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The magnetic moments of the vector hidden-charmed tetraquark states that have been observed, and can
be expected to be observed experimentally, have been determined using the light-cone sum rules taking into
account the diquark-antidiquark structure with the quantum numbers JPC ¼ 1−− and JPC ¼ 1−þ. Since
these states are considered to have different flavors of light quarks, they have nonzero magnetic moments.
The results obtained in this study can be checked for consistency by various methods. The magnetic
moments of hadrons encompass useful knowledge about the distribution of charge and magnetization
inside hadrons, which helps us to understand their geometrical shapes.
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I. INTRODUCTION

Theoretically, the existence of states with a larger number
of quarks besides baryons and mesons was proposed long
ago.However, the first experimental discovery of these states
occurred in 2003with the observation of theX(3872) state by
the Belle Collaboration [1]. After the discovery of this
particle, various experimental collaborations discovered
many particles belonging to this new family that are still
being discovered. These newly discovered states not only
arouse the interest of particle physicists but also raise new
questions about their inner structure and quantum numbers.
Manymodels havebeenproposed to explain anddecipher the
nature of these states, and several studies have been con-
ducted on them. However, their properties remain dubious,
and their substructures and quantum numbers are also
problematic. The properties of the reported tetraquark states
have been interpreted differently in different studies. To
resolveall theseambiguities, thepropertiesofboth theknown
and the newly observed states need to be further investigated.
These studies could investigate complementary reactions or
other decay modes for the currently known tetraquark states,
ornovelparticles thatmaybeobservedcanbe investigated for
their spectroscopic properties or possible decay modes to
provide input for theexperiments. Several interesting reviews
provide detailed information on unconventional states,
including a history of the subject and experimental and
theoretical breakthroughs in recent years [2–14].

Several vector hidden-charmed tetraquark states, such as
Yð4220=4260Þ, Yð4360=4390Þ, Yð4630=4660Þ and so on,
have been observed in recent years that cannot be well
correlated in the standard mesonwith two quarks. The family
of exotic vector states (Ycc̄ for short), called tetraquarks,
contains at least four particles of hidden charmwith quantum
numbersJPC ¼ 1−−. Inorder tounderstand thenatureof these
states, many differentmodels have been proposed and studies
havebeenconductedon them(details ofwhichcanbe found in
the reviews [4,9,12,13]). InRefs. [15–20], theQCDsum rules
have been also employed to explore the spectroscopic param-
etersofthesestates.InRef.[15],alargenumberofinterpolation
currents were constructed for the Ycc̄ states, and the spectro-
scopicparametersof these stateswerestudiedusingQCDsum
rules with JPC ¼ 1þþ, JPC ¼ 1−−, JPC ¼ 1−þ, and JPC ¼
1þ−, and quark contents ½cq�½c̄ q̄� and ½cs�½c̄ s̄�. It was taken
into account that these states are in the diquark-antidiquark
structure. While some of the obtained results are compatible
with the experimentally discoveredYcc̄ states, they turned out
to be incompatible with some of them. Moreover, some
possible decay channels and the experimental search for these
states are also discussed.
In Ref. [16], the mass and residue of the Y(4660) state

were determined in the framework of the QCD sum rules.
They found that cc̄ss̄ and cc̄ðuūþ dd̄Þ= ffiffiffi

2
p

diquark-anti-
diquark states favor the Y(4660) state with quantum
numbers JPC ¼ 1−−. They also excluded cc̄ud̄ diquark-
antidiquark structure with quantum numbers JPC ¼ 1�− for
the Y(4360) state. In Ref. [17], they constructed different
types of currents to interpolate both the vector and axial
vector tetraquark states and obtain the spectroscopic
parameters of the Ycc̄ states within the QCD sum rules.
The numerical results support the assignment of the
Y(4660) as a diquark-antidiquark type tetraquark state
with quantum numbers JPC ¼ 1−−. It has also been
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suggested that Y(4260) and Y(4360) may be mixed
charmonium-tetraquark states. In Ref. [18], the tetraquark
states of type C ⊗ γμC and Cγ5 ⊗ γ5γμC were constructed
to calculate the mass and residue of the Ycc̄ states. Their
analysis supported the assignment of Y(4660) and Y(4630)
as vector tetraquark states of type C ⊗ γμC cc̄ss̄, assign
Y(4360) and Y(4320) to the vector tetraquark state cc̄qq̄ of
type Cγ5 ⊗ γ5γμC and do not assign Y(4260), Y(4220),
and Y(4390) to the fixed vector tetraquark states.
In Ref. [19], the mass, decay constant, and strong decay

channels of the Y(4660) state were evaluated by treating it as
a bound state of a diquark and an antidiquark (½cs�½c̄ s̄�). It
was shown that the results for the mass and total width of this
state are in good agreement with the experimental data. In
Ref. [20], they constructed the scalar, pseudoscalar, vector,
axial vector, and tensor antidiquark states to obtain the mass
spectrum of the vector tetraquark states with hidden charm
via the QCD sum rules. Their predictions supported the
identification ofY(4360),Y(4390), andY(4660) as ½cq�½c̄ q0�
vector tetraquark states with hidden charm with JPC ¼ 1−−.
In addition to their spectroscopic properties, the electro-

magnetic form factors and multipole moments of hadrons
can provide clues to their precise character, internal
structure, and quantum numbers. We know that the electro-
magnetic multipole moments of hadrons, in particular their
magnetic moments, which encompasses knowledge about
the spatial distribution of charge and magnetization inside
the hadrons, are related to the spatial distribution of quarks
and gluons inside them. The study of the magnetic and
higher multipole moments of hadrons is therefore attrac-
tive. In this study, we compute the magnetic moments of
Ycc̄ states in the diquark-antidiquark configuration with the
quantum numbers JPC ¼ 1−− and JPC ¼ 1−þ using the
light-cone sum rule method [21–23]. The light-cone sum
rule method is based on the operator product expansion
near the light-cone x2 ∼ 0 and parametrizes all the

nonperturbative dynamics in the distribution amplitudes
that have been used to treat many electromagnetic proper-
ties of conventional and nonconventional hadrons.
This article is structured in the followingmanner. After the

introduction in Sec. I, we present in Sec. II the formalism of
the light-cone sum rule, which identifies the necessary tools
to compute the magnetic moments of the Ycc̄ states. In
Sec. III, we use the analytical formulas obtained in the
previous section to perform numerical calculations of the
magnetic moments and discuss the results.

II. LIGHT-CONE SUM RULE FORMALISM
FOR MAGNETIC MOMENTS

In the light-cone sum rule technique, we compute a
correlation function, which serves as the building block of
themethod, twice: once in termsofhadronicquantities suchas
coupling constants, form factors, and electromagnetic multi-
pole moments and second in terms of QCD parameters and
photon distribution amplitudes available for different twists.
The coefficients of the correspondingLorentz structures from
both representations of the correlation function are then
equated and the quark-hadron duality approach is used to
obtain the desired physical quantity.
As we have mentioned above, at the beginning of the

analytic calculations of themagnetic moments it is necessary
to write the correlation function, which plays an important
role in the light-cone sum rules and is written as follows:

Πμνðp; qÞ ¼ i
Z

d4xeip·xh0jT fJiμðxÞJi†ν ð0Þgj0iγ; ð1Þ
where T , JiμðxÞ, and γ represent the time-ordered product of
two currents, the interpolating current of Ycc̄ states, and the
external electromagnetic field, respectively.We need explicit
expressions for JiμðxÞ tomake progress in the calculations. In
the diquark-antidiquark picture, JiμðxÞ can be written in the
following forms [20]:

J1μðxÞ ¼
εε̄ffiffiffi
2

p f½uTjðxÞCckðxÞ�½d̄mðxÞγμCc̄TnðxÞ� − ½uTjðxÞCγμckðxÞ�½d̄mðxÞCc̄TnðxÞ�g;

J2μðxÞ ¼
εε̄ffiffiffi
2

p f½uTjðxÞCckðxÞ�½d̄mðxÞγμCc̄TnðxÞ� þ ½uTjðxÞCγμckðxÞ�½d̄mðxÞCc̄TnðxÞ�g;

J3μðxÞ ¼
εε̄ffiffiffi
2

p f½uTjðxÞCγ5ckðxÞ�½d̄mðxÞγ5γμCc̄TnðxÞ� þ ½uTjðxÞCγμγ5ckðxÞ�½d̄mðxÞγ5Cc̄TnðxÞ�g;

J4μðxÞ ¼
εε̄ffiffiffi
2

p f½uTjðxÞCγ5ckðxÞ�½d̄mðxÞγ5γμCc̄TnðxÞ� − ½uTjðxÞCγμγ5ckðxÞ�½d̄mðxÞγ5Cc̄TnðxÞ�g;

J5μðxÞ ¼
εε̄ffiffiffi
2

p f½uTjðxÞCσμνckðxÞ�½d̄mðxÞγνCc̄TnðxÞ� − ½uTjðxÞCγνckðxÞ�½d̄mðxÞσμνCc̄TnðxÞ�g;

J6μðxÞ ¼
εε̄ffiffiffi
2

p f½uTjðxÞCσμνckðxÞ�½d̄mðxÞγνCc̄TnðxÞ� þ ½uTjðxÞCγνckðxÞ�½d̄mðxÞσμνCc̄TnðxÞ�g;

J7μðxÞ ¼
εε̄ffiffiffi
2

p f½uTjðxÞCσμνγ5ckðxÞ�½d̄mðxÞγ5γνCc̄TnðxÞ� þ ½uTjðxÞCγνγ5ckðxÞ�½d̄mðxÞγ5σμνCc̄TnðxÞ�g;

J8μðxÞ ¼
εε̄ffiffiffi
2

p f½uTjðxÞCσμνγ5ckðxÞ�½d̄mðxÞγ5γνCc̄TnðxÞ� − ½uTjðxÞCγνγ5ckðxÞ�½d̄mðxÞγ5σμνCc̄TnðxÞ�g; ð2Þ
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where ε ¼ εijk, ε̄ ¼ εimn, the i, j, k, m, n are color indices and the C is the charge conjugation matrix. Here the quantum
numbers of J1μ, J3μ, J5μ, and J7μ are the JPC ¼ 1−−, and the quantum numbers of J2μ, J4μ, J6μ, and J8μ are the JPC ¼ 1−þ. At this
point it should be noted that there are no experimentally observed vector hidden-charmed tetraquark states with the quantum
numbers JPC ¼ 1−þ.
In the hadronic language, a complete set of hadronic states is inserted and the contributions of the lowest Ycc̄ states are

separated to obtain the corresponding correlation function,

ΠHad
μν ðp; qÞ ¼ h0jJμðxÞjYcc̄ðp; εθÞi

p2 −m2
Ycc̄

hYcc̄ðp; εθÞjYcc̄ðpþ q; εδÞiγ
hYcc̄ðpþ q; εδÞjJ†νð0Þj0i

ðpþ qÞ2 −m2
Ycc̄

þ � � � ; ð3Þ

where dots denote the effects of the higher states and continuum. The matrix elements in Eq. (3) are expressed as

hYcc̄ðpþ q; εδÞjJ†νð0Þj0i ¼ λYcc̄
εδν; ð4Þ

h0jJμðxÞjYcc̄ðp; εθÞi ¼ λYcc̄
εθμ; ð5Þ

hYcc̄ðp; εθÞjYcc̄ðpþ q; εδÞiγ ¼ −ετðεθÞαðεδÞβ
�
G1ðQ2Þð2pþ qÞτgαβ þ G2ðQ2Þðgτβqα − gταqβÞ

−
1

2m2
Ycc̄

G3ðQ2Þð2pþ qÞτqαqβ
�
; ð6Þ

where ετ is polarization of the photon, λYcc̄
is residue of the Ycc̄ states, and GiðQ2Þ’s are electromagnetic form factors, with

Q2 ¼ −q2. To calculate the magnetic moment, we need only G2ðQ2Þ of the form factors described above. The magnetic
form factor, FMðQ2Þ, is written as follows:

FMðQ2Þ ¼ G2ðQ2Þ: ð7Þ

Using Eqs. (3)–(6) and after doing some necessary calculations the final form of the correlation function is obtained as

ΠHad
μν ðp; qÞ ¼ ερλ

2
Ycc̄

½m2
Ycc̄

− ðpþ qÞ2�½m2
Ycc̄

− p2�
�
G2ðQ2Þ

�
qμgρν − qνgρμ −

pν

m2
Ycc̄

�
qμpρ −

1

2
Q2gμρ

�

þ ðpþ qÞμ
m2

Ycc̄

�
qνðpþ qÞρ þ

1

2
Q2gνρ

�
−
ðpþ qÞμpνpρ

m4
Ycc̄

Q2

�

þ other independent structures

�
þ � � � : ð8Þ

The FMðQ2 ¼ 0Þ is proportional to the magnetic moment μYcc̄
:

μYcc̄
¼ e

2mYcc̄

FMð0Þ: ð9Þ

The correlation function is determined in terms of the QCD degrees of freedom and the photon distribution amplitudes in
the second step of the calculation of the magnetic moment of Ycc̄ states. In the QCD representation, we use Wick’s theorem
to contract the corresponding quark fields after replacing the explicit expressions of the interpolating currents in the
correlation function. For instance, the result for the current J1μ is as follows:

ΠQCD
μν ðp; qÞ ¼ i

εε̄ε0ε̄0

2

Z
d4xeip·xh0jfTr½Skk0c ðxÞS̃jj0u ðxÞ�Tr½γμS̃n0nc ð−xÞγνSm0m

d ð−xÞ�

− Tr½Skk0c ðxÞγνS̃jj
0

u ðxÞ�Tr½γμS̃n0nc ð−xÞSm0m
d ð−xÞ�

− Tr½γμSkk0c ðxÞS̃jj0u ðxÞ�Tr½S̃n0nc ð−xÞγνSm0m
d ð−xÞ�

þ Tr½γμSkk0c ðxÞγνS̃jj
0

u ðxÞ�Tr½S̃n0nc ð−xÞSm0m
d ð−xÞ�gj0iγ; ð10Þ
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where

S̃ijcðqÞðxÞ ¼ CSijTcðqÞðxÞC;

with SqðcÞðxÞ being the quark propagators. In the x space for the light-quark propagator we use in the mq → 0 limit

SqðxÞ ¼ i
=x

2π2x4
−
hq̄qi
12

−
hq̄qi
192

m2
0x

2 −
igs

32π2x2
GμνðxÞ½=xσμν þ σμν=x�; ð11Þ

where hq̄qi is light quark condensate, and m2
0 is defined via the relation h0jq̄gsσαβGαβqj0i ¼ m2

0hq̄qi.
The charm-quark propagator is given, in association with the second kind Bessel functions KiðxÞ, as

ScðxÞ ¼
m2

c

4π2

�
K1ðmc

ffiffiffiffiffiffiffiffi
−x2

p
Þffiffiffiffiffiffiffiffi

−x2
p þ i

=xK2ðmc

ffiffiffiffiffiffiffiffi
−x2

p
Þ

ð
ffiffiffiffiffiffiffiffi
−x2

p
Þ2

�
−
gsmc

16π2

Z
1

0

dvGμνðvxÞ
�
ðσμν=xþ =xσμνÞ

×
K1ðmc

ffiffiffiffiffiffiffiffi
−x2

p
Þffiffiffiffiffiffiffiffi

−x2
p þ 2σμνK0ðmc

ffiffiffiffiffiffiffiffi
−x2

p
Þ
�
; ð12Þ

where v is line variable and Gμν is the gluon field strength
tensor. The perturbative or free component of the propa-
gators of the light and heavy quarks corresponds to the first
term, while the remainder belongs to the interacting parts
(with gluon or QCD vacuum) as nonperturbative contri-
butions.
The correlation function in Eq. (10) includes different

types of contributions: the photon can be emitted both
perturbatively or nonperturbatively. In the first case, one of
the free light or heavy quark propagators in Eq. (10) is
replaced by

Sfree →
Z

d4ySfreeðx − yÞ=AðyÞSfreeðyÞ; ð13Þ

the remaining propagators are replaced with the full quark
propagators. The light-cone sum rule analyses are most
conveniently done in the fixed-point gauge. The most
important advantage of a fixed-point gauge is that the

external field is expressed as being associated with the field
strength tensor. For the electromagnetic field, it is defined
by xμAμ ¼ 0. In this gauge, the external electromagnetic
potential is given by

Aα ¼ −
1

2
Fαβyβ ¼ −

1

2
ðεαqβ − εβqαÞyβ: ð14Þ

Equation (14) is plugged into Eq. (13), as a result of which
we obtain

Sfree → −
1

2
ðεαqβ − εβqαÞ

Z
d4yyβSfreeðx − yÞγαSfreeðyÞ;

ð15Þ

After some lengthy calculations for Sfreeq and Sfreec , we
obtain their final form as follows:

Sfreeq ¼ eq
32π2x2

ðεαqβ − εβqαÞð=xσαβ þ σαβ=xÞ;

Sfreec ¼ −i
ecmc

32π2
ðεαqβ − εβqαÞ

�
2σαβK0ðmc

ffiffiffiffiffiffiffiffi
−x2

p
Þ þ K1ðmc

ffiffiffiffiffiffiffiffi
−x2

p
Þffiffiffiffiffiffiffiffi

−x2
p ð=xσαβ þ σαβ=xÞ

�
: ð16Þ

In the second case one of the light quark propagators in Eq. (10) is replaced by

Sabαβ → −
1

4
ðq̄aΓiqbÞðΓiÞαβ; ð17Þ

and the remaining propagators are full quark propagators including the perturbative as well as the nonperturbative
contributions. Here, as an example, we give a short detail of the calculations of the QCD representations. In the second case
for simplicity, we only consider the first trace in Eq. (10),
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ΠQCD
μν ðp; qÞ ¼ i

εε̄ε0ε̄0

2

Z
d4xeip·xh0jfTr½Skk0c ðxÞΓi�Tr½γμS̃n0nc ð−xÞγνSm0m

d ð−xÞ�

þ Tr½Skk0c ðxÞS̃jj0u ðxÞ�Tr½γμS̃n0nc ð−xÞγνΓi�gj0iγ þ…; ð18Þ

where Γi ¼ I; γ5; γμ; iγ5γμ; σμν=2.
By replacing one of light propagators with the expressions in Eq. (12) and making use of

q̄aðxÞΓiqa
0 ð0Þ → 1

3
δaa

0
q̄ðxÞΓiqð0Þ; ð19Þ

Eq. (18) takes the form

ΠQCD
μν ðp; qÞ ¼ i

εε̄ε0ε̄0

2

Z
d4xeip·xfTr½Skk0c ðxÞΓi�Tr½γμS̃n0nc ð−xÞγνSm0m

d ð−xÞ�δjj0

þ Tr½Skk0c ðxÞS̃jj0u ðxÞ�Tr½γμS̃n0nc ð−xÞγνΓi�δm0mg 1

12
hγðqÞjq̄ðxÞΓiqð0Þj0i þ…: ð20Þ

Similarly, when a light propagator interacts with the photon, a gluon may be released from one of the remaining three
propagators. The expression obtained in this case is as follows:

ΠQCD
μν ðp; qÞ ¼ i

εε̄ε0ε̄0

2

Z
d4xeip·x

�
Tr½Skk0c ðxÞΓi�Tr½γμS̃n0nc ð−xÞγνSm0m

d ð−xÞ�
��

δkjδk
0j0 −

1

3
δkk

0
δjj

0
�

þ
�
δjn

0
δj

0n −
1

3
δn

0nδjj
0
�
þ
�
δjm

0
δj

0m −
1

3
δm

0mδjj
0
��

þ Tr½Skk0c ðxÞS̃jj0u ðxÞ�Tr½γμS̃n0nc ð−xÞγνΓi�
��

δkm
0
δk

0m −
1

3
δm

0mδkk
0
�

þ
�
δjm

0
δj

0m −
1

3
δm

0mδjj
0
�
þ
�
δn

0m0
δnm −

1

3
δm

0mδn
0n
���

×
1

32
hγðqÞjq̄ðxÞΓiGμνðvxÞqð0Þj0i þ…; ð21Þ

where we inserted

q̄aðxÞΓiGbb0
μν ðvxÞqa0 ð0Þ →

1

8

�
δabδa

0b0 −
1

3
δaa

0
δbb

0
�
q̄ðxÞΓiGμνðvxÞqð0Þ: ð22Þ

As can be seen, matrix elements representing non-
perturbative contributions such as hγðqÞjq̄ðxÞΓiqð0Þj0i
and hγðqÞjq̄ðxÞΓiGμνðvxÞqð0Þj0i appear. These matrix ele-
ments can be expressed associated with photon distribution
amplitudes (DAs) and wave functions with definite twists,
whose expressions are borrowed from Ref. [24]. Besides
these matrix elements nonlocal operators such as two gluons
(q̄GGq) and four quarks (q̄qq̄q) are expected to seem.
However it is known that the effects of such operators are
small, which is justified by the conformal spin expansion
[25,26], and thus we shall ignore them. The QCD repre-
sentation of the correlation function is obtained by using
Eqs. (10)–(22). Then, the Fourier transformation is applied to
transfer expressions in x space to the momentum space.
In conclusion, the structure qμεν is chosen from both

representations and the coefficients of the structure

are matched in both hadronic and QCD representations.
Then, Borel transformation and continuum subtraction
are used to suppress the effects of the continuum and
higher states. These steps are routine and tedious in the
light-cone sum rule method, so we will not discuss them
in detail here. Technical details on these applications can
be found in Ref. [27]. Thus, as an example for the
current J1μ, the light-cone sum rule for Ycc̄ states is as
follows:

μYcc̄
λ2Ycc̄

¼ e
m2
Ycc̄
M2 Δ1ðM2; s0Þ; ð23Þ

where the explicit expression of the Δ1ðM2; s0Þ function
is presented in the Appendix. The analytic calculations of
the magnetic moments of Ycc̄ states come to an end here.
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In the following section we will use these analytical
results to perform numerical calculations.

III. NUMERICAL ANALYSIS
AND CONCLUSIONS

We assume the following parameters to perform the
numerical calculations for the magnetic moments of the
Ycc̄ states. The masses of the light quarks aremu ¼ md ¼ 0,
the mass of the c-quark is mc ¼ ð1.275� 0.025Þ GeV,
the condensates of the light quarks are hūui ¼ hd̄di ¼
ð−0.24� 0.01Þ3 GeV3 [28], the gluon condensate is
hg2sG2i ¼ 0.88 GeV4 [10], and the magnetic susceptibility
χ ¼ −2.85� 0.5 GeV−2 [29]. To progress numerical analy-
sis of the magnetic moment of these Ycc̄ states, numerical
values of the mass and residue parameters of these Ycc̄ states
are also required. These values have been computed in
Ref. [20] usingmass sumruleswhich are presented inTable I.
The wave functions in the distribution amplitudes of the
photon and all necessary expressions about these functions
are taken from Ref. [24].
In addition to the above input parameters, the light-cone

sum rule method includes two other arbitrary parameters,
the Borel mass (M2) and the continuum threshold (s0).
According to the philosophy of the method, the physical
quantity under study should be independent of the variation
of these parameters. To achieve this, we need to add some
physical constraints, such as the convergence of the
operator product expansion (OPE) and the pole contribu-
tion (PC). This means that the edges of the working
windows for these arbitrary parameters should be set by
the convergence of the OPE and the constraint on the
PC. We use two criteria to determine the working region of
M2: the lower bound of M2 is constrained by the OPE
convergence, demanding the higher twist and higher
condensates terms to be less than 10% of the total. The
upper bound of M2 is constrained by the PC

PC ¼ Δ1ðM2; s0Þ
Δ1ðM2;∞Þ ≥ 30%: ð24Þ

The continuum threshold s0 is not arbitrary and it is related
to the energy of the first excited state in the initial channel.
However, since we have very limited information on the
energy of excited states, we should decide how to choose
the working interval of the s0. Analysis of various sum rules
predicted that s0 ≃ ðmground þ 0.5þ0.2

−0.2Þ2 GeV2. For a more
precise determination of continuum threshold, we impose
the dominance of PC and OPE convergence limitations. As
a results of these limitations, for Ycc̄ states we choose
s0 ≃ ðmYcc̄

þ 0.5þ0.1
−0.1Þ2 GeV2. Due to the above constraints,

the following working windows for these arbitrary param-
eters together with PC and OPE convergence are shown in
Table II. In Figs. 1 and 2, we show the dependencies of the
magnetic moments versusM2 at three fixed values of s0. As
you can see from these figures, the variation of magnetic
moments with respect to M2 is quite stable. Although the
variation is high compared to s0, this variation remains
within the errors of the method used.
The magnetic moment results obtained for the Ycc̄ states

with these input parameters are given in Table III after
determining all the necessary input parameters for the
numerical analysis, both in its natural unit ( e

2mYcc̄
) and in the

nuclear magneton unit (μN ¼ mN
mYcc̄

). The errors arising from

the uncertainty of the continuum threshold values, the
variation of the Borel mass parameter, etc., are taken into
account.
The magnetic moments of the vector hidden-charmed

tetraquark states have been extracted from the light-cone
sum rules employing for their hadronic representations a
single-pole technique [see, Eq. (3)]. In the case of the
multiquark hadrons such technique should be verified by
supplementary arguments because a physical representa-
tion of relevant sum rules receives contributions from
two-hadron reducible terms as well. This problem was
first proposed during theoretical studies of the pentaquarks
[30,31]. Two-hadron contaminating terms have to be
considered when extracting parameters of multiquark
hadrons. In the case of the multiquark hadrons they lead
to modification in the quark propagator

TABLE I. Mass and the residue values of the Ycc̄ states which
are borrowed from Ref. [20].

Ycc̄ state mYcc̄
[GeV] λYcc̄

(×10−2) [GeV5]

J1μ 4.66� 0.07 7.19� 0.84
J2μ 4.61� 0.07 6.69� 0.80
J3μ 4.35� 0.08 4.32� 0.61
J4μ 4.66� 0.09 6.67� 0.82
J5μ 4.53� 0.07 10.3� 1.40
J6μ 4.65� 0.08 11.3� 1.50
J7μ 4.48� 0.08 9.47� 1.27
J8μ 4.55� 0.07 10.6� 1.40

TABLE II. Working regions of the Borel mass parameters,
continuum threshold, PC, and OPE convergence for magnetic
moments.

Ycc̄ state s0 [GeV2] M2 [GeV2] PC (average) OPE

J1μ 25.0–27.0 5.0–7.0 46% <2%

J2μ 25.0–27.0 5.0–7.0 45% <3%

J3μ 22.0–24.0 4.5–6.5 43% <2%

J4μ 25.0–27.0 5.0–7.0 44% <3%

J5μ 24.0–26.0 5.0–7.0 43% <2%

J6μ 24.0–26.0 5.0–7.0 43% <3%

J7μ 24.0–26.0 5.0–7.0 45% <2%

J8μ 24.0–26.0 5.0–7.0 44% <2%

ULAŞ ÖZDEM PHYS. REV. D 105, 114030 (2022)

114030-6



1

m2 − p2
→

1

m2 − p2 − i
ffiffiffiffiffi
p2

p
ΓðpÞ

; ð25Þ

where ΓðpÞ is the finite width of the multiquark hadrons
generated by two-hadron scattering states. When these
effects are properly considered in the sum rules, they
rescale the residue of the multiquark hadrons under inves-
tigation leaving its mass unchanged. Detailed investiga-
tions show that two-hadron scattering effects are small
for multiquark hadrons (see Refs. [32–40]). Thus, in this
study the zero-width single-pole approximation has been
employed.
As we mentioned in the Introduction of the text, the same

results are obtained for the spectroscopic parameters when
the ½cq�½c̄ q̄�, ½cs�½c̄ s̄�, and ½cq�½c̄ q0� quark contents are
taken into account. Therefore, the spectroscopic parameters
are not enough to understand the internal structure of these

states and to determine their quark contents. Considering
that the Ycc̄ states can have a ½cq�½c̄ q̄� or ½cs�½c̄ s̄� quark
content, it is obvious that the magnetic moments of these
states are zero. In this analysis, the Ycc̄ states are consi-
dered as quark content with ½cq�½c̄ q0� and their magnetic
moments are obtained as nonzero. These results provide a
direct test of the diquark-antidiquark structure of the Ycc̄
states. In future experimental studies, the measurement of
the magnetic moment will give us more detailed and clear
information about the internal structure of these particles.
The magnitude of the magnetic moment shows its

measurability in experiment. For instance, it shows that
if the magnitude of the magnetic moment in the natural
units ( e

2mYcc̄
) is one or larger than it, it can be easily

measured in the experiment. If the magnitude of the
magnetic moment is less than one, it means that it is
probable to be measured. We observe that the magnitudes
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FIG. 1. The magnetic moments versusM2 at three fixed values of s0; (a), (b), (c), and (d) for J1μ, J3μ, J5μ, and J7μ states, respectively (in
unit of μN).
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of the magnetic moment results obtained in this study are
large enough to be measured experimentally.
To our best knowledge, this is the first study in the

literature dedicated to the investigation of the Ycc̄ states

magnetic moments. Therefore, experimental data or theo-
retical estimations are not yet available to compare them
with our numerical results. However, we may compare
these results with the Zc states’magnetic moments. Making
this comparison may be meaningful in terms of having an
idea about the consistency of the results since there is no
experimental and theoretical data. In Refs. [41–43], the
light-cone sum rules method has been applied to various Zc
states to obtain their electromagnetic properties. In
Ref. [41], the electromagnetic properties of the tetraquark
state Zcð3900Þ have been investigated in the diquark-
antidiquark picture with quantum numbers JPC ¼ 1þ−

and its magnetic and quadrupole moments were extracted.
The magnetic moment was obtained as μZc

¼ 0.67�
0.32μN . In Ref. [42], the magnetic dipole moment of the
Zcsð3985Þ state was acquired by using the molecular and
compact diquark-antidiquark type interpolating currents.
The obtained results were given as μDi

Zcs
¼ 0.60þ0.26

−0.21μN and
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FIG. 2. The magnetic moments versus M2 at three fixed values of s0; (a), (b), (c), and (d) for J2μ, J4μ, J6μ, and J8μ states, respectively
(in unit of μN).

TABLE III. Magnetic moments of Ycc̄ states.

Ycc̄ state JPC μ [ e
2mYcc̄

] μ½μN �
J1μ 1−− 4.24þ1.01

−0.91 0.85þ0.20
−0.18

J2μ 1−þ 4.68þ1.17
−1.04 0.95þ0.23

−0.21
J3μ 1−− 3.74þ1.13

−1.00 0.80þ0.25
−0.21

J4μ 1−þ 4.94þ1.16
−1.03 1.00þ0.22

−0.21
J5μ 1−− 4.81þ1.26

−1.12 1.00þ0.26
−0.24

J6μ 1−þ 3.68þ0.88
−0.79 0.74þ0.18

−0.16
J7μ 1−− 5.18þ1.40

−1.26 1.08þ0.30
−0.26

J8μ 1−þ 3.54þ0.96
−0.85 0.73þ0.19

−0.18
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μMol
Zcs

¼ 0.52þ0.19
−0.17μN for diquark-antidiquark and molecular

pictures, respectively. In Ref. [43], the magnetic dipole
moments of the Zcð4020Þþ, Zcð4200Þþ, Zcsð4000Þþ,
and Zcsð4220Þþ states have been extracted using the
hadronic molecular form of interpolating currents with
quantum numbers JPC ¼ 1þ−. The magnetic dipole
moments were obtained as μZc

¼ 0.66þ0.27
−0.25μN , μZ1

c
¼

1.03þ0.32
−0.29μN , μZcs

¼ 0.73þ0.28
−0.26μN , and μZ1

cs
¼ 0.77þ0.27

−0.25μN
for the Zcð4020Þþ, Zcð4200Þþ, Zcsð4000Þþ, and
Zcsð4220Þþ states, respectively. As one can see from these
predictions, the numerical results for the magnetic
moments of the Ycc̄ states obtained in the present work
are the same order of the Zc states’ magnetic moments.
Calculating the results for the magnetic moments with other
theoretical models will also be a test of the consistency of
our predictions.
Let us discuss how the magnetic moments of these states

can be measured. The electromagnetic multipole moments
can be calculated using a method based on the emission of
soft photons from hadrons, as presented in Ref. [44]. The
photon also contains information about the higher multi-
pole moments of the particle when emitted. The element of
the radiative process matrix can be written in terms of the
energy of the photon Eγ as follows:

M ∼ AðEγÞ−1 þ BðEγÞ0 þ higher-order terms: ð26Þ

The electric charge contributes to the amplitude at order
ðEγÞ−1 and the contribution coming from the magnetic
moment is characterized by the term ðEγÞ0. Thus, by
measuring the cross section or decay width of the radiative
process and ignoring the small contributions of terms

linear/higher order in Eγ , one can identify the magnetic
moment of the state under examination.
In summary, the magnetic moments of the vector hidden-

charmed tetraquark states that have been observed and can be
expected to be observed experimentally have been deter-
mined using the light-cone sum rules taking into account the
diquark-antidiquark structure with the quantum numbers
JPC ¼ 1−− and JPC ¼ 1−þ. Since these states are considered
to have different flavors of light quarks, they have nonzero
magnetic moments. The results obtained in this study can be
checked for consistency by various methods. The magnetic
moments of hadrons encompass useful knowledge about the
distribution of charge and magnetization inside hadrons,
which helps us to understand their geometrical shapes. The
existing theoretical estimations on themass of vector hidden-
charmed tetraquark states and their comparison with the
experimental value have also led to different assignments on
the internal structure of this state discussed above. More
theoretical studies are needed, especially on the strong and
radiative decays of these states. Thevalues to be obtained can
be very useful in terms of understanding the nature of these
states when the results of this study are taken together.
Calculations of different parameters related to various
interactions/decays of vector hidden-charmed tetraquark
states and their comparison with likely future experimental
measurements can help us figure out the substructure of these
states.

APPENDIX: EXPLICIT EXPRESSION
FOR Δ1ðM2; s0Þ

In this appendix we present the explicit expressions of
the function Δ1ðM2; s0Þ for the magnetic moments of Ycc̄
states entering into the sum rule.

Δ1ðM2; s0Þ ¼ −
3ðed − eu þ ecÞ
2621440π5

½I½0; 6; 3; 0� − 4I½0; 6; 3; 1� þ 6I½0; 6; 3; 2� − 4I½0; 6; 3; 3� þ I½0; 6; 3; 4� − 3I½0; 6; 4; 0�
þ 9I½0; 6; 4; 1� − 9I½0; 6; 4; 2� þ 3I½0; 6; 4; 3� þ 3I½0; 6; 5; 0� − 6I½0; 6; 5; 1� þ 3I½0; 6; 5; 2� − I½0; 6; 6; 0�
þ I½0; 6; 6; 1� þ 6I½1; 5; 3; 1� − 18I½1; 5; 3; 2� þ 18I½1; 5; 3; 3� − 6I½1; 5; 3; 4� − 18I½1; 5; 4; 1� þ 36I½1; 5; 4; 2�
− 18I½1; 5; 4; 3� þ 18I½1; 5; 5; 1� − 18I½1; 5; 5; 2� − 6I½1; 5; 6; 1��

þ ðed − euÞmchg2sG2ihq̄qi
442368π3

½I½0; 2; 1; 0� − 2I½0; 2; 1; 1� þ I½0; 2; 1; 2� − 2I½0; 2; 2; 0� þ 2I½0; 2; 2; 1�
þ I½0; 2; 3; 0� − 2I½1; 1; 1; 0� þ 4I½1; 1; 1; 1� − 2I½1; 1; 1; 2� þ 4I½1; 1; 2; 0� − 4I½1; 1; 2; 1� − 2I½1; 1; 3; 0��

þmchg2sG2ihq̄qi
84934656π3

½I½0; 2; 3; 0�ð3edð22I2½S� − 24I2½T 1� − 11I2½T 2� þ 13I2½T 4� − 2I2½S̃� þ 48I4½T 1�
þ 22I4½T 2� − 26I4½T 4� − 16I5½A�Þ þ 12euð22I1½S� þ 22I1½T 1� − 11I1½T 2� − 22I1½T 4� þ 68I1½S̃� þ 2I3½T 1�
þ 11I3½T 2� þ 9I3½T 4� − 92I3½S̃� þ 2I5½A�ÞÞ − 48edA½u0�ðI½0; 2; 1; 0� − 2I½0; 2; 1; 1� þ I½0; 2; 1; 2�
− 2I½0; 2; 2; 0� þ 2I½0; 2; 2; 1� þ I½0; 2; 3; 0�Þ þ 8χðI5½φγ�ð8edI½0; 3; 3; 0� − 4euI½0; 3; 3; 0� − 3edI½0; 3; 4; 0�
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− 3euI½0; 3; 4; 0�Þ þ 2edð11I½0; 3; 1; 0� − 33I½0; 3; 1; 1� þ 33I½0; 3; 1; 2� − 11I½0; 3; 1; 3� − 37I½0; 3; 2; 0�
þ 74I½0; 3; 2; 1� − 37I½0; 3; 2; 2� þ 41I½0; 3; 3; 0� − 41I½0; 3; 3; 1� − 15I½0; 3; 4; 0�Þ þ 2euð−5I½0; 3; 1; 0�
þ 19I½0; 3; 1; 1� − 23I½0; 3; 1; 2� þ 9I½0; 3; 1; 3� þ 19I½0; 3; 2; 0� − 46I½0; 3; 2; 1�
þ 27I½0; 3; 2; 2� − 23I½0; 3; 3; 0� þ 27I½0; 3; 3; 1� þ 9I½0; 3; 4; 0�Þφγ½u0�Þ�

−
f3γhg2sG2i

169869312π3
½132m2

cð4euI1½V� − edI2½A� þ 3edI2½V�ÞI½0; 2; 2; 0� þ 384edm2
cI6½ψν�ð2I½0; 2; 2; 0�

þ 3I½0; 2; 3; 0�Þ − 16ð2ed þ euÞI5½ψa�ð24m2
cI½0; 2; 2; 0� − I½0; 3; 4; 0�Þ − 32ð24eum2

cðI½0; 2; 1; 0�
− I½0; 2; 2; 0�Þ þ edð24m2

cðI½0; 2; 1; 0� − 2I½0; 2; 1; 1� þ I½0; 2; 1; 2� − I½0; 2; 2; 0� þ I½0; 2; 2; 1�Þ − I½0; 3; 2; 0�
þ 2I½0; 3; 2; 1� − I½0; 3; 2; 2� þ 2I½0; 3; 3; 0� − 2I½0; 3; 3; 1� − I½0; 3; 4; 0�ÞÞψa½u0� þ 192m2

cð2euðI½0; 2; 1; 1�
− I½0; 2; 1; 2� − I½0; 2; 2; 1�Þ þ edð3I½0; 2; 1; 0� − 8I½0; 2; 1; 1� þ 5I½0; 2; 1; 2� − 6I½0; 2; 2; 0� þ 8I½0; 2; 2; 1�
þ 3I½0; 2; 3; 0�ÞÞψν½u0��

þ ðed − euÞhg2sG2i
56623104π5

½25I½0; 4; 2; 0� − 75I½0; 4; 2; 1� þ 75I½0; 4; 2; 2� − 25I½0; 4; 2; 3� − 71I½0; 4; 3; 0�
þ 142I½0; 4; 3; 1� − 71I½0; 4; 3; 2� þ 67I½0; 4; 4; 0� − 67I½0; 4; 4; 1� − 21I½0; 4; 5; 0� þ 268I½1; 3; 2; 1�
− 284I½1; 3; 2; 2� þ 100I½1; 3; 2; 3� − 536I½1; 3; 3; 1� þ 284I½1; 3; 3; 2� þ 268I½1; 3; 4; 1� þ 64m2

cð2I½0; 3; 1; 1�
− 3I½0; 3; 1; 2� þ I½0; 3; 1; 3� − 2I½0; 3; 2; 1� þ I½0; 3; 2; 2� þ 3I½1; 2; 1; 2� − 3I½1; 2; 1; 3� þ 3I½1; 2; 2; 2�Þ�

þ ðed − euÞmchq̄qi
32768π3

½I½0; 4; 2; 0� − 3I½0; 4; 2; 1� þ 3I½0; 4; 2; 2� − I½0; 4; 2; 3� − 3I½0; 4; 3; 0� þ 6I½0; 4; 3; 1�
− 3I½0; 4; 3; 2� þ 3I½0; 4; 4; 0� − 3I½0; 4; 4; 1� − I½0; 4; 5; 0� þ 12I½1; 3; 2; 1� − 12I½1; 3; 2; 2� þ 4I½1; 3; 2; 3�
− 24I½1; 3; 3; 1� þ 12I½1; 3; 3; 2� þ 12I½1; 3; 4; 1��

−
mchq̄qi

5728640π3
½−20ð2euð6I1½T 4� − 4I1½S̃� þ 5I3½S� − 28I3½T 1� − 24I3½T 2� þ 18I3½T 3� þ 10I3½T 4� − 16I3½S̃�Þ

þ edð−2I2½S� þ 2I2½T 1� þ 3I2½T 3� þ I2½T 4� þ 2I2½S̃� þ 10I4½S� − 16I4½T 1� − 12I4½T 2� þ 4I4½T 4�
− 12I4½S̃�ÞÞI½0; 4; 4; 0� þ 48χð−euð2I½0; 5; 2; 0� − 7I½0; 5; 2; 1� þ 9I½0; 5; 2; 2� − 5I½0; 5; 2; 3� þ I½0; 5; 2; 4�
− 6I½0; 5; 3; 0� þ 15I½0; 5; 3; 1� − 12I½0; 5; 3; 2� þ 3I½0; 5; 3; 3� þ 6I½0; 5; 4; 0� − 9I½0; 5; 4; 1� þ 3I½0; 5; 4; 2�
− 2I½0; 5; 5; 0� þ I½0; 5; 5; 1�Þ þ 2edðI½0; 5; 2; 0� − 4I½0; 5; 2; 1� þ 6I½0; 5; 2; 2� − 4I½0; 5; 2; 3� þ I½0; 5; 2; 4�
− 3I½0; 5; 3; 0� þ 9I½0; 5; 3; 1� − 9I½0; 5; 3; 2� þ 3I½0; 5; 3; 3� þ 3I½0; 5; 4; 0� − 6I½0; 5; 4; 1� þ 3I½0; 5; 4; 2�
− I½0; 5; 5; 0� þ I½0; 5; 5; 1�ÞÞφγ½u0��

þ f3γ
1966080π3

½20edm2
cðI½0; 4; 2; 1� − 2I½0; 4; 2; 2� þ I½0; 4; 2; 3� − 2I½0; 4; 3; 1� þ 2I½0; 4; 3; 2�

þ I½0; 4; 4; 1�Þ − 9edðI½0; 5; 3; 0� − 3I½0; 5; 3; 1� þ 3I½0; 5; 3; 2� − I½0; 5; 3; 3� − 3I½0; 5; 4; 0� þ 6I½0; 5; 4; 1�
− 3I½0; 5; 4; 2� þ 3I½0; 5; 5; 0� − 3I½0; 5; 5; 1� − I½0; 5; 6; 0�Þ þ 9euðI½0; 5; 3; 0� − 3I½0; 5; 3; 1� þ 3I½0; 5; 3; 2�
− I½0; 5; 3; 3� − 3I½0; 5; 4; 0� þ 6I½0; 5; 4; 1� − 3I½0; 5; 4; 2� þ 3I½0; 5; 5; 0�
− 3I½0; 5; 5; 1� − I½0; 5; 6; 0�Þ�ψν½u0�; ðA1Þ

where u0 ¼ M2
1

M2
1
þM2

2

, 1
M2 ¼ 1

M2
1

þ 1
M2

2

withM2
1 andM

2
2 being the Borel parameters in the initial and final states, respectively. For

simplicity we did not present the terms proportional to many higher dimensional operators here; however, in the numerical
computations we take these terms into account.
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The I½n;m; l; k� and Ii½F � functions are defined as

I½n;m; l; k� ¼
Z

s0

4m2
c

ds
Z

1

0

dt
Z

1

0

dwe−s=M
2

snðs − 4m2
cÞmtlwk;

I1½F � ¼
Z

Dαi

Z
1

0

dvF ðαq̄; αq; αgÞδ0ðαq þ v̄αg − u0Þ;

I2½F � ¼
Z

Dαi

Z
1

0

dvF ðαq̄; αq; αgÞδ0ðαq̄ þ vαg − u0Þ;

I3½F � ¼
Z

Dαi

Z
1

0

dvF ðαq̄; αq; αgÞδðαq þ v̄αg − u0Þ;

I4½F � ¼
Z

Dαi

Z
1

0

dvF ðαq̄; αq; αgÞδðαq̄ þ vαg − u0Þ;

I5½F � ¼
Z

1

0

duF ðuÞδ0ðu − u0Þ;

I6½F � ¼
Z

1

0

duF ðuÞ;

where F stands for the corresponding photon DAs.
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