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to the baryon decuplet with flavor SU(3) symmetry breaking

Jung-Min Suh,"” Yu-Son Jun,"" and Hyun-Chul Kim 12
1Department of Physics, Inha University, Incheon 22212, South Korea
2School of Physics, Korea Institute for Advanced Study (KIAS), Seoul 02455, South Korea

® (Received 20 February 2022; accepted 15 June 2022; published 27 June 2022)

We investigate the axial-vector transition form factors of the baryon octet to the baryon decuplet within
the framework of the chiral quark-soliton model, with the effects of flavor SU(3) symmetry breaking
included. We consider the rotational 1/N, corrections and regard the strange current quark mass as a
perturbation. We compare the present results for the A — N axial-vector transition with those from other
models and lattice QCD. We also compute all possible axial-vector transitions from the baryon decuplet to
the octet with the strangeness changed, i.e., |AS| = 1. We obtain the value of the essential form factor C4

for the A — N axial-vector transition at the zero momentum transfer (Q> = 0). Furthermore, the present
results are in good agreement with those fitted with the T2K data. We extract the value of the axial-vector

mass M, compared to the data.
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I. INTRODUCTION

The axial-vector transitions of SU(3) baryons address
multifaceted issues on strong and weak processes of
hadrons. A typical axial-vector transition can be found
in hyperon semileptonic decays (HSD) [1,2]. While most of
the axial-vector transition constants for the baryon octet
HSD were known experimentally [3], experimental evi-
dence for the 2~ — Z% 7, decay is still elusive [4]. HSDs
provide information on the Cabibbo-Kobayashi-Maskawa
(CKM) mixing matrix elements |V,,| and |V, [5,6] in
addition to the pion and kaon decays [7-10]. While the
CKM mixing angles extracted from HSDs can only play an
auxiliary role, it is still of great importance to determine the
unitarity of the CKM matrix; |V, q4|* + Vs> + [V |* = 1
[11-13]. HSDs also cast light on the structure of the
SU(3) baryons. The experimental data on the semileptonic
decay constants reveal a certain pattern of explicit flavor
SU(3) symmetry breaking [14—19]. The baryon decuplet,
on the other hand, decays in the baryon octet primarily
through the strong interaction except for the Q~ baryon.
Nevertheless, understanding the A — N axial-vector tran-
sition form factor is critical because it provides crucial
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information for describing the weak single pion production
(vup — u~ " p) from neutrino-nucleon scattering [20-24].
Since neutrino-nucleon scattering holds an essential clue on
the neutrino oscillations, there has been a great deal of
experimental programs such as the Nova, MiniBooNE,
T2K, NusTEC, Minerva, DUNE, and SND@LHC experi-
ments [25-32] in higher-energy regions (see also a recent
review [33]). Very energetic neutrinos in future experiments
such as the DUNE and SND@LHC will be available, so
one can have a possible opportunity to study the structure
of strange baryons in neutrino-nucleon scattering. These
experiments will shed light on the axial-vector structure of
nonstrange and strange baryon resonances. In addition,
Alexandrou et al. reported the results on the A — N axial-
vector transition form factors based on lattice QCD [34,35].
Thus, it is of great interest to scrutinize the axial-vector
transitions from the baryon decuplet to the octet, which will
give multiple perspectives on the structure of baryons.
There have already been many theoretical works on the
axial-vector transition form factors for the nucleon to the A
excitation; for example, the relativistic quark model (RQM)
[36-38], the isobar model (IM) [39], the nonrelativistic
quark model (NRQM) [40,41], the linear ¢ model (LSM)
and the cloudy bag model (CBM) [42], the chiral con-
stituent quark model (yCQM) [43], baryon chiral pertur-
bation theory [44-47], the Barbero-Lopez-Mariano model
(BLM) [48,49], the A-pole dominance model [50], the light
cone QCD sum rule (LCSR) [51], and the nonlinear ¢
model (NLSM) [52]. The A — N axial-vector transition
form factor has often been parametrized either by the
dipole-type form factor or by Adler’s parametrization [20].
These parametrizations being used, the value of the axial
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transition mass M, for the N — A axial-vector transition
can be extracted from the experimental data. Based on
the ANL [21,22] and BNL data [23,24], many theoretical
and experimental efforts were put on extracting the
values of the A — N axial vector form factor C4(0) and
M ,; the ranges of their values lie in 0.8-1.2 GeV and
0.8-1.0 GeV, respectively [21,22,48,49,53-55]. The off-
diagonal Goldberger-Treiman (GT) relation for the A - N
axial-vector transition constant predicts C2(0) to be around
1.2 [56,57] with the experimental data on the A decay
width considered. In this context, the deviation of the off-
diagonal GT relation was also discussed and was found
small [44,58]. However, Ref. [59] found the smaller value
C? = 0.87 £ 0.08, which is more reliable for MiniBooNE
and T2K experiments. In addition, the nucleon-nucleon
potential such as the Bonn-Jiilich potential [60] takes
the smaller value of the zNA coupling constant (f2,,/
4z = 0.224) than that derived from the A decay width
(f,erA/47r = 0.36). If one uses this smaller value of f ya,
one would get a smaller value of Cg‘ from the off-diagonal
GT relation.

We also want to mention that there are only a few studies
on the axial-vector transitions from the baryon decuplet to
the octet. The axial-vector transition constants from the
baryon decuplet to the octet with the strangeness con-
served (AS = 0) were already computed within the chiral
quark-soliton model (yQSM) [61]. Those with |AS| =1
were investigated in a pion mean-field approach, where all
possible parameters were fixed by using the experimental
data on HSD [62]. In the present work, we will extend the
previous study to compute all possible axial-vector tran-
sition form factors from the baryon decuplet to the octet up
to a momentum transfer Q> < 1 GeV? within the frame-
work of the self-consistent yQSM with explicit flavor
SU(3) symmetry breaking considered.

The yQSM is a pion mean-field approach [63-65]. As
Witten proposed [66,67], a baryon in the large N. (the
number of colors) limit emerges as a state consisting of N,
valence quarks, bound by the pion mean field, since the
mesonic quantum fluctuations are suppressed by 1/N,. The
pion mean field arises from the classical solution of the
equation of motion, which can be solved self-consistently.
This procedure is nothing but a Hartree approximation [68]
(see also a review [69]). The presence of the N, valence
quarks makes the Dirac continuum polarized, which creates
the pion mean field by which the N_. valence quarks
are bound. Recently, it was shown that this mean-field
approach could also describe singly heavy baryons, i.e., a
singly heavy baryon as a bound state of the N, — 1 valence
quarks [70] (see also a recent review [71]). The classical
solution obtained by this self-consistent procedure is called
the classical nucleon or the chiral soliton, which needs to be
quantized. While we ignore the 1/N, mesonic quantum
fluctuations, we have to deal with the zero modes related
to continuous translational and rotational symmetries.

Since we will compute form factors of the SU(3) baryons,
we have to consider the translational zero modes, which
will yield the Fourier transforms, and the rotational zero
modes in SU(3), with the SU(2) soliton embedded into
SU(3). This embedding preserves the hedgehog symmetry
of the SU(2) soliton. Assuming that the angular velocity of
the soliton is slow and the mass of the strange current quark
(my) is small, we will treat them as perturbations. Thus,
we will consider the rotational 1/N, and linear my
corrections. The model has been successfully applied to
various observables of the SU(3) baryons: for example, the
electromagnetic structures [72-76], strange form factors
[77-83], axial-vector form factors [84,85], tensor charges
and corresponding form factors [82,83,86,87], semilep-
tonic decays [18,88,89], radiative transition [90-92], the
nucleon parton distributions [93-98], and the gravitational
form factors [99,100] of the nucleon. In this work, we will
concentrate on all possible axial-vector transitions from the
baryon decuplet to the baryon octet, including both AS = 0
and |AS| = 1 transitions.

The present work is organized as follows: In Sec. II,
we define the axial-vector transition form factors from the
baryon decuplet to the baryon octet, which parametrize the
matrix elements of the axial-vector current. In Sec. III, we
briefly review the formalism of the yQSM in the context of
the derivation of the axial-vector transition form factors. In
Sec. IV, we present their numerical results. We first discuss
the effects of flavor SU(3) symmetry breaking. We then
compare the numerical results with those from the lattice
data. We present the results for the axial-vector transition
constants and compare them with those from other theo-
retical works. We also provide the results for the transition
radii and dipole mass that will be useful for describing
hadronic processes. In the last section, we summarize the
present work and draw conclusions.

II. AXTIAL-VECTOR TRANSITION FORM
FACTORS FROM THE BARYON OCTET
TO THE BARYON DECUPLET

The axial-vector current is defined as

_ #
Au(x) = (X)rars 5 v (), (1)
where ¥ are the short-handed notation for the flavor SU(3)
Gell-Mann matrices; for the strangeness-conserving
(AS =0 or y =3,1=£i2) transitions and strangeness-
changing ones (|AS| =1 or y = 4 4 i5), we define '*2
and 1**5 respectively by
AE2 = 1 (A £iA?) B = 1 (A% £ iR). (2)
V2 ’ V2
w(x) stands for the quark field w = (u,d,s). Since we
deal with the baryon decuplet, the Lorentz structure of the
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spin-3/2 baryons should be considered [20]. This means
that we have more form factors than the case of the baryon
octet, which are often called the Adler form factors. Then
the matrix element of the axial-vector current between the
baryon decuplet and the baryon octet can be parametrized
in terms of four different real form factors [101],

(Bs(ps, J5)|4%(0)[B1o(p10: J3))

AW (g2 AW (2
=, ) [{ S 4 S

X (GO = Jap9u) &’ + C2 % (4%) Guy
()

+4
Mg

q(zQy:| ”a(l)lo, J3)’ (3)
where Mg and M designate respectively the masses of the
baryon octet and decuplet. g,; denotes the metric tensor of
Minkowski space, expressed as g,; = diag(1, -1, -1,-1).
In the rest frame of a decuplet baryon, p{,, pg, and g*
represent respectively the momenta of a decuplet baryon,
that of an octet baryon and the momentum transfer, which
are written by

Pio = (My,0), ps=(Eg.—q), q= (C’)q"I)v 4)
with g> = —Q? > 0. Thus, the three-vector momentum and
energy of the momentum transfer are given as

o (Mg + M5+ Q%N
‘61| — A Ms

Mio - M3 - 0

u*(pig,J3) stands for the Rarita-Schwinger spinor that
describes a decuplet baryon with spin 3/2, carrying the
momentum p;, and spin J3. It can be expressed by the
combination of the polan'zation vector and the Dirac spinor,

u*(pro.J3) = SC2 73 g “(p1o)us(pio)- It satisfies the Dirac

lizs ™t
equation and the aux111ary equations poau*(pig.J3) =0
and y,u*(p1o.J3) = 0 [102]. u(pg.J%) denotes the Dirac
spinor for an octet baryon.

In the current work, we will concentrate on C%(g?).
The transition matrix element of the axial-vector current
is involved in the cross section of neutrino-nucleon
scattering. As discussed in many references (for example,
see Refs. [49,101]), all other terms except for Cg‘ are
suppressed by the ratio g/My or g*>/M?% in the case of
neutrino quasielastic scattering. Thus, the value of C2(0)
can be extracted from the neutrino scattering data.
Moreover, C4(0) is directly connected to the strong
zNA coupling constant with the Goldberger-Treiman
relation [103-105]. The divergence of the axial-vector
current should vanish in the chiral limit [106]

2

_ q

iiig, (P, J4)q, C?(q2)+C€(q2)W wy (pio:J3).  (6)
8

which yields

7
)+ CYa) =0 @)
This indicates that C4(g®) must have a pole at ¢g*> =0

because C4(0) does not vanish. The pole term C4 (¢?) leads
to the following structure,

g, (P J5)a,Co (@), (Pr0:J3)

9ByB M
> fa

i
i L IR gk g, — ub JJ3), 8
My + My uBg(p8 3)61 Guw q2 ”Blo(Plo 3) (8)

where gp g denotes the strong coupling constant for a
vertex with decuplet and octet baryons, and an octet meson.
Using this relation, we find

i (c3(a) + i) )

q2—>() 1‘42
9ByB, oM
= lim |C4 — T . 9
q—>0[ (@) M8+M10f] ©)

which gives the well-known Goldberger-Treiman relation
(GTR) for a spin-3/2 baryon

9BsB oM

The meson-baryon strong coupling constants have been
already investigated in this pion mean-field approach,
where all dynamical parameters were fixed by the exper-
imental data on HSDs [62]. We want to mention that the
GTR has a certain discrepancy [107].

The form factors C?’lo_’g(qz) are determined by the

transition matrix elements of the spatial component of the
axial-vector current

7% (g?)

3IM dQ
- \/EgTleg [/ 47zq (Bs(ps.J3)leq-A|B1o(pi0.J3))

—\/—/—Y20

)(Bs(ps.J3)leq-A|Bio(pi0.J3)) |-
(11)

where e denotes the polarization vector in the spherical
basis, i.e., g =(0,0,1) and A stands for the spatial
component in the vector form: A = (x)yys 5 y(x). We
fix the third component of the spin states for the baryon
octet and decuplet to be J3 = 1/2 for convenience. We will
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now compute these transition matrix elements in the
present work.

III. AXTAL-VECTOR TRANSITION
FORM FACTORS IN THE CHIRAL
QUARK-SOLITON MODEL

The SUQ3) yQSM starts from the low-energy effective
partition function in Euclidean space

Z,05M = / Dy Dy Dr® exp {— / d4xw1'iD(ﬂ)y/]

- / Drexp (=Su). (12)

where y and 7¢ represent the quark and pseudo-Nambu-
Goldstone boson fields (pNG). The S is the effective
chiral action expressed as

Sefr[7?] = =N Tr In D, (13)
where Tr stands for the functional trace running over
spacetime and all relevant internal spaces. The N, is the
number of colors, and D(U) designates the Dirac differ-
ential operator defined by

D = igd+ iMU"s + im, (14)
where M denotes the dynamical quark mass. Note that M is
originally momentum dependent, which comes from the
instanton vacuum. The momentum-dependent dynamical
quark mass is originated from the quark zero mode in the
presence of the instanton [108,109]. Since we use the
constant dynamical quark mass in the present work, we
have to introduce the regularization to tame the divergence

of the quark loops. U”3(x) in Eq. (14) represents the SU(3)
chiral field defined by

1 1-
=L+ Lo

U?s(x) : 7

(15)

with U(x) = exp(iA“z*(x)/f,). f. is the scale factor
that will be identified as the pion decay constant. 71 in
Eq. (14) represents the current quark mass matrix given as
im = diag(m,, my, my) in flavor space. We assume isospin
symmetry in this work, so that the current quark masses of
the up and down quarks are set equal to each other,
i.e., my = my with their average mass m = (m, + mq)/2.
Then, the current quark mass matrix is written as
im = diag(m, m, mg) = m + ém. ém includes the mass of
the strange current quark, which can be decomposed as
om = m;1+ mga®. (16)
m, and myg denote the singlet and octet components of the
current quark masses respectively; m; = (—m + m,)/3 and

mg = (7 — my)/+/3. The Dirac operator (14) with y, can
be written as

yaD = —id, + h(U(n)) — 6m, (17)
where d, stands for the time derivative in Euclidean space.
h(U) is called the one-body Dirac Hamiltonian written as

(18)

As mentioned previously, the pion mean field arises as
the solution of the classical equation of motion, which is
derived from 8S./S6P(r) = 0. The equation of motion can
be solved self-consistently, which resembles the Hartree
approximation in many-body problems. In solving the
classical equation of motion or minimzing the classical
nucleon mass, one needs to find the pion field with proper
symmetry. In flavor SU(2), three components of the pion
field are coupled to three dimensional space, so that the
pion fields are expressed in terms of the profile function
P(r) for the chiral soliton

h(U) = iyayi0; — yaMU”> — yyin.

' =nP(r), i=123, (19)
where n' = x'/r with r = |x|. This expression is often
called the hedgehog ansatz and the corresponding sym-
metry is known to be hedgehog symmetry. Since we want
to keep this hedgehog symmetry of the pion field preserved
[67,110] also in SU(3), we embed the SU(2) Usgy,) (x) field
into SU(3). The SU(3) U(x) field can be constructed by the
trivial embedding [67]

U(x) = exp(iz“A"/ f7)

<exp<in : :)P(r)/fﬂ) ?)

(20)

where z¢ are set equal to zero for a =4, - - - 8. The zero-
mode quantization with this embedding will correctly yield
the spectrum of the SU(3) baryons.

We can compute the matrix elements of the axial-vector
current (3) by using the functional integral

(B(p'. J5)|AZ(0)[B(p. J3))

! lim exp < LN T)
= 1 X 1 ——1 -
Z}(QSM T—oo p4 2 p4 2

X /d3xd3yexp(—ip’ y+ip-x)

a

A
x/Dn“/Dl[//Dl//UB(y, T/2)V/T(O)74}’,4}’53

x y(0)J5(x, =T/2) exp {— / d4eriD(ﬂa)w], (21)

where the baryon states |B(p.J;)) and (B(p',J})| are
respectively written as
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1
[B(p.J3)) = lim exp(ipyxy) —m—
X4—>—00 /Z)(QSM

x/d3xexp(ip-x)fg(x,x4)|0>’

1
/A /A YIS B el
(B I] = lim exp(-ipl) ——

Zyosm

x / Pyexp(—ip y) 015 vs).  (22)

Here, Jp(x) represents the Ioffe-type current that consists
of the N, valence quarks [63,111]

‘]B(x) = 71137("17}\!36Yl//a111< ) . 'l//aN‘_iNC (X), (23)

N_c! €y,
with spin-flavor and color indices @; - --ay_and iy - iy ,
respectively. The matrices I' J'j T}V y carry the spin and flavor
quantum numbers of the baryon, i.e., JJ3TT3Y. Similarly,
we can express the creation current operator J}; (x) [63,69].

To quantize the chiral soliton, we have to perform the
functional integral over the pNG fields. Since we use the
pion mean-field approximation or the saddle-point approxi-
mation, we neglect the 1/N,. quantum fluctuations of the
pNG fields or the pion-loop corrections. However, we have
to take into account the zero modes completely, which do
not change the energy of the soliton. Thus, the functional
integral over the U field is replaced by rotational and
translational zero modes that are written as

U(r,t) = A()U(r — Z(1))AT (1), (24)

where A(7) belongs to an SU(3) unitary matrix and Z(¢)
correspond to the translational zero modes. The Dirac
operator in Eq. (14) is then changed as

D=0, +h(U)+AT()A(t) — iysZ -V +71,AT (1) (5m)A(1),
(25)

where AT(1)A(z) is the angular velocity of the soliton Q(r)
in Euclidean space

AN DA(r) = iQ = %iQ“ﬂ“, (26)

and Z designates the translational velocity of the soliton

dz
== (27)

Then the effective action under the zero-mode quantization
is expressed as

S = =N, Trln[d, + AT()A(1) — iysZ -V
+ 14AT (1) (5m)A(1) = yaa,7,ysAT ()#A(1)],  (28)

where a,, stands for the external axial-vector source field.
Expanding the zero-mode quantized effective action in
powers of angular and translational velocities that are
proportional to 1/N,, we obtain the action as

Seff ~ _NcTr InD + Srot[A] + Strans [Z]’ (29)

where

1

1
Srot [A} =3

L / drQeQl | SpnlZ] =5 My diZ - Z.

(30)

Here, 1, is the inertial tensor for the soliton and M is the
mass of the classical soliton, which is found to be the sum of
the N. valence-quark energies and the Dirac-continuum
energy; My =N_E,; + E.,. Werefer to Ref. [72] for details.

The integral over the translational zero modes yields
naturally the Fourier transform, which indicates that the
baryon state has the proper translational symmetry. Having
performed the rotational zero-mode quantization, we can
restore the rotational symmetry so that the baryon state has
correct spin and flavor quantum numbers. After the zero-
mode quantization, we obtain the collective Hamiltonian as
follows:

Heon :Hsym+Hsba (31)

where H, are decomposed into the flavor SU(3) sym-
metric and symmetry-breaking terms

_ 2 2
Hoym = C1+2—IIZJ 2122J :
Hy = aD + p¥ + 125" DI, (32)
i=1

Here, I; and I, stand for the moments of inertia for the
soliton, which are the diagonal components of / ,;, in Eq. (30)
whena = 1,2,3anda =4, ..., 7, respectively. The explicit

expressions for them can be found in Appendix A. DSZ)

represent SU(3) Wigner D functions. The inertial parameters
a, f, and y, which arise from the linear mg corrections, are
expressed in terms of the moments of inertia /; and /,, and the
anomalous moments of inertia K; and K,

> K K, K, K
a= -4 22V, f=—"2m,, y=2(—-"2-=2)m,,
3m 12 2
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where X, stands for the pion-nucleon X term and its
expression can be found in Appendix A. K; and K, arise
from the rotation of the mass term A (6m)A in Eq. (24)
(see Ref. [112]). The corresponding expressions can also
be found in Appendix A. Once the flavor SU(3) sym-
metry is broken, the collective wave functions of the
baryon decuplet start to get mixed with states in higher
representations. Thus, the states of the baryon octet and
decuplet are derived by the standard second-order pertur-
bation theory,

15/2
2

Vi |

0

B _
dy7 = dyg

5//14
2+/5/7
af%}s:ass 3 5/14’ (37)

2,/5/7

respectively, in the basis [N, A, X, E] for the baryon octet
and [A, X*, 2%, Q] for the baryon decuplet. The parameters
Cig» C27> Gy7 and ass are expressed in terms of a and y.

|Bs,,) = [81/2, B) + c& 10,5, B) + ¢5;[27,/2,B),  (34) ! 1 ! 1
12 / w0 Y 2710 15 = 1; +27 Cy7 = 2; a=e?) (38)
|Bro,,,) = 1032, B) +a5;|275 5, B) +a%s|3552,B),  (35)
L 5 L 1
with the mixing coefficients 41 =" OH—E}/ ’ Bs = 7o\ ¥ 757 ) (39)
V5 V6 Each state in Egs. (34) and (35) is given in terms of the
0 SU@B) Wigner D functions that satisfy the quantization
&= e Al 3 =y , |© (0 condition [112].
The final expression for the axial-vector transition form
0 V6 factors is derived as Cg"lo_’g,
|
4108, 2y _ (D Eg)> 2 2 (®)4 2my (8) 5(8) 2 2
Cs 7 (07) = {A(Q%) = A (07)} + (DogJ3) +—= Ki(Dg3 Dyg ) [ {Bo(Q7) — B2(Q°)}
3f 31, V3
dpq’% (8)% ng Z<D(8 >
L (Dgy K,(DY 2 2 Dy(Q?) — D, (0?
+ Al (Dapdq) + \/§ 2 > {Co(0%) = Ca(Q%)} - o1, {Do(Q°) — D2(0%)}
2ms st 8) ~(8)
5" (D) = (DFDEN{H(0%) = Ha(0%) = =5 (D D){To(0%) - T2(0%)}
2mj 8) (8
=373 4 DD HT0(0) = T2} (40)

where (---) represent the matrix elements for the SU(3)
Wigner D functions between Bg and B collective states,
which are expressed in terms of the SU(3) Clebsch-Gordan
coefficients. The results are explicitly given in Appendix B.
Ap(0?), ..., T»(0?) denote the Fourier transforms of the
axial-vector transition densities, which can be found in
Appendix A.

Since the matrix elements of the Wigner D functions also
contain the linear m terms, the collective baryon states get
the linear m, corrections from those in higher representa-
tions. Thus, there are yet additional myg corrections in
addition to those shown in Eq. (40). Thus, it is more

2
A 10-8(sym) _ ﬁ —T;
5 90 | 2T,
V3

[

convenient to decompose the contributions arising from
flavor SU(3) symmetry breaking into two terms

C154,10—>8 _ Cgth—»S(sym) + C?,lO—»S(op) + C?,lO—»S(wf)’ (41)

where C? 108 (sym) denote the contributions from the

SU(3) symmetric part in Eq. (40) whereas ng.10->8(0p)

and C?’lo_’g(Wf) come respectively from the current

quark-mass term in the effective chiral action (13) and
from the collective wave functions. They are explicitly
written as

2
i(Do Dz) \/5 —T; Co—C, (42)
1, 90 —2T; I
1
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1
—8( 01 \/§ S _3T K
C5mien = e —STz {;(BO_BZ)_(IO_IZ)}
V3
; 4
=375 | [k,
| g [T @-C)=(To=T0)| = | | (=Ha) b, (43)
43 V3
2V2 V10
. ~3\A3T i(Dy = D) 0 | (G=C)
A 108 f):@ 3 {2 ) _#]+4 =2
5 16207\ | _7y37, | |20~ 7 —Var, | L
0 3
\/§ 0 Z(DO - Dz) 0 (CO B CZ)
_Vv3 2(Ag - Ay) - B2 T .
1353 | vior, [ (A= A) I } —V/107; & ()
-3v/5 35

where we have suppressed Q> dependence of Cg‘ and T35 is the third component of the isospin operator.

Since we have assumed isospin symmetry, we can find the isospin relations for the axial-vector transition form factors as
follows [18]:

(87 = ) = (80 = 1) = = (AT = ) = (A7 =) = (A% = p) = =(&7 = )
\/5(2*+ N ZJr) _ _\/5(2*— N Z_) _ (2*0 N ZJr) _ ( N 20) — <Z*+ N ZO) _ (Z*O N 2—)
(Z0 = A) :%(2*— SA) = —\%(W SA)
<:*O N :'0) — —(E*_ - E_) :%(E*— — EO) — %(E*O N E_)
(AT+ > 5+) = %(A+ - 30 =V3(A% - 57)
(Z*O - p)= \/LE(Z*_ - n)
(2*0 N :'0) _ \/E(E*O N :'—)
(B0 > IH) = V2(8" > V), (45)

where (By — Bg) denote the axial vector form factors C’;‘ P0=Bs We also find several sum rules between those form
factors,

(AT ep):—%(E*_ eA)—% = —>ZO)+%(Z*O—>A)+(E*_ - 2%)
LT = - 50 LAY L= LA L (m o

* _\/§ 0 _y \/§:*—_, _L:*—_, _éz*—_,:
E-n =L@ o) @ - L)
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(9= p) = -3 (B =59+

& > =

(A* > 50) =

IV. RESULTS AND DISCUSSION

Before we compute the axial-vector transition form
factors of the baryon decuplet, we first discuss how the
parameters are fixed. In the yQSM, there are four different
parameters: the dynamical quark mass M, the cutoff mass A
in the regularization functions, the strange current quark
mass my, and the average of the up and down current quarks
m = 6.131 MeV, as mentioned in Sec. III. 7 is determined
by reproducing the physical value of the pion mass,
m, = 140 MeV. The strange current quark mass is usually
fixed by the kaon mass, mg = 495 MeV. Its value is
obtained to be 150 MeV. However, we use a slightly larger
value mg; = 180 MeV, which describes the mass spectra of
the baryon octet and decuplet [69,112]. The cutoff mass A
is determined by the pion decay constant f, = 93 MeV.
On the other hand, the dynamical quark mass M is a free
parameter in the yQSM but is also fixed by reproducing the
electric charge radius of the proton [72], i.e., the corre-
sponding value of M is M = 420 MeV. We use exactly the
same values of these parameters in the present work. As
shown in Eq. (11), C‘; involves the octet mass Mg. The
baryon masses in the yQSM also include the rotational
1/N,. and mg corrections. If we turn off all the corrections,
the baryon masses become the classical nucleon mass M
or the soliton mass, which is proportional to N,.. To be

1.0

——~ m,=0MeV
— my =180 MeV

0.0 0.2 0.4 0.6 0.8 1.0
Q%[GeV?]
FIG. 1. Effects of the explicit flavor SU(3) symmetry breaking

on the axial-vector transition form factors CA AP (Q?) for the
A" — p transition. The solid curve draws the total result whereas
the dashed one depicts the result without the m, corrections.

A
T
V2
J_

7

(_ﬁm+%@z@%
(Z*O - A) + %(Q_ - EO)
(E*= = A). (46)

[

theoretically more consistent, we will take M, instead of a
octet baryon mass [113,114]. In fact, the numerical results
are improved by considering M, in place of Mg by around
10%. Similar effects can be seen in the calculation of the
magnetic dipole moments of the SU(3) baryons.

We first examine the effects of flavor SU(3) symmetry
breaking on the axial-vector transition form factor for the
AT — p transition. In Fig. 1, we draw the results for the
AT — p axial-vector transition form factors. The solid
curve depicts the total result, whereas the dashed one draws
that with the effects of the explicit flavor SU(3) symmetry
breaking turned off. The corrections from the linear m;

contribute to C- AT=P(02) by about 10%, as expected. As
discussed already in Ref. [78], the effects of the explicit
flavor SU(3) symmetry breaking range in magnitude from
5% to 15%, depending on the decay modes. So, the linear
my corrections are also marginal in the case of the AT — p
axial-vector transition form factors.

A few works computed theoretically the axial-vector
transition form factors [41-43]. So, we first compare the
current result for C4"*~" (0?) with those from other models
as shown in Fig. 2. The solid curve draws the present result,

This work m; =330 MeV(DWF)

= = Barquilla-Cano et al. \ 4 my =353 MeV(Hyb.)
————— Isgur-Karl ™ m. =411 MeV(QWF)
1.5 == === D-mixing P m, =490 MeV(QWF)
Golli et al. @ . =198 MeV(Hyb.)
—— —— = Alexanrouetal. X m, =563 MeV(QWF)
° m, =297 MeV(DWF)
+ m, =594 MeV(Hyb.)

FIG. 2. Numerical results of the C?G)BIO_’Bg(QZ) for the
transition from the AT isobar to the proton in comparison with
those from other models. The solid curve draws the present result,
whereas long-dashed, dashed, dot-dashed, dotted ones are taken
from Refs. [41-43]. The present results are also compared with
the data taken from lattice QCD [34,35]. The dot-dot-dashed
curve depicts a fit to a monopole form of the quenched lattice data
(see Fig. 17 in Ref. [34]).
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whereas the long-dashed one is taken from Ref. [43], in
which the chiral constituent quark model was used. In
Ref. [43], the effective Hamiltonian was constructed by
introducing a confinement potential, a one-gluon exchange
potential, and a one-pion exchange potential. Because of
the one-pion exchange potential, the model is called the
chiral constituent quark model. Since the nucleon and A
states are constructed in terms of five harmonic oscillator
bases, the nonvalence-quark contributions are expressed by
states corresponding to gggqq component. We want to
mention that the decomposition of the Fock space in
quantum field theory can only rigorously be performed
in the light cone basis [115]. Note that they use the
empirical value of the axial transition mass M, =
1.28 GeV as an input, whereas it is predicted in the present
work. The result of C4(0) in Ref. [43] is completely
determined by the one-body axial-vector current, while

TABLE 1.

the exchange-current contributions are almost canceled by
each other. Thus, the value of C%(0) is obtained to be
C4(0) = 0.93, which is very similar to the present result;
C2(0) = 0.994. On the other hand, the Q* dependence of
Cg‘ from Ref. [43] is quite different from the present one, as
shown in Fig. 2. That, from Ref. [43], falls off much faster
than the present result as Q” increases. The dashed and dot-
dashed ones are obtained from Ref. [41]. Apart from the
explicit forms of the potential, the model is similar to that
used in Ref. [43]. In Ref. [41], three different schemes were
employed. The result in the short-dashed curve, which was
denoted by the Isgur-Karl (IK) model, was obtained by
using the parameters given in Refs. [116,117]. As shown in
Fig. 2, the result of Cg‘ is larger and decreases faster than the
present one as Q? increases. On the other hand, the result
of C4(0) from the D-state mixing model depicted in the

Numerical results for the triplet axial-vector transition constant C’Sw“’_’B8 (0) with |AS| =0 in

comparison with those from lattice QCD (LQCD) [35], the relativistic quark models (RQM) [36-38], the isobar
model [39], the nonrelativistic quark model (NRQM) [41], the linear o-model (LSM) and the cloudy bag model
(CBM) [42], the chiral constituent quark model (yCQM) [43], the relativistic baryon-chiral perturbation theory
(RBCPT) [45,46], the Barbero-Lopez-Mariano approach [48,49], Graczyk et al. [56], Hernandez et al. [59], the
light cone QCD sum rule (LCSR) [51], and the nonlinear ¢ model [52]. We also compare the present results fitted to

the T2K experimental data(T2K) [28].

C’;B”’_’B" (0) AT = p >t 5 3t >0 5 A B 5 BT
my =0 MeV 0.888 —0.443 0.765 0.412
mg = 180 MeV 0.994 —0.446 0.840 0.425
LQCD [35] (m, =297 MeV) 0.944 + 0.058""

LQCD [35] (m, = 330 MeV) 0.970 = 0.030"

LQCD [34] (m, = 353 MeV) 0.750 £ 0.019*"

LQCD [34] (m, = 411 MeV) 0.906 + 0.015

LQCD [34] (m, = 490 MeV) 0.930 = 0.014*"

LQCD [34] (m, = 498 MeV) 0.864 + 0.032*"

LQCD [34] (m, = 563 MeV) 0.952 £ 0.016™"

LQCD [34] (m, = 594 MeV) 0.883 = 0.022""

RQMI [36] 0.97

RQM2 [37] 0.83

RQM3 [38] 0.97

Fogli et al. [39] 1.18

Liu et al. [41] 1.17

LSM [42] 1.53

CBM [42] 0.81

2CQM [43] 0.93

RBCPT1 [45] 1.16

Barbero et al. [48,49] 1.35

Graczyk et al. [56] 1.19 £ 0.08

Hernandez et al. [59] 0.867 £ 0.075

LCSR [51] 1.14 £ 0.20

Alvarez-Ruso et al. [52] 1.12+0.11

RBCPT?2 [46] 1.17 £ 0.02

T2K(Prefit) [28] 0.96 +0.15

T2K(Postfit) [28] 0.98 + 0.06

*Since the expressions for the axial-vector transition constants in Ref. [35] are different from the present one

by —1, we have considered this factor for comparison.

°In Ref. [34], these values are extrapolated ones obtained by using the dipole parametrization.
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TABLE II. Numerical results for the axial transition mass in comparison with the lattice data [34,35], that
extracted from the Argonne National Laboratory (ANL) data [21,22], CERN BEBC data [55], the Brookhaven
National Laboratory(BNL) data [24,56], MiniBooNE data [26], and T2K fitted results [28]. We also compare the
present results with those from other works [52-54]. We use the dipole-type form factor for parametrization A.
Parametrization B corresponds to Alder’s parametrization [20].

0

=0
=

>0 5 A

PHYS. REV. D 105, 114040 (2022)

M, [GeV] At > p s 3t - =
Parametrization A 0.863 1.03 1.03 1.35
Parametrization B 1.17 1.32 1.31 1.47
LQCD [35] (m, =297 MeV) (dipole) 1.699 £ 0.170
LQCD [35] (m, = 329 MeV) (dipole) 1.588 +0.070
LQCD [34] (m, = 353 MeV) (dipole) 2.202 +£0.113
LQCD [34] (m, =411 MeV) (dipole) 1.534 +0.036
LQCD [34] (m, = 490 MeV) (dipole) 1.537 +0.033
LQCD [34] (m, = 498 MeV) (dipole) 1.892 £+ 0.101
LQCD [35] (m, = 563 MeV) (dipole) 1.544 +0.032
LQCD [34] (m, = 594 MeV) (dipole) 1.924 + 0.085
Fogli er al. [39] 0.75
ANL [21] 0.93 £0.11
BEBC [55] 0.85+0.10
Rein et al. [53] 0.95
BNL [24] 1.28709%
Lalakulich et al. [54]* 1.05
Lalakulich er al. [54]° 0.95
Hernandez et al. [59] 0.985 + 0.082
Graczyk et al. [56] 0.94 £+ 0.04
MiniBooNE [26] 1.35+0.17
Alvarez-Ruso et al. [52] 0.954 + 0.063
T2K(Prefit) [28] 1.20 £0.03
T2K(Postfit) [28] 1.13 £0.08
“They use the parametrization form as C4(Q?) = (HZ‘;%W
C1(0)

"They use the parametrization form as C4(0%) =

dot-dashed curve is smaller than the present one. However,
its Q? dependence is milder than that from the present one
as well as that from the IK model. In Ref. [42], the linear
sigma model and the cloudy bag model were employed.
The dotted curve in Fig. 2 illustrates the result from the
linear sigma model. The value of C4(0) from Ref. [42] is
quite overestimated in comparison with the fitted results
from the T2K experiment [28].

In Fig. 2, the dot-dot-dashed curve illustrates a fit to a
monopole form of the quenched lattice data [34,35]. It
tends to fall off relatively slower than those of other models
and that of the present one. It is well known that the lattice
calculations with the wunphysical pion mass produce in
general hadronic form factors that fall off very slowly as Q>
increases. Considering the picture that the pion fields
govern the structure of the nucleon and A in outer parts,
one can understand that the smaller pion mass renders the
sizes of N and A smaller than physical ones. The result of
the current work for C; A" is in good agreement with the
lattice one as will be shown explicitly in Table I.

In Table I, we list the values of C4(0) for four different
axial-vector transitions, with and without the effects of

1 2
(1+02/M2)? (1+Q2/3M§) .

explicit SU(3) symmetry breaking. One can quickly obtain
the values of C2 for all other channels from the isospin
relations given in Eq. (45). Since there are many results for
the AT — p axial-vector transition derived from other
works, we compare the current results with them. As already

TABLE IIl. Numerical results for the axial transition radius in
comparison with those from various approaches; baryon chiral
perturbation theory(BCPT) [44,47], the chiral constituent quark
model (yCQM) [43], nonrelativistic quark potential model [41]
with two different methods (Isgur-Karl and D-mixing), and lattice
QCD [34].

At - p T 53t 205 A B0 RO

(rz)Bme [fm?] 0.542 0.452 0.452 0.345
BCPT1 [44] 0.424-0.498

BCPT2 [47] 0.345

¥CQM [43] 0.59

Isgur-Karl [41] 0.32

D-mixing [41] 0.30

Lattice QCD [34] 0.18
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discussed in Fig. 1, the effects of the explicit SU(3) symmetry
breaking on the A — N transition are about 10%. While the
contribution of the linear m corrections to C4>"~A(0) is
similar to that of the A — N transition, the effects of explicit
SU(3) symmetry breaking are almost negligible. The final
result for C447N(0) is obtained to be 0.994, which is in
good agreement with the T2K data [28]. Those from
Refs. [36,38,42,43,59] are also in good agreement with
the T2K data. That from Ref. [37] is underestimated but those
from Refs. [39,41,42,45,46,48,49,51,52,56] yield larger
values than the fitted results from the T2K data.

The axial-transition form factors can be parametrized in
terms of the axial transition mass M,. Two different
parametrizations are used, i.e., dipole-type parametrization,

where a and b are fixed respectively to be a = —1.2 and
b = 2.0. We use both the parametrizations and call the first
one parametrization A and the second one parametrization
B. In Table II, we list the present results for the axial
transition mass in the case of the AS =0 axial-vector
transitions. In general, the value of M, from parametri-
zation A is smaller than that from parametrization B.
The lattice calculations use the dipole-type parametri-
zation, while many works employ Adler’s one. The present
result (parametrization A) for the At — p transition is
much smaller than those from lattice QCD. One can easily
understand this difference, since the results for C? AT=p
from the lattice data fall off much slower than the present
one. The result for M,(A"T — p) is in good agreement
with the fitted results from the T2K. However, there is a

Al AN C4(0) 4 caveat; if one computes the axial transition mean-square
C5(07) = (14 Q?/M3)? (47) radius for the AT — p decay by using the dipole-type and
Adler-type parametrizations, we find (r*),+, = 0.531 fm?
and the Adler’s one, and (r?) ,+ » = 0470 fm?, respectively. It indicates that the
dipole-type parametrization yields a closer value of (r?
CHO)[1 +aQ*/ (b + Q)] ihe mode g i
CcA(Q?) = =3 (48) to the model result (see Table III, where we give the
> (14 Q*/M3)* following value, (r%),+, = 0.542 fm?).
-0.05 0. ——- m,=0MeV
-0.101 . — m, =180 MeV
0.7 1
—0.151
S -0.20] $ %9
T —0.25] 7 027
% -0.301 %041
-0.351 0.31
~0.40 —=- m,=0MeV 0.21
0451 — m, =180 MeV 01
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Q2[G8V2] QZ[GeVz]
—0.05 1
—0.101
—0.151
3 -0.20°
. -0.25
m
¥ -0.30
—0.351
, ——— m,=0MeV
—0.401 —— m,—180 MeV
0.0 0.2 0.4 0.6 0.8 1.0
Q*[GeV?]
FIG. 3. Effects of the explicit flavor SU(3) symmetry breaking on Cg\(3)2**—>2* (Q?) (upper left panel), C?G)EO*_)AO(QZ) (upper right

panel), and C‘;‘ BEO%_ED(QZ) (lower panel). Notations are the same as in Fig. 1.
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_01<
-0.2
o
S -03
=9
U,
A
s _ |
e -0.5
—06l” ——- m,—=0 MeV
—— m, =180 MeV
-0.71 : : : :
0.0 0.2 0.4 0.6 0.8 1.0
Q*[GeV?]
-0.2
& -0.4
S5
<
T -0.6
I
fl]
Qn’.: —0.8‘
. —— m,—=0 MeV
-1.0 —— m, =180 MeV
0.0 0.2 0.4 0.6 0.8 1.0
Q%GeV?]
-0.25
> -0.50
n —0.75
A
L —1.001
<
o125
©-L g —— m.=0 MeV
-1.5047 — m, =180 MeV
0.0 0.2 0.4 0.6 0.8 1.0
Q*[GeV?]

——- m,=0 MeV
—— m, =180 MeV

0.0 0.2 0.4 06 0.8 1.0
Q2[GeV?]
12\ —— m,=0MeV
—— m, =180 MeV
S3°1.04
S5
T |
038
I
<06
0.4
0.2 , : : :
0.0 0.2 0.4 0.6 0.8 1.0
Q?%[GeV?]

g ——- m,=0MeV
—0.87 7 —— m, =180 MeV
0.0 0.2 0.4 0.6 0.8 1.0
Q*%[GeV?]

FIG. 4. Effects of the explicit flavor SU(3) symmetry breaking on C?B”’ﬁBx (Q?) with |AS| = 1. Notations are the same as in Fig. 1.

The mean-square radii for the B;y, — By axial vector
transitions give information on the behaviors of the
corresponding form factors in the vicinity of Q? = 0, since
they are defined by

dCs(Q?)

= 49
40 |y (49)

<72>B,038 ==

Table III lists the results for the (r?) BB, In the second
column, we compare the current result for (r2),y with
those from other works and found that the present result is
in agreement with that from the yCQM [43] whereas it is
smaller than the other works. Note that as the strangeness
|S| increases, the magnitudes of the axial-transition radii are
reduced. So, we have the inequality relation

(FPyan > (P)gs > (FP)zz. (50)

Figure 3 draws the axial-vector transition form factors

3+ 0% _, AO EO*—>EO
CiUE T 02), PN (02, and §VFE(02).
The effects of flavor SU(3) symmetry breaking on

C?(3)2*+—>2+ and C?(B)E*O—GO

. (3)2% A
4%), whereas they contribute to C? by about 10%.
Thus, the effects of flavor SU(3) symmetry breaking are
overall marginal on the axial-vector transition form factors.
In Fig. 4, we illustrate the axial-vector transition form
factors C?B‘“_’BS with strangeness changed. These transi-
tions accompany the kaons in neutrino-nucleon scattering
to preserve strangeness. The results again show that the
effects of flavor SU(3) symmetry breaking contribute to
C2P0755 at most by about 10%. In Tables IV and V, we list

the numerical results for C2%°7%5(0), the corresponding
axial transition mass M, and axial transition radii. We

compare the results for C?B‘“_’B*(O) with those obtained

are negligibly small (below
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TABLE IV. Numerical results for Cg‘ Bio=Bs (0) in comparison with those from the general framework of a chiral
soliton model (ySM) [18]. We use the dipole-type form factor for parametrization A. Parametrization B corresponds

to Alder’s parametrization [20].

C? Bg—Bg (0) 2*0 —p E*O N Y = 5 A QO — EO
mg =0 MeV -0.624 0.824 -1.01 1.28

mg = 180 MeV —0.682 0.813 —1.08 1.30
¥SM [18] —0.675 £ 0.002 0.954 +0.003 —1.169 £ 0.004 1.653 £ 0.006
M, [GeV] (A) 1.25 1.38 1.37 1.57

M, [GeV] (B) 1.32 1.50 1.49 1.67

(r?) [fm?] (dipole) 0.375 0.338 0.342 0.297

TABLE V. Numerical results for C?B'O_’BS (0) in comparison
with those from the general framework of a chiral soliton
model(ySM) [18]. We use the dipole-type form factor for para-
metrization A. Parametrization B corresponds to Alder’s para-
metrization [20].

C?Bm—’Bx (0) ATt 5 3+ sty =0
mg = 0 MeV —1.55 —0.889

mg = 180 MeV —1.38 —0.811
2SM [18] —1.547 £ 0.006 —0.928 £ 0.004
M, [GeV] (A) 1.14 1.27

M, [GeV] (B) 1.22 1.37

(r?) [fm?] (dipole) 0.409 0.368

from the chiral soliton model [18], where all the dynamical
parameters given in the present work were fixed by using
the experimental data on hyperon semileptonic decays [3].
The uncertainties of the results from Ref. [18] reflect the

. >0,
experimental errors. Except for C’; P(0), the current
results are slightly underestimated but are qualitatively in
agreement, compared with those from Ref. [18]. The results
for the axial transition radii indicate that as the strangeness
|S| increases, the values of (1), » are lessened,

<r2>A+‘p > <r2>2*op > (1) gz > (1) gost

> (r)zpo > (FP)g-z0. (51)

V. SUMMARY AND CONCLUSION

In the present work, we aimed at investigating the axial-
vector transition form factors for the transitions from the
baryon decuplet to the baryon octet within the framework of
the SU(3) self-consistent chiral quark-soliton model. We
considered the rotational 1/N . corrections and the effects of
flavor SU(3) symmetry breaking, dealing with the strange
current quark perturbatively. We found that the linear m
corrections are marginal and even tiny to be neglected,
depending on the transition modes. We first compared the
results for the axial-vector AT — p transition form factors

with those from lattice QCD and other models and phenom-
enological analyses. We obtained the axial-vector transition
form factor for the A™ — p transition at 0> = 0 as C4(0) =
0.994. We derived the axial transition mass with the dipole-
type parametrization as M, = 0.863 GeV whereas we got
M, = 1.17 with Adler’s parametrization. A* — p transition
form factor at Q> = 0 is in good agreement with the lattice
data and the fitted results from the T2K data. Since the axial
transition mass plays a critical role in understanding the
neutrino-proton interaction such as vp — pu~px™", we used
the dipole-type and Adler’s parametrizations for the AT — p
form factor. We obtained M, = 1.17 GeV with Adler’s
parametrization employed. This result is in good agreement
with the fitting of the T2K data. We then computed the radius
squared for the A* — p transition. The result is larger than
those from other works but is in agreement with that from
Ref. [43]. We also obtained the axial-vector form factors for
other transition modes, including the strangeness-changing
transitions. We found that the values of the axial transition
radii decrease as the strangeness of the transition modes
increases. So far, we are not able to conclude whether this
tendency is model-independent. One can extend the present
theoretical framework to investigate the axial-vector tran-
sition form factors of the singly heavy baryons. The
corresponding works are under way.
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APPENDIX A: EXPLICIT EXPRESSIONS FOR
THE MOMENTS AND ANOMALOUS OF
INERTIA, THE nN SIGMA TERM, AND THE
FORM FACTORS

In this appendix we present the explicit expressions for
the moments and anomalous moments of inertia, the 7N
sigma term, and the Q2-dependent functions given in
Egs. (40). The moments of inertia 7, I, are expressed as
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(1 1 . . & .
— LY 1 J _ i J
NG (5 32 o O 910} g el o)
b= (25— )i + 25 ) R0 (A1)
Nd<ep—e¢, 4~ meme e
and the anomalous moments of inertia are written by
K= (25 Ll o)+ S ol ol )R )
: ‘ 26 ;’:e,en_ev 411,m S
1 1 1
K= N3 X0 L OOl 1) 5 S ) ) R ) ). (42)
The zN sigma term is expressed as
1 .
.y =-N.1- %Dgg (wy°|v) + Z n|y°|n)R, (e,) — vacuum subtraction | . (A3)
Ag(Q?), -+, To(Q?) are defined by
Ao(Q%) = NL-M/d3rjo(Q|r) Pla(r)o - Thea(r) +Z¢Z(r)6'f¢n(r)Rl(En):|7
B(0%) = NM [ i@l | 3 g dlatriod ) leval) —3 S i) e (B, )
: [ 1 ;
Co(Q?) = NCM/d3rJ0(Q|") _%;m]m‘ﬁvm(")ﬂ Th, () (no|val) nzmofﬁn 6T, (r <m0|n>R5(En7Em0>:|7
2y _ 3. [ sen(E,)
Dy(Q%) = NeM [ drjo(QIrl) | D =5 drar) (@ x 2)pu(r) - (nlelval)

Ln#val

+§;ﬂj¢;ﬁ<r>a < () - () Ro(En. En) .

Ho(Q2) = N.M / O DI

Ln#val

Eval - E

7o(0%) = N.M / I 1D D ——

Ln#val

E val —

n,m

70" =N [ @il Y-

Lng#val Eval

e (P67 (1) (ol |val)

E

+ ch¢'{l(r)6 : Td)mo (I‘) <m0|}/0|n>R2(Env Emo):| ’

n,my

where M is defined by

3Mg
Eg + Mg

114040-14

Piaa(r) - 2(rn) (nly|val) + Zcﬁn 6 - 2 (r) (mly°|n) R (E,

£

o) - (lelval) + 35 o) - (el R <En,Em>},

(A4)
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The regularization functions are defined as

Rl (En) =

—-E, [~ du _ -
2\/7;4 Plu) ﬁe '
du E, e "En — E, e'Er

1 o0
RZ(EnaEm) = Wi—[[) ¢(u) \/ﬁ E —E P

1 © 1 5 2 1_ E _ E
R4(Enﬂ Em) = _/ du¢(u)/ dae“’”Em—(l-a)uEn ( (Z) n— ALy )
27 Jo 0 a(l —a)
_ Sgn(En) - Sgn(Em)

Here, |val) and |n) denote the quark states in the valence and Dirac continuum with the corresponding eigenenergies E.,
and E, of the one-body Dirac Hamiltonian i(U), respectively.
Ay (Q?), -+, T2(0Q?) are defined by

A(0%) = NCM/d3rjz(Q|’) [¢ial(’){\/ﬂYz ® o1}y thva(r) + Y _dh(N{V21Y, ® 01}, - 7 (r) R (E,) |

B:(0%) = N [ @riQl)| 3 7 bla V287 © 01} () - Gl

n#val =~ val

=S HVIY © b)) Ro(Ey. ).

C(0%) = NCM/d3rjz(Q|’) [ Z E; a(M{V27Y, ® 61}, - 1h,, (r) (no|val)

ng#val val — Eno

=S HHVIRY, © 01}t (1) ol R By )|

n,mg

D1(0) = NM [ @ris@ir)| Y- 2L g1 1) (V31 @ o)y x 5 0)- el

nval —val =

3 LA VY @ 01}y X 0) - ()R ).

Hy(Q?) = NCM/d3rj2(Q|r) [Z E E ¢ia1("){\/ﬁyz ® o1}y - 7(rln)(n|y°|val)

nkval —val T
1 +
3 LAV ® 01}y o)l )R )|
1
1-2(Q2) = NCM / d3rj2(Q|r\) |:Z ﬁqﬂ;a]("){\/ 2T[Y2 ® Gl}ld)n(r) . <n|}/0’t|Val>
n#val —val n

+%Z¢;(I‘){\/EY2 ® Gl}l¢m(r) : <m’701|n>R2(EmEm):| ’

T = NM [ 1@ | 3 o gl VIR @ a5 ()l v

no#val —Va

+NCZ¢:1<"){\/EY2 ® 61}1 ' T¢mo (I‘) <m0|y0|n>R2<En7 Emo):| . (A7)

n,mg
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APPENDIX B: MATRIX ELEMENTS OF THE SU(3) WIGNER D FUNCTION

In Tables VI-XI to XI, we list the results for the matrix elements of the relevant collective operators, which are required

for the calculation of the axial-vector transition form factors.

TABLE VI. The matrix elements of the single and double
Wigner D functions when a = 3.

By — Bs AN Ty EoE T oA
<Bs\Dn |B1o) 28 -fn, -3fr, P
(Bs| D3 J5|Bry) 0 0 0 0
<Bs\dbc3Dg§,)jc\Blo> —{_55 ﬁ BT _g
(Bs| DL DY 1B1o) % fTa %7 w
(Bs|D DY |Bo) 2 0 BT iy
(B ‘db(:3D§§i)Dg§;)|BIO> %:)_5 \/_Ta —%Ts %

TABLE VII. The transition matrix elements of the single
Wigner D function operators coming from the 27-plet component
of the baryon wave functions when a = 3.

By — Bg AN S oy T 0m Yo A
<Bz7\Dg§)|B10> ﬁ@ —\3/—§T3 _%Ts %
(By7|D J5|B1o) 0 0 0 0
(Byy|dupsDS Ty |By) 20 3T, 17, DS
(Bs|D33 |Ba) w0 _amp, s
(Bs| D 73 |Bar) 0 0 0 0
<Bs‘dab3Dgi>Jb|Bz7> \2/—76 0 —T‘ﬁgn g

TABLE VIII. The matrix elements of the single and double
Wigner D functions for a =4 + i5.
By — Bg ATF S TF AT S A IS ES
<BS\D,,3 |B1o) -\/& 0 _%
(Bs \D J3|BI()> 0 0 0
1 1
<BS‘dbc3D )J.|B1o) V30 0 310
1 1
<BS‘D83 p8 |Blo> 6/30 0 9v10
8) (8 1 1
(Bs| D D| )|BIO> 6v30 0 9V10
1
<Bs\dbc3Dgc oo B1o) % 0 9v30

TABLE IX. The transition matrix elements of the single Wigner
D functions coming from the 27-plet component of the baryon
wave functions for a =4 + i5.

By = By AT 53T AT S A XTS5 ET
<Bz7|D£,82)|310> _ﬁ 0 _#ﬁ
(Bz7|D 2J3|B1o) 0 0 0
(Bz7|damDpan|Bm> _31W 0 _#ﬁ
<BS|D ) |B2) 5 0 ;g
<Bs|Dszs\Bz7> 0 0 0
<BS|dab3D§78a>Jb|Bz7> 5 0 %

TABLE X. The matrix elements of the single and double
Wigner D functions for a = 4 — i5.

By — Bg 05 pEV St ET S AQ 5B
8 1 L
(Bs| DY, | Byo) 35 _3\% V5 &
8 A
(Bs|DE s T3] B1o) 0 0 0 0
8) 45 . 1 __1 L
(Bs |dbc3D(E*)bJC|BIO> 65 30 W V3
8 I N 1
(Bs |D83 S‘Bl ) 95 18v/10 415 0
1 1 1
(Bs| D ~-2\310> 18v5 9v/10 0 2V/30
i i 1
(Bs|dpes DG DL, |Bro) 5715 —18“55 Vs e/

TABLE XI. The transition matrix elements of the single Wigner
D functions coming from the 27-plet component of the baryon
wave functions for a = 4 — i5.

By, — By, 0 p B0 L3 B LA Q- O
(By|DEL | Byo) —927% % ECEECE
(Byy| D3| Byo) 0 0 0 0
(Ba|d 3D, |Bro) _947\/,25 % _% ﬁ
(Bs|DE;|Bay) 55 N T\% 0
(Bs |D"8-8J2\327> 0 0 0 0
(Bsldus DY, J,|Bxy) 53 E W 0
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