupling is
increased, reflecting a stiffening of the quark matter EoS. It
is remarkable that for a given value of ηV the speed of sound
of quark matter remains almost constant in the density
range typical for compact stars. For ϵ ≤ 2000 MeV fm−3,
the corresponding variation does not exceed few percent.

In other words, our approach supports the constant speed
of sound (CSS) parametrization [45,46], which is widely
applied to model quark matter, to classify compact stars
with quark cores [47,48] and to study the third and fourth
stellar families [49–51]. It has been found recently that
the EoS of color superconducting nonlocal chiral quark
models of the NJL type results in an almost constant
sound speed with c2S in the narrow range between 0.45
and 0.54 [52,53].
We apply the family of developed EoS to model compact

stars with quark cores by solving the problem of relativistic
hydrostatic equilibrium represented by the TOV equations
with the corresponding boundary conditions. Figure 9
shows the resulting relation between the stellar radius R
and mass M. Our calculations are confronted with the
constraint on the lower limit of the TOV maximum mass
given by the mass 2.01þ0.04

þ0.04 M⊙ measured in a binary
system of the pulsar PSR J0348þ 0432 and its white dwarf
companion [54]. In the high and intermediate mass regions,
we also utilize constraints from the Bayesian analysis of the
observational data from PSR J0740þ 6620 [42,55] and
PSR J0030þ 0451 [56,57], respectively. A very important
information about the intermediate mass region of the
M—R diagram comes from the analysis of the gravita-
tional wave signal produced by the merger GW170817
[58]. It constrains masses and radii of the low and high
mass objects in the binary as represented in Fig. 9 by the
orange and cyan shaded areas. The darker and lighter
of them correspond to 1σ and 2σ confidence intervals.
Finally, based on the analysis of the same gravitational
wave signal, we limit the star radius at 1.6 M⊙ from below
by R1.6 ≥ 10.68 km [59] and at 1.4 M⊙ from above by
R1.4 ≤ 13.6 km [60].
Regardless the values of ηD and ηV , hybrid neutron stars

with quark cores that are obtained by a Maxwell con-
struction are more compact compared to their purely
hadronic counterparts of the same mass. This effect is
especially attractive from the phenomenological point of
view in the typical stellar mass range of about 1.4 M⊙,
where the recent observational data (in particular from
GW170817 [58] ) constrain the stellar radii to quite small
values [61,62]. Since our baseline hadronic EoS model
DD2npY-T alone would not fulfill these new radius con-
straints, this explains why the phenomenologically inter-
esting scenarios correspond to Monset ≲ 1.0 M⊙. The
realization of such scenarios requires a relatively large
ηD because that would lead to an early onset of deconfine-
ment. For the case of the three-flavor color superconducting
NJL model, see [17,18]. For the present model, this fact is
illustrated in the upper panel of Fig. 9, where an increase of
the diquark coupling dramatically lowers the onset mass of
quark matter.
However, at vanishing vector coupling, the model does

not support the existence of stable hybrid stellar configu-
rations with quark matter cores with masses above 2 M⊙.

FIG. 8. Squared speed of sound c2S of stellar matter as a function
of energy density ε calculated with the quark-hadron EoS
presented in Fig. 7. Empty circles on the hadronic curves indicate
the hyperon onset.
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Moreover, in this case, stable hybrid star branches the
mass-radius diagram occur only if ηD > 0.43.
We note that in this case, the remarkable feature of a third

family of hybrid stars is realized [63–65] because the stable
second family branch of pure neutron stars is separated
from the branch of stable hybrid stars by a sequence of
unstable stars that is characterized by ∂M=∂εc < 0, with εc
being energy density in the center of the star. The existence
of a third family is necessarily connected to the phenome-
non of mass twin stars [50,66–72], the detection of which

would be an observational proof of the existence of a strong
phase transition in dense neutron star matter.
The problem with a too low maximum mass can be

overcome with adopting finite values of the vector cou-
pling. Increasing ηV stabilizes the quark branch of the mass-
radius diagram and causes a positive feedback to the
problem of reaching the two solar mass limit. However,
the increase of ηV moves Monset towards higher stellar
masses, which requires simultaneous increase of ηD in
order to keep Monset < 1.4 M⊙. We note that this require-
ment is set in order to obtain the necessary softening of the
hybrid EoS for fulfilling the tidal deformability constraint
formulated for 1.4 M⊙ stars, which is not fulfilled by the
DD2npY—T EoS itself. For example, at ηD ¼ 0.530, the
maximum mass Mmax of the stable hybrid star sequence
reaches 2.01 M⊙ for ηV ¼ 0.172, while marginal agree-
ment with the PSR J0740þ 6620 observational data is
reached at ηV ¼ 0.177. A further increase of the vector
coupling allows the present model to fulfil the above-
mentioned astrophysical constraints. It is also interesting to
note that at a certain value of ηV defined by the value of ηD,
the hybrid star branch of the mass-radius curve intersects
the stable part of the branch corresponding to purely
hadronic EoS models of neutron star matter. For
ηD ¼ 0.530, this happens at ηV ¼ 0.216. In other words,
at sufficiently large vector and diquark couplings, the
existence of quark matter cores in the compact star interiors
allows them to break through to the region of the mass-
radius diagram inaccessible for purely hadronic stars due to
the softening of their EoS caused by the appearance of
hyperons. This possibility is important for compact star
phenomenology since it might provide a hybrid neutron
star explanation of the nature of the 2.6 M⊙ companion of
the 23 M⊙ black hole recently reported in the merger
GW190814 [73]. We discuss this issue below.
High values of the vector and diquark couplings also

allow the present model to achieve simultaneous agreement
with the high and intermediate mass constraints coming
from the NICER data on PSR J0740þ 6620 and from the
gravitational wave signal of GW170817, which is a
challenging task for most of the other approaches.
Figure 9 demonstrates a special aspect of star sequences

in the mass-radius diagram that occurs only for hybrid
stars, the so-called “special point.” Strictly speaking, it is
not a point but a narrow region of intersection of hybrid star
sequences, which was first reported and analyzed in
Ref. [74]. A thorough of its invariance properties has been
given recently in Refs. [47,75–77]. The remarkable feature
of the insensitivity of the special point location to the
details of hadronic EoS and the construction of the phase
transition, makes it a universal tool to study the properties
of quark cores in compact stars. Within the CSS para-
metrization, this special point is insensitive to constant bag
pressure controlling the quark matter onset density. In our
approach, the same phenomenological role is played by the

FIG. 9. Mass-radius relation of hybrid neutron stars with the
quark-hadron EoS presented on Fig. 7. An empty circle on the
hadronic curves indicates the hyperon onset. The blue filled
circles represent the special points with the mass MSP found
according to the fitting procedure described in the text. The
astrophysical constraints depicted by the colored bends and
shaded areas are discussed in the text.
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diquark coupling. This explains the occurrence of the
special point when varying just ηD in the upper panel of
Fig. 9. Its mass MSP was found to obey empirical relation,

Mmax ¼ MSP þ δðMSP −MonsetÞ; ð39Þ

with δ being a constant [47]. The value of this parameter
depend on a particular choice of the quark matter EoS. For
the CSS, parametrization holds δ ¼ 0.1 [47]. We inde-
pendently find MSP and δ by fitting Eq. (39) to Mmax and
Monset extracted from the mass-radius diagrams shown on
Fig. 9. Note that for the ηV ¼ 0 case, we consider only the
mass-radius curves supporting stable quark branches. In
this case, MSP ¼ 1.31 M⊙ and δ ¼ 0.06. For the case of
finite vector coupling shown on the lower panel of Fig. 9,
we obtain MSP ¼ 1.97 M⊙ and δ ¼ 0.24. As is seen from
Fig. 9, MSP perfectly fits the special point mass at vanishing
and finite ηV .
The gravitational wave signal frrom the inspiral phase of

the binary neutron star merger GW170817 is another
source of information about the EoS for neutron star matter.
The most important quantity extracted form the observa-
tional data is the dimensionless tidal deformability Λ ¼
2
3
k2C2 expressed through the second Love number k2 and

the stellar compactness C ¼ M
R. For a compact star with

the mass M ¼ 1.4 M⊙, it is constrained to Λ1.4 ¼ 190þ390
−120

[58]. At vanishing vector coupling, ηV ¼ 0, the EoS of
quark matter does not support this value of the stellar mass.
Therefore, we analyze Λ only at finite vector coupling. The
dependence of the dimensionless tidal deformability on
the stellar mass is shown on the top panel of Fig. 10. The
observational data constraint on Λ is fulfilled only for
sufficiently high diquark couplings providing a low onset
mass of quark matter and thus a sufficient compactness of
the stellar configurations. This constraint is fulfilled by the
curves (0.235, 0.540) and (0.265, 0.555) yielding Λ1.4 ¼
395 and Λ1.4 ¼ 325, respectively. The best agreement is
achieved for the same model, which is the most accurate
with respect to the discussed observational constraint on the
mass-radius diagram.
The masses of two components M1 and M2 of the event

GW170817 are connected by the chirp mass [78],

M ¼ ðM1M2Þ35
ðM1 þM2Þ15

; ð40Þ

which is an important characteristics of the merger. By
convention, M1 ≥ M2. The best measured combination of
the masses from GW170817 yields M ¼ 1.188þ0.004

−0.002 M⊙
[79], which is used below. We also rely on the results of the
recent analysis imposing a common EoS of two compo-
nents [58]. Compared to the case of independently imposed
EoS [80], it gives a more stringent constraint on the tidal
deformabilities of two components Λ1 and Λ2. For each set

of M1 and M2 providing the chosen value of M, the tidal
deformabilities of two components were calculated through
EoS-insensitive relations [81]. The results are demonstrated
in the lower panel of Fig. 10. Increasing the diquark
coupling lowers the quark matter onset mass, leading in
turn to more compact stellar configurations and smaller

FIG. 10. Dimensionless tidal deformability Λ as a function of
stellar mass M (upper panel) and the same quantity of the low
mass component of the NS-NS merger Λ2 as a function of the
corresponding parameter Λ1 of the high mass one (lower panel).
The calculations are performed for the quark-hadron EoSs
presented on the lower panel of Fig. 8. The Λ1 − Λ2 curve
(0.180,0.505) is not shown since within the shown region it
coincides with the purely hadronic one. Colored filled circles on
the lower panel represent the configurations with equal masses of
two components M1 ¼ M2 ¼ 1.3646 M⊙. Dark and light green
shaded areas represent the regions falling into the 50% and
90% confidence levels.
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tidal deformabilities. However, an increase of the vector
coupling stiffens the quark matter EoS and causes the tidal
deformability of the star to grow. Two curves fulfilling the
constraint on Λ1.4, namely the ones for the parameter sets
(0.235, 0.540) and (0.265, 0.555), are well inside the
90% confidence level and lie not so far from the 50% one.
The 2.5–2.67 M⊙ compact object from the merger

GW190814 is either the lightest black hole or the heaviest
neutron star ever observed [73]. Despite the fact that both of
these possibilities are neither confirmed nor falsified, the
latter one raises the question about stability of ultra heavy
neutron stars. As was mentioned before, sufficiently high
values of the vector and diquark couplings stabilize quark
matter in the interiors of heavy compact stars. However, the
values of ηV and ηD needed to provide stability of the
2.6 M⊙ stars within our approach prevent the Maxwell
construction of the quark-hadron transition due to absence
of crossing of the quark matter EoS with the DD2npY—T
hadronic one in the μB − p plane. It is worth mentioning,
that this issue itself might be related to the phase transition
construction, i.e., the Glendenning [2], pasta [3–5], or
interpolation [6–12] constructions. The corresponding
analysis lays out of the scope of the present work.
Therefore, we use as a stiffer hadronic EoS, the DD2p40
one being a version of the DD2 EoS with the excluded
volume correction [40] that allows the Maxwell construc-
tion at high values of ηV and ηD. The mass-radius relation
obtained with the corresponding hybrid EoS is shown on
Fig. 11. Remarkably, a proper choice of the vector and
diquark couplings allows our model not only to reach
2.6 M⊙ stellar mass but also makes it consistent with the

stellar radius and tidal deformability constraints from the
GW170817 merger [58]. For example, at ηV ¼ 0.425 and
ηD ¼ 0.575, our approach yields Mmax ¼ 2.64 M⊙, R1.4 ¼
12.6 km and Λ1.4 ¼ 543. It is also worth mentioning, that
these values of the vector and diquark couplings lead to a
rather early onset of quark matter. The corresponding
values of the baryon density are nB ¼ 0.17 fm−3 on the
hadron boundary of the mixed phase and nB ¼ 0.27 fm−3
on the quark one. At the considered values of the coupling
constants and for densities typical for stellar interiors, the
squared speed of sound of quark matter varies within the
interval c2S ¼ 0.63–0.8.
As is seen from Fig. 11, the set of hybrid EoS selected

has a special point with the mass MSP ¼ 2.56 M⊙ perfectly
fitting Eq. (39) with δ ¼ 0.035. This value of δ differs from
those found for the special points shown on Fig. 9. This
supports our conclusion about the model dependence of the
scaling (39), which itself is universal.

VIII. CONCLUSIONS

We have studied a relativistic density functional
approach to quark matter, which (i) mimics quark confine-
ment by a rapid growth of the quark self-energy in the
confining region, (ii) respects chiral symmetry of strong
interaction Lagrangian model, and (iii) can be interpreted as
a chiral quark model with density dependent coupling
constants. In addition to the vector repulsion channel, we
have introduced the diquark pairing that was not studied
before within the relativistic density functional approaches
to quark matter.
In order to model NS with quark cores, we apply the

present density functional approach to Maxwell-construct a
hybrid EoS made of a hadronic one and the new color
superconducting quark matter EoS with the vector repul-
sion. The results of this modeling are confronted with the
recent constraints on the NS mass-radius relation and tidal
deformability from multimessenger astronomy. As a gen-
eral feature, we want to stress that color superconductivity
lowers the onset density of quark matter and provides the
present approach with the possibility to describe hybrid star
sequences with a maximum mass above 2.6 M⊙, while
being sufficiently compact at 1.4 M⊙, consistent with the
mentioned constraints. The approach has still a potential for
further improvement, e.g., by adjusting the values of the
vector and diquark couplings and by modifying the hadron-
to-quark matter transition construction.
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FIG. 11. The same as in Fig. 9 but with the DD2p40 model for
the hadronic part of the hybrid EoS and with different values of
ηV and ηD given in the legend. The upper colored horizontal band
represents the range of stellar masses reported in Ref. [73].
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APPENDIX A: LOW DENSITY
SCALING m� ∝ hq+ qi− 1

Here we consider the confinement mechanism from
Ref. [26] in order to demonstrate how it relates to the
ones from the present work and from Ref. [13]. For this, we
start with the zero temperature pressure of the gas of quark
quasi particles with medium dependent mass m� and
chemical potentials μf,

p ¼ 2
X
f;c

Z
dk

ð2πÞ3 ½ϵkfgk þ ðμf − ϵkfÞfkf� − U þ ns
∂U
∂ns

;

ðA1Þ
where fkf ¼ θðμf − ϵkfÞ, U is the quasiparticle interaction
potential, which is a function of their scalar density ns
discussed below. The remaining notations coincide with the
ones adopted in the main text of this work. We note that the
last two terms in Eq. (A1) are equivalent to −UMF þ
hq̄qiΣMF in Eq. (8). At the moment, we do not discuss the
form of U in order to keep the analysis general. Contrary to
the present consideration, Ref. [26] neglects the interaction
potential and the zero point energy term that represents the
contribution of fermionic zero mode.
The condition of the pressure stationarity ∂p=∂m� ¼ 0 is

equivalent to Eq. (22). The definition of the scalar
density,

ns ¼ 2
X
f;c

Z
dk

ð2πÞ3 ½fkf − gk�
m�

ϵkf
; ðA2Þ

allows us to write this condition in the form ∂m�=∂ns ¼
∂
2U=∂n2s . It can be integrated in order to obtain the mass
gap equation,

m� ¼ mþ ∂U
∂ns

; ðA3Þ

where the current quark mass m appears as an integration
constant. Equation (A3) along with the definition (A2)
should be solved self consistently in order to find m� for a
given U. Once this is done, the quark number density n and
energy density ε can be found using the thermodynamic
identities discussed in Sec. II,

n ¼ 2
X
f;c

Z
dk

ð2πÞ3 fkf; ðA4Þ

ε ¼ 2
X
f;c

Z
dk

ð2πÞ3 ½fkf − gk�ϵkf þ U − ns
∂U
∂ns

: ðA5Þ

Equation (A5) coincides with Eq. (1) of Ref. [26] if the
contributions of fermionic zero mode and interaction
potential are neglected. Let us consider the regime of
vanishing quark number density. In this case, m� is large

and the low-momentum states with ϵkf ≃m� are the most
important. This allows us to approximate

ns ¼ n − 2
X
f;c

Z
dk

ð2πÞ3 gk; ðA6Þ

ε ¼ m�ns þ U − ns
∂U
∂ns

: ðA7Þ

Adopting the assumption of Ref. [26] that ε at vanishing
density converges to some constant value B, we conclude
from the last expression that

m� ¼ B − U
ns

þ ∂U
∂ns

: ðA8Þ

This result demonstrates that at vanishingU, the low density
scaling m� ¼ B=n from Ref. [26] is respected only at
ns ¼ n, provided by the no-sea approximation that neglects
the contribution of fermionic zero mode (gk ¼ 0). On the
other hand, setting U ¼ 0 at anym� ≠ m does not fulfill the
mass gap equation (A3). If it is respected, thenEq. (A3) turns
to ε ¼ mns þ U, which along with ε ¼ B makes Eqs. (A3)
and (A8) coincide. For the SFM potential, USFM ¼ D0n

2=3
s ,

this yields m�
SFM ¼ mþ ð2=3ÞD0n

−1=3
s , which at small

densities and gk ¼ 0 gives m�
SFM ∝ n−1=3 [13–15]. Thus,

the low density scaling m� ∝ n−1 requires the no-sea
approximation and violates the mass gap equation that
would be required for the pressure stationarity.

APPENDIX B: 2SC PHASE AT HIGH DENSITY

Here, we analyze the high density asymptotic of the 2SC
phase at vanishing temperature. For definiteness, we
consider μ�f > 0. In this regime, μ�f ≫ Λ ≫ m�

f and quark
masses can be neglected as well as zero point terms. In
addition, only quarks (a ¼ þ) with fþkfc ¼ θðμ�f − jkjÞ
contribute to the thermodynamic quantities. Then, the
pairing gap equation becomes

Δ ≃ −4GD

X
f;c

Z
dk

ð2πÞ3 f
þ
kfc

Δc

ϵþkfc
: ðB1Þ

AtΔ ∼ μ�f or atΔ ≪ μ�f, the right-hand side of this equation
diverges as ∼Δ

P
f μ

�2
f , which is much faster than Δ

corresponding to the left-hand side. Therefore, Δ ≫ μ�f.
In this case, the upper edge of the filled single particle states
lies below the Fermi surface, ϵþkfc ≃ −Δ, and Eq. (B1)
becomes

Δ ≃ 4GD

X
f;c

Z
dk

ð2πÞ3 f
þ
kfc

Δc

Δ
¼ 4GD

3π2
X
f

μ�3f : ðB2Þ

DENSITY FUNCTIONAL APPROACH TO QUARK MATTER WITH … PHYS. REV. D 105, 114042 (2022)

114042-15



Similarly, the equation for the vector field simplifies to

ω ≃ −4GV

X
f;c

Z
dk

ð2πÞ3 f
þ
kfc

�
2ΔcδðϵþkfbÞ þ

ϵþkfb
ϵþkfc

�
: ðB3Þ

For paired quarks, the bracket in this expression can be

approximated by 2ΔδðϵþkfbÞ since
ϵþkfb
ϵþkfc

≪ 1, while fþkfc can

be replaced by one half due to the Dirac delta function. The
corresponding momentum integral behaves as ∼Δ

P
f μ

�2
f .

The contribution of unpaired blue quarks can be neglected
since it behaves as ∼

P
f μ

�3
f . Thus, with ϵþkfb ≃ jkj − μ�f

the vector field becomes

ω ≃ −4GVΔ
X

f;c¼r;g

Z
dk

ð2πÞ3 δðϵ
þ
kfbÞ ¼ −

4GVΔ
π2

X
f

μ�2f :

ðB4Þ

The quark number density is

hqþqi ¼ −
ω

2GV
≃
2Δ
π2

X
f

μ�2f : ðB5Þ

This gives a direct access to number density of a given
quark flavor hfþfi ≃ 2Δμ�2f =π2.
In order to find the asymptotic value of the effective

quark mass, we also consider the chiral condensate.
Applying the simplifications adopted before and ϵkf ≃ jkj,
one gets

hq̄qi ≃ 4Δm�X
f

Z
dk

ð2πÞ3
δðϵþkfbÞ
jkj ¼ 2Δm�

π2
X
f

μ�f: ðB6Þ

Using the definition of the effective quark mass, we obtain

m� ¼ m − 2GPShq̄qi ≃
m

1þ 4GPSΔ
π2

P
fμ

�
f

: ðB7Þ

The quark pressure can be found using Eq. (17) as
pq ¼ −Ωq þ Ωq0, with Ωq0 being quark thermodynamic
potential in the vacuum. For this, we integrate by parts,
neglect Ωq0, zero point, and antiquark terms and arrive to

pq ≃ 2
X
f;c

Z
dk

ð2πÞ3 f
þ
kfc

�
2ΔcδðϵþkfbÞ þ

ϵþkfb
ϵþkfc

�
k2

3ϵkf
: ðB8Þ

The contribution of paired quarks can be found similar to
the case of ω. It is 2Δ

3π2
P

f μ
�3
f ≃ Δ2

2GD
, where Eq. (B2) was

used. The blue unpaired quarks contribute to pq as
∼ 1

12π2
P

f μ
�4
f , which can be neglected. Thus, the total

pressure becomes

p ≃ pq þ
ω2

4GV
−

Δ2

4GD
≃

ω2

4GV
þ Δ2

4GD
: ðB9Þ

The energy density is expressed using the corresponding
thermodynamic identity and the definition of the effective
chemical potential,

ε ¼
X
f

hfþfiμf − p ≃
ω2

4GV
þ 5Δ2

4GD
: ðB10Þ

At finite vector coupling ω ≫ Δ and ε ≃ p ≃ ω2

4GV
, while at

GV ¼ 0, one gets ω ¼ 0 and ε ≃ 5p ≃ 5Δ2

4GD
. This yields the

asymptotic value of the squared speed of sound,

c2S ¼
dp
dε

≃
�
1; GV ≠ 0

1
5
; GV ¼ 0

: ðB11Þ

Now we focus on the electrically neutral case of β
equilibrium atGV ≠ 0. Using above mentioned expressions
for number density of u and d quarks along with the
electron number density ne ¼ μ3e=ð3π2Þ, the corresponding
condition becomes

2

3

2Δμ�2u
π2

−
1

3

2Δðμ�u þ μeÞ2
π2

−
μ3e
3π2

¼ 0; ðB12Þ

where μ�d ¼ μ�u þ μe is used in order to express effective
chemical potential of d quarks. The electron term in
Eq. (B12) is negligibly small compared to the quark ones
since μe ∼ μ�f ≪ Δ.With this, we find μe ≃ ð21=2 − 1Þμ�u and
μ�d ≃ 21=2μ�u. Inserting this μ�d to Eqs. (B2) and (B4), we find
vector field ω ∼ μ�5u and effective chemical potential of u
quarks,

μ�u ≃ μu −
16GDGV

3π4
μ�5u : ðB13Þ

Two terms on the right-hand side of this equation diverge
faster then μ�u on the left-hand side, which can be neglected.
This yields μ�u ∼ μ1=5u . We also approximate chemical poten-
tial of u quarks as μu ¼ μB=3 − 2μe=3 ≃ μB=3, which is
valid since μe ∼ μu

1=5 ≪ μu. Thus,

μ�u ≃
�

π4μB
16GDGV

�1
5

: ðB14Þ

With this equation and μ�d ¼ 21=2μ�u, asymptotic expressions
for pairing gap and quark number density become

Δ ≃
4GD

3π2
ð1þ 2

3
2Þ
�

π4μB
16GDGV

�3
5

; ðB15Þ

hqþqi ≃ 1þ 2
3
2

2GV
μB: ðB16Þ
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