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We study the color-spin interaction energy of a quark, a diquark and a baryon with their surrounding
baryons and/or quark matter. This is accomplished by classifying all possible flavor and spin states of the
resulting multiquark configuration in both the flavor SU(2) and SU(3) symmetric cases. We find that while
the baryon has the lowest interaction energy when there is only a single surrounding baryon, the quark has
the lowest interaction energy when the surrounding has more than three baryons or becomes a quark gas.
As the short range nucleon-nucleon interactions are dominated by the color-spin interactions, our finding
suggests that the baryon modes near other baryons are suppressed due to larger repulsive energy compared
to that of a quark and thus provides a quark model basis for the quarkyoniclike phase in dense matter. At the
same time, when the internal interactions are taken into account, and the matter density is high so that the
color-spin interaction becomes the dominant interaction, the diquark becomes the lowest energy
configuration and will thus appear in both the dense baryonic and/or quark matter.
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I. INTRODUCTION

Recent inputs from multimessenger astrophysics on a
neutron star equation of state suggest that there is a sudden
increase in pressure as one approaches the core of the
neutron star [1]. Such behavior prompted the appearance of
the quarkyonic matter type of equation of state (EOS) for
the nuclear matter when the baryon density increases to
several times that of the nuclear saturation density [2–11].
Recently, using the quark model with color-spin inter-

action, we have shown that the short distance repulsion
between the quark and baryon is smaller than that between
two baryons in the lowest energy channel, and that such
ingredients naturally lead to a quarkyoniclike picture for
the EOS when the baryon density reaches 4 to 5 times
nuclear matter density [12]. The relevance of a color-spin
interaction to describe the dynamics at short distance can be
verified in several contexts. In a previous publication [13],
we showed that the short distance part of the baryon-baryon
interactions for various quantum numbers from the recent
lattice calculation [14,15] can be well reproduced using a
constituent quark model with color-spin interaction. The
importance of color-spin interaction in nucleon-nucleon
repulsion was observed earlier within the quark cluster
model [16]. The mass splitting between hadrons with
different spin orientations, such as the delta and the nucleon
or the pseudoscalar and vector meson, are due to the color-

spin interaction [17]. Also studies on possible multiquark
configurations are based on the relative strength of the
color-spin interaction of the multiquark system compared
to that of its lowest hadron threshold [18,19].
Therefore, when the quark density becomes large so that

the baryons start to overlap, the color-spin interaction
together with proper application of the Pauli principle
should be the important dynamics that determines the
properties of the dense matter. In this work, we will use
the quark model with color-spin interaction to study the
energy of a quark, diquarks and a baryon in the dense
matter composed of baryons and in the quark matter. This is
accomplished by classifying all possible flavor and spin
states of the resulting multiquark configurations in both the
flavor SU(2) and SU(3) symmetric cases, and studying the
color-spin interactions of these configurations.
We find that while the baryon has the lowest interaction

energy when there is only a single surrounding baryon, the
quark has the lowest interaction energy when the surround-
ing is composed of more than three baryons or becomes a
quark gas. This is an improvement over our precious
calculation [12] as all possible configurations are consid-
ered and the surroundings are generalized to study cases
with more than one baryon and free quarks. Our finding
implies that the baryon modes near other baryons are
suppressed due to larger repulsive energy compared to that
of a quark, which is a property when implemented into
phenomenological EOSs composed of quarks and baryons
leads to the appearance of quarkyoniclike phase in
dense matter [4,5,12]. At the same time, when the internal
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interactions are taken into account, and the matter density is
high, similar to the quark density inside a baryon so that the
color-spin interaction becomes the dominant interaction,
the diquark becomes the lowest energy configuration and
will thus appear in both the dense baryonic and/or quark
matter.
It should be noted that our current result should be cast in

the momentum space to provide a consistent comparison
with the quarkyonic matter concept as described in [20].
One method to accomplish such a goal is to compare not
only the short distance interaction but also the long distance
interaction with the neighboring matter. A preliminary
version of such a work was attempted in Ref. [12] using
the uncertainty relation to convert the spatial interaction
potential to the momentum space description of the
excitation modes. We will leave a study along these lines
as a future project.
The paper is organized as follows. In Sec. II, we

introduce the color-spin interaction factor and explain
how to calculate the interaction energy of a probe in
nuclear matter. In Sec. III, we discuss how we classify
the possible states of a multiquark system and introduce the
formula to calculate the average color-spin interaction
factor. In Sec. IV, we discuss how we investigate the
interaction energy of a probe when there is a noninteracting
quark gas around it. In Sec. V, we discuss why we neglected
the color-color interaction in this work by showing that the
cross terms between a probe and nuclear matter cancel. In
the last section, we summarize our results and discuss
several prospects for future studies.

II. COLOR-SPIN INTERACTION

In the flavor SU(3) symmetric case, the color-spin
interaction factor is determined by the following form:

HCS ¼ −
Xn
i<j

λci λ
c
jσi · σj ð1Þ

¼ nðn − 10Þ þ 4

3
SðSþ 1Þ þ 4CF þ 2CC; ð2Þ

4CF ¼ 4

3
ðp2

1 þ p2
2 þ 3p1 þ 3p2 þ p1p2Þ; ð3Þ

where λci is the color SU(3) Gell-Mann matrices, CF is the
first kind of the Casimir operator of the flavor SU(3) and pi
is the number of columns containing i boxes in a column in
the Young diagram. If there are no strange quarks, Eq. (2)
reduces to the following formula:

HCS ¼
4

3
nðn − 6Þ þ 4

3
SðSþ 1Þ þ 4IðI þ 1Þ þ 2CC; ð4Þ

where I is the total isospin.

In the quark model for a hadron, there will be an extra
spatial potential that depends on the distance between two
particles multiplying the individual color-spin factor in
Eq. (1) so that when calculating the total contribution of the
relevant interactions to the hadron mass, the corresponding
spatial expectation value has to be taken into account for
each pair. On the other hand, assuming that all the quarks
occupy similar spatial dimension and/or the quarks are
uniformly distributed, the spatial parts will be universal for
all quark pairs. Taking into account the additional factor
that is inversely proportional to the quark masses of the
pair, one finds that the delta-nucleon mass difference can be
reproduced when CB=m2

u ∼ 18 MeV [17]. This overall
value should be multiplied to the color-spin factors in this
work to to estimates their approximate magnitude when the
quark density is similar to that inside a nucleon. Therefore,
to study the relative stability of different configurations,
assuming that the density of quarks is uniform in the flavor
symmetric limit, one can just compare the color-spin matrix
elements given in Eq. (2).
Here, we calculate the color-spin factor experienced by a

probe when the surroundings are n baryons, with n ¼ 1, 2,
3, or a quark gas, all at a constant baryon density. The probe
will be a quark, a diquark, or a baryon. As for the diquark,
there are four kinds of diquarks that satisfy the Pauli
principle. In this work, in order to focus on examining
whether the diquark can exist as a stable state in high
density nuclear matter we only consider the most attractive
diquark where the flavor and spin are both antisymmetric.
However, since various diquarks may appear as the density
changes, the analysis of other types of diquarks will be
included in the next study. The color of the quark and
diquarks is in the triplet or antitriplet states, respectively, for
which the free energy will be infinity in the confining phase
where the surroundings are baryons. Hence, we also
consider the color singlet three diquark state in flavor
SU(3), whose quantum number is the same as the H
dibaryon [21].

III. FLAVOR, COLOR AND SPIN STATES
OF A MULTIQUARK SYSTEM

Let us consider the multiquark system consisting of n
baryons with a probe. In this work, we assume that the
orbital part of the wave function is totally symmetric and
the surrounding baryons are in flavor octet states. Since a
baryon is a color singlet, the color state of 3nþ np
quarks, where np is the number of quark in the probe,
should be in the color state of the probe. For example, if
the probe is a baryon and n ¼ 1, the color state of six
quarks should be [2,2,2], which is a color singlet, and the
flavor-spin coupling state should be the conjugate of the
color singlet state to satisfy the Pauli exclusion principle.
We can represent these states using Young diagrams as
follows:
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Then, we can decompose it into the flavor and the spin
state as follows:

½3;3�FS ¼ ½6�F ⊗ ½3;3�Sþ ½5;1�F ⊗ ½4;2�Sþ½4;2�F ⊗ ½5;1�S
þ ½4;2�F ⊗ ½3;3�Sþ½4;1;1�F ⊗ ½4;2�S
þ ½3;3�F ⊗ ½6�Sþ½3;3�F ⊗ ½4;2�S
þ ½3;2;1�F ⊗ ½5;1�F þ ½3;2;1�F ⊗ ½4;2�S
þ ½2;2;2�F ⊗ ½3;3�S: ð5Þ

Independently, we can determine the possible flavor
states of a multiquark system using the outer product:
Flavor states of 2-baryon:

8 × 8 ¼ 1þ 8ðm¼2Þ þ 10þ 10þ 27: ð6Þ

Combining Eqs. (5) and (6), we can determine the possible
flavor and spin states of six quarks. The allowed flavor and
spin states for all cases that we consider are summarized in
Table I.
Now, we investigate the relative magnitude of the

interaction which a quark inside the probe sees from the
surrounding n baryons using the following formula. A

similar formula was used previously by us to compare the
nucleon repulsion with that of the lattice calculation [13]:

ΔHnbþp
CS ¼ Hnbþp

CS −Hnb
CS −Hp

CS; ð7Þ

ΔHavg
CS ¼ 1

npn
P

C;F;SdCFS

X
C;F;S

dCFSΔH
nbþp
CS ; ð8Þ

dCFS ¼ dCdFdSmFS: ð9Þ

Here, nb and p in the superscripts represent n external
baryons and the probe, respectively. The probe will be a
baryon, a quark, a diquark or three correlated diquarks. np
is the number of quarks in the probe. We will investigate
cases with n ¼ 1, 2, 3, and also consider the case where nb
is replaced by a single quark so as to study the deconfined
phase. dC, dF and dS are the dimensions of the color,
flavor and spin states of 3nþ np quarks, respectively,mFS

is the multiplicity of the flavor and spin states, and the
summation is taken for all possible states. Here, we divide
it by np to normalize the result with respect to the single
quark case. We also divide by n to keep the surrounding
baryon at constant density for comparison at the same
density.

IV. FREE QUARK GAS

In this study, we increase the number of surrounding
baryons correlated with each other to describe high density
nuclear matter. However, when the density is very high, a
phase in which the quarks are deconfined occurs, and at this
stage, the quarks are no longer correlated with each other.
Hence, in this section, we consider the case where the
surrounding is a free quark gas. In such a case, we assume
that the surrounding free quarks are not correlated with
each other, but are correlated with the interacting object to
satisfy the Pauli principle. Therefore, when a probe is a
single quark, we only need to consider the average value of
the color-spin interactions for all possible diquark con-
figurations. There are four diquark states satisfying the
Pauli principle. We represent it for the color SUðNCÞ in
Table II. If we compare it with the results for baryons and a

TABLE I. List of possible flavor and spin states in flavor SU(3)
symmetry. b, q and d represent a baryon, a quark and a diquark,
respectively.

1bþ 1b 1ðS¼ 0Þ, 8ðS¼ 1Þ, 10ðS¼ 1Þ, 10ðS¼ 1Þ, 27ðS¼ 0Þ
2bþ 1b

1ðS ¼ 3
2
Þ, 8ðS ¼ 1

2
; 3
2
Þ, 10ðS ¼ 3

2
Þ, 10ðS ¼ 3

2
Þ,

27ðS ¼ 1
2
; 3
2
Þ, 35ðS ¼ 1

2
Þ, 35ðS ¼ 1

2
Þ, 64ðS ¼ 3

2
Þ

3bþ 1b
1ðS ¼ 0Þ, 8ðS ¼ 1; 2Þ, 10ðS ¼ 1Þ, 10ðS ¼ 1Þ,

27ðS ¼ 0; 2Þ, 35ðS ¼ 1Þ, 28ðS ¼ 0Þ
1bþ 1q 3ðS ¼ 0; 1Þ, 6̄ðS ¼ 0; 1Þ, 15ðS ¼ 0; 1Þ
2bþ 1q

3ðS ¼ 1
2
; 3
2
Þ, 6̄ðS ¼ 1

2
; 3
2
Þ, 15ðS ¼ 1

2
; 3
2
Þ,

150ðS ¼ 1
2
; 3
2
Þ, 24ðS ¼ 1

2
; 3
2
Þ, 42ðS ¼ 1

2
; 3
2
Þ

3bþ 1q
3ðS ¼ 0; 1; 2Þ, 6̄ðS ¼ 0; 1; 2Þ, 15ðS ¼ 0; 1; 2Þ,

150ðS ¼ 1Þ, 21ðS ¼ 0Þ, 24ðS ¼ 0; 1; 2Þ,
42ðS ¼ 0; 1; 2Þ, 60ðS ¼ 1Þ

1bþ 1d 3̄ðS ¼ 1
2
Þ, 6ðS ¼ 1

2
Þ, 15ðS ¼ 1

2
Þ

2bþ 1d
3̄ðS ¼ 0; 1Þ, 6ðS ¼ 1Þ, 15ðS ¼ 0; 1Þ
¯150ðS ¼ 1Þ, 24ðS ¼ 0; 1Þ, 42ðS ¼ 0; 1Þ

3bþ 1d
3̄ðS ¼ 1

2
; 3
2
Þ, 6ðS ¼ 1

2
; 3
2
Þ, 15ðS ¼ 1

2
; 3
2
Þ,

¯150ðS ¼ 1
2
; 3
2
Þ, 24ðS ¼ 1

2
; 3
2
Þ, 42ðS ¼ 0; 1Þ,

48ðS ¼ 1
2
Þ

1bþ 3d 8ðS ¼ 1
2
Þ

2bþ 3d 1ðS¼ 0Þ, 8ðS¼ 1Þ, 10ðS¼ 1Þ, 10ðS¼ 1Þ, 27ðS¼ 0Þ
3bþ 3d 8ðS ¼ 1

2
Þ, 10ðS ¼ 3

2
Þ

TABLE II. Classification of two quark interaction due to the
Pauli exclusion principle. We denote the antisymmetric and
symmetric state as A and S, respectively. The symbols inside
the parentheses represent the multiplet state.

qiqj

Flavor A S A S

Color Að3̄Þ Að3̄Þ Sð6Þ Sð6Þ
Spin Að1Þ Sð3Þ Sð3Þ Að1Þ
−λiλjσi · σj −6 − 6

NC
2þ 2

NC
−2þ 2

NC
6 − 6

NC

λiλj −2 − 2
NC

−2 − 2
NC

2 − 2
NC

2 − 2
NC
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quark, then we should multiply it by 3 to ensure compari-
son at the same density.
For a diquark and a free quark, since 3 × 3̄ ¼ 1þ 8,

there are two possible color states of three quarks, which
will come with the flavor-spin configuration as below:

Considering both cases, we can calculate the average value
of the color-spin interaction.
For the color-spin interaction between three correlated

diquarks and a free quark, the color and flavor ⊗ spin
coupling state is as follows:

Flavor states of seven quarks: 1 × 3 ¼ 3

The HCS factors for this seven quarks state and the three
correlated diquarks are −12 and −24, respectively. In order
to compare the result with the interaction factor when one
baryon looks at one quark, we need to divide by 2, which
corresponds to taking np ¼ 6, n ¼ 1=3 in Eq. (2).
For the color-spin interaction between a baryon and a

quark, we can use the result in the previous discussions.

V. COLOR-COLOR INTERACTION

The spin independent color-color type of interaction is
typically responsible for the confining and Coulomb type
of interactions. While such interactions are important at
large separation between color states within a color singlet
configuration, the interaction of a colored object with a
color singlet configuration is small. In fact, it is zero if the
color singlet configuration has no color polarizations: that
is all quarks have the same spatial distribution. This is so
because the color of the immersed object will be the same
as the color of the multiquark configuration it makes with
the surrounding color singlet baryons. Consider the follow-
ing color-color interaction factor composed of np quarks
from the probe and 3n quarks from the n baryons:

Xnpþ3n

i<j

λci λ
c
j ¼

1

2

�� Xnpþ3n

i

λci

�
2

−
Xnp
i

ðλci Þ2 −
X3n
i

ðλci Þ2
�

¼ 1

2

��Xnp
i

λci

�
2

−
Xnp
i

ðλci Þ2
�
−
1

2

�X3n
i

ðλci Þ2
�

¼
Xnp
i<j

λci λ
c
j þ

X3n
i<j

λci λ
c
j : ð10Þ

In the second line, the first square bracket is the interaction
within the probe while the second that between the color
singlet baryons. That is, the contributions between the
quarks in the probe and those in the color singlet configu-
ration cancel out. The result is valid even for color SUðNCÞ
with any Nc.

VI. RESULTS

As the color-color interactions cancel each other out, to
understand the most stable structure at high density where
the baryons start to overlap, we consider the color-spin
interaction energy of a quark, a diquark or a baryon with the
surrounding baryons. It should be noted that if the
immersed object is an isolated colored object, it will
require large energy to bring the isolated color charge to
the position: this is why the thermal Wilson line is infinity
in the confining phase. Therefore, we also consider the
color singlet correlated three diquark state in flavor SU(3)
case to search for the minimum energy configuration in the
confining phase. However, when the quark density is large
and color confining effects disappear or one is in the
quark gas phase, the color of the immersed object can be
neglected.
First, we represent ΔHavg

CS values between the probe and
the surrounding for all cases in Table III. As can be seen in
the table, when the surrounding is a single baryon, the
baryon has the smallest interaction energy with the sur-
rounding for both the flavor SU(2) and SU(3) cases. From
the values in Table III, it can be seen that in the case of
flavor SU(3), the magnitude of the color-spin interaction of
baryon is smaller than that of others by approximately
5 MeV per single quark if the density is similar to that
inside a nucleon so that the previously estimated overall
factor is used. However, when the surrounding becomes
three baryon states or the free quark gas, a quark has the
lowest interaction energy. In a series of work [4–7], Jeong
et al. has shown that a phenomenological model involving
quarks and baryons that leads to quarkyonic EOSs can be
constructed when the short range baryon-baryon repulsion,
through the excluded volume effect, is introduced. More
recently, we have shown that in a realistic quark model, the
short range quark-baryon repulsion is smaller than the
baryon-baryon repulsion in the lowest energy channel, and
that such difference leads to quarkyoniclike EOS. Here, we
have shown that the quark-baryon repulsion is in general
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smaller than the baryon-baryon repulsion at high baryon
density or free quark gas. Our results show that the probe
that feels the lowest color-spin interaction that dominates
the repulsion at short distance is quark rather than baryon,
which provides a theoretical justification for the quarkyo-
niclike phase.
Second, to determine which probe has lower energy in

dense matter, one has to consider the internal color-spin
factor of the immersed object. The octet baryon and the
diquark both have color-spin factors of −8. The additional
kinetic energy within the probe typically cancels the color-
color interaction strength rendering the color-spin inter-
action to be the only relevant interaction strength within the
probe [22,23]. Table IV shows the results after considering
these internal color-spin factors. It can be seen that the
lowest energy configuration in both the baryon matter and
quark matter is the diquark for flavor SU(2) and the color
singlet three correlated diquarks for flavor SU(3).
Therefore, considering confinement, the color singlet three
correlated diquarks is the most stable configuration in
dense baryonic matter, when the density becomes similar to
the quark density within the baryon so that only the color-
spin interaction becomes relevant. Such configurations will
appear in dense baryonic matter. Hence, while H dibaryons
do not seem to exist in the vacuum [24], similar configu-
rations will appear in dense baryonic matter. When decon-
finement takes place, considering the additional strange
quark mass in the color singlet three diquarks, flavor SU(2)
diquarks will also appear contributing as an important
configuration in dense matter: hence, a diquark matter.

Additionally, if one can show that the interaction between
correlated diquarks is relatively more attractive than the
corresponding values involving baryons or quarks, then the
so-called diquarkyonic matter consisting of diquarks and
baryons or diquark condensation may emerge.
There are a few things to remark for the next study. In this

work, we only consider the most attractive diquark state.
However, since the interaction of the other diquarks with the
surroundingmatter might bemore attractive than that for the
most attractive diquark, we should investigate the possible
occurrence of such additional diquarks. Additionally, after
the study of a dual chiral density wave [25], which is one of
the inhomogeneous chiral phases, it has been investigated
that quarkyonic matter could be spatially inhomogeneous
due to the appearance of chiral density waves [11,26,27].
Inhomogeneous phases were also studied based on the
Nambu–Jona-Lasinio model and the Gross-Neveu model
[28,29]. Although we only consider spatially symmetric
wave function in this work, analysis on a spatially inhomo-
geneous condensate needs to be investigated.
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