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We find that the chiral phase transition (chiral crossover) in QCD at a physical point is triggered by a big
imbalance among three fundamental quantities essential for the QCD vacuum structure; susceptibility
functions for the chiral symmetry, axial symmetry, and the topological charge. The balance, dobbed the
QCD trilemma, is unavoidably violated when one of the magnitudes among them is highly dominated, or
suppressed. Based on a three-flavor Nambu-Jona-Lasinio model, we explicitly evaluate the amount of
violation of the QCD trilemma at a physical point, and show that the violation takes place not only at
vacuum, but even in a whole temperature regime including the chiral-crossover epoch. This work confirms
and extends the suggestion recently reported from lattice QCD with two flavors on the dominance of the
axial and topological susceptibilities left in the chiral susceptibility at high temperatures. It turns out that the
imbalance is essentially due to the flavor symmetry violation of the lightest three flavors, and the flavor
breaking specifically brings enhancement of the axial anomaly contribution in the chiral-order parameter,
while the strength of the axial breaking and the transition rate of the topological charge are fairly insensitive
to the flavor symmetry. The violation of the QCD trilemma and its flavor dependence can be tested by
lattice simulations with 2þ 1 flavors in the future, and would also give a new guiding principle to explore
the flavor dependence of the chiral phase transition, such as the Columbia plot, including a possible
extension with external fields.
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I. INTRODUCTION

The chiral phase transition is of importance to compre-
hend the QCD vacuum, and is also essential to figure out
the origin of mass in a view of thermal history of the
universe. So far, plenty of studies on the chiral phase
transition have extensively been worked out through the

nonperturbative analysis in lattice simulations, and also
chiral effective models of QCD. However, as argued in the
literature [1,2], it still, it is not well understood whether the
chiral symmetry breaking is the most dominant source of
the origin of mass, even in presence of contamination with
the Uð1ÞA anomaly, and by what mechanism it is restored
faster than the Uð1ÞA symmetry at a high temperature.
The order parameter of the chiral symmetry is given by

the quark condensate, which can alternatively be signaled
by difference of meson correlation functions for the chiral
partners; the latter is referred to as an indicator of the chiral-
breaking strength. Despite being so simple and well
defined, the chiral-order parameter at a physical point is
actually involved, due to finite quark masses, which
explicitly break the chiral symmetry. Indeed, the chiral
symmetry is restored at high temperatures only in part,
referred to as the chiral crossover [3,4]. Actually, it gets
more intricate because the chiral-order parameter (the
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indicator of the chiral breaking strength) couples with the
indicator of the axial breaking strength and topological
features of the QCD vacuum via finite quark masses. The
latter tagging is captured by a robust relation between the
indicators for the chiral SUð2ÞL × SUð2ÞR symmetry and
Uð1ÞA axial symmetry, which is constructed from a set of
generic anomalous Ward identities for the three-flavor
chiral SUð3ÞL × SUð3ÞR symmetry [5,6] (for more details,
see also the next section),

χη−δ ¼ χπ−δ þ
4

m2
l

χtop; ð1Þ

where ml ¼ mu ¼ md is the isospin-symmetric mass for
the lightest up and down quarks; χη−δ ≡ χη − χδ and χπ−δ ≡
χπ − χδ are differences of meson susceptibilities related to
the partners for the chiral symmetry (χη and χδ)—an
indicator for the strength of the chiral SUð2Þ symmetry
breaking, and axial symmetry (χδ and χπ)—an indicator for
the strength of the Uð1ÞA axial breaking. χtop is the
topological susceptibility related to the transition rate of
the topological charge carried by the QCD θ vaccua. By the
chiral SUð2Þ and axial rotations, the meson susceptibilities
exchange their partners; χη ↔ χδ (chiral) and χπ ↔ χδ
(axial), hence χη−δ ¼ 0 and χπ−δ ¼ 0 are signals of resto-
rations of the associated symmetries. (χtop < 0 and other
susceptibilities are positive in our sign convention. See also
the next section.) Thus Eq. (1) dictates coherence of the
chiral SUð2Þ symmetry breaking and Uð1ÞA breaking,
linked with the transition rate of the topological charge,
where all the breaking is controlled by nonzero quark
masses. This anomalous Ward identity takes the same form
even in the decoupling limit of strange quarks, i.e., in the
lightest two-flavor limit.
Equation (1) plays the essential role in comprehending

how the effective restoration of the chiral symmetry is
correlated with that of the axial symmetry and the temper-
ature dependence of topological susceptibility in real-life
QCD. This gives a new guideline in the sense of exploring
the chiral phase transition constrained by Eq. (1), and
provides crucial clues to answer the questions posed above.
The lattice QCD simulations with 2þ 1 flavors at the

physical point have revealed a faster drop of χη−δ, than χπ−δ
around and above the pseudocritical temperature of the
chiral crossover [4]. In the case of two flavors at the chiral
limit, the effective restoration of the chiral and axial
symmetry has also been discussed through the meson
susceptibilities [7–9]
However, those are based on independent measurements

of two terms, χη−δ and χπ−δ, with the constraint of Eq. (1)
disregarded.
Measurements of χtop on lattice QCD with 2þ 1 flavors

at around physical point and its temperature dependence
have been reported [10–12], in light of detecting the
effective restoration of the Uð1ÞA symmetry assuming

the much faster restoration of the chiral SUð2Þ symmetry.
However, those are also individual observations, basically
separated from measurements of the chiral and axial
indicators. Therefore, it is yet uncovered how the temper-
ature dependence of χtop would correlate with the other two,
with reflecting the constraint of Eq. (1).
In a view of the coherence in Eq. (1), a recent lattice

study with two lightest flavors has, for the first time,
shown significant contributions from the axial and topo-
logical susceptibilities (χπ−δ and χtop) left in the chiral
susceptibility (χη−δ) in the chiral-crossover domain [2].
This would imply that the faster chiral crossover is
triggered by a sizable cancellation between axial and
topological susceptibilities, the two terms in the right-hand
side of Eq. (1).
To quantify the magnitude of such a cancellation, we

may define an ideal case with no preference among three
susceptibilities in magnitude in Eq. (1), so that the Ward
identity acts like a balance equation. We call this ideal
situation the “QCD trilemma”, and depict a triangle
diagram in Fig. 1. The degree of formation of QCD
trilemma can be evaluated via the following quantity,

R≡
4
m2

l
χtop þ χπ−δ

χη−δ − 4
m2

l
χtop

¼ 1þ
4
m2

l
χtop

χπ−δ
: ð2Þ

FIG. 1. Illustration of QCD trilemma and its violation. The
QCD vacuum structure is built upon the “Chiral SU(2)“, “U(1)
Axial”, and “Topological” features, which are related each other
by a balance relation in Eq. (1), where the “Chiral SU(2)“, “U(1)
Axial”, and “Topological” are monitored by χη−δ, χπ−δ, and
ð−4=m2

l Þ · χtop, respectively. Left panel: the QCD vacuum is
“balanced” and holds the trilemma by forming the equilateral
triangle with the same order of the weight amplitudes denoted by
blobs. Right panel: the trilemma is violated (imbalanced) when a
big cancellation between “U(1) Axial”, and “Topological” takes
place in Eq. (1), which is represented by the isosceles triangle
with one blob significantly reduced, keeping Eq. (1) and the
corresponding two sides stretched out. As it will be seen in the
text, real-life QCD is “imbalanced”.
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By using this R the Ward identity in Eq. (1) is rewritten as

χη−δ ¼ R · χπ−δ;

or −
4

m2
l

χtop ¼ ð1 − RÞ · χπ−δ; ð3Þ

so thatRmeasures the size of gap in magnitude between the
chiral (χη−δ) and axial (χπ−δ) susceptibilities, or the topo-
logical (χtop) and axial (χπ−δ) susceptibilities. Equation (3)

tells us that χη−δχπ−δ
¼ R and

ð− 4

m2
l

χtopÞ
χπ−δ

¼ 1 − R, so one may then
quantify the amount of balance to keep the QCD trilemma,
by saying that the three susceptibilities are balanced when

balanced∶ 0.1 < R < 0.9; ð4Þ

otherwise imbalanced along with a big gap of more than
one order of magnitude between two of three susceptibil-
ities. An ideal and optimized trilemma is thus realized when
R ¼ 0.5. We shall dub this R as the trilemma estimator. R
becomes ≪ 1 when axial and topological susceptibilities
get close each other with different sign in Eq. (2), which
would signal the faster effective restoration of the chiral
symmetry than that of the axial one through Eq. (3).
The aforementioned evidence observed by lattice sim-

ulations [4] on the faster drop of χη−δ than χπ−δ indicates
R ≪ 1 in a view of Eq. (3). The result from the recent lattice
study with the two lightest flavors in [2] can be rephrased as
R ≪ 1 in both Eqs. (2) and (3). Though not explicitly
addressed, and restricted only around the crossover regime,
this imbalance could also be read off from the existing
lattice QCD data with 2þ 1 flavors in [4] and also [2] by
taking into account possible finite volume effects and
statistical errors.
Thus, violation of the QCD trilemma has not been yet

explicitly explored at the physical point for 2þ 1 flavors on
the same lattice setting, and it is still unclear how axial and
topological susceptibilities, holding single Eq. (1) with the
chiral one, develop in a whole finite-temperature regime
and contributes to achieving the chiral crossover. Even in
the context of effective chiral models, no such discussion
along with Eq. (1) has so far been made together with
proper incorporation of the flavor-singlet condition for χtop
[6,13,14] (to the latter point, see also the next section).
Real-life QCD having 2þ 1 flavors at physical point might
be imbalanced in realizing the chiral crossover, through
undergoing a big cancellation between axial and topologi-
cal susceptibilities in the whole temperature regime.
In this paper, we discuss the violation of QCD trilemma

in real-life QCD based on a Nambu-Jona-Lasinio (NJL)
model, and give a qualitative interpretation of the mecha-
nism of the violation, namely the coherence among the
chiral, axial, and topological susceptibilities, constrained
by Eq. (1). Prior to the lattice simulations, we show that
real-life QCD indeed yields R ≪ 1, i.e., exhibits the

violation of QCD trilemma, in the whole temperature
regime including the chiral-crossover regime. We find that
the violation of the QCD trilemma, and the related
dominance of χπ−δ and χtop in the chiral-order parameter
at the crossover regime are due to the three-flavor sym-
metry violation.
Our findings are testable by lattice simulations, and

would help deeper understanding of the flavor dependence
of the chiral phase transition, mapped onto the so-called
Columbia plot [15]. Exploring the chiral (crossover) phase
transition along with the violation of the QCD trilemma
would lead to clues toward answering the posed questions;
the expected dominance of the chiral symmetry breaking in
the origin of mass, and deeper understanding of the
observed faster (effective) restoration of the chiral sym-
metry in the presence of contamination with the Uð1ÞA
anomaly.
This paper is organized as follows. In Sec. II we

introduce the preliminaries relevant to the discussion in
the later sections, which include definitions and generic
formulas for susceptibilities, as well as a concise derivation
of the anomalous chiral Ward identity. In Sec. III, the NJL
model that we work throughout this paper is introduced,
together with showing qualitative consistency of the model
predictions with the lattice data, which includes the temper-
ature dependence of the quark condensate, meson suscep-
tibilities, and topological susceptibilities. In Sec. IV we
discuss the QCD trilemma estimator R, in a whole temper-
ature region, including the chiral crossover regime, and
show the violation of the trilemma, imbalance of the real-
life QCD vacuum. We then demonstrate that the violation is
due to the three-flavor symmetry. Section V is devoted to
our conclusion, where several possible applications of the
notion of the QCD trilemma are also briefly addressed.

II. CENTRAL FORMULAS: TOPOLOGICAL
SUSCEPTIBILITY AND ANOMALOUS
CHIRAL WARD IDENTITIES IN QCD

In this section we begin by reviewing the generic
expression for the topological susceptibility χtop [6] with
the flavor singlet condition properly reflected [13,14], and
introduce the related anomalous chiral Ward identities in
QCD involving pseudoscalar susceptibilities χπ , χη and χδ.

A. Topological susceptibility: Flavor singlet nature

The topological susceptibility χtop is related to the θ
vacuum configuration of QCD. It is defined as the curvature
of the θ-dependent vacuum energy VðθÞ in QCD at θ ¼ 0,

χtop ¼ −
Z
T
d4x

δ2VðθÞ
δθðxÞδθð0Þ

����
θ¼0

; ð5Þ

where the temperature integral
R
T d

4x is defined asR 1=T
0 dτ

R
d3x with the imaginary time τ ¼ ix0, and VðθÞ
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denotes the potential of QCD, which is read off from the
generating functional of QCD (in Euclidean space),

ZQCD ¼
Z

½Πfdqfdq̄f�½dA�

× exp

�
−
Z
T
d4x

� X
f¼u;d;s

ðq̄fLiγμDμq
f
L þ q̄fRiγ

μDμq
f
R

þ q̄fLmfq
f
R þ q̄fRmfq

f
LÞ

þ 1

4g2
ðFa

μνÞ2 þ
iθ

32π2
Fa
μνF̃a

μν

��
: ð6Þ

Here qfLðRÞ denote the left-handed and right-handed quark

fields; the covariant derivative of the quark field is
represented as Dμ involving the gluon fields A, Fa

μν is
the field strength of the gluon fields with g being the QCD
coupling constant. For simplicity, the quark masses are
taken to be real and positive with the electroweak-induced
CP violation disregarded.
The form of the θ dependence on the QCD generating

functional is ambiguous, because the θ parameter can
always be shifted by the Uð1ÞA rotation through the
induced Uð1ÞA anomaly as well as the phase shift in the
quark mass term. Thus the QCD-θ vacuum is shifted by
the Uð1ÞA phase as well. Taking into account this shift, the
true QCD vacuum is determined so as to set the net θ to
zero, i.e., the CP invariant vacuum, as shown in the context
of Vafa-Witten’s theorem [16]. The topological suscep-
tibility χtop should then be evaluated at the true vacuum
with the net θ ¼ 0. This is how to properly compute
χtop [14].
Under the UAð1Þ rotation with the rotation angle θf, the

left- and right-handed quark fields are transformed as

qfL → exp ð−iθf=2ÞqfL;
qfR → exp ðiθf=2ÞqfR: ð7Þ

We then find that the extra phase factor shows up in the
QCD generating functional written in terms of the trans-
formed chiral quark fields,

Z
½Πfdqfdq̄f�½dA�

× exp

�
−
Z
T
d4x

� X
f¼u;d;s

ðq̄fLiγμDμq
f
L þ q̄fRiγ

μDμq
f
R

þ q̄fLmfeiθfq
f
R þ q̄fRmfe−iθfq

f
LÞ

þ 1

4g2
ðFa

μνÞ2 þ
iðθ − θ̄Þ
32π2

Fa
μνF̃a

μν

��
; ð8Þ

where θ̄ ¼Pf¼u;d;s θf ¼ θu þ θd þ θs.

We can take a phase convention in such a way that
the θ dependence goes away from the topological gluonic
term ðFF̃Þ,

θ ¼ θ̄ ¼ θu þ θd þ θs: ð9Þ

Instead, the quark mass term fully carries the θ-depend-
ence, which makes manifest presence of the strong CP
violation. Here, the CP-violating phases θu;d;s actually
involves redundancy, i.e., being not fully independent,
because the QCD interaction and the QCD vacuum
characterized by the three-flavor symmetric quark con-
densate are flavor blind (singlet). Therefore, we must
recover the flavor independence for those CP-violating
phases. Supposing a small enough θf (which is to be
consistent with the observation on θ < 10−10 from the
electric dipole moment of neutron), and expanding
the quark mass terms in powers of θfs, we find that the
CP-violating coupling terms at the nontrivial leading order
arise with the factor ofmfθf. Thus the desired flavor singlet
condition goes like [13],

muθu ¼ mdθd ¼ msθs ≡ x: ð10Þ

By using this flavor singlet condition together with Eq. (9),
θfs are determined to be proportional to θ as

θu ¼
m̄
mu

θ; θd ¼
m̄
md

θ; θs ¼
m̄
ms

θ; ð11Þ

where

m̄ ¼
�

1

mu
þ 1

md
þ 1

ms

�
−1
: ð12Þ

Thus the θ-dependent vacuum energy of QCD with the
flavor singlet nature properly reflected is

VQCDðθÞ¼−ln
�Z

½Πfdqfdq̄f�½dA�exp
�
−
Z
T
d4xLðθÞ

QCD

��
;

ð13Þ

where

LðθÞ
QCD ¼

X
f

ðq̄fLiγμDμq
f
L þ q̄fRiγ

μDμq
f
RÞ þ q̄LMθqR

þ q̄RM
†
θqL þ 1

4g2
ðFa

μνÞ2; ð14Þ

with Mθ being the θ-dependent quark matrix,
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Mθ ¼ diag

�
mu exp

�
i
m̄
mu

θ

�
; md exp

�
i
m̄
md

θ

�
;

ms exp

�
i
m̄
ms

θ

��
: ð15Þ

Based on Eq. (13), we evaluate χtop in Eq. (5), and find [6]

χtop ¼ m̄2

�hūui
ml

þ hd̄di
ml

þ hs̄si
ms

þ χuuP þ χddP

þ χssP þ 2χudP þ 2χusP þ 2χdsP

�

¼ 1

4
½mlðhūui þ hd̄diÞ þm2

l ðχuuP þ χddP þ 2χudP Þ�
¼ mshs̄si þm2

sχ
ss
P ; ð16Þ

where the pseudoscalar susceptibilities χuu;dd;udP , χssP , and
χus;dsP are defined as

χf1f2P ¼
Z
T
d4xhðq̄f1ð0Þiγ5qf1ð0ÞÞðq̄f2ðxÞiγ5qf2ðxÞÞi;

for qf1;2 ¼ u; d; s: ð17Þ

In Eq. (16) we have taken the isospin symmetric limit
mu ¼ md ≡ml. The signs of the quark masses and con-
densates are chosen to be positive and negative, respec-
tively, such that χtop < 0. Note that χtop → 0, when either of
quarks becomes massless (ml or ms → 0), reflecting the
flavor-singlet nature of the QCD vacuum [13,14].

B. Anomalous chiral Ward identities

The anomalous Ward identities regarding the chiral
SUð3ÞL × SUð3ÞR symmetry are directly read off from
chiral variations of the QCD potential in Eq. (13). The
central formula then takes the form

hδaObð0Þi ¼ −
Z
T
d4xhObð0Þ · q̄fðxÞiγ5fTa;MgqfðxÞi;

ð18Þ

where Ta ¼ λa=2 (a ¼ 1;…; 8) are generators of
SUð3Þ; δa stands for the infinitesimal variation of the
chiral SUð3Þ transformation associated with the generator
Ta, under which qf transforms as δaqf ¼ iγ5Taqf; Obð0Þ
(b ¼ 0;…; 8) is an arbitrary operator. In particular, for the
pseudoscalar operators Ob ¼ q̄fiγ5Tbqf, choosing a ¼ 1,

2, 3, 8 and b ¼ 0, 8 with T0 ¼ 1=
ffiffiffi
6

p
· 13×3, we get [5,6]

hūui þ hd̄di ¼ −mlχπ;

hūui þ hd̄di þ 4hs̄si ¼ −½mlðχuuP þ χddP þ 2χudP Þ
− 2ðms þmlÞðχusP þ χdsP Þ þ 4msχ

ss
P �;

hūui þ hd̄di− 2hs̄si ¼ −½mlðχuuP þ χddP þ 2χudP Þ
þ ðml − 2msÞðχusP þ χdsP Þ− 2msχ

ss
P �;
ð19Þ

where χπ denotes the pion susceptibility defined as

χπ ¼
Z
T
d4x½hðūð0Þiγ5uð0ÞÞðūðxÞiγ5uðxÞÞiconn

þ hðd̄ð0Þiγ5dð0ÞÞðd̄ðxÞiγ5dðxÞÞiconn�; ð20Þ

with h· · ·iconn being the connected part of the correlation
function. The form of the anomalous chiral Ward-identities
in Eq. (19) will be intact, as long as only the quark masses
gives the leading order of explicit chiral-breaking effects, as
evident in the chiral variation of Eq. (18).
Combining Ward identities in Eq. (19), we find

χtop ¼
1

2
mlmsðχusP þ χdsP Þ ¼ 1

4
m2

l ðχη − χπÞ; ð21Þ

where χη is the eta meson susceptibility, defined as

χη ¼
Z
T
d4x½hðūð0Þiγ5uð0ÞÞðūðxÞiγ5uðxÞÞi

þ hðd̄ð0Þiγ5dð0ÞÞðd̄ðxÞiγ5dðxÞÞi
þ 2hðūð0Þiγ5uð0ÞÞðd̄ðxÞiγ5dðxÞÞi�

¼ χuuP þ χddP þ 2χudP : ð22Þ

The last line of Eq. (21) can be written as

ðχη − χδÞ ¼ ðχπ − χδÞ þ
4

m2
l

χtop; ð23Þ

where χδ is the susceptibility for the delta meson channel
(a0 meson in terms of the Particle Data Group identifica-
tion), defined in the same way as χπ in Eq. (17) with the
factors of ðiγ5Þ replaced with identity 1. χη−δ ≡ χη − χδ and
χπ−δ ≡ χπ − χδ play the roles of the indicators to detect the
strength of the chiral and axial breaking, which signal the
restorations when those (asymptotically) reach zero.
Equation (23) is our central formula, which has been

inferred in Eq. (1), and will be explored in details in the
later section.

III. A CHIRAL EFFECTIVE MODEL: NJL

In this section we introduce an NJL model that we work
on, and give a couple of preliminaries for discussion on the
estimate of the QCD trilemma estimator R in Eq. (2), by
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showing consistency of the NJL estimates with currently
available lattice data on 2þ 1 flavors at a physical point.
Since the methodology to compute observables and
thermodynamic quantities in the model is standard and
fully described in a review [17], we will skip all the details,
and just present the final formulas directly used to the
numerical evaluation of the quark condensates and
susceptibilities.
The three-flavor NJL model Lagrangian that we work on

is constructed as follows:

L ¼ q̄ðiγμ∂μ −mÞqþ L4f þ LKMT;

L4f ¼
gs
2

X8
a¼0

½ðq̄λaqÞ2 þ ðq̄iγ5λaqÞ2�;

LKMT ¼ gD½det
i;j

qið1þ γ5Þqj þ H:c:�; ð24Þ

where q is the SUð3Þ triplet-quark field, q ¼ ðu; d; sÞT . The
current quark masses are embedded in the mass matrixm of
the form m ¼ diagðmu;md;msÞ.
The four-fermion interaction term L4f is invariant under

the chiral Uð3ÞL ×Uð3ÞR transformation: q → U · q with
U ¼ exp½−iγ5

P
8
a¼0ðλa=2Þθa� and the chiral phases θa.

The mass term in L explicitly breaks Uð3ÞL ×Uð3ÞR
symmetry. The determinant term LKMT, called the
Kobayashi-Maskawa-‘t Hooft (KMT) [18–21] term,
induced from the QCD instanton configuration, preserves
SUð3ÞL × SUð3ÞR invariance (associated with the chiral
phases labeled as a ¼ 1;…; 8) but breaks the Uð1ÞA
(corresponding to a ¼ 0) symmetry, measured by the
effective coupling constant gD.
The Uð1ÞA symmetry is anomalous due not only to the

quark mass terms, but also the KMT term reflecting the
underlying gluonic anomaly. Thus we have the anomalous
conservation law,

∂
μja¼0

μ ¼ 2iqmγ5q − 12gDIm½det q̄ið1 − γ5Þqj�: ð25Þ

The matching with the underlying QCD leads to an
operator relation; Q ¼ −4gDIm½det q̄ið1 − γ5Þqj�, where
Q ¼ g2=ð32π2ÞFa

μνF̃aμν is the topological charge. Using
this operator relation together with Eq. (5), one could
evaluate χtop as in the literature, e.g., Refs. [22–25] in the
framework of the NJL model with the mean-field approxi-
mation. However, this procedure makes the flavor-singlet
nature of the vacuum nontransparent. The identification of
χtop defined within the NJL model with the mean-field
approximation with that derived directly in QCD requires a
careful separate investigation ensuring the flavor singlet
nature of the vacuum in both theories. Instead, in the
present paper the NJL model is considered as a reduction of
the full QCD allowing the evaluation of the right-hand side
of Eq. (16) in which the flavor singlet nature is manifestly
built in.

The NJL model itself is a (perturbatively) nonrenorma-
lizable field theory because L4f and LKMT describe the
higher-dimensional interactions with mass dimension
greater than four. Therefore, a momentum cutoff Λ must
be introduced to make the NJL model regularized. We
adapt a sharp cutoff regularization for three-dimensional
momentum integration, following the literature [17].

A. Gap equations

We employ the mean-field approximation, correspond-
ing to the large Nc limit, and then derive the gap equation
and the thermodynamic potential [17]. There the quark
condensates (on thermal average) act as the variable of the
potential and are T dependent, which we define as

hūui≡ α; hd̄di≡ β; hs̄si≡ γ: ð26Þ

Searching for the minimum point of the thermodynamic
potential with respect to α, β, and γ as variational
parameters, we find the stationary conditions, correspond-
ing to the gap equations [17,26],

hq̄iqii¼−2Nc

Z
Λ d3p
ð2πÞ3

Mi

Ei
½1−2ðexpðEi=TÞþ1Þ−1�; ð27Þ

where Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

i þ p2
p

, Nc denotes the number of colors
to be fixed to three, andMi are full quark masses including
the dynamically generated terms,

Mu ¼ mu − 2gsα − 2gDβγ;

Md ¼ md − 2gsβ − 2gDαγ;

Ms ¼ ms − 2gsγ − 2gDαβ: ð28Þ

B. Chiral and axial susceptibilities

In this subsection we introduce susceptibilities for
pseudoscalar and scalar meson channels and give their
explicit formulas in the present NJL model.

1. Pseudoscalar meson channel

In the η–η0 coupled channel, the pseudoscalar meson
susceptibility is defined on the generator basis as

χijP ¼
Z
T
d4xhðiq̄ðxÞγ5λiqðxÞÞðiq̄ð0Þγ5λjqð0ÞÞi; ð29Þ

where i, j ¼ 0, 8. This χijP takes a matrix form

χP ¼ −1
1þ GPΠPð0; 0Þ

· ΠPð0; 0Þ; ð30Þ

where GP is the coupling strength matrix and ΠP is the
polarization-tensor matrix, which are given respectively as
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GP¼
�
G00

P G08
P

G80
P G88

P

�

¼
�
gs− 2

3
ðαþβþγÞgD −

ffiffi
2

p
6
ð2γ−α−βÞgD

−
ffiffi
2

p
6
ð2γ−α−βÞgD gs− 1

3
ðγ−2α−2βÞgD

�
; ð31Þ

ΠP ¼
�
Π00

P Π08
P

Π80
P Π88

P

�

¼
� 2

3
ð2IuuP þ IssP Þ 2

ffiffi
2

p
3
ðIuuP − IssP Þ

2
ffiffi
2

p
3
ðIuuP − IssP Þ 2

3
ðIuuP þ 2IssP Þ

�
; ð32Þ

with IiiPðω; pÞ being the pesudoscalar one-loop polarization
functions [27],

IiiPð0; 0Þ ¼ −
Nc

π2

Z
Λ

0

dpp2
1

Ei
½1 − 2ðexpðEi=TÞ þ 1Þ−1�;

for i ¼ u; d; s: ð33Þ

By performing the basis transformation, the pseudosca-
lar susceptibilities defined in Eq. (17) on the flavor basis are
thus obtained as

0
B@

1
2
χuuP þ 1

2
χudP ¼ 1

4
χη

χusP
χssP

1
CA¼

0
BBB@

1
6

ffiffi
2

p
6

1
12

1
6

−
ffiffi
2

p
12

− 1
6

1
6

−
ffiffi
2

p
3

1
3

1
CCCA
0
B@
χ00P
χ08P
χ88P

1
CA; ð34Þ

where we have taken the isospin symmetric limit into
account, i.e., χuuP ¼ χddP and χusP ¼ χdsP .
For χπ defined in Eq. (17), the explicit formula in the

NJL model reads [17]

χπ ¼
−1

1þ GπΠπð0; 0Þ
· Ππð0; 0Þ; ð35Þ

whereGπ ¼ gs þ gDγ, which is the coupling strength in the
pion channel, and Ππ is the quark-loop polarization
function for χπ, which is evaluated by using IiiP in
Eq. (33) as

Ππ ¼ IuuP þ IddP ¼ 2IuuP : ð36Þ

2. Scalar meson channel

The definitions of scalar susceptibilities are similar to
those for pseudoscalars, which are given just by removing
iγ5 in the definition of pseudoscalar susceptibilities, and
supplying the appropriate one-loop polarization functions
and the corresponding coupling constants.
In the 0–8 coupled channel, the scalar susceptibility

matrix χS is evaluated in the present NJL on the generator
basis as

χS ¼
−1

1þGSΠSð0; 0Þ
· ΠSð0; 0Þ; ð37Þ

where GS is the coupling strength matrix,

GS¼
�
G00

S G08
S

G80
S G88

S

�

¼
�
gsþ 2

3
ðαþβþγÞgD

ffiffi
2

p
6
ð2γ−α−βÞgDffiffi

2
p
6
ð2γ−α−βÞgD gsþ 1

3
ðγ−2α−2βÞgD

�
: ð38Þ

The scalar polarization tensor matrix ΠS in Eq. (37) is
given by

ΠS ¼
�Π00

S Π08
S

Π80
S Π88

S

�

¼
 

2
3
ð2IuuS þ IssS Þ 2

ffiffi
2

p
3
ðIuuS − IssS Þ

2
ffiffi
2

p
3
ðIuuS − IssS Þ 2

3
ðIuuS þ 2IssS Þ

!
; ð39Þ

with the integral functions,

IiiS ð0;0Þ¼−
Nc

π2

Z
Λ

0

p2dp
E2
i −M2

i

E3
i

f1−2½expðEi=TÞþ1�−1g

i¼u;d;s: ð40Þ

By moving on to the flavor base via the base trans-
formation, the scalar susceptibilities are cast into the form,

0
BB@

1
2
χuuS þ 1

2
χudS

χusS
χssS

1
CCA ¼

0
BB@

1
6

ffiffi
2

p
6

1
12

1
6

−
ffiffi
2

p
12

− 1
6

1
6

−
ffiffi
2

p
3

1
3

1
CCA
0
BB@

χ00S
χ08S
χ88S

1
CCA; ð41Þ

in which we have read χuuS ¼ χddS and χusS ¼ χdsS . From this,
the σ-meson susceptibility can be also read off as

χσ ¼
Z
T
d4x½hðūð0Þuð0ÞÞðūðxÞuðxÞÞi

þhðd̄ð0Þdð0ÞÞðd̄ðxÞdðxÞÞiþ2hðūð0Þuð0ÞÞðd̄ðxÞdðxÞÞi�
¼ 2χuuS þ2χudS : ð42Þ

We will not directly evaluate this χσ in the later section, but
it will be inferred when the ambiguity in subtracting the
original form of the Ward identity in Eq. (21) by the scalar
meson susceptibility, to get the relation between the chiral
and axial indicators, and the topological susceptibility
(see Sec. IV).
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For the δ-meson susceptibility, it is defined as

χδ ¼
Z
T
d4x½hðūð0Þuð0ÞÞðūðxÞuðxÞÞiconn

þ hðd̄ð0Þdð0ÞÞðd̄ðxÞdðxÞÞiconn�: ð43Þ
Similar to χπ in Eq. (35), the explicit formula for χδ reads [17]

χδ ¼
−Πδð0; 0Þ

1þ GδΠδð0; 0Þ
; ð44Þ

whereGδ ¼ gs − gDγ, which is the coupling strength in the δ
channel, and Πδ ¼ IuuS þ IddS ¼ 2IuuS is the corresponding
quark-loop polarization function.

C. Topological susceptibility in NJL model

Combining Eqs. (21), (30), (31), and (34), we get the
formula of χtop written in terms of the present NJL-model
parameters,

χtop ¼
1

2
mlmsðχusp þ χdsp Þ

¼ mlms

�
1

6
χ00P −

ffiffiffi
2

p

12
χ08P −

1

6
χ88P

�

¼ −mlms

detð1þGPΠPÞ
�
1

6
ðΠ00

P Π88
P G88

P − Π08
P

2G88
P Þ −

ffiffiffi
2

p

12
ðΠ08

P
2G08

P − Π00
P Π88

P G08
P Þ − 1

6
ðΠ88

P Π00
P G00

P − Π80
P

2G00
P Þ
�

¼ −mlmsgDα
6 detð1þ GPΠPÞ

ððΠ80
P Þ2 − Π88

P Π00
P Þ: ð45Þ

One can clearly see that χtop ∝ mlms, which is reflected by
the flavor-singlet nature of the QCD vacuum. Note also that
χtop ∝ gD. This should be so because the KMT determinant
coupling gD is directly linked with the gluonic anomaly
term in the axial anomaly Eq. (25).

D. NJL estimates

In this subsection we evaluate the temperature depend-
ence of the (subtracted) quark condensate, scalar and
pseudoscalar susceptibilities, and the topological suscep-
tibility. We also check the consistency with the recent
lattice QCD data on 2þ 1 flavors at physical point, and
also with other effective models of QCD.

1. Parameter setting

In the present NJL model of Eq. (24), we have five
parameters that need to be fixed; the light quark mass ml,
the strange quark mass ms, the coupling constants gs and
gD, and the three-momentum cutoff Λ. To fix the param-
eters, we take the following conservative and empirical
input values at T ¼ 0 in the isospin symmetric limit [17],

mπ ¼ 136 MeV; fπ ¼ 93 MeV;

mK ¼ 495.7 MeV; mη0 ¼ 957.5 MeV: ð46Þ

For readers convenience, concise NJL formulas are pre-
sented in Appendix. To fix the remaining one degree of
freedom, we follow the literature [17,28] to take light quark
mass ml ¼ 5.5 MeV (at the renormalization scale of
1 GeV). Thus all the model parameters are fixed, which
are presented in Table I.
With the above parameter set,1 we estimate the topo-

logical susceptibility

χtop ≃ 0.025=fm4: ð47Þ

For this χtop, comparisonwith the results from the latticeQCD
simulations is available,which are χtop ¼ 0.019ð9Þ=fm4 [29],
and χtop ¼ 0.0245ð24Þstatð03Þflowð12Þcont=fm4 [12].Here, for
the latter the first error is statistical, the second one comes
from the systematic error, and the third one arises due to
changing the upper limit of the lattice spacing range in the fit.
Although their central values do not agree each other, wemay
conservatively say that the difference between them is
interpreted as a systematic error from the individual lattice
QCD calculation.
We will not consider intrinsic-temperature dependent

couplings, instead, all the T dependence should be induced
only from the thermal quark loop corrections to the

TABLE I. The model parameter setting, followed from [17].

Model parameter description Input value

Isospin symmetric light quark mass ml 5.5 MeV
Strange quark mass ms 138 MeV
Four-fermion coupling constant gs 0.358 fm2

Six-fermion coupling constant gD −0.0275 fm5

Cutoff Λ 631.4 MeV

1The constituent quark masses are also estimated as
MuðT¼0Þ¼MdðT¼0Þ≃334.2MeV, MsðT¼0Þ≃530.1MeV,
where use has been made of Eqs. (27)–(28), together with the
model parameters listed in Table I.
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couplings defined and introduced at vacuum. As it will turn
out, the present NJL shows quite good agreement with
lattice QCD results on the temperature scaling (normalized
to the pseudocritical temperature) for the chiral, axial, and
topological susceptibilities. In this sense, we do not need to
introduce such an intrinsic T dependence for the model
parameters in the regime up to temperatures around the
chiral crossover.

2. Subtracted quark condensate

The quark condensate in the NJL model involves a ultra-
violet divergence (which is dominated by a quadratic diver-
gence) due to its vacuumpart [h−q̄qi ∼ NcmqΛ2=ð4π2Þ], and
needs to be renormalized when compared with lattice data.
Since the quadratic divergences in the quark condensate
comes along with current quark masses (as above), we use a
subtracted quark condensate as the chiral-order parameter,
which has been adopted in the lattice simulations,
Δl;sðTÞ≡ hl̄li − ml

ms
hs̄si, where hl̄li ¼ hūui ¼ hd̄di.

Figure 2 shows the subtracted quark condensate as a
function of temperature predicted from the present NJL
model, in comparison with the 2þ 1 flavor data from
the lattice QCD at the physical point [30]. The pseudoc-
ritical temperature Tpc is (for the NJL prediction) defined
as d2hl̄liðTÞ=dT2jT¼Tpc

¼0. We have found TpcjNJL≃
188 MeV, which is compared with the lattice result
Tpcjlat ≃ 155 MeV [30–34].
In the figure, we have normalized T by their Tpc. The

reason to take the rescaled dimensionless ratios is to make
possible systematic errors for the model selection and

calculation reduced. For instance, the NJL model predicts
somewhat larger Tpc, and hq̄qi at any T, and basically all
dimensionful quantities tend to be overestimated by about
30%; that is thought of as a systematic trend which could be
associated with the validity of the large Nc approximation.
Then, the dimensionless quantities like T=Tpc and
hq̄qiT=hq̄qiT¼0 can have reduced systematic errors. So,
it would be better to take the rescaled ratios, in order to
comprehend how the current effective model can be
compatible with the lattice result.
From Fig. 2, we see that the present NJL prediction is

consistent with the lattice data, confirming that the present
model describes the chiral-crossover phenomenon
quite well.

3. Chiral and axial susceptibility partners

The scalar and pseudoscalar susceptibilities (χη, χπ , χσ,
χδ) presented in Eqs. (34), (35), (42), and (44) are correlated
with each other by the chiral SUð2ÞL × SUð2ÞR and Uð1ÞA
transformations [35], which can be summarized in the
following diagram,

The chiral and axial partners will be degenerate each other in
the symmetric limits,

χπ ¼ χσ; χδ ¼ χη ðchiralSUð2Þ symmetric limitÞ;
χπ ¼ χδ; χσ ¼ χη ðUð1ÞA axial symmetric limitÞ: ð48Þ

Then, observation of null difference between the above
partners can effectivelymonitor the restoration of the related
symmetry. Figure 3 shows the plots of χπ−δ=T2 (left panel)
and χη−δ=T2 (right panel) normalized their values measured
at T ¼ Tpc, in comparison to the lattice QCD result [4]. Both
of the T=Tpc dependence on the normalized susceptibilities
show qualitative agreement of the present NJL estimates
with the current lattice data.

4. Topological susceptibility

We numerically evaluate χtop in Eq. (16), with the present
NJL estimates on the quark condensates and pseudoscalar
susceptibilities, as a function of temperature. In Fig. 4, we
plot the temperature dependence of the unnormalized
topological susceptibility χ1=4top , where we have taken the
absolute value of χtop. Comparison with the dilute instanton
gas approximation (DIGA) [36,37], the linear sigma model

0 0.5 1 1.5 2

T/T
pc

-0.2

0

0.2

0.4

0.6

0.8

1

l,s
(T

)/
l,s

(T
=

0)

NJL

Aoki et al. [31]

FIG. 2. T=Tpc dependence of the subtracted quark condensate,
in comparison with data from the lattice QCD with 2þ 1 flavors
[30]. The normalization factor, the pseudocritical temperature for
the chiral crossover (Tpc) has been set to individual values
estimated from the present NJL model (TpcjNJL ≃ 188 MeV)
and the lattice simulation (Tpcjlat ≃ 155 MeV).
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result (denoted as CJT in the figure) [6] and the result from
lattice simulation in the continuum limit [10–12] have also
been displayed. The DIGA prediction has been quoted
from the literature [10]. For the way of error bars associated
with the DIGA, see the cited reference. The temperature is
normalized by the pseudo-critical temperature in the figure,

where we have taken TpcjNJL ¼ 188 MeV for the NJL case,
TpcjCJT ¼ 215 MeV for the linear sigma model case, and
Tpcjlat ¼ 155 MeV for the lattice.
Figure 4 shows good qualitative agreement between the

NJL analysis and lattice result. We see that even though the
NJL description without gluonic contribution may not be

FIG. 3. The normalized susceptibility differences versus temperature normalized by the pseudocritical temperature Tpc for the chiral
crossover, in comparison with lattice QCD data for 2þ 1 flavors [4]. The left panel corresponds to χπ−δ=T2 divided by its value
evaluated at T ¼ Tpc, and the right panel is the same plots for χη−δ=T2. The present NJL yields TpcjNJL ¼ 188 MeV, and the quoted
lattice result predicts Tpcjlat ¼ 155 MeV (at the central value).
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FIG. 4. T=Tpc dependence of topological susceptibilities, compared with lattice data [10–12] and other models as described in the text.
The vertical line at T=Tpc ¼ 1.6 indicates the theoretical validity of the present NJL model (denoted as the seemingly-cutoff), above
which regime the present model description may not be reliable because of lack of the gluonic degrees of freedom (see also footnote 2).
This limit needs to be taken into account in referring to the range of T=Tpc, when compared to the lattice data displayed in the figure.
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reliable for T=Tpc > 1.6, the good agreement keeps in the
whole range of the available lattice data, T=Tpc ∼ 0–4.
At T < Tpc, all the results fit perfectly with each other,

including the linear sigma model estimate. In contrast,
when T > Tpc, we see substantial deviation for the linear
sigma model prediction from the NJL’s and lattice results.2

In the literature [6], the pseudoscalar susceptibility terms
were not able to evaluate, because the authors did not
include the higher-order terms in the current quark masses,
and therefore, performing the second-order derivative on
the mass parameter to obtain pseudoscalar susceptibility
would not be worked out. Thus, their χtop only includes the
quark condensate terms. The present NJL model is able to
give the pseudoscalar susceptibility contribution to χtop, to
achieve an improved estimate on the quark condensate. The
better qualitative agreement of the NJL with the lattice
result may thus imply the importance of contributions from
the pseudoscalar susceptibilities at higher temperatures,
though the model estimate may not rigorously be valid
beyond the seemingly cutoff temperature (T > 1.6Tpc) as
noted above.
The topological susceptibility χtop has been discussed

based on the NJL model descriptions similar to ours
[22–25]. However, the anomalous Ward identity in
Eq. (1) and the flavor-singlet condition necessary in
deriving the proper χtop in Eq. (16) have been ignored
there. Absence of the former led to misidentification of the
restoration of the axial symmetry, which was played by χtop
in the literature, while the latter missing factor made
improper temperature dependence of χtop.

IV. EVALUATION OF QCD
TRILEMMA ESTIMATOR

A. Violation of QCD trilemma at physical point
in a whole temperature regime

Figure 5 shows values of the trilemma estimator R
evolved with T, allowing ms off the physical point with
ml kept physical. See the middle-solid curve with
ms ¼ 138 MeV, which corresponds to real-life QCD.
Comparison with the available 2þ 1 flavor-lattice QCD
data (with mπ ¼ 135 MeV) on R [4]—reconstructed from
the data on χπ−δ and χη−δ through the relation Eq. (3)—has
also been displayed (in the zoomed-in window), which
shows good agreement including the error bars, for
140 MeV≲ T ≲ 200 MeV. The reconstructed data of R
include large errors, which is mainly due to the large
uncertainty of the lattice measurement on χη−δ (See Fig. 3).

Remarkably, in a whole temperature regime including
the chiral crossover regime, real-life QCD stays outside the
“balanced” region defined as in Eq. (4). We have observed
R ≃ 0.05 at around T covering the crossover point
(TpcjNJL ≃ 188 MeV: 140 MeV≲ T ≲ 200 MeV), consis-
tently with the lattice data, and R≲ 0.01 at T ≳ 300 MeV.
Namely, the amount of imbalance is slightly amplified by
thermal loop effects as T develops from zero.3

One might note that subtraction by χδ in Eq. (1) is
ambiguous, and can be replaced by another chiral suscep-
tibility in the sigma meson channel (χσ). We have checked
that this replacement does not alter our main conclusion
that real-life QCD involves big imbalance. We have also
found that χπ−σ ≫ χη−σ at T ¼ 0, χπ−σ ≪ χη−σ at around
the chiral crossover, then χπ−σ will get close to χπ−δ, and
finally go to zero. The latter trend is consistent with the
currently available lattice data [4].
Although the present model parameters are fixed at the

physical point, we may deduce some conjectures on the
violation of QCD trilemma in a view of the quark mass
difference. Extrapolating off real-life QCD, one can then
observe that the “imbalanced” domain still covers the two-
flavor limit case with ms ¼ 50 GeV (bottom-dot-dashed
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T[MeV]

10-3

10-2

10-1

100

m
s
=5.5MeV

m
s
=138MeV

quenched strange quark
Bhattacharya et al. [4] 130 140 150 160 170 180 190 200

-0.1

0

0.1

0.2

FIG. 5. Plots showing that real-life QCD is imbalanced, which
is monitored by the trilemma estimator R defined in Eq. (2).
Estimates have been done based on the NJL model described as in
the text. Comparison with the 2þ 1 flavor-lattice QCD data (with
mπ ¼ 135 MeV) in the available T range has also been displayed
with the error bars [4] (in the zoomed-in window). The curve with
ms ¼ 138 MeV points to real-life QCD with three flavors, while
the quenched-strange quark limit has been achieved by taking
ms ¼ 50 GeV, corresponding to the two-flavor limit. Another
curve withms ¼ 5.5 MeV denotes a conjectured prediction in the
three-flavor symmetric limit. The “balanced” and “imbalanced”
regimes are defined in Eq. (4).

2Even within the linear sigma model description, it has been
also shown that improved treatment of the thermal characteristics
of the linear sigma model based on the application of the
functional renormalization group technique to the effective
potential reproduces quantitatively correctly lattice results for
the pseduocritical temperature [38].

3Above T ∼ 300 MeV corresponding to the typical scale of the
constituent quark mass, the NJL description as the effective
theory of QCD may be somewhat unreliable because the
deconfining color degrees of freedom and thermal gluonic
contributions would be significant.
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curve), where strange quark is decoupled, and the amount
of imbalance is greater than that in the real-life QCD case.
Taking the three-flavor symmetric limit ms ¼ ml with ml
fixed to the physical value, we find “balanced” QCD (top-
dashed curve), which keeps almost constant R at any finite
T within the “balanced” interval in Eq. (4). This implies
that the three-flavor symmetry would be related to the
relaxation of the QCD trilemma.

B. QCD trilemma and flavor symmetry

Since the order of magnitude for R tends to be almost
fixed at T ¼ 0, we may focus only on R at T ¼ 0, and look
into the flavor-symmetry dependence on R, by varying ms
in a wide range, with fixed ml to the physical value.
Figure 6 shows plots on R as a function of ms=ml, together
with the “balanced” interval in Eq. (4). As ms goes off the
flavor symmetric limit in the “balanced” domain to be
smaller, R tends to get larger, to flow into the “imbalanced”
domain with gigantically suppressed χtop. The figure
clearly shows that “balanced” QCD should have had some
approximate three-flavor symmetry for up, down and
strange quarks with 0.06≲ms=ml ≲ 6.
We shall investigate the dependence of the flavor-

symmetry violation on the imbalanced QCD trilemma in
more details. First of all, we may simply suppose that the
scalar and pseudoscalar susceptibilities are scaled with the
associated meson masses,4 like χδ ∝ 1=m2

δ , χη ∝ 1=m2
η and

χπ ∝ 1=m2
π , and consider the light quark mass ml to

generically differ from the strange quark mass ms, includ-
ing the real-life QCD case with the three-flavor symmetry
broken. Among the susceptibilities, χπ is most sensitive to
the current mass of the light quarks (ml), because the pion
is the pseudo-Nambu-Goldstone boson of spontaneous
breaking of SUð2ÞL × SUð2ÞR symmetry carried by the
light quarks. The χπ thus monotonically gets smaller
(larger), as ml gets larger (smaller), by following
χπ ∝ 1=m2

π ∼ 1=ml. On the other hand, the other pseudo-
scalar susceptibility χη significantly involves the U(1)-axial
anomaly contribution in mη, so it almost keeps constant in
ml. The scalar susceptibility χδ, free from the Nambu-
Goldstone boson nature, also keeps constant with the

change of ml. Besides, the topological susceptibility χtop
also simply scales with ml, respecting the flavor-singlet
condition, χtop → 0 as ml → 0, and will be completely
constant inml forml > ms due to decoupling of the “light”
quarks. Thus the difference in magnitude of susceptibilities
are simply originated from the scaling properties with
respect to the current mass of the light quarks. We plot
those ml scaling behaviors (at T ¼ 0) in Fig. 7. The light
quark mass is allowed to vary from 10−2 eV to the cutoff
scale of the presently employed NJL model (631.4 MeV),
since the result from ml above the cutoff scale would be of
poor reliability. From the figure, the ml dependence is read
off and the susceptibilities are found to take simple power
laws when ml ≲ms,

χπ ∼m−1
l ;

χη ∼ constant; for ml < ms;

χδ ∼ constant; for ml < ms;

χtop ∼ml; for ml < ms: ð49Þ

Next, consider the three-flavor symmetric limit, where
ml ¼ ms. In this case QCD is balanced as noted above. It
also turns out that the scaling law of χη in Eq. (49) is
broken: the Ward identity Eq. (21) tells us that the differ-
ence between χπ and χη is controlled by the 4 ms

ml
χlsP term

(where χlsP ¼ χusP ¼ χdsP ). Since no preference among quark
flavors is present in the flavor symmetric case, χlsP should be
on the same order of magnitude as that of χπ , which we
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FIG. 6. Plots on the QCD trilemma estimator R at T ¼ 0 as a
function of ms=ml, along with the “balanced” interval defined in
Eq. (4). The shaded domain surrounded by the real-life QCD
point implies confidence level intervals for the model prediction,
where the model parameters, except forms, have been fixed at the
physical point, as noted in the text. The thinner-shaded regions
should be understood as indefinitely extrapolated results with
somewhat poor reliability.

4The susceptibilities correspond to meson-correlation func-
tions at zero momentum transfer. This is in contrast to the
conventional meson correlators depending on the transfer mo-
mentum, from which meson masses are read off. Furthermore, the
susceptibilities involve contact term contributions independent of
momenta, which could be sensitive to a high-energy scale
physics, while the conventional meson correlators are dominated
by the low-lying meson mass scale. Nevertheless, the degeneracy
of the chiral or axial partners at high temperatures, similar to
those detected in the susceptibility, can also be seen in the mass
difference or equivalently the degeneracy of the conventional
meson correlators for the partners, which is simply because the
mass difference plays an alternative indicator of the chiral or axial
breaking as observed in the lattice simulations [39,40].
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have indeed numerically confirmed. See Fig. 8. Since
ml ¼ ms, there is no extra power scaling of 1=ml which
is present in the flavor asymmetric case and leads to a big
enhancement of the (4 ms

ml
χlsP ) part to destructively interfere

with χπ , yielding a much suppressed χη compared to χπ (see
Fig. 7). Thus the scaling law of χη is the same as that of χπ ,
i.e., χη ∼m−1

l , while others take the same scaling laws as in
Eq. (49), namely,

χπ ∼ χη ∼m−1
l for ml ¼ ms;

χδ ∼ constant for ml ¼ ms;

χtop ∼ml for ml ¼ ms; ð50Þ

as depicted in Fig. 8.

This scaling violation in the flavor symmetric case can
also be understood as a big suppression of the Uð1ÞA
anomaly contribution, coupled to the flavor violation, to
m2

η, which dominates in χη in the flavor asymmetric case:
in the flavor symmetric case we have χπ ¼ χ88P , and χη ¼
χπ þ 4χlsP with χlsP ¼ 1=6ðχ00P − χ88P Þ. Straightforward
numerical evaluation reveals that χ88P ≫ χ00P for small ml.
Then, we find χη ≈ χπ=3 ∼ 1=ml for small ml. In particular,
note that χ88P ¼ χπ does not include the Uð1ÞA anomaly
effect, and is now much larger than the Uð1ÞA-anomaly
affected χ00P part, which implies the Uð1ÞA anomaly con-
tribution is much suppressed in χη, hence in mη as well.
Thus the three-flavor symmetry brings the ml scaling

universal among susceptibilities for the pion and eta meson,
by suppressing the Uð1ÞA anomaly contribution only in the
eta meson channel. This, on the other side of the same coin,
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FIG. 7. (Without the three-flavor symmetry): the ml dependence on χπ , χη, χδ [MeV2] (left panel), and χtop [MeV4] (right panel) at
T ¼ 0. The value of strange quark mass ms is fixed to be equal to ml in the plots.
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FIG. 8. (With the three-flavor symmetry): The same plots as those in Fig. 7, but with the three-flavor symmetry, where ms ¼ ml.
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indicates that the amplification of theUð1ÞA anomaly effect
in χη−δ so that the chiral symmetry is more quickly restored
than the axial symmetry with holding the anomalous chiral
Ward identity Eq. (1).

V. CONCLUSION

In conclusion, real-life QCD is required to relax the
trilemma (R ≪ 1), meaning that the much smaller strength
of the chiral breaking is given by a big cancellation between
the strength of the axial breaking and the transition rate of
the topological charge. This is schematically depicted in
Fig. 1. This is “imbalance” of the QCD vacuum, present in
a whole temperature regime of thermal QCD including the
vacuum at T ¼ 0. This imbalance or violation of QCD
trilemma is triggered due to the three-flavor symmetry
violation for up, down and strange quarks, in particular the
lightness of up and down quarks. The violation of the three-
flavor symmetry specifically brings enhancement of the
Uð1ÞA anomaly contribution in the chiral SUð2Þ breaking
to be insensitive to the smallness of the light quark mass,
while the axial indicator and the transition rate of the
topological charge are fairly insensitive to the flavor
symmetry—in other words, the flavor symmetry dramati-
cally suppresses the Uð1ÞA anomaly effect in the chiral
SUð2Þ breaking. This implies that in the QCD vacuum with
the trilemma realized, all the three-flavor octet pseudoscalar
mesons act like identical pseudo Nambu-Goldstone bosons,
so that the chiral and axial breaking together with the
topological charge contribute to the QCD vacuum on the
same order of magnitude.
The present work confirms and extends the suggestion

recently reported from lattice QCD with two flavors on
dominance of the axial and topological susceptibilities left
in the chiral susceptibility at high temperatures over the
chiral crossover [2].
The violation of QCD trilemma would be crucial to

deeply pursue the expected dominance of the chiral
symmetry breaking in the origin of mass, and provides
the understanding of mechanism how the faster (effective)
restoration of the chiral symmetry in the presence of
contamination with the Uð1ÞA anomaly is achieved; it is
understood as a big cancellation between the axial and
topological susceptibilities, due to the three-flavor violation
among up, down and strange quarks. Our findings can
directly be tested on lattice QCD with 2þ 1 flavors at
physical point and also off physical point, in the future.
It would be nice if the violation of QCD trilemma could

be evaluated directly using lattice QCD, but since the quark
masses need to be varied, the lattice calculation is so costly.
As the first step, it would be appropriate to perform the
calculation using a conventional effective model like the
present NJL. In fact, it has been shown that the present NJL
model matches the lattice results on a couple of observables
relevant to the chiral crossover regime, within a deviation of
about 30% (consistent with the expected theoretical

uncertainty of the large Nc=mean field approximation on
that the present NJL is built). This shows that the present
NJL model, though being based on the rough mean field
approximation, indeed is even quantitatively valid as an
effective model of QCD, as good as the lattice QCD. Thus
the present work gives motivation to the research in other
QCD-compatible theories, such as lattice and/or functional
renormalization group approach.
In closing, we give several comments related to possible

applications of concept of QCD trilemma:
(i) The notion of QCD trilemma and its violation would

also provide us with a new guiding principle to
explore the flavor dependence of the chiral phase
transition, such as the Columbia plot [15].

(ii) It would be also intriguing to study the violation of
QCD trilemma, by means of the nonperturbative
renormalization group.

(iii) Correlations between the violation of QCD trilemma
and deconfinement-confinement phase transition
can be addressed, when the present NJL model is
extended by including the Polyakov loop terms.

(iv) Since the form of the anomalous chiral Ward identity
in Eq. (1) will be intact as long as the quark mass
terms are only the leading source to explicitly break
the three-flavor chiral symmetry, the presently de-
scribed argument would possibly be applicable also
to dense QCD, and thermomagnetic QCD, where in
the latter case the electromagnetic interactions con-
tribute as the subleading (loop) order to the chiral
breaking, as in Eq. (18).

Those will deserve to another publication.
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APPENDIX: NJL FORMULAS

In this appendix we list the NJL formulas used for the
inputs observables in Eq. (46), which can be found
in Ref. [17]:

(i) The pion decay constant fπ: it is computed by
directly evaluating quark loop contributions to the
spontaneously broken SUð2Þ axial current JA;aμ ¼
l̄γμγ5ðσa=2Þl (a ¼ 1, 2, 3), through the definition of
fπ, h0jJAaμ ð0ÞjπbðpÞi ¼ −ipμfπδab. In the NJL
model with the large Nc limit taken (summing up
the ring diagrams), we thus have
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fπ ¼ GπqðmπÞMu
2Nc

π2

Z
Λ

0

dp

×
p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
u þ p2

p
½4ðM2

u þ p2Þ −m2
π�
; ðA1Þ

where Gπqðp ¼ mπÞ is the pion wavefunction re-
normalization amplitude evaluated at the onshell,

G2
πqðmπÞ ¼

�
Nc

2π2

Z
Λ

0

p2dp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

u þ p2
p

ðp2 þM2
u −

m2
π
4
Þ2
�−1

:

ðA2Þ

(ii) The pion massmπ is computed by extracting the pole
of the pion propagator dynamically generated by the
quark loop contribution in the NJL with a resum-
mation technique (random phase approximation)
applied [17]. The pole position is thus detected as

1þ GπΠπðm2
πÞ ¼ 0: ðA3Þ

This pion mass is actually related to the light quark
condensate, via the low energy theorem (the so-
called Gell-Mann-Oakes-Renner relation):

m2
π ¼ −2mlhl̄li=f2π: ðA4Þ

(iii) The kaon mass mK is calculable in the same way as
in the case of mπ above:

1þ GKΠKðm2
KÞ ¼ 0; ðA5Þ

where

GK ¼ gs þ gDhūui; ðA6Þ

ΠKðwÞ ¼ 2Fðw; u; sÞ þ 2Fð−w; s; uÞ; ðA7Þ

Fðw; i;jÞ¼−
Nc

4π2

Z
Λ

0

p2dp
�
1

Ei
fijðwÞþ

1

Ej
fjiðwÞ

�
;

ðA8Þ

fijðwÞ ¼ 2
MiðMj −MiÞ − Eiw

E2
j − ðEj þ wÞ2 : ðA9Þ

(iv) The η0 mass mη0 is identified as the highest mass
eigenvalue arising from the mass mixing in the 0–8
channel. Similarly to the pion and kaon cases, mη0 is
then extracted by the highest pole of the mixed
propagator in the 0–8 channel, Dðq2Þ, as

Dη0 ðm2
η0 Þ ¼ 0; ðA10Þ

where

Dðq2Þ ¼ −G−1
P

�
1

1þ GPΠPðq2Þ
�

≡
�
Aðq2Þ Bðq2Þ
Bðq2Þ Aðq2Þ

�
; ðA11Þ

through the diagonalization process like

TθD−1ðq2ÞT−1
θ ¼

�D−1
η0 ðq2Þ 0

0 D−1
η ðq2Þ

�
: ðA12Þ

HereΠPðq2Þ is a function given as the generalization
of Eq. (32) with the replacement of the loop function
IPiiðw2Þ,

IPiiðw2Þ ¼ −
4Nc

π2

Z
Λ

0

p2dp
Ei

4E2
i − w2

; ðA13Þ

and Tθ is the diagonalization matrix,

Tθ ¼
�
cosðθÞ − sinðθÞ
sinðθÞ cosðθÞ

�
;

tanð2θÞ ¼ 2Bðq2Þ
Cðq2Þ − Aðq2Þ : ðA14Þ
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