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The magnetic moments of the vector hidden-charmed tetraquark states that have been observed, and can
be expected to be observed experimentally, have been determined using the light-cone sum rules taking into
account the diquark-antidiquark structure with the quantum numbers J°¢ = 17~ and J*¢ = 1=F. Since
these states are considered to have different flavors of light quarks, they have nonzero magnetic moments.
The results obtained in this study can be checked for consistency by various methods. The magnetic
moments of hadrons encompass useful knowledge about the distribution of charge and magnetization
inside hadrons, which helps us to understand their geometrical shapes.
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I. INTRODUCTION

Theoretically, the existence of states with a larger number
of quarks besides baryons and mesons was proposed long
ago. However, the first experimental discovery of these states
occurred in 2003 with the observation of the X(3872) state by
the Belle Collaboration [1]. After the discovery of this
particle, various experimental collaborations discovered
many particles belonging to this new family that are still
being discovered. These newly discovered states not only
arouse the interest of particle physicists but also raise new
questions about their inner structure and quantum numbers.
Many models have been proposed to explain and decipher the
nature of these states, and several studies have been con-
ducted on them. However, their properties remain dubious,
and their substructures and quantum numbers are also
problematic. The properties of the reported tetraquark states
have been interpreted differently in different studies. To
resolve all these ambiguities, the properties of both the known
and the newly observed states need to be further investigated.
These studies could investigate complementary reactions or
other decay modes for the currently known tetraquark states,
ornovel particles that may be observed can be investigated for
their spectroscopic properties or possible decay modes to
provide input for the experiments. Several interesting reviews
provide detailed information on unconventional states,
including a history of the subject and experimental and
theoretical breakthroughs in recent years [2—14].
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Several vector hidden-charmed tetraquark states, such as
Y (4220/4260), Y(4360/4390), Y (4630/4660) and so on,
have been observed in recent years that cannot be well
correlated in the standard meson with two quarks. The family
of exotic vector states (¥.; for short), called tetraquarks,
contains at least four particles of hidden charm with quantum
numbers JP¢ = 17~ In order to understand the nature of these
states, many different models have been proposed and studies
have been conducted on them (details of which can be found in
the reviews [4,9,12,13]). In Refs. [15-20], the QCD sum rules
have been also employed to explore the spectroscopic param-
etersofthese states. InRef. [ 15], alarge number of interpolation
currents were constructed for the Y ; states, and the spectro-
scopic parameters of these states were studied using QCD sum
rules with JP€ = 1+, JPC€ = ==, JPC = |=*, and JPC =
177, and quark contents [cg][¢ g] and [cs][¢ 5]. It was taken
into account that these states are in the diquark-antidiquark
structure. While some of the obtained results are compatible
with the experimentally discovered Y . states, they turned out
to be incompatible with some of them. Moreover, some
possible decay channels and the experimental search for these
states are also discussed.

In Ref. [16], the mass and residue of the Y(4660) state
were determined in the framework of the QCD sum rules.
They found that ¢s5 and cc(uii + dd)/~/2 diquark-anti-
diquark states favor the Y(4660) state with quantum
numbers JP¢ = 1==. They also excluded c¢ud diquark-
antidiquark structure with quantum numbers J©¢ = 1%~ for
the Y(4360) state. In Ref. [17], they constructed different
types of currents to interpolate both the vector and axial
vector tetraquark states and obtain the spectroscopic
parameters of the Y ; states within the QCD sum rules.
The numerical results support the assignment of the
Y(4660) as a diquark-antidiquark type tetraquark state
with quantum numbers JP€ =177 It has also been
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suggested that Y(4260) and Y(4360) may be mixed
charmonium-tetraquark states. In Ref. [18], the tetraquark
states of type C ® y,,C and Cys ® ysy,C were constructed
to calculate the mass and residue of the Y ; states. Their
analysis supported the assignment of Y(4660) and Y (4630)
as vector tetraquark states of type C ® y,C cCs5, assign
Y (4360) and Y (4320) to the vector tetraquark state ccqg of
type Cys ® ysy,C and do not assign Y(4260), Y(4220),
and Y(4390) to the fixed vector tetraquark states.

In Ref. [19], the mass, decay constant, and strong decay
channels of the Y (4660) state were evaluated by treating it as
a bound state of a diquark and an antidiquark ([cs][¢ 5]). It
was shown that the results for the mass and total width of this
state are in good agreement with the experimental data. In
Ref. [20], they constructed the scalar, pseudoscalar, vector,
axial vector, and tensor antidiquark states to obtain the mass
spectrum of the vector tetraquark states with hidden charm
via the QCD sum rules. Their predictions supported the
identification of Y (4360), Y(4390), and Y (4660) as [cq][¢ ¢']
vector tetraquark states with hidden charm with J°¢€ = 17~

In addition to their spectroscopic properties, the electro-
magnetic form factors and multipole moments of hadrons
can provide clues to their precise character, internal
structure, and quantum numbers. We know that the electro-
magnetic multipole moments of hadrons, in particular their
magnetic moments, which encompasses knowledge about
the spatial distribution of charge and magnetization inside
the hadrons, are related to the spatial distribution of quarks
and gluons inside them. The study of the magnetic and
higher multipole moments of hadrons is therefore attrac-
tive. In this study, we compute the magnetic moments of
Y ¢ states in the diquark-antidiquark configuration with the
quantum numbers JP¢ =17~ and JP¢ = 1= using the
light-cone sum rule method [21-23]. The light-cone sum
rule method is based on the operator product expansion
near the light-cone x> ~0 and parametrizes all the

|

nonperturbative dynamics in the distribution amplitudes
that have been used to treat many electromagnetic proper-
ties of conventional and nonconventional hadrons.

This article is structured in the following manner. After the
introduction in Sec. I, we present in Sec. II the formalism of
the light-cone sum rule, which identifies the necessary tools
to compute the magnetic moments of the Y., states. In
Sec. III, we use the analytical formulas obtained in the
previous section to perform numerical calculations of the
magnetic moments and discuss the results.

II. LIGHT-CONE SUM RULE FORMALISM
FOR MAGNETIC MOMENTS

In the light-cone sum rule technique, we compute a
correlation function, which serves as the building block of
the method, twice: once in terms of hadronic quantities such as
coupling constants, form factors, and electromagnetic multi-
pole moments and second in terms of QCD parameters and
photon distribution amplitudes available for different twists.
The coefficients of the corresponding Lorentz structures from
both representations of the correlation function are then
equated and the quark-hadron duality approach is used to
obtain the desired physical quantity.

As we have mentioned above, at the beginning of the
analytic calculations of the magnetic moments it is necessary
to write the correlation function, which plays an important
role in the light-cone sum rules and is written as follows:

. (p.q) =i / dxe P (0| T {7;,(x) 7 (0)}]0),. (1)
where 7, J ,’l(x) and y represent the time-ordered product of
two currents, the interpolating current of Y states, and the
external electromagnetic field, respectively. We need explicit
expressions for J/, (x) to make progress in the calculations. In
the diquark-antidiquark picture, J/,(x) can be written in the
following forms [20]:

Ju(x) = \%{[M” (x)Cet(x)][a™ (x)r,, e (x)] = [uT (x) Cy,c* (x)][a™ (x) C™ (x)]}.

Ja(x) = ;—2{[“” (x)Cet(x)][a™ (x)r, Ce™ (x)] + [u"? (x)Cy, et (x)][d" (x) CE™ (x)]}.

Ta(x) = 2{[14” (x)Crsch ()] [a" (x)ysr, Ce™ (x)] + [ (x) Cpysct (x)][d" (x)rsCe™ (x)]}.

Ja(x) = ;—2{[“” (x)Crsct(x)][d" (x)rsr,Ce™ (x)] = [u (x)Cy,rse (x)][d" (x)7sCe™ (x)]},

Ta(x) = ;—% {[u" (x)Co,,ct () [a" (x)r* Ce™ (x)] = [uT (x)Cy*c* (x)][d" (x)o,, C™ ()]},

Ta(x) = j—% {[u" (x)Co,ct ()] [a" (x)y* Ce™ (x)] + [ (x)Cy* *(x)][d" (x)a,, CE™ (x)]}.

Ju(x) = %{[u” (X)Coyysct (x)][d" (x)ysy* Ce™ (x)] + [u™ (x) Cp*ysch ()] [a" (x)rso,, C™ (x)]}.

Ta(x) = 3—2{[“” (X)Coyysct (x)][d" (x)ysy* Ce™ (x)] = [u! (x)Crysct (x)][d" (x)r50,,C™ ()]}, (2)
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where & = ek, & = ¢™" the i, j, k, m, n are color indices and the C is the charge conjugation matrix. Here the quantum

numbers of J}, J5, J3, and J] are the J*© = 177, and the quantum numbers of JZ, J3, J§, and J§ are the J°C = 17", At this

point it should be noted that there are no experimentally observed vector hidden-charmed tetraquark states with the quantum
numbers JP€ = 17+,
In the hadronic language, a complete set of hadronic states is inserted and the contributions of the lowest Y .; states are

separated to obtain the corresponding correlation function,

X = ge B 85 Z
Hlljl?d(p’ Q) = <O|Jﬂ( )‘chgp’ )> <Ycz(p, 89)|Ycz~(l7 =+ q’£5)>y <ch(P +q. )|J (0)|0>

b 0)
— my (P+q9)? - m%ﬂ

where dots denote the effects of the higher states and continuum. The matrix elements in Eq. (3) are expressed as
(Yee(p + q.€)|5(0)[0) = 2y, €, (4)

(017, (x)[Y 2 (p. €%)) = Ay &, (5)

(Yee(p. €)Y e(p + q.€%)), = —8’(89)“(8‘5)”{(?1 (M) (2P + 4).9ap + G2(0*) (92pGa — Grallp)

T 2)(2p + (J)Tqaq/;}, (6)

where €" is polarization of the photon, Ay _ is residue of the Y . states, and G; (Q?)’s are electromagnetic form factors, with
Q? = —¢*. To calculate the magnetic moment, we need only G,(Q?) of the form factors described above. The magnetic
form factor, Fy;(Q?), is written as follows:

Fyu(Q%) = G2(Q%). (7)
Using Egs. (3)—(6) and after doing some necessary calculations the final form of the correlation function is obtained as
2
a 8/)lygf‘ v 1
lejyd(p’ Q) = [mg —_ (p + q>2] [mz —_ p2] {GZ(Qz) (%49/)1/ 99y — 2 <Q,4Pp - 5 ngpt/)
(p + ), (P +a)upup
+——"\alp+a),+5 Q2 -
mY“ mYcE
+ other independent structures} +oee (8)
The F)(Q* = 0) is proportional to the magnetic moment y_:
=5 Fy(0) )
Hy. = 2myd m\Y).

The correlation function is determined in terms of the QCD degrees of freedom and the photon distribution amplitudes in
the second step of the calculation of the magnetic moment of Y ; states. In the QCD representation, we use Wick’s theorem
to contract the corresponding quark fields after replacing the explicit expressions of the interpolating currents in the
correlation function. For instance, the result for the current J ,‘, is as follows:

== L, -, ,
% (p. q) = i“;e / d*xelP* (O{ Tr[SK (x) 54 (x)]Trly, 52" (=x)y, S ()]

— e[S (x)y, S¥ (x)] Trly, 82" (—x) S5 (—x)]
— Trly, S¥ ()53 ()] Te[827 (=x)y, S2™ (=x)]
+ Ty, S¥ ()7, 8% ()] Te[S2" (=) S5 (=x)] }0) (10)
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where

qu) (x)

= CSi (0,

with S (x) being the quark propagators. In the x space for the light-quark propagator we use in the m, — 0 limit

S (x)=i -
) =557 T 0

¥ {aq) (qq) 2

» gy

32722 GW(X) [Xﬁm + O—WXL (1 1)

where (gg) is light quark condensate, and m{ is defined via the relation (0|gg,6,;G*¢|0) = mo((']q>
The charm-quark propagator is given, in association with the second kind Bessel functions K;(x), a

(mc\/—) Ko (me

Sc (X) 471_ \/T

\/7)] gsm
(V-x2)?

|
- 1671';/0 dvGH (vx) |:(O'W)f+ Xo,,)

(’"Lm)ua Ko(m J—_ﬁ)}, (12)

Vs

where v is line variable and G*” is the gluon field strength
tensor. The perturbative or free component of the propa-
gators of the light and heavy quarks corresponds to the first
term, while the remainder belongs to the interacting parts
(with gluon or QCD vacuum) as nonperturbative contri-
butions.

The correlation function in Eq. (10) includes different
types of contributions: the photon can be emitted both
perturbatively or nonperturbatively. In the first case, one of
the free light or heavy quark propagators in Eq. (10) is
replaced by

siree / d'yS™(x = y)A)S™(y).  (13)

the remaining propagators are replaced with the full quark
propagators. The light-cone sum rule analyses are most
conveniently done in the fixed-point gauge. The most
important advantage of a fixed-point gauge is that the
|

[

external field is expressed as being associated with the field
strength tensor. For the electromagnetic field, it is defined
by x,A# = 0. In this gauge, the external electromagnetic
potential is given by

1

1
Ay = _EFaﬁyﬂ = _E (SaQﬂ - gﬁQa)yﬂ' (14)

Equation (14) is plugged into Eq. (13), as a result of which
we obtain

. 1 .
S =3 (eaty =) [ A0S =318 ()
(15)

After some lengthy calculations for S and S, we
obtain their final form as follows:

Sgree _ ngz (gaqﬂ — 8ﬁqa)(x0aﬁ + GaﬂX),
e Ki(mN—=x2
Sfree — _j 3072 (SaCIﬂ - 8/3‘1&) 26(1[)’1(0(’71(- \/j)?) 4+ —= \/? ) (xaaﬂ + GrlﬂX) (16)

In the second case one of the light quark propagators in Eq. (10) is replaced by

1,
Sab — == (Tiq") (T o (17)

4

and the remaining propagators are full quark propagators including the perturbative as well as the nonperturbative
contributions. Here, as an example, we give a short detail of the calculations of the QCD representations. In the second case

for simplicity, we only consider the first trace in Eq. (10),
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c cec'd
M (p.g) = i

/d4xeip'x(0|{Tr[S’§kl(x)F,-]Tr[yﬂS'f”(—x)y,,SZ’/’”(—x)]

+ Tr[S¥ ()82 ()] Ter, S0 (=x)p,Ti]30), + .., (18)

where Fi = 17 V&R }/ﬂ, i}/S}/ﬂ’ 0;41//2'

By replacing one of light propagators with the expressions in Eq. (12) and making use of

3(O0* (0) ~ 35 4(T,g(0), (19)

Eq. (18) takes the form

cee'¢
(p.q) =i

C
e

/ dxe P {T[S (X)L Tely, S (=), S (<))

TS (03 (00Tl 827 (-2 17 (@) (0T (0)]0) + ... (20)

Similarly, when a light propagator interacts with the photon, a gluon may be released from one of the remaining three
propagators. The expression obtained in this case is as follows:

CD .SE’S/‘E)/
e (p.q) =i

1

/ d4xei”‘x{Tr [SKK ()T Ty, St (=x)y, S5 (=x)] [ (5’61'5"1’ -3 S 5ff’>

sl il 1 / ‘ol fol il 1 / Pl

’ ~ii ~ Il 1 / ’
FTSE OSY (Tl 32 (]| (95 = Lo )

4 <5jm’5j’m _ %(yn’méjj’) 4 <5n’m’5nm _ %5m’m5n’n):| }

1 _
% 35 ((@)|a ()G (vx)g(0)[0) + ... (21)
where we inserted
_ ’ ’ 1 1730 l ’ s\
WL G (20g°(0) = (30 = 546" ) G216, (12)4(0), @)

As can be seen, matrix elements representing non-
perturbative contributions such as (y(q)|g(x)I';q(0)|0)
and (y(¢)|g(x)I';G,,(vx)q(0)|0) appear. These matrix ele-
ments can be expressed associated with photon distribution
amplitudes (DAs) and wave functions with definite twists,
whose expressions are borrowed from Ref. [24]. Besides
these matrix elements nonlocal operators such as two gluons
(gGGq) and four quarks (ggqgq) are expected to seem.
However it is known that the effects of such operators are
small, which is justified by the conformal spin expansion
[25,26], and thus we shall ignore them. The QCD repre-
sentation of the correlation function is obtained by using
Egs. (10)—(22). Then, the Fourier transformation is applied to
transfer expressions in x space to the momentum space.

In conclusion, the structure g,¢, is chosen from both
representations and the coefficients of the structure

I
are matched in both hadronic and QCD representations.
Then, Borel transformation and continuum subtraction
are used to suppress the effects of the continuum and
higher states. These steps are routine and tedious in the
light-cone sum rule method, so we will not discuss them
in detail here. Technical details on these applications can
be found in Ref. [27]. Thus, as an example for the
current J}t, the light-cone sum rule for Y. states is as
follows:

m2

y Ay, = e Ay (M2, 50), (23)

where the explicit expression of the A;(M?2,s,) function
is presented in the Appendix. The analytic calculations of
the magnetic moments of Y ; states come to an end here.
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In the following section we will use these analytical
results to perform numerical calculations.

III. NUMERICAL ANALYSIS
AND CONCLUSIONS

We assume the following parameters to perform the
numerical calculations for the magnetic moments of the
Y . states. The masses of the light quarks are m,, = m,; = 0,
the mass of the c-quark is m, = (1.275 4+ 0.025) GeV,
the condensates of the light quarks are (iiu) = (dd) =
(=0.24 £0.01)° GeV? [28], the gluon condensate is
(g?G?*) = 0.88 GeV* [10], and the magnetic susceptibility
7 = —2.854 0.5 GeV~2[29]. To progress numerical analy-
sis of the magnetic moment of these Yz states, numerical
values of the mass and residue parameters of these Y .; states
are also required. These values have been computed in
Ref. [20] using mass sum rules which are presented in Table I.
The wave functions in the distribution amplitudes of the
photon and all necessary expressions about these functions
are taken from Ref. [24].

In addition to the above input parameters, the light-cone
sum rule method includes two other arbitrary parameters,
the Borel mass (M?) and the continuum threshold (s).
According to the philosophy of the method, the physical
quantity under study should be independent of the variation
of these parameters. To achieve this, we need to add some
physical constraints, such as the convergence of the
operator product expansion (OPE) and the pole contribu-
tion (PC). This means that the edges of the working
windows for these arbitrary parameters should be set by
the convergence of the OPE and the constraint on the
PC. We use two criteria to determine the working region of
M?: the lower bound of M? is constrained by the OPE
convergence, demanding the higher twist and higher
condensates terms to be less than 10% of the total. The
upper bound of M? is constrained by the PC

Ay (M2, s50)

pC = 1= - 70)
Al(Mz, OO)

> 30%. (24)

TABLE I. Mass and the residue values of the Y ; states which
are borrowed from Ref. [20].

The continuum threshold s, is not arbitrary and it is related
to the energy of the first excited state in the initial channel.
However, since we have very limited information on the
energy of excited states, we should decide how to choose
the working interval of the s,. Analysis of various sum rules
predicted that sy = (Mgouna + 0.503)* GeV>. For a more
precise determination of continuum threshold, we impose
the dominance of PC and OPE convergence limitations. As
a results of these limitations, for Y. states we choose
so = (my_ +0.5201)* GeV2. Due to the above constraints,
the following working windows for these arbitrary param-
eters together with PC and OPE convergence are shown in
Table II. In Figs. 1 and 2, we show the dependencies of the
magnetic moments versus M? at three fixed values of s,,. As
you can see from these figures, the variation of magnetic
moments with respect to M? is quite stable. Although the
variation is high compared to s(, this variation remains
within the errors of the method used.

The magnetic moment results obtained for the Y .; states
with these input parameters are given in Table III after
determining all the necessary input parameters for the
numerical analysis, both in its natural unit (-—) and in the

2m Yez

nuclear magneton unit (uy = ”’l”TN). The errors arising from
cc

the uncertainty of the continuum threshold values, the
variation of the Borel mass parameter, etc., are taken into
account.

The magnetic moments of the vector hidden-charmed
tetraquark states have been extracted from the light-cone
sum rules employing for their hadronic representations a
single-pole technique [see, Eq. (3)]. In the case of the
multiquark hadrons such technique should be verified by
supplementary arguments because a physical representa-
tion of relevant sum rules receives contributions from
two-hadron reducible terms as well. This problem was
first proposed during theoretical studies of the pentaquarks
[30,31]. Two-hadron contaminating terms have to be
considered when extracting parameters of multiquark
hadrons. In the case of the multiquark hadrons they lead
to modification in the quark propagator

TABLE II. Working regions of the Borel mass parameters,
continuum threshold, PC, and OPE convergence for magnetic
moments.

Y, state my_ [GeV] Ay, (x107%) [GeV?] Y. state sy [GeV?]  M? [GeV?] PC (average) OPE
J/L 4.66 £ 0.07 7.19 £0.84 J}J 25.0-27.0 5.0-7.0 46% <2%
Jﬁ 4.61 £0.07 6.69 £ 0.80 J,% 25.0-27.0 5.0-7.0 45% <3%
Jﬁ 4.35 +£0.08 4.32 £0.61 1,34 22.0-24.0 4.5-6.5 43% <2%
Jﬁ 4.66 £ 0.09 6.67 £0.82 J;i 25.0-27.0 5.0-7.0 44% <3%
‘I;54 4.53 £0.07 10.3 +1.40 JZ 24.0-26.0 5.0-7.0 43% <2%
JS 4.65 £0.08 11.3£1.50 JS 24.0-26.0 5.0-7.0 43% <3%
J; 4.48 +£0.08 947 +1.27 ]; 24.0-26.0 5.0-7.0 45% <2%
J3 4.55 +0.07 10.6 £+ 1.40 J3 24.0-26.0 5.0-7.0 44% <2%
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(©)

FIG. 1.
unit of puy).

1 1
2 7 ) )
m-=p°  m?—p*—iy/p’I'(p)

where I'(p) is the finite width of the multiquark hadrons
generated by two-hadron scattering states. When these
effects are properly considered in the sum rules, they
rescale the residue of the multiquark hadrons under inves-
tigation leaving its mass unchanged. Detailed investiga-
tions show that two-hadron scattering effects are small
for multiquark hadrons (see Refs. [32-40]). Thus, in this
study the zero-width single-pole approximation has been
employed.

As we mentioned in the Introduction of the text, the same
results are obtained for the spectroscopic parameters when
the [cq][cgl, [cs][¢5], and [cq][c ¢'] quark contents are
taken into account. Therefore, the spectroscopic parameters
are not enough to understand the internal structure of these

(25)

24 T T T T T T
ol — §,=250GeV’| |
B — §,=260GeV’| ]
1.6 — 2 -
B — 5,=270GeV i
1.2 —
g
04 .
0 I | I | I | I
45 5 55 6 6.5
M’[GeV’]
(b)
24 T T T T T T
ol — 5,=240GeV’| |
B — §,=250GeV’| ]
161 |4
B — 5,=260GeV N

2 -

0.8F —
04 —
0 I | I | I | I
5 55 6 6.5 7
2 2
M [GeV']
(d)

The magnetic moments versus M? at three fixed values of sy; (a), (b), (c), and (d) for J%, J3, J3, and J; states, respectively (in

o s s

states and to determine their quark contents. Considering
that the Y. states can have a [cq|[c g] or [cs][c 5] quark
content, it is obvious that the magnetic moments of these
states are zero. In this analysis, the Yz states are consi-

dered as quark content with [cqg|[¢ ¢'] and their magnetic
moments are obtained as nonzero. These results provide a
direct test of the diquark-antidiquark structure of the Y.,
states. In future experimental studies, the measurement of
the magnetic moment will give us more detailed and clear
information about the internal structure of these particles.

The magnitude of the magnetic moment shows its
measurability in experiment. For instance, it shows that
if the magnitude of the magnetic moment in the natural
units (%—) is one or larger than it, it can be easily

2my, .
measured in the experiment. If the magnitude of the
magnetic moment is less than one, it means that it is
probable to be measured. We observe that the magnitudes
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FIG. 2. The magnetic moments versus M? at three fixed values of so; (a), (b), (c), and (d) for J2, Ji, J§, and J§ states, respectively

(in unit of uy).

of the magnetic moment results obtained in this study are
large enough to be measured experimentally.

To our best knowledge, this is the first study in the
literature dedicated to the investigation of the Y. states

TABLE IIIl. Magnetic moments of Y ; states.
Y. state Jre R Er ulpn]

1 - +1.01 +0.20
s }_+ et g
f — L 0807

H T —1.00 POV -0.21
J4 -t 4941148 1.007057
Jé 1-- 4.81 j%l)zzz 1 .ooj%-z?z
f . 36802 074 016
l s R e

H ~ 7—0.85 c1Y—0.18

magnetic moments. Therefore, experimental data or theo-
retical estimations are not yet available to compare them
with our numerical results. However, we may compare
these results with the Z,. states’ magnetic moments. Making
this comparison may be meaningful in terms of having an
idea about the consistency of the results since there is no
experimental and theoretical data. In Refs. [41-43], the
light-cone sum rules method has been applied to various Z,.
states to obtain their electromagnetic properties. In
Ref. [41], the electromagnetic properties of the tetraquark
state Z.(3900) have been investigated in the diquark-
antidiquark picture with quantum numbers JFC€ = 1+~
and its magnetic and quadrupole moments were extracted.
The magnetic moment was obtained as u; = 0.67+
0.32uy. In Ref. [42], the magnetic dipole moment of the
Z.+(3985) state was acquired by using the molecular and
compact diquark-antidiquark type interpolating currents.

The obtained results were given as u2' = 0.601037uy and
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Hz
pictures, respectively. In Ref. [43], the magnetic dipole
moments of the Z.(4020)", Z.(4200)", Z.,(4000)%,
and Z.(4220)" states have been extracted using the
hadronic molecular form of interpolating currents with
quantum numbers JPC¢ =17, The magnetic dipole

moments were obtained as u; = O.66f8;2257 HUNs Hzt =

LO3X055 N Mz, = 0.73103%6uy, and gz = 077103 uy

for the Z.(4020)*, Z.(4200)", Z.,(4000)*, and
Z.,(4220)" states, respectively. As one can see from these
predictions, the numerical results for the magnetic
moments of the Y ; states obtained in the present work
are the same order of the Z,. states’ magnetic moments.
Calculating the results for the magnetic moments with other
theoretical models will also be a test of the consistency of
our predictions.

Let us discuss how the magnetic moments of these states
can be measured. The electromagnetic multipole moments
can be calculated using a method based on the emission of
soft photons from hadrons, as presented in Ref. [44]. The
photon also contains information about the higher multi-
pole moments of the particle when emitted. The element of
the radiative process matrix can be written in terms of the
energy of the photon E, as follows:

ML ":Z = 0.52‘_L(()).'1'79 uy for diquark-antidiquark and molecular

M ~A(E,)"" + B(E,)° + higher-order terms.  (26)

The electric charge contributes to the amplitude at order
(E,)”" and the contribution coming from the magnetic
moment is characterized by the term (E,)°. Thus, by
measuring the cross section or decay width of the radiative
process and ignoring the small contributions of terms
|

3(ey—e, +e.)

A (M2, s5)) = —
1(M, 50) 26214407

linear/higher order in E,, one can identify the magnetic
moment of the state under examination.

In summary, the magnetic moments of the vector hidden-
charmed tetraquark states that have been observed and can be
expected to be observed experimentally have been deter-
mined using the light-cone sum rules taking into account the
diquark-antidiquark structure with the quantum numbers
JP€ =177 and JP€ = 1. Since these states are considered
to have different flavors of light quarks, they have nonzero
magnetic moments. The results obtained in this study can be
checked for consistency by various methods. The magnetic
moments of hadrons encompass useful knowledge about the
distribution of charge and magnetization inside hadrons,
which helps us to understand their geometrical shapes. The
existing theoretical estimations on the mass of vector hidden-
charmed tetraquark states and their comparison with the
experimental value have also led to different assignments on
the internal structure of this state discussed above. More
theoretical studies are needed, especially on the strong and
radiative decays of these states. The values to be obtained can
be very useful in terms of understanding the nature of these
states when the results of this study are taken together.
Calculations of different parameters related to various
interactions/decays of vector hidden-charmed tetraquark
states and their comparison with likely future experimental
measurements can help us figure out the substructure of these
states.

APPENDIX: EXPLICIT EXPRESSION
FOR Al (Mz, So)

In this appendix we present the explicit expressions of
the function A, (M?, s,) for the magnetic moments of Y
states entering into the sum rule.

[10.6,3,0] — 41[0,6,3, 1] + 61[0, 6,3, 2] — 41[0,6, 3, 3] + 1[0, 6,3, 4] — 310, 6,4, 0]

+91[0,6,4, 1] = 91[0, 6,4, 2] + 310, 6,4.3] + 31[0.6,5,0] — 61[0, 6.5, 1] + 310, 6,5.,2] — 1[0, 6.6, 0]
+1[0,6,6,1] + 61[1,5,3, 1] — 181[1,5,3,2] + 181[1.5,3,3] — 61[1,5,3,4] — 181[1,5.4, 1] + 361[1, 5,4, 2]
— 181[1,5.4,3] + 181[1,5.,5. 1] — 181[1,5.5,2] — 61[1. 5.6, 1]]

(ed - eu)mc<g%G2><QQ>
44236873

[110,2,1,0] = 21[0,2.1,1] + 1[0, 2, 1,2] — 21[0.2,2,0] + 21[0,2,2, 1]

+10,2,3,0] = 21[1,1,1,0] + 41[1,1,1,1] = 21[1,1,1,2] + 41[1,1,2,0] — 41[1,1,2,1] = 21[1,1,3,0]]

m (g*G*)(qq)
849346567

10,2, 3,0](3e4(221,[S] — 241,[T ] = 111,[T5] + 1,15[T 4] — 21,[8] + 481,[T ]

+ 2204[T,) — 261,[T 4] — 1615[A)) + 12¢,(221,[S] + 221, [T ] - 111,[T,] - 221, [T 4] + 681, (3] + 215[T ]

+ 1IL[T o) 4 914[T 4] — 9213 (8] + 215 [ A])) — 48e4.A[ug) (10,2, 1,0] — 21[0,2,1,1] + 1[0, 2. 1,2]
—21[0,2,2,0] +21[0,2,2, 1] 4 1[0, 2,3,0]) + 8¢ (Is[¢,](8¢41[0,3,3,0] — 4e,1[0,3,3,0] — 3¢,1[0,3,4,0]
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—3e,1[0.3,4,0]) + 2¢,4(111[0,3,1,0] — 331[0,3, 1, 1] + 331[0, 3., 1,2] — 111[0,3, 1,3] = 371[0, 3,2, 0]
+741[0,3,2,1] = 371[0, 3,2, 2] + 411]0,3,3,0] — 4110, 3,3, 1] — 1510, 3,4,0]) + 2¢,(=51[0,3,1,0]
+1910,3,1,1] = 231[0, 3, 1,2] + 91]0. 3, 1,3] + 191[0, 3,2, 0] — 461]0,3, 2. 1]

+271[0,3,2,2] — 231[0,3,3,0] + 271[0,3,3, 1] + 91[0,3, 4, 0]) ¢, [ug] )]

_ f3y<g?G2>
1698693127°
+31[0,2,3,0]) — 16(2¢, + e,)I5[y*](24m21[0,2,2,0] — 1[0,3,4,0]) — 32(24e,m2(1[0,2,1,0]

= 1[0.2.2,0]) + ¢4(24m(1(0.2.1.0] = 21[0.2, 1.1] 4 1[0.2. 1,2] = 1[0.2.2.0] + 1[0.2.2.1]) = 1[0. 3.2, 0]
+21[0,3,2,1] = 1[0,3,2,2] +21[0,3,3,0] — 21[0, 3,3, 1] = 1[0, 3,4, 0]))y“[ug] + 192m2(2¢,(10,2, 1, 1]
—100,2,1,2] — 1[0,2,2, 1)) + ¢4(310,2, 1,0] — 810,2, 1, 1] + 510, 2, 1,2] - 61[0, 2, 2,0] + 810, 2,2, 1]
+31[0., 2, 3, 0]) )y [uo]]

(ed - eu)<g%G2>
566231047°
+1421[0,4,3,1] = 711[0,4,3,2] + 671[0,4,4,0] — 6710, 4,4, 1] — 211[0.4,5,0] + 2681[1,3,2. 1]

—2841[1,3,2,2] + 1001[1,3,2,3] — 5361[1,3,3, 1] 4 28411, 3,3,2] + 2681[1,3,4, 1] + 64m2(21[0,3, 1, 1]
—31[0,3,1,2] 4 1[0, 3, 1,3] = 27[0.3,2, 1] + 1[0, 3.2, 2] + 31[1,2.,1,2] = 31[1,2,1,3] + 31[1,2.2,2])]

(ed - eu)mc<‘_](’I>
3276873
—31[0,4,3,2] + 31[0,4,4,0] — 31[0,4,4,1] — 1[0,4,5,0] + 121[1,3,2,1] = 121[1,3,2,2] + 4I[1,3,2.3]

—241[1,3,3,1] + 121]1,3,3.2] + 121[1,3,4,1]]

[132m2(4e, 1, [V] — e[ A] + 3eal>[V))I[0, 2.2, 0] + 384e,m214[y)(21]0,2. 2, 0]

[251[0,4,2,0] — 751[0,4,2, 1] + 7510, 4,2, 2] — 251[0,4,2,3] — 711[0, 4. 3, 0]

+ [1]0,4,2,0] — 31]0,4,2,1] + 31[0,4,2,2] — 1[0,4,2,3] — 31[0,4,3,0] + 61[0,4,3, 1]

- % [-20(2e,(61,[T 4] — 41,[S] 4+ S15[S] — 2815[T || — 2415[T,] + 1815[7 3] + 1015]7 4] — 1615[S])

+ eg(=20,[8] 4 215[T ] + 31,[T 5] + I[T 4] + 21,[8] + 101,[S] — 161,[T ] = 121,[T 5] + 41,[T 4]

— 121,[3]))1[0. 4,4, 0] + 48y (—e, (21[0,5.,2,0] — 71[0, 5.2, 1] + 91[0,5,2.2] — 51[0,5.2, 3] + 1[0, 5.2, 4]
—61[0,5.3,0] + 151[0, 5,3, 1] — 121[0,5.3,2] + 31[0, 5.3, 3] + 61]0,5,4,0] — 91[0, 5.4, 1] + 31[0, 5.4, 2]
—21[0,5.5,0] + 1[0, 5,5, 1)) + 2¢,4(1[0,5.2,0] — 41[0,5, 2. 1] + 61]0,5,2,2] — 41[0,5,2.3] + 10,5, 2. 4]
—31[0,5.3,0] + 91[0,5.3,1] = 91[0.5.,3,2] + 31[0,5.3, 3] + 31[0,5.4,0] — 61[0.5,4, 1] + 31[0,5. 4, 2]
~1[0,5,5,0] +1[0,5,5, 1)), [uo]]

f3y
19660807°
+1]0,4,4, 1)) = 9e,(1]0,5,3,0] — 31[0, 5,3, 1] + 31[0,5.3,2] — 1[0, 5,3, 3] — 31[0, 5, 4,0] + 61[0, 5,4, 1]

—31[0,5,4,2] + 31[0,5,5,0] — 31[0,5,5.,1] = 1[0, 5,6,0]) + 9e,(1]0,5,3,0] — 31[0,5,3, 1] + 31[0,5, 3, 2]
—1]0,5,3,3] = 31[0,5,4,0] + 61[0,5,4, 1] — 310, 5,4, 2] + 31[0,5,5,0]
—31[0,5,5,1] = 10,5,6, 0])Jy* uo). (A1)

+ [20e,m2(1]0,4,2,1] — 21[0,4,2,2] + 1[0,4,2,3] — 21[0,4,3,1] + 21[0,4,3,2]

2

M1
Mi+M3> M?
simplicity we did not present the terms proportional to many higher dimensional operators here; however, in the numerical
computations we take these terms into account.

where uy = = # + # with M? and M3 being the Borel parameters in the initial and final states, respectively. For
1 2
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The I[n,m, 1, k| and I,[F] functions are defined as

K 1 1
Iln,m, 1 k] Z/Ods/ dt/ dwe‘s/MZS"(s
4m?

— dm2)"thwk,

/ / dvF(ag, a,. a,)8 (a, + va, — ug),

/ (, / dvF(ag, a4, a,)8 (ag + va, — ug),

/1 /1duFa a,. a,)8(a, + Ba, — ug),

/ / dvF (g, a ., a,)8(az + va, — ug),
zgfp:A duF ()8 (1 = ),

Mﬂ_ébﬁwx

where F stands for the corresponding photon DAs.
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