
Analytic interpolation between the Ji and Jaffe-Manohar definitions of the
orbital angular momentum distribution of gluons at small x

Khatiza Banu, Nahid Vasim, and Raktim Abir *

Department of Physics, Aligarh Muslim University, Aligarh—202001, India

(Received 15 June 2021; accepted 8 June 2022; published 21 June 2022)

In this work, we first introduced a generalizedWilson line gauge link that reproduces both staple and near
straight links along a light cone in different parameter limits. We then studied the gauge-invariant bilocal
orbital angular momentum operator with such a general gauge link. At the appropriate combination of limits,
the operator reproduces both Jaffe-Manohar’s and Ji’s operator structures and offers a continuous analytical
interpolation between the two.
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I. INTRODUCTION

It has been more than three decades since the discovery
of proton spin crisis by the European Muon Collaboration
[1]. By now, a lot of progress has been achieved on both the
theoretical and experimental fronts to understand and
validate the proton spin sum rule. Moreover, a resurgence
of interest has been triggered in the wake of the planned
Electron-Ion Collider (EIC) at Brookhaven National
Laboratory [2]. The sum rule for proton spin contains both
helicity contribution and orbital angular momentum con-
tribution, each separately for quarks and gluons, as

Sqþq̄ þ Lqþq̄ þ SG þ LG ¼ 1

2
; ð1Þ

This can often be presented in terms of the corresponding
distributions as

Z
1

0

dx½ΔΣðx;Q2Þ þ ΔGðx;Q2Þ þ Lqþq̄ðx;Q2Þ

þ LGðx;Q2Þ� ¼ 1

2
; ð2Þ

where ΔΣðx;Q2Þ, ΔGðx;Q2Þ are helicity distributions for
quarks and gluons, whereas Lqþq̄ðx;Q2Þ and LGðx;Q2Þ are
those for angular momentum, respectively.
Gluon orbital angular momentum (OAM) is essentially a

two-point correlation function of the field strength tensors

at two space-time points. To make such bilocal operators
gauge invariant, one needs to introduce appropriate gauge
links between the field strength tensors. Two important
choices in this regard are, (a) the staple gauge links and
(b) the straight gauge links. The staple gauge links may
show up either as the past-pointing or as the future-pointing
links. This leads to two main types of OAMs, namely, the
dipole type and the Weizsäcker-Williams (WW) type. The
dipole OAM contains both the past and future links (Fig. 1),
while the Weizsäcker-Williams–type OAM contains either
the past-pointing or the future-pointing links along the light
cone (Fig. 2)—nonetheless, both of them lead to the Jaffe-
Manohar [3] definition of the OAM operator. The gauge
links connecting the two space-time points could also be
the straight one as shown in Fig. 3, leading to Ji’s [4]
definition of OAM.
In this study, we have derived a generalized form of the

gauge-invariant OAM operator, presented in Eq. (42),
which accommodates all possible geometrics of the gauge
links. In the appropriate limit, the operator reproduces both

(a)

(b)

FIG. 1. The gauge link structure ½η1; η2� equals ½−∞;þ∞†� and
½þ∞;−∞†�. Both correspond to the dipole-type Jaffe-Manohar
(JM) orbital angular momentum.
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Jaffe-Manohar’s and Ji’s operator structures and offers a
continuous analytical interpolation between the two. Next,
we jotted down some of the key points that motivate having
a generalized operator and the continuous interpolation like
the one we studied in this work.

A. Potential OAM: The integrated torque
accumulated by a gluon

A straight Wilson line gauge link yields Ji orbital angular
momentum, while an infinite staple-shaped gauge link
yields Jaffe-Manohar orbital angular momentum. Unlike
the Ji OAM, the Jaffe-Manohar decomposition of OAM is
affected by the final- or/and initial-state interactions.
Hence, the difference between the two is often interpreted
as the integrated torque accumulated by a gluon struck in a
deep inelastic scattering (DIS) process as it enters or exits
the proton, through initial- or final-state interactions—
exerted on the outgoing quark or gluon by the chromo-
magnetic field produced by the spectators. The difference
between the two OAMs is directly connected to the off-
forward extension of a Qiu-Sterman term and often cited as
potential OAM [5].

B. Quasi-PDF in lattice: Connection to TMDs in DIS
and Drell-Yan processes

The operator defining the quasi-parton distribution
functions (PDF) involves a straight line link from 0 to z
rather than a staple link often appearing in the definitions of
transverse momentum dependent parton distribution func-
tions (TMDs) to describe the Drell-Yan and semi-inclusive
DIS processes. While the staple link reflects initial- and
final-state interactions inherent in these processes, the
straight link describes the internal structure of the hadron
when it is in the nondisturbed or primordial state. It is
unlikely that such a TMD can be measured in a scattering
experiment; however, being a well-defined object, they can
be measured in the lattice. As the quasi-PDF is defined with
space separation connected by a straight gauge link, a
proper synergy of two-dimensionsl (2D) Fourier transform
and interpolation like the one addressed in this work can
connect it to the TMDs that show up in the scattering
processes [6].

C. TMD PDFs: Weizsäcker-Williams to dipole

Unintegrated gluon distribution or transverse momen-
tum-dependent gluon distribution functions are one of the
key topics to be fully investigated in the upcoming EIC.
The TMD PDFs can either be probed in quark-antiquark jet
correlation in DIS (the Weizsäcker-Williams distribution)
or the direct photon-jet correlation in pA collision. The
various TMD PDFs involved in different processes spe-
cifically in different dijet channels in pA or eA collisions
are related by the two universal ones: the Weizsäcker-
Williams TMD and the dipole TMD specifically in small x
at the large Nc limit. Both the WW distribution and dipole
distribution are essentially dimension-4 two-point correla-
tion functions of classical gluon fields. The operator
definitions are different only in the way the gauge links
are oriented. An interpolation of the link, the kind we
studied here, leads to a universal structure that can
reproduce WW and dipole TMD at the appropriate limit.
In Sec. II, we briefly review the essentials of canonical

gauge-invariant decomposition, of parton angular momen-
tum by Chen et al., where one has to separate the gauge
potential into the so-called pure part and physical or
dynamical parts. In Sec. III, we studied the transverse
derivatives of the staple gauge links along the light cone.
Here, we introduced two parameters, η1 and η2, to make the
extent of the gauge link arbitrary with the anticipation that
at different combinations of the limit of the parameters it
would produce the past-pointing, the future-pointing, or
near-straight gauge links. We finally express the transverse
derivative of such a general gauge link in terms of the pure
and physical gauge components. This also explicitly con-
tains the gauge link extent parameters. In Sec. IV, we recall
the connection between the orbital angular momentum of
gluons and the gluon Wigner distribution and then derive
the OAM operators in terms of pure gauge and the extent

(a)

(b)

FIG. 2. The gauge link structure ½η1; η2� equals ½−∞;−∞†� and
½þ∞;þ∞†�. Both correspond to the Weizsäcker-Williams–type
Jaffe-Manohar (JM) orbital angular momentum.

(a)

(b)

FIG. 3. The straight gauge link structure ½η1; η2� equals ½0; 0†�.
This appears in Ji’s orbital angular momentum.
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parameters. In Sec. V, we move to the small-x eikonal limit
and go on to integrate both z− and z⊥, the position
components, which lead to the general gauge-invariant
OAM operator structure, valid for arbitrary geometry of the
gauge link at small x. In Sec. VI, we briefly note the results
for subeikonal cases. We conclude and give our outlook at
the end.

II. GAUGE-INVARIANT DECOMPOSITION OF
ANGULAR MOMENTUM

Decomposition of angular momentum in a gauge-invari-
ant way can be achieved by separating the gauge field into
the pure and physical parts of the field, first proposed by
Chen et al. [7,8],

Aμ ¼ Apure
μ þ Aphys

μ : ð3Þ

Pure gauge field as a differential 1-form defined by
identically vanishing the corresponding 2-form as,

Fpure
μν ¼ ∂μA

pure
ν − ∂νA

pure
μ − ig½Apure

μ ; Apure
ν � ¼ 0: ð4Þ

One can define covariant derivative as well,

Dpure
μ ¼ ∂μ − igApure

μ : ð5Þ

The covariant derivative satisfies the commutation relation
that vanishes because field tensor vanishes identically,

½Dpure
μ ; Dpure

ν � ¼ −igFpure
μν ¼ 0: ð6Þ

Under gauge transformation, the pure part of the gauge
field transforms as

Apure
μ ⟼Apure

μ ¼UðxÞApure
μ U−1ðxÞþ i

g
UðxÞ∂μU−1ðxÞ; ð7Þ

On the other hand, the physical part of the gauge field
transform as

Aphys
μ ↦ Aphys

μ ¼ UðxÞAphys
μ U−1ðxÞ ð8Þ

and makes the field strength tensor nonzero,

Fμν ≡Dpure
μ Aphys

ν −Dpure
ν Aphys

μ − ig½Aphys
μ ; Aphys

ν �: ð9Þ

This makes the physical part of the gauge field to be
dynamical degrees of freedom of the theory. The covariant
derivative in the adjoint representation is defined as

Dpure
μ Aphys

ν ¼ ∂μA
phys
ν − ig½Apure

μ ; Aphys
ν �: ð10Þ

One often defines the natural gauge as the gauge where
Apure
μ ¼ 0 and Aμ ¼ Aphys

μ . Now, this separation of gauge

field in terms of pure and physical parts is not unique, as
still some gauge freedom remain. This requires further
constraint on Aphys

μ , which essentially makes it, instead of
local, a nonlocal functional of full gauge field, e.g., in the
Aþ
phys ¼ 0 gauge, as

Aμ
phys;�ðx−; x⊥Þ ¼

Z
x−

�∞−
dω−Uðx−;ω−; x⊥Þ

× Fþμðω−; x⊥ÞUðω−; x−; x⊥Þ; ð11Þ

where

Uða−; b−; x⊥Þ≡ P
�
ig
Z

a−

b−
dx−Aþðx−; x⊥Þ

�
: ð12Þ

For recent review and a comprehensive study within scalar
diquark model, see Ref. [9].

III. TRANSVERSE DERIVATIVE OF STAPLE
GAUGE LINKS WITH FINITE EXTENT

In this section, we review the derivative of a staple gauge
link with respect to transverse coordinate, along the light
cone,

U ½η�ð0;zÞ¼Uð0;η−;0⊥ÞUðη−;0⊥;z⊥ÞUðη−;z−;z⊥Þ: ð13Þ

In the limit η ¼ þ∞− and η ¼ −∞−, the link above
becomes past-pointing and future-pointing staple infinite
gauge links along the light cone,

U ½η¼−∞� ¼Uð0;−∞−;0⊥ÞUð−∞−;0⊥;z⊥ÞUð−∞−;z−;z⊥Þ;
ð14Þ

U ½η¼þ∞� ¼ Uð0;∞−; 0⊥ÞUð∞−; 0⊥; z⊥ÞUð∞−; z−; z⊥Þ:
ð15Þ

Another interesting limit is when η → 0, which is not
exactly the straight gauge link but the staple link with the
shortest extent. This is partly motivated by the recent work
by Engelhardt et al., who consider a general form of the
staple-shaped path and make an interpolation between both
Ji and Jaffe-Manohar orbital angular momenta when
calculating the OAM of quarks on the lattice using the
direct derivative method [10].
We now recall the Wilson line from y to z along some

arbitrary path C that can be parametrized via sμ,

Uðz; yÞ ¼ P exp
�
ig
Z

z

y;C
AμðsÞdsμ

�
: ð16Þ

The position derivative of the Wilson line at any point on
the path C is given by
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∂

∂xλ
Uðz; yÞ ¼ igUðz; sÞAμðsÞ

∂sμ

∂xλ
Uðs; yÞ

����
s¼z

s¼y
þ ig

Z
z

y
dsνUðz; sÞFμνðsÞ

∂sμ

∂xλ
Uðs; yÞ: ð17Þ

Equation (17) can be used to derive the derivative of U ½η�ð0; zÞ as given in Eq. (13) with respect to z⊥ as

∂

∂zi⊥
U ½η�ð0; zÞ ¼ þigUð0−; η−; 0⊥ÞAiðη−; 0⊥ÞUðη−; 0⊥; z⊥ÞUðη−; z−; z⊥Þ

− igUð0−; η−; 0⊥ÞUðη−; 0⊥; z⊥ÞUðη−; z−; z⊥ÞAiðz−; z⊥Þ

þ igUð0−; η−; 0⊥Þ
Z

0⊥

z⊥
dω⊥Uðη−; 0⊥;ω⊥ÞF⊥iðη−;ω⊥ÞUðη−;ω⊥; z⊥ÞUðη−; z−; z⊥Þ

þ igUð0−; η−; 0⊥ÞUðη−; 0⊥; z⊥Þ
Z

η−

z−
dω−Uðη−;ω−; z⊥ÞFþiðω−; z⊥ÞUðω−; z−; z⊥Þ: ð18Þ

In the limit zi⊥ → 0, the expression simplifies further as

lim
zi⊥→0

∂

∂zi⊥
U ½η�ð0; zÞ ¼ igUð0−; η−; 0⊥ÞAiðη−; 0⊥ÞUðη−; z−; 0⊥Þ − igUð0−; z−; 0⊥ÞAiðz−; 0⊥Þ

þ ig
Z

η−

z−
dω−Uð0−;ω−; 0⊥ÞFþiðω−; 0⊥ÞUðω−; z−; 0⊥Þ: ð19Þ

Special case: (η → �∞)

limzi⊥→0

∂

∂zi⊥
U ½η¼�∞�ð0; zÞ

����
η−→�∞

¼ igUð0−;�∞−; 0⊥ÞAið�∞−; 0⊥ÞUð�∞−; z−; 0⊥Þ − igUð0−; z−; 0⊥ÞAiðz−; 0⊥Þ

þ ig
Z �∞−

z−
dω−Uð0−;ω−; 0⊥ÞFþiðω−; 0⊥ÞUðω−; z−; 0⊥Þ: ð20Þ

We can now express Eq. (19) in terms of the physical gauge field Ai
phys;� and the pure gauge field Ai

pure,

lim
zi⊥→0

∂

∂zi⊥
U ½η�ð0; zÞ ¼ igUð0−; η−; 0⊥ÞAiðη−; 0⊥ÞUðη−; z−; 0⊥Þ − igUð0−; z−; 0⊥ÞAiðz−; 0⊥Þ

−Uð0−; η−; 0⊥ÞAi
phys;�ðη−; 0⊥ÞUðη−; z−; 0⊥Þ þ igUð0−; z−; 0⊥ÞAi

phys;�ðz−; 0⊥Þ
¼ igUð0−; η−; 0⊥ÞAi

pureðη−; 0⊥ÞUðη−; z−; 0⊥Þ − igUð0−; z−; 0⊥ÞAi
pureðz−; 0⊥Þ; ð21Þ

where we have used the definition of Aμ
phys as in Eq. (11) and also Eq. (3), which are based on the decomposition [7,8] of

gauge fields by Chen et al. as reviewed in the previous section.

IV. GLUON ORBITAL ANGULAR MOMENTUM

The orbital angular momentum of the gluon can be expressed as the phase-space average of the classical orbital angular
momentum weighted with the Wigner distribution of polarized gluons in a longitudinally polarized nucleon. The Wigner
distribution is essentially the phase-space distribution of gluons in transverse momentum (k⊥)–impact parameter (b⊥) space,

Wgðx; k⊥; b⊥Þ ¼
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥b⊥
Z

d2z⊥
ð2πÞ2 e

iz⊥k⊥
Z

dz−

2ð2πÞxPþ e−ixP
þz−

×

�
Pþ;−

Δ⊥
2

; S
���TrFþið0ÞU ½η1�ð0; zÞFþiðzÞU ½η2�ðz; 0Þ

���Pþ;
Δ⊥
2

; S

�
; ð22Þ

where S is the spin of the target states and the trace is in fundamental representation. The cross-product of transverse
momentum and impact parameter returns the orbital angular momentum of gluons, and integrating over them gives orbital
angular momentum distribution,
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LgðxÞ ¼
Z

d2b⊥d2k⊥ðb⊥ × k⊥ÞWgðx; k⊥; b⊥Þ; ð23Þ

¼
Z

d2b⊥d2k⊥ϵkjbk⊥k
j
⊥Wgðx; k⊥; b⊥Þ: ð24Þ

This can further be written as

LgðxÞ ¼
Z

d2b⊥ϵkjbk⊥
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥b⊥
Z

dz−

2ð2πÞxPþ e−ixP
þz−

× lim
zj⊥→0

1

i
∂

∂zj⊥

�
Pþ;−

Δ
2
; S
���TrFþið0ÞU ½η1�ð0; zÞFþiðzÞU ½η2�ðz; 0Þ

���Pþ;þΔ
2
; S

�
: ð25Þ

Now, the transverse derivative in Eq. (25) can be performed using Eq. (21), leading to

LgðxÞ ¼
Z

d2b⊥ϵkjbk⊥
Z

d2Δ⊥
ð2πÞ2 e

−iΔib⊥
Z

dz−

2ð2πÞxPþ e−ixP
þz− 1

i

�
Pþ;−

Δ
2
; S

����Tr
X5
m¼1

Oj
m

����Pþ;þΔ
2
; S

�
: ð26Þ

Here, the objects Om are defined for convenience and are as follows:

Oj
1 ¼ Fþið0ÞigUð0−; η−1 ; 0⊥ÞAj

pureðη−1 ; 0⊥ÞUðη−1 ; z−; 0⊥ÞFþiðz−; 0⊥ÞU ½η2�ðz−; 0−; 0⊥Þ;
Oj

2 ¼ −Fþið0ÞigUð0−; z−; 0⊥ÞAj
pureðz−; 0⊥ÞFþiðz−; 0⊥ÞU ½η2�ðz−; 0−; 0⊥Þ;

Oj
3 ¼ Fþið0ÞU ½η1�ð0−; z−; 0⊥Þ½∂jFþiðz−; z⊥Þ�z⊥¼0U ½η2�ðz−; 0−; 0⊥Þ;

Oj
4 ¼ Fþið0ÞU ½η1�ð0; z−; 0⊥ÞFþiðz−; 0⊥ÞigAj

pureðz−; 0⊥ÞUðz−; 0−; 0⊥Þ;
Oj

5 ¼ −Fþið0ÞU ½η1�ð0; z−; 0⊥ÞFþiðz−; 0⊥ÞigUðz−; η−2 ; 0⊥ÞAj
pureðη2−; 0⊥ÞUðη−2 ; 0−; 0⊥Þ:

Equation (26) can further be simplified as

LgðxÞ ¼ ϵkj lim
Δk→0

∂

∂Δk

Z
dz−

2ð2πÞxPþ e−ixP
þz−

�
Pþ;−

Δ
2
; S

����Tr
X5
m¼1

Oj
m

����Pþ;þΔ
2
; S

�
: ð27Þ

Until now, we have not taken any assumptions specifically for small x. The problem is now reduced to performing the z−

integration in Eq. (27). Now, we expand the exponential in Eq. (27),

LgðxÞ ¼ ϵkj lim
Δk→0

∂

∂Δk

Z
dz−

2ð2πÞxPþ e−ixP
þz−

�
Pþ;−

Δ
2
; S

����Tr
X5
m¼1

Oj
m

����Pþ;þΔ
2
; S

�

¼ ϵkj lim
Δk→0

∂

∂Δk

Z
dz−

2ð2πÞ
X∞
n¼0

ð−iÞnðxPþÞn−1z−n
�
Pþ;−

Δ
2
; S

����Tr
X5
m¼1

Oj
m

����Pþ;þΔ
2
; S

�

≡ ϵkj
�
1

x
Ljk
g;0ðxÞ þ Ljk

g;1ðxÞ þ xLjk
g;2ðxÞ þ x2Ljk

g;3ðxÞ þ � � �
�
: ð28Þ

Here, Ljk
g;0ðxÞ, Ljk

g;1ðxÞ, Ljk
g;2ðxÞ…, can be interpreted as eikonal, subeikonal, subsubeikonal contributions to the gluon

OAM. In this convention, subeikonal refers to the term suppressed by one power of x compared to the eikonal or leading
scattering, subsubeikonal refers to suppression by two powers of x, and so on. Any dependence on x, for the terms Ljk

g;0ðxÞ,
Ljk
g;1ðxÞ, Ljk

g;2ðxÞ…, can be estimated only by constructing and solving small-x evolution of the object inside the angle
brackets h…i. In the following, we will study the operator structure of eikonal and subeikonal terms in Eq. (28).
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V. GLUONS OAM AT EIKONAL LIMIT

In this leading order, we can approximate exp ð−ixPþz−Þ ≃ 1 and go ahead to perform the z− integration in Eq. (27).
Now, it is also important to isolate only the polarized contributions, from the object inside the angle bracket h…i, that would
give one more ϵij, in addition to the one that is already there originating from the definition of OAM, leading to surviving
OAM for gluons. Now, before we proceed, it will be convenient to define the following Parity and Time reversal (PT)-even
and PT-odd parts of Aphys,

Aμ
phys;eðxÞ ¼

1

2
½Aμ

phys;þðxÞ þ Aμ
phys;−ðxÞ�

¼ −
1

2

Z þ∞−

−∞−
dy−ϵðy−ÞUðx−; y−; x⊥ÞFþμðy−; x⊥ÞUðy−; x−; x⊥Þ ð29Þ

Aμ
phys;oðxÞ ¼

1

2
½Aμ

phys;þðxÞ − Aμ
phys;−ðxÞ�

¼ −
1

2

Z þ∞−

−∞−
dy−Uðx−; y−; x⊥Þ × Fþμðy−; x⊥ÞUðy−; x−; x⊥Þ; ð30Þ

with ϵðy−Þ being the sign function. Now, here, we list the integral over z− of the respectiveOm (details of z− integrations are
in the Appendix),Z

dz−Oj
1 ¼ −2igFþið0−; 0⊥ÞUð0−; η−1 ; 0⊥ÞAj

pureðη−1 ; 0⊥ÞUðη−1 ; η−2 ; 0⊥ÞAi
phys;oðη−2 ; 0⊥ÞUðη−2 ; 0−; 0⊥ÞZ

dz−Oj
2 ¼ 2igFþið0−; 0⊥ÞAj

resð0−; 0⊥ÞAi
phys;oð0−; 0⊥ÞZ

dz−Oj
3 ¼ −2Fþið0−; 0⊥Þ∂jAi

phys;oð0−; 0⊥ÞZ
dz−Oj

4 ¼ −2igFþið0−; 0⊥ÞAi
phys;oð0−; 0⊥ÞAj

resð0−; 0⊥ÞZ
dz−Oj

5 ¼ 2igFþið0−; 0⊥ÞUð0−; η−1 ; 0⊥ÞAi
phys;oðη−1 ; 0⊥ÞUðη−1 ; η−2 ; 0⊥ÞAj

pureðη−2 ; 0⊥ÞUðη−2 ; 0−; 0⊥Þ:

This results can be supplemented back to Eq. (27) to arrive at the final expression of the gluon OAM at small x,

Ljk
g;0ðxÞ ¼ − lim

Δk→0

∂

∂Δk

D
Pþ;−

Δ
2
; SjTrFþið0−; 0⊥Þ∂jAi

phys;oð0−; 0⊥ÞjPþ;þΔ
2
; S
E

− lim
Δk→0

∂

∂Δk

D
Pþ;−

Δ
2
; SjTrFþið0−; 0⊥Þig½Ai

phys;o; A
j
res�ð0−; 0⊥ÞjPþ;þΔ

2
; S
E

− lim
Δk→0

∂

∂Δk

D
Pþ;−

Δ
2
; SjigFþið0−; 0⊥ÞUð0−; η−1 ; 0⊥Þ½Aj

pureðη−1 ; 0⊥ÞUðη−1 ; η−2 ; 0⊥ÞAi
physðη−2 ; 0⊥Þ

− Ai
physðη−1 ; 0⊥ÞUðη−1 ; η−2 ; 0⊥ÞAj

pureðη−2 ; 0⊥Þ�Uðη−2 ; 0−; 0⊥ÞjPþ;þΔ
2
; S
E
: ð31Þ

In the contour gauge, e.g., in the Aþ ¼ 0 gauge, Ares ¼ Apure, which leads to

½Ai
phys;o; A

j
res� ↦ ½Ai

phys;o; A
j
pure�: ð32Þ

The eikonal contribution to the gluon OAM operator, Lg
0ðxÞ, using Eq. (30), can then be written as
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Ljk
g;0ðx; k⊥;Δ⊥; SÞ ¼ −

1

2
lim
Δk→0

∂

∂Δk

�
Pþ;−

Δ
2
; S

����TrFþið0−; 0⊥ÞDj
pureðAi

phys;þ − Ai
phys;−Þð0−; 0⊥Þ

����Pþ;þΔ
2
; S

�

−
1

2
lim
Δk→0

∂

∂Δk

�
Pþ;−

Δ
2
; S

����igFþið0−; 0⊥ÞUð0−; η−1 ; 0⊥Þ½Aj
pureðη−1 ; 0⊥ÞUðη−1 ; η−2 ; 0⊥Þ

× ðAi
phys;þ − Ai

phys;−Þðη−2 ; 0⊥Þ − ðAi
phys;þ − Aj

phys;−Þðη−1 ; 0⊥ÞUðη−1 ; η−2 ; 0⊥ÞAj
pureðη−2 ; 0⊥Þ�

×Uðη−2 ; 0−; 0⊥Þ
����Pþ;þΔ

2
; S

�
; ð33Þ

where we have explicitly shown the presence of Ai
phys;� in

the expression. Now, under PT transformation,

Δ⊥ → −Δ⊥;
S → −S;

Fμν → −Fμν;

Aμ
phys;� → Aμ

phys;∓: ð34Þ

This implies that Ljk
g;0ðx; k⊥;Δ⊥; SÞ and its PT transformed

pair are identical, i.e.,

Ljk
g;0ðx; k⊥;Δ⊥; SÞ ¼ Ljk

g;0ðx;−k⊥;−Δ⊥;−SÞ; ð35Þ

which ensures that the off-forward matrix elements, in
Ljk
g;0ðx; k⊥;Δ⊥; SÞ, do not have any spin-dependent struc-

ture of the following form:

i
Sþ

Pþ ϵlmΔl⊥km⊥… ð36Þ

In the absence of another totally antisymmetric tensor ϵ
inherent to Ljk

g;0, the eikonal contribution in Eq. (28)
vanishes as

ϵkjLjk
g;0 ¼ 0: ð37Þ

The nonvanishing spin effect starts showing up only at the
subeikonal level, which we will discuss next.

VI. GLUON OAMAT FIRST SUBEIKONAL ORDER

When one moves to next nontrivial order in the expan-
sion of the exponential, as exp ð−ixPþz−Þ ≃ 1 − ixPþz−,
the additional i makes all leading T-even terms be T odd,
leading to nonzero contribution to gluon OAM for longi-
tudinally polarized targets,

Ljk
g;1ðxÞ ¼ iPþ lim

Δk→0

∂

∂Δk

�
Pþ;−

Δ
2
; S

����TrFþið0−; 0⊥Þ∂jŌi
phys;�ð0−; 0⊥Þ

����Pþ;þΔ
2
; S

�

þ iPþ lim
Δk→0

∂

∂Δk

�
Pþ;−

Δ
2
; S

����TrFþið0−; 0⊥Þig½Ōi
phys;�; A

j
res�ð0−; 0⊥Þ

����Pþ;þΔ
2
; S

�

þ iPþ lim
Δk→0

∂

∂Δk

�
Pþ;−

Δ
2
; S

����igFþið0−; 0⊥ÞUð0−; η−1 ; 0⊥Þ½Aj
pureðη−1 ; 0⊥ÞUðη−1 ; η−2 ; 0⊥ÞŌi

phys;�ðη−2 ; 0⊥Þ

− Ōi
phys;�ðη−1 ; 0⊥ÞUðη−1 ; η−2 ; 0⊥ÞAj

pureðη−2 ; 0⊥Þ�Uðη−2 ; 0−; 0⊥Þ
����Pþ;þΔ

2
; S
�

ð38Þ

where

Ōi
phys;�ðxÞ ¼ −

1

2

Z þ∞−

−∞−
dz−z−Uðx−; z−; x⊥ÞFþiðz−; x⊥ÞUðz−; x−; x⊥Þ: ð39Þ

This is essentially the z− moment of the physical gauge Ai
phys;o in Eq. (42). However, unlike A

i
phys;o, the object Ō

i
phys;� in the

above expression is PT even, similar to Eq. (29), because of the presence of an extra z−, in the integrand, which can be
written as z− ¼ jz−jsignðz−Þ. This implies that, unlike Ljk

g;0, the term Ljk
g;1ðx; k⊥;Δ⊥; SÞ is odd under PT transformation as
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Ljk
g;1ðx; k⊥;Δ⊥; SÞ ¼ −Ljk

g;1ðx;−k⊥;−Δ⊥;−SÞ: ð40Þ

One would expect to get a nontrivial contribution to the gluon OAM, in a longitudinally polarized proton, right from this
order. As the expression originally stems from a Fourier transform, one can get the intermediate time z− out of the integral to
have an overall energy derivative,

Ōi
phys;�ðxÞ ¼ −

1

2
i∂þk

Z þ∞−

−∞−
dz−Uðx−; z−; x⊥ÞFþiðz−; x⊥ÞUðz−; x−; x⊥Þ;

¼ −
1

2
i∂þk ðAi

phys;þ − Ai
phys;−Þ; ð41Þ

which leads to

Ljk
g;1ðx; k⊥;Δ⊥; SÞ ¼

1

2
lim
Δk→0

∂

∂Δk

∂

∂x

�
Pþ;−

Δ
2
; S⊥

����TrFþið0−; 0⊥ÞDj
pureðAi

phys;þ − Ai
phys;−Þð0−; 0⊥Þ

����Pþ;þΔ
2
; S⊥

�

þ 1

2
lim
Δk→0

∂

∂Δk

∂

∂x

�
Pþ;−

Δ
2
; S⊥

����igFþið0−; 0⊥ÞUð0−; η−1 ; 0⊥Þ½Aj
pureðη−1 ; 0⊥ÞUðη−1 ; η−2 ; 0⊥Þ

× ðAi
phys;þ − Ai

phys;−Þðη−2 ; 0⊥Þ − ðAi
phys;þ − Aj

phys;−Þðη−1 ; 0⊥ÞUðη−1 ; η−2 ; 0⊥ÞAj
pureðη−2 ; 0⊥Þ�

× Uðη−2 ; 0−; 0⊥Þ
����Pþ;þΔ

2
; S⊥

�
: ð42Þ

This also corroborates the fact that in the Taylor expansion
of the phase factor expðixPþz−Þ only the odd terms in x can
contribute to the gluon OAM for the longitudinally polar-
ized proton [11].

VII. CONCLUSION

Recently, the connection between gluon Wigner distri-
bution and gluon orbital angular momentum has been used
to probe the gluon OAM in the hard scattering process at
the Electron-Ion Collider. The single longitudinal spin
asymmetry in hard diffractive dijet production is found
to be sensitive to the gluon orbital angular momentum
distribution, at least in the moderate x range [12]. On the
theoretical front, specifically at small x, Hatta [11,13]
presented a general analysis of the orbital angular momen-
tum of distribution of gluons. Novel operator representation
of LgðxÞ has been derived at the small-x limit and
interestingly found to contain covariant derivatives inserted
at some intermediate time between the far past and far
future. Moreover, the orbital angular momentum distribu-
tion was found to be proportional to the gluon helicity
distributions LgðxÞ ≈ −ΔGðxÞ at small x. Subsequently,
Kovchegov [14] derived the small-x asymptotics of the
gluon orbital angular momentum distribution of proton in
the double logarithmic approximation. The procedure
adopted was to start with the operator definition of gluon
OAM, simplifying it at small x and relating it to the
polarized dipole amplitudes for the gluon helicities. The

small-x asymptotic of the latter was then utilized to
derive the small-x asymptotic of the OAM at the large-
Nc limit.
In this work, we studied the transverse derivatives of the

staple gauge links, with varying extent along the light cone.
This is partly motivated by the recent work by Engelhardt
et al. [10], who considered a general form of a staple-
shaped path and computed both Ji and Jaffe-Manohar
orbital angular momentum in lattice using the direct
derivative method. The derivative of such a gauge link
with respect to the transverse position at the zero transverse
position limit has been calculated and expressed in terms of
the pure gauge components of the gauge fields within the
framework of the decomposition of gauge fields of
Chen et al.
Wigner distribution of the gluon is essentially the

distribution of gluons in impact parameter and transverse
momentum space. The connection between the two has
been recalled to derive the OAM distribution in terms of the
pure or physical gauge components and the gauge link
parameters. After performing the integration over both the
z− and z⊥, we derive the general operator form of the OAM,
of gluons in a longitudinally polarized proton, which is
valid for all possible geometrics of the gauge links. At an
appropriate combination of the extent parameters, this
correctly reproduces both Jaffe-Manohar and Ji’s OAM,
and offers a continuous analytical interpolation between the
two, for gluon OAM distribution in a longitudinally
polarized proton.
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APPENDIX: INTEGRATION OVER z−

1. For Oj
1 and Oj

5

Z
dz−Oj

1 ¼
Z

dz−Fþið0ÞigUð0−; η−1 ; 0⊥ÞAj
pureðη−1 ; 0⊥ÞUðη−1 ; z−; 0⊥ÞFþiðz−; 0⊥ÞU ½η2�ðz−; 0−; 0⊥Þ:

Now,

U ½η2�ðz−; 0−; 0⊥Þ ¼ Uðz−; 0−; 0⊥Þ; ðA1Þ

and

Z þ∞

−∞
dz−Uðη−2 ; z−; 0⊥ÞFþiðz−; 0⊥ÞUðz−; η−2 ; 0⊥Þ ¼ −

Z
η−
2

þ∞
dz−Uðη−2 ; z−; 0⊥ÞFþiðz−; 0⊥ÞUðz−; η−2 ; 0⊥Þ

þ
Z

η−
2

−∞
dz−Uðη−2 ; z−; 0⊥ÞFþiðz−; 0⊥ÞUðz−; η−2 ; 0⊥Þ

¼ −Aphys;þðη−2 ; 0⊥Þ þ Aphys;−ðη−2 ; 0⊥Þ
¼ −2Aphys;oðη−2 ; 0⊥Þ:

Therefore,

Z
dz−Oj

1 ¼ −2igFþið0−; 0⊥ÞUð0−; η−1 ; 0⊥ÞAj
pureðη−1 ; 0⊥ÞUðη−1 ; η−2 ; 0⊥ÞAi

phys;oðη−2 ; 0⊥ÞUðη−2 ; 0−; 0⊥Þ:

Similarly, one can get

Z
dz−Oj

5 ¼ −
Z

dz−Fþið0ÞU ½η1�ð0; z−; 0⊥ÞFþiðz−; 0⊥ÞigUðz−; η−2 ; 0⊥ÞAj
pureðη2−; 0⊥ÞUðη−2 ; 0−; 0⊥Þ

¼ 2igFþið0−; 0⊥ÞUð0−; η−1 ; 0⊥ÞAi
phys;oðη−1 ; 0⊥ÞUðη−1 ; η−2 ; 0⊥ÞAj

pureðη−2 ; 0⊥ÞUðη−2 ; 0−; 0⊥Þ:

2. For Oj
2 and Oj

4

Z
dz−Oj

2 ¼ −
Z

dz−Fþið0−; 0⊥ÞigUð0−; z−; 0⊥ÞAj
pureðz−; 0⊥ÞFþiðz−; 0⊥ÞU ½η2�ðz−; 0−; 0⊥Þ:

In the first step, we perform the transformation of Apure at ðz−; 0⊥Þ to the reference point ð0−; 0⊥Þ,

Uð0−; z−; 0⊥ÞAj
pureðz−; 0⊥ÞUðz−; 0−; 0⊥Þ ↦ Aj

resð0−; 0⊥Þ;

and then perform the z− integration,
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Z þ∞

−∞
dz−Uð0−; z−; 0⊥ÞFþiðz−; 0⊥ÞUðz−; 0−; 0⊥Þ

¼ −2Aphys;oð0−; 0⊥Þ;

which leads to

Z
dz−Oj

2 ¼ 2igFþið0−; 0⊥ÞAj
resð0−; 0⊥ÞAphys;oð0−; 0⊥Þ;

Similarly,

Z
dz−Oj

4 ¼ −2igFþið0−; 0⊥ÞAphys;oð0−; 0⊥ÞAj
resð0−; 0⊥Þ:

3. For Oj
3

Z
dz−Oj

3 ¼
Z þ∞

−∞
dz−Fþið0ÞU ½η1�ð0−; z−; 0⊥Þ

× ½∂jFþiðz−; z⊥Þ�z⊥¼0U ½η2�ðz−; 0−; 0⊥Þ:

To perform integration, we shall first change the order of
the integration and differentiation. This is legitimate, as
both are linear operators. This will lead to

Z
dz−Oj

3 ¼ −2Fþið0−; 0⊥Þ∂jAi
phys;oð0−; 0⊥Þ:
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