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In this note, we use local duality finite energy sum rule to test the validity of the Laplace sum rules results
truncated at the dimension-six condensates for the estimates of the masses and couplings of the Zc-like
ground states in Albuquerque et al. [Phys. Rev. D 103, 074015 (2021)] by taking the example of the D�D
molecule configuration. We confirm the existence of an eventual ðD�DÞ1 radial excitation with a mass
around 5700 MeV and coupling of 197(25) keV to the current which may mask the eventual Zcð4430Þ
radial excitation candidate [named ðD�DÞ0 in Albuquerque et al.] having a relatively small coupling
fðD�DÞ0 ¼ 46ð56Þ keV. We add more explanations on the estimates in Albuquerque et al. from Laplace sum
rules and comment on the results in Wang [arXiv:2202.06058; Commun. Theor. Phys. 63, 325 (2015)].
DOI: 10.1103/PhysRevD.105.114035

I. INTRODUCTION

InRef. [1], we have estimated themasses and couplings of
Zc-like states within different configurations of their even-
tual nature using Laplace sum rules (LSR) [2–5] à la
Shifman-Vainshtein-Zakharov (SVZ) [6,7] and their ratios
at Next-to-LeadingOrder (NLO) of Perturbative (PT) series:

Lc
nðτ; μÞ ¼

Z
tc

t0

dttne−tτ
1

π
ImΠð1Þ

H ðt; μÞ;
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nðτÞ ¼
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n

: ð1Þ

mc is the charmquarkmass, τ is the LSRvariable,n ¼ 0; 1 is
the degree of moments, and t0 is the quark/hadronic

threshold. tc is the threshold of the “QCD continuum”
that parametrizes, from the discontinuity of the

Feynman diagrams, the spectral function ImΠð1Þ
H ðt; m2

c; μ2Þ.
Πð1Þ

H ðt; m2
c; μ2Þ is the transverse scalar correlator correspond-

ing to a spin one hadron :
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≡ −
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q2
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where, e.g., in the case of the D�D configuration, the
hadronic current reads :

Oν
H ¼ ðc̄γμqÞðūiγ5cÞ: ð3Þ

We have used the usual minimal duality ansatz:

1

π
ImΠH≃f2HM

8
Hδðt−M2

HÞþΘðt− tcÞ“Continuum”; ð4Þ

for parametrizing the molecule/four-quark state spectral
function. MH and fH are the lowest ground state mass
and coupling analogue to fπ ¼ 131 MeV. The “continuum”
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or “QCD continuum” is the imaginary part of the QCD
correlator [as mentioned after Eq. (1)] from the threshold tc
which is assumed to smear all higher states contributions.
This parametrization insures that both sides of the sum rules
have the same large t asymptotic behavior that leads to
the LSR in Eq. (1). Within a such parametrization, one
obtains

Rc
n ≡RH ≃M2

H; ð5Þ

indicating that the ratio of moments appears to be a
useful tool for extracting the mass of the hadron ground
state [8–10]. The corresponding value of tc corresponds
approximately to the mass of the first radial excitation.
However, one should bear in mind that a such parametriza-
tion cannot distinguish two nearby resonances but instead
will consider them as one “effective resonance.”

II. OPTIMIZATION CRITERIA

As τ (LSR variable), tc (QCD continuum threshold), and
μ (subtraction constant of the PT series) are free external
parameters, we shall use stability criteria (minimum sensi-
tivity on the variation of these parameters) to extract the
hadron masses and couplings.

A. τ stability

This optimization procedure for the case of the τ variable
has been explicitly illustrated for the harmonic oscillator in
quantum mechanics [2,3] and from charmonium LSR
analysis [11,12] (see Fig. 1) where the optimal result is
obtained at the minimum or inflexion point of the approxi-
mate series in τ. These optimal values of τ are equivalent to
the so-called plateau used in the literature using the Borel
M2 ≡ 1=τ variable. However, one should note, e.g., in the
case of Zc, that the values of M2 in Ref. [13] move in a
relatively small range M2 ≃ ð2.7 ∼ 3.3Þ GeV2 ≡ τ ≃
ð0.30 ∼ 0.37Þ GeV−2 compared to the range of τ values
analyzed in [1].

B. The tc stabiity

The QCD continuum threshold tc is (in principle) a free
parameter in the analysis though one (intuitively) expects it
to be around the mass of the first excitation which cannot be
accurate as the QCD continuum is supposed to smear all
higher radial excitations contributions to the spectral
function.
To be conservative we take tc from the beginning of τ

stability until the beginning of tc stability [8–10] where the
tc-stability region corresponds to a complete dominance of
the lowest ground state in the QSSR analysis. This
conservative range of tc values is larger and wider than
the usual choice done in the current literature where tc is
taken at lower values of tc often below the beginning of the
τ-stability region. For the present case of Zc, we obtain [1]

tc ¼ ð22 ∼ 38Þ GeV2; ð6Þ

where the first value of tc corresponds to the beginning of τ
minimum of the coupling and the second one to the tc
stability.

(a)

(b)

(c)

FIG. 1. (a) Harmonic oscillator state for each given truncation
of the series compared to the exact solution (horizontal line).
(b) Schematic presentation of stability of the charmonium ratio of
moments. (c) Explicit analysis of the J=ψ systems moment for
different truncation of the OPE from, e.g., [11,12].
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C. The μ stability

μ stability is used to fix in a rigorous optimal way, the
arbitrary substraction constant appearing in the PT calcu-
lation of the Wilson coefficients and in the QCD input
renormalized parameters. We have obtained for Zc [1]

μc ≃ 4.65ð5Þ GeV; ð7Þ

which has the same value as the one in our different
analysis for the four-quark and molecule states [14–18].
Alternatively, one can also eliminate the μ dependence of

the result by working with the resummed quantity after
applying the homogeneous renormalization group equation
obeyed the QCD expression of the LSR, which is super-
convergent:

�
−

∂
∂tþ βðαsÞαs

∂
∂αs −

X
i

ð1þ γmðαsÞ

× xi
∂
∂xi

�
Lc
nðetτ; αs; xi; μÞ ¼ 0; ð8Þ

where t≡ ð1=2ÞLτ, xi ≡mi=μ, β is the β function, and γi is
the quark mass anomalous dimension. The renormalization
group improved solution is

Lc
nðetτ; αs; xiÞ ¼ Lc

nðt ¼ 0; ᾱsðτÞ; x̄iðτÞÞ; ð9Þ

where ᾱsðτÞ and x̄iðτÞ are the running QCD coupling and
mass. However, the renormalization group equation
solution μ2 ¼ 1=τ would correspond to a lower value of
μ ≈ 1.6 GeV where the convergence of the PT series can be
questionable. An explicit comparison of the results from
these two ways can be found in [19].
Results based on these stability criteria have lead to

successful predictions in the current literature (see [8–10]
and original papers). In the case of Zc, we have obtained

fZc
¼ 140ð15Þ keV; MZc

¼ 3912ð61Þ MeV; ð10Þ

where MZc
is in a remarkable agreement with the data

Zcð3900Þ [20].

III. THE Zc GROUND STATE FROM FESR

In Ref. [1] for a D�D molecule description of the Zc, the
optimal values of the coupling and mass have been
extracted [see Eq. (10)] inside the conservative range of
tc given in Eq. (6). The value of the mass does not present a
τ minimum but a τ-inflexion point where its value is about
the same as the one of the τ minimum of the coupling for
the same value of tc.
To test the consistency of the values of the ground state

coupling and mass extracted in this way from Laplace
(global duality) sum rule, we use local duality finite energy
sum rule (FESR). This approach has been extensively

discussed in Ref. [21] in the case of the ρ meson where
to NLO of the PT series, the lowest moment gives the
constraint

M2
ρ

4γ2ρ
¼ tc

8π2

�
1þ

�
αsðtcÞ
π

�
þOðα2sÞ

�
; ð11Þ

for a minimal duality ansatz one resonance ⊕ QCD
continuum. Using the experimental mass Mρ ¼ 775 MeV
and coupling γρ ¼ 2.55, one obtains for αs ¼ 0.39:

ffiffiffiffi
tc

p
≃ 1.27 GeV; ð12Þ

which is slightly lower than the mass 1465(25) MeVof the
first radial excitation ρ0 of the ρ meson. This value of tc is
inside the stability region of the LSR analysis [8,9].
We extend this analysis to the case of the Zc meson

assumed to be a D�D molecule. Using as input (in a first
iteration) the mass prediction: MZc

¼ 3912 MeV in
Table III of [1], we estimate fZc

. Then, we extract MZc

using the ratio of moments at the τ minimum of fZc
and at

the corresponding value of tc. In the second iteration, we
use this value of MZc

to reextract fZc
. We repeat this

procedure for different tc for LSR. The results are shown in
Fig. 2 where a common stability region in tc is obtained for
the coupling and the mass. We notice that in the stability
region, the experimental Zc mass is well reproduced from
the LSR analysis. A similar procedure is done for FESR
where, unlike LSR, the result increases with tc. A similar
behavior has been obtained in the case of the ρ meson [see

(a)

(b)

FIG. 2. Zc parameters from LSR and FESR as a function of tc at
NLO for μ ¼ 4.65 GeV.
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the constraint in Eq. (11)]. The tc stability for FESR needs a
complete data parametrization of the spectral function [21]
which is not yet possible for the Zc. One can also note that
FESR overestimates the mass of Zc which is due to the fact
that the second moment entering in the ratio for extracting
the mass is more affected by the higher mass radial
excitations. The corresponding curve is not shown in Fig. 2.
One can notice that the LSR and FESR predictions for

the coupling meet at

tc ≃ 32 GeV2; ð13Þ

which is inside the conservative range in Eq. (6) where

fZc
≃ 153ð16Þ keV; MZc

≃ 3900ð60Þ MeV: ð14Þ

These values reproduce (within the errors) the ones
in Ref. [1].

IV. Zc RADIAL EXCITATIONS

If one attempts to identify the value of tc in Eq. (13) with
the mass squared of the first radial excitation, then one
would obtain

MðD�DÞ1 ≃ 5657 MeV; ð15Þ

which we can identify with MðD�DÞ1 ¼ 5709ð70Þ extracted
directly from LSR in Ref. [1] with

fðD�DÞ1 ¼ 197ð25Þ keV: ð16Þ

In Ref. [1], we have also attempted to assume that the
Zcð4430Þ is the first radial excitation of the Zcð3900Þ. Then
we have estimated its coupling to the current to be

fðD�DÞ0 ¼ 46ð56Þ keV; ð17Þ

which is much smaller than the one of ðD�DÞ1 in Eq. (16).
We conclude from the previous study that the ðD�DÞ0

and ðD�DÞ1 states can be the radial excitations of the
Zcð3900Þ having the parameters in Eqs. (15)–(17).
However, the ðD�DÞ0 might have been masked by the
ðD�DÞ1 from the direct extraction using LSR due to its
weaker coupling to the current.

V. ON THE FOUR-QUARK CONDENSATES

Earlier estimates of the four-quark condensates:

h0jψ̄Γ1ψψ̄Γ2ψ j0i ð18Þ

(Γi is a generic notation for γ matrices) from eþe− →
Hadrons data [21,22], τ decays [23], and light baryon
systems [24–26] have indicated a deviation of about a
factor of 3–4 of their value from vacuum saturation.

In Ref. [13], the author claims that, in the light meson
systems, the effect of the four-quark condensate is rela-
tively small compared to the lower dimension condensates
one appearing in the Operator Product Expansion (OPE) as
it is multiplied by αs. This argument is not correct because,
due to the anomalous dimension, the quantity αshψ̄ψi2 has
a weak log1=9ðQ=ΛÞ behavior for, e.g., three light flavors
(see, e.g., [8,9]).
The author in Ref. [13] also claims that the corrections to

the vacuum saturation is obviously negligible using an
argument based on the eventual smallness of the 1=Nc
corrections. In order to validate his claim, the author should
compute explicitly the coefficient of such 1=Nc perturba-
tive corrections and show that the nonperturbative contri-
butions of hadronic intermediate states jπihπj; jρihρj… are
negligible. He should also invalidate all previous phenom-
enological estimates of this quantity.

VI. THE OPE AND PT SERIES

In Ref. [1], the OPE is truncated at the dimension-six
condensate contributions where the systematic error related
to this truncation has been estimated by rescaling the
dimension-six condensate contributions using the typical
exponential factor m2

cτ=3 where the size of this estimate is
about the one of the dimension-8 hq̄qihq̄Gqi condensate
contributions obtained in [14,15]. However, one should
have in mind that this contribution is only a part of the
complete d ¼ 8 condensate ones while the validity of the
vacuum saturation used for its estimate is also questionable.
Therefore, a valuable claim on the convergence of the OPE
requires an evaluation of the complete dimension-8 con-
tributions and a nonuse of factorization for estimating these
high-dimension condensates that should mix under renorm-
alization [27].
Alternatively, we use FESR to test the validity of the

LSR results truncated at the dimension-six condensates [1].
Unlike the LSR where the OPE is done in terms of the τ
variable, the OPE for FESR is done in terms of tc where its
large value [see Eq. (13)] guarantees a much better
convergence of the OPE which we illustrate for the
coupling shown in Table I. As expected, we notice that
the contributions of the high-dimension condensates are
negligible while the one of the four-quark condensate is
relatively large in this channel. This result from FESR
consolidates the one obtained from LSR in Ref. [1] at a
lower scale.

TABLE I. Perturbative (PT) (d ¼ 0) at NLO and nonperturba-
tive condensate contributions of dimension d ≤ 6 to the Zc
coupling from local duality FESR. d0−n≡ contributions of
dimensions d ¼ 0þ ðd≡ n − 1Þ þ ðd≡ nÞ condensates.
Zc tc½GeV�2 d0 d0−4 d0−5 d0−6

fZc
[keV] 32 113.2 149.9 149.5 152.5
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At the scale μ ¼ 4.65 GeV, we also test the convergence
of the PT series. For tc ¼ 32 GeV2, we obtain

fLOZc
¼ 149.4 keV; fNLOZc

¼ 152.5 keV; ð19Þ

where the effect of the NLO correction is (almost)
negligble.

VII. ON THE ANALYSIS IN REF. [13]

The author in Ref. [13] uses LSR within his optimization
procedure to estimate the mass of ground state Zcð3900Þ
and of the first radial excitation Zcð4430Þ. He obtains

MZc
¼ 3.91þ0.21

−0.17 GeV; MZ0
c
¼ 4.51þ0.17

−0.09 GeV ð20Þ

using the following favored choice of parameters.

A. Continuum threshold

The author chooses the value tc ¼ ð22 ∼ 24Þ GeV2 for
extracting the Zcð3900Þ and Zcð4430Þ masses and cou-
plings. Hopefully, this value of tc is inside the conservative
stability region given in Eq. (6).

B. Plateau region and optimal results

The “plateau region” is taken in the range
1=τ≡ T2 ¼ ð2.7 ∼ 3.3Þ GeV2, which is narrower
[τ ∼ ð0.30 ∼ 0.37Þ GeV−2] than the one in Ref. [1] and
in Fig. 3. One should remark that the scale of the figure in
Ref. [13] (and in some papers in the literature) is (exag-
geratedly) enlarged, which gives the impression of a large
plateau.
Taking the example of fðD�DÞ in Fig. 3, one can remark

that the minimum in τ obtained at LO becomes an inflexion
point at NLO in the case of the vacuum saturation estimate
of the four-quark condensate. It shows that the extraction of
the optimal value does not necessary need a large plateau
contrary to the claim in Ref. [13]. The existence of a
minimum or/and an inflexion point is sufficient for an
approximate OPE and PT series according to the example
of harmonic oscillator and charmonium channel discussed
in Sec. II.

C. Subtraction point μ and PT series convergence

The author favors the choice μ ¼ 1.5ð2.7Þ GeV of the
subtraction point for extracting the ZcðZ0

cÞ masses and
couplings. We check explicitly in Fig. 3 the convergence of
the PT series for extracting the Zc coupling and mass at

(a)

(b)

FIG. 3. fðD�DÞ as a function of τ at (a) LO and (b) NLO for
different values of tc and for μ ¼ 1.5 GeV in the case of
factorization of the four-quark condensate.

(a)

(b)

FIG. 4. MðD�DÞ as a function of τ at (a) LO and (b) NLO for
different values of tc and for μ ¼ 1.5 GeV in the case of
factorization of the four-quark condensate.
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μ ¼ 1.5 GeV in the case of the factorization of the four-
quark condensate used by the author in Ref. [13].
From Fig. 3 one can see that the NLO correction is huge

for the favored choice μ ¼ 1.5 GeV of Ref. [13] :

fLOD�D ¼ 110ð5Þtc keV; fNLOD�D ¼ 41ð1Þtc keV; ð21Þ

for tc ¼ 24ð2Þ GeV2 and τ ≃ 0.4ð0.6Þ GeV−2, respectively,
for LO (NLO) where only the error induced by tc has been
quoted. It indicates that the PT series is unreliable.
For the choice μ ¼ 2.7 GeV used to extract the Zcð4430Þ

parameter, the correction to the coupling of about 10% is
more reasonable. In the case of the optimal value μ ¼
4.65 GeV obtained in Ref. [1] and in Eq. (19), the
correction to the coupling is (almost) negligible. The τ
behavior of the mass is shown in Fig. 4 for μ ¼ 1.5 GeV.
One obtains in units of MeV:

MLO
D�D ¼ 3777ð61Þtc ; MNLO

D�D ¼ 3913ð46Þtc : ð22Þ

The NLO corrections are moderate due to the cancellation
of these contributions in the ratio of moments. However,
this result obtained from unreliable individual expressions
of the moments is misleading and should not be (seriously)
considered.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we have used FESR to test the reliability of
the LSR results [1] within the NLO corrections and where
the OPE is truncated at the d ¼ 6 condensates.
Compared to LSR, the OPE of FESR is more convergent

while the tc (continuum threshold) behavior of the
result does not present stability. The common solution of
the two approaches shown in Fig. 2 favors a value
of tc around 32 GeV2, which restricts the conservative tc
range from LSR inside the τ to tc stability region given
in Ref. [1].
Attempting to identify this tc value with the mass of the

radial excitation ðD�DÞ1, we obtain the one in Eq. (15),
which confirms the direct LSR extraction in Ref. [1].
Assuming that the Zcð4430Þ is the first radial excitation

of the Zcð3900Þ [named ðD�DÞ0 in Ref. [1] ] as expected
from quark model [28] and from an extrapolation of ψ 0 −
J=ψ mass splitting [29], we find the value 46(56) keVof its
coupling [1]. A such coupling is relatively weak compared
to the one of the ground state 153 keV and of the second
radial excitation ðD�DÞ1 of 197(25) keV extracted directly
from LSR [1]. This feature may explain why the ðD�DÞ0
has been masked from a direct LSR analysis. It may also
signal the different dynamics of the four-quark states
compared to ordinary mesons. Using a Golberger-
Treiman-like relation where the hadronic width behaves
as 1=f2H, then, one may expect that the Zcð4430Þ is wider
than the Zcð3900Þ as indicated by the data [20].
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