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We report the results of a new global QCD analysis, which includes deep-inelastic e=μ scattering data off
proton and deuterium, as well as Drell-Yan lepton pair production in proton-proton and proton-deuterium
collisions and W�=Z boson production data from pp and pp̄ collisions at the LHC and Tevatron. Nuclear
effects in the deuteron are treated in terms of a nuclear convolution approach with bound off-shell nucleons
within a weak binding approximation. The off-shell correction is controlled by a universal function of the
Bjorken variable x, describing the modification of parton distributions in bound nucleons, which is
determined in our analysis along with the parton distribution functions of the proton. A number of
systematic studies are performed to estimate the uncertainties arising from the use of various deuterium
datasets, from the modeling of higher twist contributions to the structure functions, from the treatment of
target mass corrections, as well as from the nuclear corrections in the deuteron. We obtain predictions for
the ratios Fn

2=F
p
2 , and d=u, focusing on the region of large x. We also compare our results with the ones

obtained by other QCD analyses, as well as with the recent data from the MARATHON experiment.

DOI: 10.1103/PhysRevD.105.114037

I. INTRODUCTION

An accurate determination of the parton distribution
functions (PDFs) in the proton and the neutron is of
primary importance for modern high-energy physics, as
PDFs determine the leading contribution to the cross
sections of various high-energy processes. Since PDFs
are not directly observable, they are usually extracted
phenomenologically from global QCD analyses to exper-
imental data at large momentum transfer, including lepton
deep inelastic scattering (DIS), lepton-pair production
(Drell-Yan process), jet production, and W�=Z boson
production in hadron collisions (for a review, see, e.g.,
Ref. [1]). While the abundant data available from a

hydrogen target allow a reliable determination of the
PDF content of the proton, data from various nuclei—
most notably deuterium—are required as effective neutron
targets to constrain the parton content of the neutron.
Furthermore, a combination of hydrogen and deuterium
data has been commonly used to separate the u and d quark
PDFs, in particular, at large values of Bjorken x.1

Precision studies require one to address the effects of
nuclear environment at the parton level. While the nuclear
effects in nuclear PDFs (nPDFs) analyses are usually treated
empirically [4–7], a number of physics mechanisms are
known to affect the PDFs and the structure functions (SFs)
of the bound nucleons (for a review, see, e.g., [8–10]). In the
region of large x, the relevant nuclear effects are related to the
smearing of the cross sections with the nuclear momentum
distribution [11] (Fermi motion), together with the nuclear
binding correction [12]. In addition to these corrections,
which have kinematical origin, nuclear effects related to the
dynamical modification of the internal parton structure have
to be addressed in bound nucleons. In Refs. [13,14], such a
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1For a recent discussion of the impact of deuterium data on
global QCD analyses, see Refs. [2,3].
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modification is related to the off-mass-shell effect, i.e., the
dependence of bound nucleon SFs on its virtual mass squared
p2 ¼ p2

0 − p2, where p0 and p are the nucleon energy and
momentum, respectively. This dependence is treated in
Refs. [13,14] as a perturbative correction in the nucleon
virtuality v ¼ ðp2 −M2Þ=M2, relying on the fact that the
typical nucleonmomentumand energy are small compared to
the nucleon mass M in the nuclear ground state. Within this
weak binding approximation, the corresponding nuclear
correction is controlled by the SFs’ derivative with respect
to p2, which is described in Ref. [14] in terms of a
dimensionless function δfðxÞ. Additional effects related to
the meson-exchange currents and the nuclear shadowing are
relevant at intermediate and small x values. A model
combining all of these effects has been successfully used
to quantitatively explain the observed dependencies on x,
invariant momentum transfer squared Q2, nuclear mass
number A of the nuclear DIS data in a wide range of targets
from 3He to 207Pb [14–16]. The samemodel also demonstrates
an excellent agreement with the magnitude, the x and mass
dependence of the nuclear Drell-Yan (DY) data [17], as well
as with the data on the differential cross sections for W�=Z
boson production in proton-lead collisions at the LHC [18].
The off-shell effect is an important contribution to the

full nuclear correction. The corresponding function δf was
determined for the isoscalar nucleon from an analysis of
nuclear DIS data on the cross-section ratios σA=σd [14].
The function δfðxÞ was also independently extracted
together with the proton PDFs in global QCD analyses
of proton and deuterium DIS data [19,20]. The results of
Ref. [19] on δf are consistent with the previous determi-
nation from nuclei with A ≥ 4 [14]. However, Refs. [20]
and [19] strongly disagree on both the values of the
function δf and on the ratio of the d and u quark PDFs
at large x. These observations motivate the present study, in
which we perform a new global QCD analysis with updated
sets of deuterium DIS data. We discuss a number of
systematic studies aimed at understanding the uncertainties
associated with a number of effects, including the con-
sistency of various deuterium datasets, the treatment of
target mass correction, and the modeling of higher-twist
contributions and of the nuclear corrections in the deu-
terium. We also provide our predictions on the ratios
Fn
2=F

p
2 and d=u and compare them with the ones from

the QCD analyses of Refs. [20–23], as well as with the
recent data from MARATHON experiment [24].
The paper is organized as follows. In Sec. II, we outline

the theory framework used in our analysis of the proton and
deuterium DIS. In Sec. III, we discuss the data samples and
the details of our analysis. In Sec. IV, we summarize our
results, while in Sec. V, we discuss the uncertainties
associated with the use of different deuterium datasets
and with the modeling of the structure functions. In Sec. VI,
we compare our predictions on Fn

2=F
p
2 with MARATHON

data and with the results of other QCD analyses, including

the d=u ratio. In Appendix A, we show the pulls obtained in
our fit from different deuterium datasets. In Appendix B,
we discuss in detail the phase space in the nuclear
convolution equations employed in our analysis.

II. THEORY FRAMEWORK

A. Nucleon structure functions

The inclusive spin-independent electron(muon)-nucleon
inelastic cross section is described by two SFs, FT ¼ 2xF1

and F2, which depend on two independent variables,
the invariant momentum transfer squared Q2 ¼ −q2 and
the dimensionless Bjorken x ¼ Q2=ð2p · qÞ, where p is the
nucleon four-momentum and q is the four-momentum
transfer.
A common framework to describe the DIS is the operator

product expansion (OPE), which introduces the power
series in Q−2 (twist expansion). To the first order, i.e., in
the leading twist (LT), the SFs are fully determined by the
PDFs. Corrections from the higher-twist (HT) quark-gluon
operators should also be supplemented by those arising
from the finite nucleon mass (target mass correction, or
TMC) [25]. We also note that for the sake of computing the
nuclear SFs (see Sec. II B), the nucleon SFs are required in
the off-mass-shell region p2 < M2, whereM is the nucleon
mass. The unpolarized nucleon SFs in the DIS region can
then be written as follows:

Fiðx;Q2; p2Þ ¼ FTMC
i ðx;Q2; p2Þ þHi=Q2; ð1Þ

where i ¼ T; 2 and FTMC
i are the corresponding LT SFs

corrected for the target mass effect, and Hi describe the
dynamical twist-four contribution (for brevity, we suppress
explicit notation to the twists higher than four). In this
study, we consider two different phenomenological HT
models: (1) the additive HT model, in which we assume
Hi ¼ HiðxÞ and (2) the multiplicative HT model [26], in
which Hi is assumed to be proportional to the correspond-
ing LT SF,Hi ¼ FLT

i ðx;Q2ÞhiðxÞ. The HT terms from both
models are addressed in this study.
The LT SFs are computed using the nucleon PDFs and

coefficient functions, which are subject to a power series in
the QCD coupling constant. The neutron LT SFs are
computed in terms of the proton PDFs relying on the
isospin symmetry of u and d quark PDFs. The isospin
relations for the HT terms are not so obvious. By default,
we assume Hp

i ¼ Hn
i .
2 We also consider the relation

hpi ¼ hni with the multiplicative HT model.
To account for the TMC, we follow the Georgi-Politzer

OPE approach [25]. Since the calculation of the nuclear SFs

2We note, however, that a nonzero isovector component
Hp

2 −Hn
2 was obtained in a QCD fit [27], although with rather

large fit uncertainties. The difference Hp
T −Hn

T was consistent
with 0 within uncertainties.
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requires the nucleon SFs in the off-shell mass region, we
analytically continue the equations of Ref. [25] into the off-
shell region by replacing the nucleon mass squaredM2 with
p2. We have

FTMC
T ðx;Q2; p2Þ ¼ x2

ξ2γ
FLT
T ðξ; Q2; p2Þ

þ 2x3p2

Q2γ2

Z
1

ξ

du
u2

FLT
2 ðu;Q2; p2Þ; ð2aÞ

FTMC
2 ðx;Q2; p2Þ ¼ x2

ξ2γ3
FLT
2 ðξ; Q2; p2Þ

þ 6x3p2

Q2γ4

Z
1

ξ

du
u2

FLT
2 ðu;Q2; p2Þ; ð2bÞ

where ξ ¼ 2x=ð1þ γÞ is the Nachtmann variable, and
γ ¼ ð1þ 4x2p2=Q2Þ1=2. Note that in Eq. (2) we drop the
terms of order x4p4=Q4, which produce numerically small
contributions in the considered region. It should be com-
mented that Eqs. (2a) and (2b) lead to a nonzero SFs at
x → 1. However, in practice, this violation of the inelastic
threshold behavior does not affect the DIS region, which is
characterized by high values of the invariant massW of the
produced hadronic states.
In the off-mass-shell region, the SFs explicitly depend on

the nucleon invariant mass squared p2. This dependence
has two different sources: (i) the terms p2=Q2 in Eq. (2),
which lead to power terms at large values of Q2 and
(ii) nonpower terms from the off-shell dependence of
the LT SFs. Following Refs. [13,14], we note that for
computing the nuclear SFs, it would be sufficient to know
the proton and the neutron SFs in the vicinity of the mass
shell p2 ¼ M2. We then treat the nucleon virtuality v ¼
ðp2 −M2Þ=M2 as a small parameter and expand SFs in
series in v. To the leading order in v, we have

FLT
i ðx;Q2; p2Þ ¼ FLT

i ðx;Q2;M2Þ½1þ δfiðx;Q2Þv�; ð3Þ

δfiðx;Q2Þ ¼ M2
∂p2 lnFLT

i ðx;Q2; p2Þ; ð4Þ

where FLT
i on the right-hand side in Eq. (3) are the structure

functions i ¼ T; 2 of the on-mass-shell nucleon, and ∂p2 in
Eq. (4) denotes the partial derivative with respect to p2

taken on the mass shell p2 ¼ M2. According to Eq. (4), the
function δfi describes the relative modification of the
nucleon LT Fi in the vicinity of the mass shell, which is
related to the corresponding PDF modification.
In this study, we assume the function δf to be the same

for FT and F2 motivated by the fact that FT ≈ F2 in the
region of large x. The function δf drives the nuclear
correction associated with the modification of the bound
nucleon in the nuclear environment [14]. Detailed studies
of nuclear DIS, DY production of the lepton pair and W=Z

boson in Refs. [14,16–19] are consistent with no significant
scale and nucleon isospin dependencies of δf. We thus
assume the same δf ¼ δfðxÞ function for the proton and
the neutron.
Note that Eq. (3) holds in the vicinity of the mass

shell where jvj ≪ 1. In computing the nuclear SFs, we
integrate over the bound nucleon momentum as discussed
in Sec. II B. For kinematics reason, p2 < M2 and v < 0 for
bound nucleons. Using the results of Ref. [14], we have
δf ∼ 1 at large x > 0.6. Then the off-shell correction in
Eq. (3) is large and negative for v ∼ −1, and the off-shell
SFs may be negative in this region. Since the values jvj≳ 1
are outside of the region of applicability of the linear
approximation in v, Eq. (3), we consider the following
model in the full region of v:

FLT
i ðx;Q2; p2Þ ¼ FLT

i ðx;Q2;M2Þ exp½δfðxÞv�: ð5Þ

This equation ensures the positivity of SFs in the off-shell
region, and for a small off-shell correction, Eq. (5) is
identical to Eq. (3). In the study of the deuteron SFs, we
consider both Eqs. (3) and (5).

B. Deuteron structure functions

We assume that the nuclear DIS in the region x > 0.1 is
dominated by the incoherent scattering off the bound
protons and neutrons and consider the process in the target
rest frame. The deuteron structure functions can be written
as follows [14,27]:

Fd
i ðx;Q2Þ ¼

Z
d3pjΨdðpÞj2Kij½Fp

j ðx0; Q2; p2Þ

þ Fn
j ðx0; Q2; p2Þ�; ð6Þ

where i; j ¼ T; 2, and we assume a summation over the
repeated subscript j. The integration is performed over the
bound nucleon momentum p, and ΨdðpÞ is the deuteron
wave function in the momentum space, which is normal-
ized as Z

d3pjΨdðpÞj2 ¼ 1: ð7Þ

Because of the energy-momentum conservation, the
four-momentum of the struck proton (neutron) is p ¼
ðMd −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

p
; pÞ, where Md is the deuteron mass, and

M is the mass of residual nucleon [M ¼ Mn for the proton
contribution and M ¼ Mp for the neutron contribution in
Eq. (6)]. We use a coordinate system in which the
momentum transfer q is antiparallel to the z axis, and pz
and p⊥ are the longitudinal and transverse component of
the nucleon momentum, p2 ¼ p2

0 − p2 and x0 ¼Q2=ð2p ·qÞ
are the invariant mass and the Bjorken variable of the
off-shell nucleon, respectively. The kinematic factors Kij

are [14]
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KTT ¼
�
1þ γpz

M

�
; KT2 ¼ 2

x02p2⊥
Q2

; ð8aÞ

K2T ¼ 0; K22¼
�
1þ γpz

M

��
1þx02ð4p2þ6p2⊥Þ

Q2

�
1

γ2
;

ð8bÞ
where γ ¼ ð1þ 4x2M2=Q2Þ1=2. Note that Eq. (6) and (8) are
the result of a series expansion of relativistically covariant
operators in the parameters p=M and ðp0 −MÞ=M to order
p2=M2 (formore detail, see [13,14] andAppendices B andC
of Ref. [28]). The factor 1þ γpz=M in Eq. (8) describes the
change in the virtual photon flux for a bound nucleon with
the momentum p compared to the corresponding flux for the
nucleus at rest. Note also the termKT2 ∼ x2p2⊥=Q2 resulting
from amixing effect between the longitudinal and transverse
structure functions at finite values ofQ2, which is due to the
transverse motion of the bound nucleon.
Assuming no p2 dependence of the nucleon structure

functions, in the limitQ ≫ M, Eq. (6) reduces to the standard
convolution of the nucleon SFs with the nucleon distribution
over the light-cone momentum y ¼ ðp0 þ pzÞ=M in the
deuteron. In the presence of an off-shell p2 dependence, we
have a generalized convolution, which involves the integra-
tion over the light-cone momentum y and the nucleon
virtuality p2 [13]. The phase space at finite Q2 used in
Eq. (6) is discussed in more detail in Appendix B.
In the region x < 0.1, the corrections due to the meson-

exchange currents and the nuclear shadowing, at even smaller
values of x ≪ 0.1, are relevant. In this study, while focusing
on x > 0.1, we treat these effects following Refs. [14,17].

III. OFF-SHELL FUNCTION WITHIN GLOBAL
QCD ANALYSIS

A. Data samples

The present study is an update of our former analysis
[19] based on the data on the DIS of charged leptons off
hydrogen and deuterium combined with the ones onW�=Z
boson production at hadron colliders. The latter samples
allow the separation of the u and d quark distributions in a
wide range of x that, in turn, provides a basis for studying
nuclear effects in the deuteron for the DIS structure
functions. The deuterium datasets employed for this pur-
pose are listed in Table I. They comprise the ones used in
the analysis of Ref. [19] supplemented by additional
datasets including the most recent results on σd=σp by
the MARATHON experiment at Jlab [24]. Due to the
increased energy of the upgraded Jlab beam, the
MARATHON data cover a much wider kinematics as
compared to the earlier JLab BoNuS experiment [29].3

Besides, a dedicated study performed by MARATHON
allowed one to reduce the normalization uncertainty in its
measurements to unprecedented level of 0.55%. This guar-
antees a superior statistical significance of theMARATHON
data over both the original BoNuS sample [29] and the results
of the study [30] based on the BoNuS measurements. The
results on Fd

2=F
N
2 derived in Ref. [30] from the BoNuS data

on Fn
2=F

d
2 using a parametrization of Fp

2 were employed in
our earlier study [19]. However, since they are sensitive to
model assumptions about the Fp

2 shape, in the present study,
we select the original BoNuS data in order to reduce the
model dependence of the analysis. To provide a complete
representation of the relevant data, we also add to the fit the
DIS data collected in the Jlab-E00-116 [31] and DESY-
HERMES [32] experiments. Finally, we replace the deuteron
NMC data [33] used in Ref. [19] by more recent mea-
surements [34] performed with a higher luminosity. In
Fig. 1, we illustrate the accuracy of various datasets by
plotting the ratio Fd

2=F
p
2 in the range 0.1 < x < 0.5 and for

Q2 ¼ 14x ðGeV2Þ � 10% from various measurements
[24,32,34,35].4 This selection of the Q2 band is motivated
by kinematics of the MARATHON experiment [24].
Whenever possible,we select the data on the cross sections

and their ratios rather than on the structure functionsF2. This
makes the modeling more involved, however, allows for a
consistent account of the contribution from the structure
function FL since the various experiments do not follow a
common convention on the shape of FL when extracting F2

from the cross-section measurements. As an exception, the
BoNuS [29] and the NMC [34] data are taken in the form of
the ratios Fn

2=F
d
2 and Fd

2=F
p
2 , respectively, as the cross-

section results have not been released by these experiments.
Such an inconsistency can be, however, justified since theFL
contribution to great extent cancels out in the ratios. To
ensure a perturbative QCD description of the leading-twist
terms in the DIS structure functions, we impose a general
cut of Q2 > 2.5 GeV2 and W2 > 3 GeV2. For the BoNuS
data [30] used in our earlier study [19], a relaxed cut of
Q2 > 1.5 GeV2 was selected in order to increase the
statistical significance of this sample. In the present analysis,
which includes the precisionMARATHONdata, this exemp-
tion is not applied, and the BoNuS data [29] are considered
within a common framework.
Information about the point-to-point correlation of sys-

tematic errors in the data is taken into account in the fit
whenever available. In particular, a detailed breakdownof the
systematic uncertainties over independent sources is pro-
vided for the SLAC, CERN-BCDMS, CERN-NMC, and
JLab-BoNuS experiments. For the Jlab-E00-116 and

3Note that while the MARATHON nuclear data covers the
region 0.19 < x < 0.85, the measurement of the ratio σd=σp is
available for a limited region 0.19 < x < 0.4.

4We note that the reanalyzed SLAC data [35] given in Fig. 1
are somewhat different from the original data [36] due to updated
radiative corrections and x-rebinning [37]. The normalization of
the original SLAC data is more consistent with the MARATHON
Fd
2=F

p
2 data, as shown in Ref. [24].
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MARATHON datasets, only the overall systematic uncer-
tainty is published, and in the present fit, it is combined in
quadrature with the statistical (uncorrelated) uncertainties.
The systematic uncertainties of DESY-HERMES measure-
ments are separated by sources; however, no information
about their point-to-point correlation was provided. For this
reason, we select for our fit the DESY-HERMES data on the
ratio σd=σp, where the correlated uncertainties partially
cancel. The remaining systematic uncertainty, except of
the normalization one, are combined with the statistical
uncertainty, in line with the approximation adopted in the
DESY-HERMES analysis of their own data [32].

The normalization uncertainty, a peculiar case of sys-
tematic errors, often dominates the uncertainty of the
datasets considered. Furthermore, the normalization factors
for the available SLAC-E49a, E49b, E87, E89b, E139, and
CERN-NMC datasets were estimated by comparing them
to the measurements of the SLAC-E140 experiment with
the normalization uncertainty of 1.7%. Following a similar
approach, we release the normalization factors of those data
and determine such factors from a fit simultaneously with
other parameters. Furthermore, this procedure is also
applied to the CERN-BCDMS and Jlab-E00-116 data,
allowing for improvement of their instrumentally

TABLE I. The list of DIS data on the deuterium target employed in the present analysis alongside with the values of χ2=NDP and
normalization factors obtained in the fit in comparison with the experimentally determined normalization errors.

Facility Experiment Reference Beam
Beam energy

(GeV) Observable
Normalization

factor
Normalization
error(s) (%) χ2

NDP

SLAC E49a [36,38] e 11 ÷ 19.5 d2σd
dE0dΩ

0.988(10) 2.1a 25=59

” E49b ” ” 4.5 ÷ 18 ” 0.996(10) ” 187=145
” E87 ” ” 8.7 ÷ 20 ” 1.000(9) ” 114=109
” E89b [38,39] ” 10.4 ÷ 19.5 ” 0.987(9) ” 52=72
” E139 [38,40] ” 8 ÷ 24.5 ” 1.002(9) ” 8=17
” E140 [38,41] ” 3.7 ÷ 19.5 ” 1 1.7 25=26
CERN BCDMS [42] μ 100 ÷ 280 d2σd

dxdQ2
0.989(7) 3 273=254

” NMC [34] ” 90 ÷ 280 Fd
2=F

p
2

1 <0.15 155=165
DESY HERMES [32] e 27.6 σd=σp 1 1.4 21=30
JLab E00-116 [31] ” 5.5 d2σd

dE0dΩ
0.981(10) 1.75 208=136

” BoNuS [29] ” 4.2, 5.2 Fn
2=F

d
2

0.97(9) 7 ÷ 10 90=63
” MARATHON [24] ” 10.6 σd=σp 1 0.55 8=7
Total 1166=1083

aA general normalization uncertainty for the SLAC experiments derived from re-analysis of those data. The contributions of marginal
size also apply to particular datasets [35].
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FIG. 1. Data on Fd
2=F

p
2 (or σ

d=σp) for 0.1 < x < 0.5 from various experiments. Data legend is shown in the plot. The data points were
selected within interval Q2 ¼ 14x ðGeV2Þ � 10% to facilitate the comparison with Ref. [24]. The inner error bar shows the statistical
and systematic error taken in quadrature, while the outer error bar in addition includes the normalization error listed in Table I.
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determined normalizations. For the CERN-NMC and
DESY-HERMES data, which were taken in the form of
ratios, the impact of the normalization uncertainty is greatly
reduced; therefore, their normalizations were kept fixed. A
similar treatment was applied to the MARATHON data,
which have a very accurate luminosity monitoring and for
which we also avoid normalization tuning. This allows us
to use those data for the calibration of the other datasets, in
addition to the SLAC-E140 data set.

B. Analysis setup

The leading-twist PDFs, which are necessary for comput-
ing the nucleonSFs,Eq. (1), are parametrizedusing the shape
employed in the ABMP16 fit [43] and in our earlier analysis
[19]. The DIS SFs are treated as outlined in Sec. II A. The
functions HTðxÞ and H2ðxÞ, which describe the HT con-
tributions, are treated independently and are parametrized in
a model-independent form of spline polynomials interpolat-
ing between the points x ¼ ð0; 0.1; 0.3; 0.5; 0.7; 0.9; 1Þwith
the values (HT coefficients) determined on this grid. We
assume the HT terms to be independent of the nucleon
isospin state. TheQ2 dependence of the LT component of the
nucleon SFs was computed taking into account NNLO
perturbative QCD (pQCD) corrections, while for the HT
coefficients, possible pQCD effects have been neglected.
The nuclear effects in the deuteron are accounted by

Eq. (6) with the off-shell correction governed by Eq. (4).
The deuteron AV18 wave function is used [44,45]. The
function δfðxÞ is determined along with the proton PDFs
and HTs in a fit to the deuterium data listed in Table I and
the proton data from Table II in Ref. [19]. This function is
parametrized as a polynomial:

δfðxÞ ¼ c0 þ c1xþ c2x2: ð9Þ

Note that Eq. (6) describes the nuclear corrections driven
by the momentum distribution, the nuclear binding, and the
off-shell effect, which dominate in the present analysis. We
also verified [19] that the other nuclear effects, such as the
meson-exchange currents and the nuclear shadowing, are
within experimental uncertainties, and for this reason, they
are not considered in the present analysis.

IV. RESULTS

We simultaneously fit the parameters of the off-shell
function δf with those of the PDFs and HTs in order to
provide a consistent separation of thevarious contributions to
the SFs by exploiting the broad x and Q2 coverage of
available data. The resulting data normalization factors and
χ2 values corresponding to various deuterium datasets are
listed in Table I, and the parameters of the δfðxÞ function are
c0 ¼−0.16�0.11, c1¼−2.04�0.73, and c2¼4.86�1.13.
This function is shown in Fig. 2, together with the results of
other determinations of this quantity from Refs. [14,19,20].

For all data points included in our fit, we have χ2=d:o:f: ¼
4842=4044. The present results are in a good agreement with
both our former global QCD analysis [19] and the analysis of
Ref. [14], inwhich the function δfðxÞwas determined from a
global fit to the data on the ratios σA=σd for the DIS cross
sections off nuclear targets with the mass number 4 ≤ A ≤
208 using the proton and neutron SFs of Ref. [46]. However,
our results are in a strong disagreement with those of
Ref. [20]. Belowwe trace possible reasons of the discrepancy
with Ref. [20] by verifying the differences in the exper-
imental datasets and in the underlying model.
In Fig. 3, we compare our results with the recent

measurement of σd=σp by the MARATHON experiment
[24]. Also shown are the predictions from the CT18 [21],
MSHT20 [22], NNPDF4.0 [23], and CJ15 [20] QCD
analyses. Note that the CJ15 analysis was performed to
the NLO approximation, while all others were done to the
NNLO one. The CT18, MSHT20, and NNPDF4.0 structure
functions are computed in the three-flavor scheme using
the code OPENQCDRAD (version 2.1) [47] combined with
the LHAPDF (version 6) PDF grids [48,49] CT18NNLO,
MSHT20nnlo_nf3, and NNPDF40_nnlo_pch_as_01180_nf_3, respec-
tively. We use Fd

2 ¼ Fp
2 þ Fn

2 for CT18 and NNPDF4.0
in Fig. 3, as those analyses do not account for the deu-
teron correction. Both MSHT20 and CJ15 account for the
deuteron effect in their PDF fits. ForMSHT20,we takeFd

2 ¼
RdðFp

2 þ Fn
2Þ with the correction factor Rd obtained in the

NNLO global QCD fit of Ref. [22]. For CJ15, we use
their results obtained from Ref. [24]. All the predictions are
in agreement with MARATHON σd=σp data within

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
x

δf
(x

)

AKP

present analysis

KP

CJ15

-0.5-0.5

00

0.50.5

11

1.51.5

22

2.52.5

FIG. 2. The 1σ uncertainty band for the off-shell function δf as
a function of x obtained in the present analysis (shaded cyan area)
in comparison with the results of the earlier AKP [19] (right-tilted
hash area), KP [14] (left-tilted hash area), and CJ15 [20] (dash-
dotted curve) fits.
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uncertainties in the region about x ¼ 0.3 and somewhat
overshoot the data for x values about 0.2 and 0.4.5

The quality of our fit for the newly added BoNuS data on
Fn
2=F

d
2 [29], the cross-section measurements from JLab-

E00-116 experiment [31], NMC data on Fd
2=F

p
2 [34], and

the HERMES data on σd=σp [32] are illustrated in detail in
Figs. 8–11 in Appendix A. In general, we observe a good
agreement of the fit and the data with no regular and/or
statistically significant trend in the pulls.

V. SYSTEMATIC STUDIES

We verify the stability of our results on δf by performing
a number of fits with a modified ansatz. Some of these
modifications, like the parametrization of higher-twist
terms (additive vs multiplicative form) and the off-shell
correction [a linear dependence on v in Eq. (3) vs
exponentiated form of Eq. (5)], reflect uncertainties in
the theory framework of the fit. The other modifications are
motivated by other studies in the field and aimed to
facilitate a comparison with those studies. The impact of
the modifications considered is summarized in Fig. 4, and
their detailed description is given below in this section.

Note that for all considered modifications of the fit, the data
normalization factors are kept at the values of Table I, thus
allowing us to avoid the interplay with the data shift.

A. NMC data choice

Our fit includes the NMC data on the ratio Fd
2=F

p
2 [34].

These data are derived from the cross-section data assum-
ing the same ratio R ¼ σL=σT for the proton and deuteron,
which was verified experimentally by the NMC with a
good accuracy. Alternatively, in our former analysis [19],
the cross-section data for the deuterium target [33] have
been employed instead. In order to verify the impact of the
particular NMC data choice, we perform a variant of our
nominal fit with the NMC data on Fd

2=F
p
2 replaced with the

cross-section data on the deuterium target [33]. This fit
results in χ2=d:o:f: ¼ 4693=3988. As can be seen in Fig. 4,
the difference in the function δf obtained in these two
versions of the fit is significant only for x≲ 0.4. In this
region, the uncertainty in the value of δf extracted from the
deuterium cross-section data is somewhat larger due to less
statistical significance of this sample. Meanwhile, the error
bands for the two determinations almost overlap with each
other and with the determination based on the heavy-
nuclear data [14] (see also Fig. 2). Note also that δfðxÞ
obtained in the fit with the NMC deuterium cross-section
data is almost identical to our earlier result [19].

B. MARATHON data normalization

The normalization of the ratio σd=σp in theMARATHON
experiment is determined experimentally with a very high
accuracy of 0.55%. Nonetheless, the MARATHON data go
somewhat lower than the other samples used in our analysis,
cf. Fig. 1. To quantify this tension, we perform a variant of fit
with the normalization of the MARATHON σd=σp data
released and adjusted simultaneously with other fit param-
eters. The normalization factor of 1.014(4) obtained in this
way is at about 2σ off the nominal value 1.0000(55).
However, this renormalization of the MARATHON
σd=σp ratio has a negligible impact on the value of δf
extracted from the data, and the corresponding change in its
value is well within 1σ uncertainty band. For this fit, we
have χ2=d:o:f: ¼ 4834=4044.

C. Higher-twist correction

In our analysis, we compute the structure functions
following Eq. (1) with an additive model of the higher-
twist (HT) terms motivated by the OPE. However, a
multiplicative HT model is often used in the literature
(see, e.g., Refs. [20,26,51]):

Fiðx;Q2; p2Þ ¼ FTMC
i ðx;Q2; p2Þ þ FLT

i ðx;Q2ÞhiðxÞ=Q2;

ð10Þ

MARATHON

1.55

1.6

1.65

1.7

1.75

0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375
x

σd  / 
σp

present analysis

CJ15(NLO)

CT18

NNPDF4.0

MSHT20

FIG. 3. Data on σd=σp from MARATHON measurement [24]
compared with corresponding 1σ band of present analysis (left-
tilted area). Also shown are the predictions of various global QCD
analyses: CT18 [21] (dots), MSHT20 [22] (connected dots),
NNPDF4.0 [23] (short dashes), and CJ15 [20] (long dashes).

5Note that in Fig. 3 our predictions are for the ratio of cross
sections σd=σp, while for the other groups, we compute the ratio
Fd
2=F

p
2 . The relation σd=σp ¼ Fd

2=F
p
2 is justified by observation

that the deuteron, and the nucleon have equal R ¼ σL=σT within
experimental uncertainties [34].
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where i ¼ 2; T. To compare the additive and multiplicative
HT models, one should confront the coefficients Hi in
Eq. (1) with the corresponding product FLT

i hi in Eq. (10).
These terms have a different Q2 dependence driven by
assumptions about anomalous dimensions of the HT
operators: For the additive form, they are neglected, and
for the multiplicative one, they are similar to the leading-
twist case. This difference is important at large x, where the
leading-twist evolution and the TMC are most significant
(for illustration, see Fig. 5). The same trend appears in the
determination of the off-shell function, which is sensitive to
the assumed HT model at x≳ 0.5, although the shape of
δfðxÞ (left panel of Fig. 5) does not change essentially
under the HT model variation. For the fit with multiplica-
tive HT model, χ2=d:o:f: ¼ 4798=4044.

D. Target mass effect

The target mass effects are taken into account in our
analysis using the Georgi-Politzer formalism in the off-
shell region [see Eq. (2)]. In other global QCD fits, the
TMC is either neglected or treated differently, assuming
p2 ¼ M2. For example, in the CJ15 analysis [20,52], the
TMC is accounted using an approximation to Eq. (2) [see
Eq. (61) in Ref. [50]]:

FTMC
2 ðx;Q2Þ≈ ð1þ γÞ2

4γ3
FLT
2 ðξ;Q2Þ

�
1þ3ðγ−1Þ

γ
ð1−ξÞ2

�
:

ð11Þ

To verify the sensitivity of our results to a particular TMC
treatment, we perform a fit using Eq. (11) instead of Eq. (2).
A similar approximation for FTMC

T is not available in the
formalism of Ref. [50]. For this reason, in our modified fit,
we employ data on F2, instead of cross-section data, for the
SLAC, CERN-BCDMS, CERN-NMC, and JLab-E00-116
experiments. The DESY-HERMES and MARATHON data
on the cross-section ratio are treated using the relation
σd=σp ≈ Fd

2=F
p
2 since R ¼ σL=σT is similar for proton and

deuteron at moderate x [34]. Finally, for the HERA cross-
section data, we take FT according to Eq. (2a). Such an
approach does not cause a serious inconsistency due to the
HERA data being localized at small x, where the TMC is
generally small. For this variant of the fit, we have
χ2=d:o:f: ¼ 4831=4050. The best fit result on δfðxÞ is
shown by the dashed-dotted curve in Fig. 4, which is within
the 1σ band of our nominal fit for almost all x values but a
region around x ¼ 0.4. In this region, Eq. (11) gives a rather
poor approximation on Eq. (2b), as illustrated in Fig. 5 (right
panel). The maximal difference between the two implemen-
tations is observed in the range 0.2 ≤ x ≤ 0.5. Note that in
the same region,we observe opposite deviations between the
HT contributions (left panel of Fig. 5) obtained by the CJ15
analysis and by our fit using the same multiplicative HT
form and the TMC from Eq. (2).

E. Exponential model of off-shell correction

In our present study, we compute the off-shell correction
using Eq. (3). As noted in Sec. II A, at high nucleon

0.2 0.4 0.6 0.8
x

δf
(x

)

-0.5-0.5

00

0.50.5

11

1.51.5

22

2.52.5

nominal fit

multiplicative HTs

empirical TMC, data on F2

exponentiated off-shellness

0.2 0.4 0.6 0.8
x

nominal fit

NMC data on cross section

MARATHON data norm released

FIG. 4. The 1σ uncertainty band on δf from our nominal fit same as in Fig. 2 (shaded cyan area) compared with the results of a
modified fit framework. Left panel: higher twists (HTs) parametrized in a multiplicative ansatz by Eq. (10) (dashed curve); using
approximate TMC scheme by Eq. (11) (see Eq. (61) of Ref. [50]) and the data on F2 (dash-dotted curve); exponential form of the off-
shell correction by Eq. (5) (dotted curve). Right panel: using NMC cross-section data [33] instead of NMC Fd

2=F
p
2 data [34] in the

nominal fit (right-tilted hash area); released normalization of MARATHON σd=σp data (left-tilted hash area).
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momentum jpj≳M in the nuclear convolution Eq. (6), the
off-shell structure function from Eq. (3) may be negative,
thus signaling a violation of the linear approximation in v.
To verify the relevance of Eq. (3), we performed a fit using
the exponential model of off-shell correction from Eq. (5),
which gives a positive SF at any value of v. The resulting
function δfðxÞ, shown in Fig. 4, is identical to our nominal
fit result within the fit uncertainties and χ2=d:o:f: ¼
4847=4044 for this variant of the fit.

VI. DISCUSSION

In Sec. IV and V, we discussed determination of the
quantity δfðxÞ from a global QCD analysis of the most
recent DIS data off hydrogen and deuterium combined with
the ones onW- and Z-boson production at hadron colliders.
We reiterate that δfðxÞ describes the modification of the
nucleon PDFs in the off-shell region for bound nucleons
and, as such, it is expected to be a universal quantity
independent of the nucleus considered. This quantity has a
considerable impact on the nuclear corrections obtained
within the nuclear convolution approach and is required to
describe available nuclear DIS [14,16] and Drell-Yan data
[17,18]. The results from our current analysis are in good
agreement with our previous analysis [19], as well as with
the study of nuclear ratios of DIS cross sections for nuclear
targets with nuclear number A ≥ 3 [14,16] (Fig. 2).
However, our results disagree with the ones of Ref. [20].
In our previous analysis [19], we evaluated the uncertain-

ties associated with the modeling of the deuteron wave

function and with the use of different datasets. In Sec. V,
we performed additional systematic studies on both the input
ansatz and the datasets in order to verify our results and to
further investigate the observed discrepancies with the analy-
sis of Ref. [20]. In all cases, our results on δf are stable against
the modifications of the fit considered, and the corresponding
variations are generally consistent with the quoted uncertain-
ties. We find that while δf has some sensitivity to the
implementation of the HT corrections (i.e., additive vs
multiplicative) at large Bjorken x, its shape is essentially
unchanged (Fig. 4). In general, the systematic uncertainties
related to the use of different deuterium datasets, in particular
NMC cross-section data vs NMC Fd

2=F
p
2 ones, are compa-

rable to the ones related to the input model assumptions.
We further verify our results by comparing our predictions

on the ratioRnp ¼ Fn
2=F

p
2 with the recentMARATHONdata

[24], whichwere not included in our fits. The calculations are
performed for the MARATHON kinematics, which is
roughly consistent with Q2 ¼ 14x ðGeV2Þ, and are shown
inFig. 6.Our independent predictions forRnp are in excellent
agreement with the MARATHON measurement over the
entire x range available.
In Fig. 6 (left panel), we show the predictions on Rnp

obtained from the QCD analyses CJ15, MSHT20,
NNPDF4.0, CT18, and JAM21. The structure functions
are computed as described in Sec. IV. The calculations
include the target mass corrections of Ref. [25]. The CJ15
prediction is obtained from Fig. 3 of Ref. [24]. At large
Bjorken x (x > 0.6), significant differences are observed.

FIG. 5. Left panel: The 1σ bands of twist-four correction to the proton F2 using the additive HT model [Eq. (1), gray band] and
multiplicative HT model [Eq. (10)]. The multiplicative HT is shown for Q2 ¼ 5 (right-tilted band) and 20 GeV2 (left-tilted band) in
order to illustrate their residual Q2 dependence. Also shown are the corresponding CJ best fit results [20] (dashed and dashed-dotted
curves). Right panel: Target mass correction for the proton F2 in terms of Q2½FTMC

2 ðx;Q2Þ − FLT
2 ðx;Q2Þ� suitable for comparison with

HT in the left panel. Georgi-Politzer TMC [25] is shown forQ2 ¼ 5 and 20 GeV2 (solid and long-dashed curves). The short-dashed and
dotted lines show an empirical TMC by Eq. (11), which was used in analysis [20].
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While the predictions from CJ15, MSHT20, and
NNPDF4.0 are consistent with each other, they differ
substantially from CT18 and our results. Note that different
assumptions on the HT contributions are used for the
various calculations: additive HT for our results, multipli-
cative HT for CJ15, and no HT (only LT term) for the
others. To verify the impact of the d-quark PDF on such
differences, we compare the corresponding predictions for
the Rdu ¼ d=u ratio for the MARATHON kinematics using
the PDFs from the LHAPDF library [49].6 Figure 7 shows our
1σ uncertainty band together with the central values
obtained for the other analyses. The uncertainties on these
latter are relatively large for x > 0.6 due to the use of tight
W cuts, which effectively exclude high-x DIS data from the
QCD analysis.7 Figure 6 indicates that the CJ15-,
MSHT20-, and NNPDF4.0-based predictions are in clear
disagreement with the MARATHON Rnp data.
The effect of the variations of the model assumptions

discussed in Sec. V on our predictions for Rnp is also
illustrated in Fig. 6 (right panel). Although in most cases,
the results are consistent with the nominal one within the

quoted uncertainties, a significant deviation is apparent for
the variant with multiplicative HT contributions from
Eq. (10). In this latter case, our predictions for Rnp appear
to be closer to the CJ15-, MSHT20-, and NNPDF4.0-based
calculations. However, the corresponding Rdu ratio shown
in Fig. 7 (right panel) is consistent with our nominal fit.
These observations indicate that the MARATHON data are
sensitive to the HT contributions in the region x > 0.6.
The comparison with the CT18-based predictions is

instructive, as they provide a good LT description of the
MARATHON data on Rnp (Fig. 6) without any HT contri-
butions. This agreement is explained by amuch larger value of
theRdu ratio at x > 0.6 compared to the other QCD analyses,
as illustrated in Fig. 7 (left panel).8 By contrast, we obtain a
good description ofMARATHON data onRnp withRdu → 0

as x → 1 and a sizable HT contribution, which is maximal at
x ∼ 0.7 (Fig. 5). In general, W� boson production and the
corresponding lepton asymmetries fromD0 andLHCb data at
high rapidity could help to clarify the differences observed on
the d-quark distribution at large Bjorken x [53,54]. However,
the calculation of the cross section forW-boson production in
the NNLOpQCD approximation suffers from uncertainties in
the available numerical codes [55].
As discussed in Sec. II A,we assume isoscalarHT terms in

the additive HT model (Hp ¼ Hn). We also assume

FIG. 6. Data from the MARATHON measurement of Fn
2=F

p
2 [24] compared with the predictions of the present analysis. In the left

panel, shown are the predictions from recent PDF analyses: CT18 [21] (dash-dotted line), MSHT20 [22] (dotted line), NNPDF4.0 [23]
(short dashes), CJ15 [20] (long dashes), and JAM21 [51] (dash-double-dot). In the right panel, shown are our predictions based on
modified fit results discussed in Sec. V.

6As noted in Ref. [2], the nuclear correction at large x also
affects the valence d quark PDF at small values of x ≈ 0.03
because of fermion number conservation. While this effect is
relevant for the electroweak studies at LHC, we leave its analysis
for future, as in the present work, we focus on the region relevant
for the MARATHON measurement.

7As an illustration, the CT18 uncertainty on Rdu is about 100%
as can be seen in Fig. 9 of Ref. [21].

8We note that the CT18 analysis utilizes neutrino data from
heavy nuclear targets. The value of Rdu is significantly reduced at
large x if neutrino data are removed from the analysis [2].
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hp ¼ hn for the multiplicative HT model. However, in the
latter case, the overall HT correction is different for protons
and neutrons since h is multiplied by the corresponding LT
structure functions. Note that for the multiplicative HT
model, the contribution from h cancels out in the ratio
Rnp, which has a similar behavior as the corresponding LT
approximation. Conversely, in the case of the additive HT
model used in our nominal fit the ratio, Rnp receives a finite
HT correction. The MARATHON Rnp data seem to prefer a
common additive HT contribution (Fig. 6) for both the
neutron and the proton. Although the disagreement observed
for x > 0.6with themultiplicativeHT formmaybemitigated
by the introduction of an explicit isospin dependence in the h
terms, such an effect could result in observable deviations for
other DIS data sensitive to isospin effects.
A recent paper [51] reports the results of a global QCD

analysis (JAM21) including MARATHON data on the
cross-section ratios σd=σp and σ3H=σ3He for the three-body
nuclei, as well as the previous measurement of σ3He=σd

from E03-103 at JLab [56]. The study includes multipli-
cative HT corrections and a calculation of nuclear effects
based on the convolution approach supplemented by off-
shell corrections. However, the treatment of these latter
corrections is rather different with respect to our imple-
mentation. In the JAM21 analysis, the off-shell correction
depends on both the specific nucleus considered and on the
isospin of the target nucleon (different for protons and
neutrons), resulting in multiple functions that are extracted
from data. In particular, the need of an explicit isovector
contribution in the off-shell functions is advocated to

describe the MARATHON data. Our analysis indicates
that this result may be affected by the assumption of
multiplicative HT terms. The result of the JAM21 fit on Rnp

is shown in the left panel of Fig. 6 and appears to be in
disagreement with the MARATHON Fn

2=F
p
2 data [24].

The determination of δf described in this paper is based on
deuterium DIS data and is therefore only sensitive to the
isoscalar combination Fp

2 þ Fn
2 . Our results are in a good

agreement with the study of the ratios of nuclear DIS cross
sections σA=σd with nuclear number A ≥ 3, in which the
nuclear EMC effect was successfully described in terms of a
nuclear convolution approach with a universal off-shell
function δfðxÞ independent of the nucleus. Although the
model [14] couldnaturally incorporate an isospin dependence
into the off-shell correction, the good agreement with data on
nonisoscalar nuclei obtainedusing the sameoff-shell function
δfðxÞ for the proton and neutron [14,16] seems to indicate
that potential isospin dependence of δf is small. Dedicated
studies of nuclear effects usingDISdata frommirror nuclei 3H
and 3He [24] andupcomingDISdata on proton anddeuterium
from JLab12 [57] could provide new insights on the origin of
modification of parton structure in bound nucleons, as well as
improved constraints on nucleon d-quark distribution at large
x and on the isospin dependence of HT corrections. A more
comprehensive study of these effects would require future
data from high-energy processes, which can provide a flavor
selection like the hadronic Drell-Yan reaction or DIS using
both the electron and (anti)neutrino charged-current (CC)
process. To this end, the availability of precision measure-
ments at future electron-ion collider [58] and of both neutrino

FIG. 7. The 1σ band of the PDF ratio d=u vs x computed at variable scale μ2 ¼ 14x ðGeV2Þ (left-tilted area). Also shown are the results
from PDF analyses, same as in Fig. 6 (left panel). The right-tilted (yellow) area shows the nucleon resonance region ofW ≲ 2 GeV. All
shown analyses but Ref. [20] are to NNLO pQCD order. Right panel shows our results from modified fits, same notations as in Fig. 6.
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and antineutrino CC interactions off hydrogen and various
nuclear targets [59,60] at the long-baseline neutrino facility
could provide valuable insights.
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APPENDIX A: COMPARISONS OF THE FIT RESULTS WITH DATA
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FIG. 8. The pulls of the present analysis for the BoNuS data on the ratio Fn
2=F

d
2 [29] vs W2 displayed in the panels of Q2 bins. The

inner error bars reflect the statistical and uncorrelated systematic uncertainties of data, while the outer bars are the total experimental
error. The shaded region shows �1σ uncertainty of the fit.
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panels correspond to the bins of the electron scattering angle θ. Notations are similar to those in Fig. 8.
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APPENDIX B: PHASE SPACE INTEGRATION
IN THE NUCLEAR CONVOLUTION

Here, we discuss in more detail the integration in
Eq. (6) for general kinematics of x and Q2. Recall that
the integration region is constrained by the condition,

W2 ≥ W2
th; ðB1Þ

where W2 ¼ ðpþ qÞ2 and p is the four-momentum of the
bound nucleon, and Wth is the threshold mass. The pion
production threshold corresponds to Wth ¼ M þmπ, and

by setting Wth ¼ M, we also include the elastic channel.
Because of the energy-momentum conservation,
p ¼ pd − pS, where pd is the deuteron four-momentum,
and pS ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

S þ p2
p

;−pÞ, the four-momentum of the
spectator system with the mass mS.

9 In Appendix A of
Ref. [14], the nuclear convolution integral with the con-
straint (B1) was considered for nonrelativistic spectator
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FIG. 11. The pulls of the DESY-HERMES data [32] on σd=σp vs Q2. The panels correspond to the bins of x. Notations are similar to
those in Fig. 10.

9For scattering off the deuteron, mS ¼ M. In case of scattering
off a nucleus of A nucleons,mS is the mass of the residual nucleus
of A − 1 nucleons.
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assuming
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

S þ p2
p

¼ mS þ p2=ð2mSÞ. This approxima-
tion makes sense as the deuteron is a weakly bound system,
and most of the momentum distribution is in the non-
relativistic region. However, the high-momentum part with
jpj of order of a few hundred MeV requires a relativistic
analysis. Here, we discuss the fully relativistic case of
spectator kinematics that would allow us to better describe
the contribution from the high-momentum region of the
spectator.
In terms of the four-vectors pd, q, and pS, we can write

Eq. (B1) as follows:

ðpd þ qÞ2 þm2
S − 2ðpd þ qÞ · pS ≥ W2

th: ðB2Þ

In order to facilitate the discussion of Eq. (B2), we use the
following notations:

S ¼ ðpd þ qÞ2 ¼ M2
d þQ2ð1=xd − 1Þ; ðB3aÞ

E ¼ Md þ q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sþ q2

q
; ðB3bÞ

α ¼ ðSþm2
S −W2

thÞ=ð2EmSÞ; ðB3cÞ

β ¼ jqj=E; ðB3dÞ

where S and E are, respectively, the invariant mass squared
and the energy of the virtual photon–deuteron system, and
xd ¼ Q2=ð2pd · qÞ is the natural Bjorken variable for the
deuteron. As it follows from the definitions in Eq. (B3),
α > 0, and 0 < β < 1 at any finite Q2 value. In the limit
Q2 → ∞, we have β ¼ 1 and α ¼ ð1 − xdÞMd=mS. Using
Eq. (B3), we can write Eq. (B2) as follows:

αmS −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

S þ p2
q

þ βpz ≥ 0: ðB4Þ

For completeness, we also give here Eq. (B4) for non-
relativistic spectator kinematics,

2ðα − 1Þm2
S − p2 þ 2βmSpz ≥ 0: ðB5Þ

Below we discuss the solution to Eqs. (B4) and (B5) in
terms of both the spherical coordinates and the ðpz; p⊥Þ
basis for the momentum p.

1. Convolution integral using spherical coordinates

We consider Eqs. (B4) and (B5) in spherical coordinates,
in which pz ¼ jpj cos θ with θ the zenith angle. Both
Eqs. (B4) and (B5) have two nodes, for which we will
use the notation p�ðcos θÞ. For Eq. (B4), we have

p�ðcos θÞ ¼ mS
αβ cos θ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 cos2 θ þ α2 − 1

p
1 − β2 cos2 θ

; ðB6Þ

while for Eq. (B5), we have

p�ðcos θÞ ¼ mSðβ cos θ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 cos2 θ þ 2ðα − 1Þ

q
Þ: ðB7Þ

In solving the inequalities (B4) and (B5), it is convenient to
consider the cases α ≤ 1 and α > 1. As a result, the solution
involves two different regions:

�−1 ≤ cos θ ≤ 1

0 ≤ jpj ≤ pþðcos θÞ
; for α > 1; ðB8Þ

and

�
c≤ cosθ≤ 1

p−ðcosθÞ≤ jpj≤pþðcosθÞ
; for α0 ≤ α≤ 1: ðB9Þ

The parameters α0 and c are different for Eqs. (B4) and (B5).
For relativistic kinematics c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
=β andp�ðcos θÞ are

given by Eq. (B6), while for the nonrelativistic spectator,
c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 − αÞp
=β andp�ðcos θÞ are given by Eq. (B7). The

minimumvalue ofα in Eq. (B9) is derived from the condition
c ¼ 1. We have α0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
and α0 ¼ 1 − 1

2
β2 for

Eqs. (B4) and (B5), respectively.
Also, the condition c ¼ 1 determines the maximum

allowed value of xd for given Q2, which is consistent with
Eq. (B1). For Q2 → ∞, we have xmax

d ¼ 1 and xmax
d ¼

1 −M=ð2MdÞ ≈ 3=4 for the relativistic and nonrelativistic
spectator kinematics, respectively. For finite values of Q2,
we have in case of Eq. (B4),

xmax
d ¼ ð1þ ððM þWthÞ2 −M2

dÞ=Q2Þ−1
≈ ð1þ 4mπM=Q2Þ−1: ðB10Þ

We use Eqs. (B8) and (B9) to cast the momentum
integral in Eq. (6) as follows:

Z
d3pjΨdðpÞj2θðW2−W2

thÞ

¼
8<
:

1
2

R
1
−1dcosθ

R pþðcosθÞ
0 dpp2ðψ2

0ðpÞþψ2
2ðpÞÞ; for α>1;

1
2

R
1
c dcosθ

R pþðcosθÞ
p−ðcosθÞ dpp

2ðψ2
0ðpÞþψ2

2ðpÞÞ; for α≤1;

ðB11Þ

where p ¼ jpj, and ψ0 and ψ2 are the deuteron orbital
momentumwave functions for l ¼ 0 and l ¼ 2, respectively:

jΨdðpÞj2 ¼ ðψ2
0ðpÞ þ ψ2

2ðpÞÞ=ð4πÞ: ðB12Þ

Following Eq. (7), the functionsψ0 and ψ2 are normalized as
follows:
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Z
∞

0

dpp2ðψ2
0 þ ψ2

2Þ ¼ 1: ðB13Þ

Note that in numerical applications, we apply a cut on the
bound nucleon momentum pcut ∼ 1 GeV in the nuclear
convolution. For this reason, we replace the upper limit on
the momentum in Eq. (B11) with minðpcut; pþðcos θÞÞ. The
integration region in Eq. (B11) is illustrated in Fig. 12 for
both the relativistic and the nonrelativistic spectator and for a
few fixed values of x and Q2. The integration region
systematically shrinks with rising x, and the allowed kin-
ematical region is somewhat larger for the relativistic case,
although the difference is only visible for high nucleon
momentap > 0.5 GeV. As a somewhat extreme example of
the deuteron kinematics, in the last panel of Fig. 12, we show
the integration region for x ¼ 1.3, which is limited to high
values of cos θ and momentum p > 300 MeV.

2. Convolution integral using ðy;p⊥Þ basis
Consider Eq. (6) and note that x0 ¼ x=y, where the

dimensionless variable y ¼ p · q=ðMq0Þ ¼ ðp0 þ γpzÞ=M

is usually referred to as the nucleon light-cone momentum.
The integral over the nucleon momentum in Eq. (6) can be
cast in terms of integration over y and p⊥:

Fd
i ðx;Q2Þ¼

Z
dydp2⊥dijðy;p2⊥;γÞFN

j ðx=y;Q2;μ2Þ; ðB14Þ

where i ¼ T; 2, and we assume the sum over the repeated
subscript j ¼ T; 2 and

dijðy; p2⊥; γÞ ¼ π

Z
dpzjΨdðpÞj2Kijδ

�
y −

p0 þ γpz

M

�
;

ðB15Þ

and μ2 ¼ p2
0 − p2, and p0 is the energy of the active

nucleon, and the kinematical factors Kij in Eq. (B14)
are given by Eq. (8).
Note that the kernel dij in the convolution integral

Eq. (B14) depends on the kinematic variables x and Q2

through a dimensionless parameter γ¼ð1þ4x2M2=Q2Þ1=2.
We now briefly consider the γ ¼ 1 case corresponding to the

FIG. 12. The shaded area shows the region constrained by Eqs. (B8) and (B9) together with the cut p < 1 GeV for a few fixed values
of x and Q2 shown in the panels. The light-gray region corresponds to a relativistic spectator, while the dark-gray is for the
nonrelativistic one.
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light-cone kinematics of Q2 → ∞. In this limit, the matrix
Kij has only the diagonal components, and KTT ¼
K22 ¼ 1þ pz=M. Then the nuclear convolution for FT
and F2 have the same form with the kernel dTT ¼ d22 ¼
Dðy; p2⊥Þ, which has the meaning of distribution over the
corresponding variables:

Dðy; p2⊥Þ ¼ π

Z
dpzjΨdðpÞj2

�
1þ pz

M

�
δ

�
y −

p0 þ pz

M

�
:

ðB16Þ

The distribution by Eq. (B16) is normalized to 1:

Z
dydp2⊥Dðy; p2⊥Þ ¼

Z
d3pjΨdðpÞj2

�
1þ pz

M

�
¼ 1:

ðB17Þ

The term proportional to pz vanishes after angular
integration.
Note that in the off-shell region, the nucleon SF in

Eq. (B14) depends on the virtual nucleon mass square μ2.
We use Eq. (3) in order to separate the off-shell dependence
of the bound nucleon structure function and integrate over
p2⊥. Then Eq. (B14) can be cast in terms of a one-
dimensional convolution integral as follows:

Fd
2ðx;Q2Þ ¼

Z
ymax

x
dy½S0ðyÞFN

2 ðx=y;Q2Þ

þ S1ðyÞδfðx=yÞFN
2 ðx=y;Q2Þ�; ðB18Þ

where the light-cone smearing functions S0 and S1 are as
follows:

S0ðyÞ ¼
Z

dp2⊥Dðy; p2⊥Þ; ðB19Þ

S1ðyÞ ¼
Z

dp2⊥Dðy; p2⊥Þv; ðB20Þ

where v ¼ ðμ2 −M2Þ=M2 is the nucleon virtuality. The
function S0ðyÞ makes sense of the nucleon light-cone
distribution in the deuteron and normalized to unity
according to Eq. (B17). Note that Eq. (B18) was derived
for γ ¼ 1, i.e., light-cone kinematics. In this limit, the
constraint by Eq. (B1) reduces to y > x and ymax ¼ Md=M.
Below we discuss in more detail the nuclear convolution

by Eqs. (B14) and (B15) for both the relativistic and
nonrelativistic kinematics of the nucleon spectator while
keeping finite Q2 effects.

a. Nonrelativistic spectator

We first consider Eq. (B15) assuming the nonrelativistic
nucleon with energy p0 ¼ M þ εd − p2=ð2MÞ, where

εd ¼ Md − 2M is the deuteron binding energy. Taking
the integral in Eq. (B15), we have

Z
dpzδ

�
y −

p0 þ γpz

M

�
¼ M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − p2⊥
p ; ðB21Þ

where

t2 ¼ 2M2ðymax − yÞ; ðB22Þ

ymax ¼ 1þ γ2

2
þ εd
M

: ðB23Þ

Note also that by integrating the δ function in Eq. (B21), we
have pz as a function of y and p2⊥:

pz ¼ γM −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − p2⊥

q
: ðB24Þ

Note that tmakes sense of the maximum p⊥ for the given y.
The condition t2 ¼ 0 determines the maximum value
y ¼ ymax; see Eq. (B23). Note that for γ ¼ 1 and neglecting
a small correction due to the deuteron binding energy in
Eq. (B23), we have ymax ¼ 3=2. This is different from the
kinematical maximum ymax ¼ Md=M in the relativistic case
which is discussed in Sec. B 2 b and illustrated in Fig. 13.
Using Eqs. (B21)–(B24), we cast Eq. (B14) as follows:

Fd
i ðx;Q2Þ ¼ M2

4

Z
ymax

ymin

dy
Z

t2

0

dp2⊥
ðψ2

0ðpÞ þ ψ2
2ðpÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − p2⊥
p

× KijFN
j ðx=y;Q2; μ2Þ; ðB25Þ

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ p2⊥

p
and pz is given by Eq. (B24). Note

the p2⊥ integration in Eq. (B25) has a singularity at p2⊥ ¼ t2.
Although this is an integrable singularity, it may cause an
instability in numerical applications. For this reason, it is
convenient to change the integration variable in Eq. (B25)
from p2⊥ to u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − p2⊥

p
. Then we have

Fd
i ðx;Q2Þ ¼ M2

2

Z
ymax

ymin

dy
Z

t

0

duðψ2
0ðpÞ

þ ψ2
2ðpÞÞKijFN

j ðx=y;Q2; μ2Þ; ðB26Þ

where p2⊥ ¼ t2 − u2, pz ¼ γM − u, p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ p2

z

p
, and

μ2 ¼ M2 þ 2Mεd − 2p2. The lower limit of integration
over the light-cone variable is ymin ¼ x. Note, however, that
this integration region in the nuclear convolution is modi-
fied for finiteQ2. The corresponding region can be inferred
from Eq. (B1). Unlike the case of spherical coordinates
discussed in Sec. B 1, the analytic solution to the inequality
(B1) in terms of ðy; p⊥Þ is somewhat cumbersome and not
shown here. The resulting integration region in the nuclear
convolution Eq. (B25) is illustrated in Fig. 13.
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In conclusion of this section, we present the explicit
expressions for the light-cone smearing functions by
Eqs. (B19) and (B20):

S0ðyÞ ¼
M2

2

Z
t

0

duðψ2
0ðpÞ þ ψ2

2ðpÞÞ
�
2 −

u
M

�
; ðB27Þ

S1ðyÞ ¼
M2

2

Z
t

0

duðψ2
0ðpÞ þ ψ2

2ðpÞÞ
�
2 −

u
M

�
v; ðB28Þ

where v ¼ μ2=M2 − 1 and the other notations are similar to
those in Eq. (B26). The function S0ðyÞ and S1ðyÞ computed
for the AV18 deuteron wave function are plotted in Fig. 14
(left panel).

b. Relativistic spectator

For the relativistic kinematics, we have p0 ¼ Md −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

p
. Integrating the δ function in Eq. (B15), we have

Z
dpzδ

�
y −

p0 þ γpz

M

�
¼ γME

aM þ ðγ2 − 1ÞE ; ðB29Þ

where a ¼ Md=M − y, E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ p2⊥ þM2

p
, and we

should replacepzwith the solution of the following equation:

γpz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ p2⊥ þM2

q
− aM: ðB30Þ

For γ > 1, this equation has a solution for any value of the
parameter a:

pz ¼
−γaM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2M2 þ ðγ2 − 1ÞðM2 þ p2⊥Þ

p
γ2 − 1

: ðB31Þ

Note, that for γ → 1 (or Q2 → ∞), only the region a > 0 is
allowed, and we have

FIG. 13. The integration region in Eq. (B25) for different values of x and Q2. The region x < y < ymax and p2⊥ < t2ðyÞ is shown by
dashed lines. The shaded area is a region restricted to W2 > ðM þmπÞ2 and jpj < 1 GeV computed for both the relativistic and the
nonrelativistic spectator, and for fixed values of x and Q2 indicated in the panels. The light-gray region corresponds to the relativistic
spectator, while the dark-gray region is for the nonrelativistic one.
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pz ¼
p2⊥ þ ð1 − a2ÞM2

2aM
: ðB32Þ

In this case, the condition a ¼ 0 determines the upper limit
on y, ymax ¼ Md=M. For finite values ofQ2, the integration
region extends to y > Md=M.
For the deuteron structure functions, we have

Fd
i ðx;Q2Þ¼γ

4

Z
ymax

ymin

dy
Z

dp2⊥
ME

aMþðγ2−1ÞE

×ðψ2
0ðpÞþψ2

2ðpÞÞKijFN
j

�
x
y
;Q2;μ2

�
: ðB33Þ

The integration region in Eq. (B33) is limited by Eq. (B1).
The resulting region is shown in Fig. 13, in which we also
illustrate the impact of the momentum cut on the integration
region.
The light-cone distributions by Eqs. (B19) and (B20) can

be written as

S0ðyÞ ¼
1

4a

Z
dp2⊥ðψ2

0ðpÞ þ ψ2
2ðpÞÞE

�
1þ pz

M

�
; ðB34Þ

S1ðyÞ ¼
1

4a

Z
dp2⊥ðψ2

0ðpÞ þ ψ2
2ðpÞÞE

�
1þ pz

M

�

×
M2

d − 2MdE
M2

: ðB35Þ

Note that these functions have a pole at a ¼ 0 that
corresponds to y ¼ Md=M. However, this value of y
requires an infinite nucleon momentum as pz → ∞ at
y ¼ Md=M. Such configurations should be suppressed
by the deuteron wave function. In practice, the region of
large y ∼Md=M, and therefore the singularity, can be
avoided by applying a reasonable cut on the nucleon
momentum in the convolution integral.
The effect of relativistic kinematics is illustrated in

Fig. 14 (right panel), in which we show the ratio of the
function S0 computed with Eq. (B34) and (B27) and a
similar ratio for S1. For the most important region
jy − 1j < 0.2, which drives the nuclear convolution, this
relativistic effect is negligible for S0. For this reason, the
relativistic effect has only a small impact on the deuteron
structure function for x < 1. The relativistic correction is
somewhat larger for S1 but does not exceed 3% in this
region. The region of large jy − 1j is driven by a high-
momentum component of the deuteron wave function. For
this reason, the effect of relativistic kinematics on the
smearing functions is more important in this region, as
illustrated by Fig. 14. As the region y > 1 drives the
deuteron structure functions for x≳ 1, one cannot ignore
the effect of relativistic kinematics in this region of x.

3. Benchmarks of the convolution integral

In order to facilitate the comparison with the present
approach, in Table II, we list our results for Fd

2 computed
for the test functions FN

2 ¼ ð1 − xÞ3 and δf ¼ x.

FIG. 14. Left panel shows the smearing functions S0ðyÞ (solid line) and −S1ðyÞ (dashed line) computed using Eqs. (B27) and (B28) for
the AV18 deuteron wave function. The right panel illustrates the relativistic effects in the smearing functions (see also text).
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