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We discuss quantum entanglement between fast and slow degrees of freedom, in a two-dimensional (2D)
large Nc gauge theory with Dirac quarks, quantized on the light front. Using the ’t Hooft wave functions,
we construct the reduced density matrix for an interval in the momentum fraction x space, and calculate its
von Neumann entropy in terms of structure functions, that are measured by deep inelastic scattering on
mesons (hadrons in general). We found that the entropy is bounded by an area law with logarithmic
divergences, proportional to the rapidity of the meson. The evolution of the entanglement entropy with
rapidity is fixed by the cumulative singlet parton distribution function (PDF), and bounded from above by a
Kolmogorov-Sinai entropy of 1. At low x, the entanglement exhibits an asymptotic expansion, similar to
the forward meson-meson scattering amplitude in the Regge limit. The evolution of the entanglement
entropy in parton x per unit rapidity measures the meson singlet PDF. The resummed entanglement entropy
along the single meson Regge trajectory is stringlike. We suggest that its extension to multimeson states
models deep inelastic scattering on a large 2D“nucleus.” The result is a large rate of change of the
entanglement entropy with rapidity, that matches the current Bekenstein-Bremermann bound for maximum
quantum information flow. This mechanism may be at the origin of the large entropy deposition and rapid
thermalization, reported in current heavy ion colliders, and may extend to future electron-ion colliders.

DOI: 10.1103/PhysRevD.105.114027

I. INTRODUCTION

Quantum entanglement permeates most of our quantum
description of physical laws. It follows from the fact that
quantum states are mostly superposition states, and two
noncausally related measurements can be correlated, as
captured by the famed Einstein–Podolsky–Rosen paradox.
A quantitative measure of this correlation is given by the
quantum entanglement entropy. The entanglement entropy
of quantum many-body system and quantum field theory

has been extensively explored in the literature [1–5]. Less
known perhaps is the concept of quantum entanglement
flow and its relation to quantum information flow and
storage. A maximum flow is expected in the most ideal
quantum systems, following from the bound in energy
change imposed by the uncertainty principle [6,7].
In hadron physics, quantum entanglement is inherent to a

hadron undergoing large longitudinal boosts, with its wave
function described either by wee partons [8] or string bits
[9–11]. Entanglement entropies are currently measured in
diffractive pp scattering at large

ffiffiffi
s

p
in current collider

facilities [12–14], and will be measured in ep scattering at
low x at future eIC facilities [12–15], with better accuracy.
Entanglement entropies in relation to hadronic processes
have also been discussed in [16,17].
In ultrarelativistic heavy-ion collisions, these inherently

large entanglement entropies are at the origin of the prompt
flow of wee entropy, likely at the boundary of our quantum
laws. They may also explain the almost instantaneous
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thermalization of the current strongly coupled plasma
delivered initially at the RHIC facility, and later at the
LHC facility [12,13,18]. The duality between the low-x
partons and the string bits [13,19,20] explains why their
entanglement provides for the most efficient mechanism for
scrambling information, matching only that produced by
gravitational black holes [9,10].
In this work we discuss entanglement in longitudinal

partonic momentum or Bjorken-x space, and also in
rapidity space or ln 1

x using two-dimensional QCD. In
the large number of colors limit, 2D QCD is solvable with
a dual partonic [21] and stringlike description [22]. The
purpose of this work is to elucidate the concept of
entanglement in single hadron states, or along a fixed
Regge trajectory, as probed with deep inelastic scattering
(DIS) kinematics. As an example of DIS scattering on a 2D
nucleus, we will address the entanglement in a multimeson
state (recall that all hadrons are similar on the light front),
and show how its growth rate in rapidity saturates the
current bound on quantum information flow.
The outline of the paper is as follows: In Sec. II we

briefly review the light cone formulation of 2D QCD with
Dirac quarks. In the large number of color limit, the two-
body sector decouples and solves the ’t Hooft equation
[21]. In Sec. III, we detail the entangled density matrix in a
single meson state, with a single parton-x cut, as probed by
DIS scattering. The evolution of the entanglement entropy
with rapidity is fixed by the cumulative parton distribution
function (PDF), obeys a Kolmogorov-Sinai bound of 1 [23]
(and references therein), and reduces to the longitudinal
meson structure function at low x. The entanglement
entropy is shown to be universal in the 2D scaling limit.
In Sec. IV we recast 2D QCD as a string on the light front
in the 2-particle sector. We show that the entanglement of
the string bits follows by resumming over the one meson
Regge trajectory, thanks to duality. We suggest that the
resummation over multimeson Regge trajectories may
describe DIS scattering on a 2D nucleus on the light front.
The evolution of the ensuing entanglement entropy with
rapidity is extensive in the classical and longitudinal string
entropy. The rate of change matches the Bekenstein-
Bremermann bound [6,7] for the maximum flow of
quantum information. Our conclusions are in Sec. V.
More details are given in the appendixes.

II. DISCRETE LIGHT-CONE QUANTIZATION
OF 2D QCD

To construct the reduced density matrix we first provide
a review of the discrete light-cone quantization of the
theory [24–26]. The system is put in a finite box in the
light-front space − L−

2
< x− < L−

2
. After choosing antiperi-

odic boundary condition, the momenta are labeled as

kþp ¼ π

L− ð2pþ 1Þ: ð1Þ

The good component ψþi of the fermion field has the mode
decomposition as

ψþiðx−Þ ¼
1ffiffiffiffiffiffiffiffiffi
2L−

p
XN
p¼0

�
ai;pe−i

πð2pþ1Þ
L− x− þ b†i;pe

iπð2pþ1Þ
L− x−

�
; ð2Þ

which satisfies the anticommutation relation

½ψþiðx−1 Þ;ψ†
þjðx−2 Þ�þ ¼ δðx−1 − x−2 Þδij: ð3Þ

Here i ¼ 1; ::Nc is the color indices of the fermion field,
which will be omitted below to avoid cluttering. The total
number ofN for a finite system with lattice cutoff a is given
by N ¼ ½L−

2a� − 1. Of all the N independent frequencies, half
are unfilled (ap) and half are filled (bp). In terms of the
above light-front (LF) free field, the LF momentum Pþ and
LF Hamiltonian are given by [25,26]

PþL− ¼ 2π
XN
p¼0

�
pþ 1

2

�
ða†pap þ b†pbpÞ; ð4Þ

and

P−

L− ≡H ¼ M2

2π
H0 þ

1

L− V; ð5Þ

where M2 is the quark mass square and H0 reads

H0 ¼
XN
p¼0

a†pap þ b†pbp
pþ 1

2

: ð6Þ

Here V consists of four-quark contributions which can be
computed from the interaction term

V ¼ g21þ1

2

Z L−
2

−L−
2

dx−ψ†
þψþ

1

ði∂−Þ2
ψ†
þψþ: ð7Þ

Expressed in terms of ap, bp, H is independent of L−.
Using the explicit formula of Pþ above, it is clear that to
describe a given hadron state with total momentum Pþ, not
all the modes are required. We only need those p below

p ≤
L−Pþ

2π
−
1

2
≡ Λ− −

1

2
: ð8Þ

Therefore, Λ− provides a natural truncation of the Hilbert
space. The momentum fractions are labeled by

1

2Λ− ≤ xp ¼ 1

2Λ− ð2pþ 1Þ ≤ 1: ð9Þ

Below, we use the label x for all momenta. For a generic
Λ−, the states described above are purely discrete and break
the Lorentz invariance. We expect that for Λ− → ∞, the
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spectrum of H goes to zero as M2

Λ−, and the Lorentz invariant
dispersion relation PþP− ¼ 2M2 is restored. In particular,
the meson state can be constructed as

jni ¼ 1ffiffiffiffiffiffi
Λ−

p
X

0<p<Λ−

φpa
†
pb

†
Λ−−pj0i: ð10Þ

At large Nc, the above two-body state closes under the
action of P−. Requiring it to be an eigenstate of P− leads to
the equation

ðΛ−Þ2m2
R

φp

ðpþ 1
2
ÞðΛ−−pÞþΛ−g

2
1þ1Nc

π

X
l≠p

φp−φl

ðp− lÞ2¼M2φp:

ð11Þ

In the continuum limit Λ− → ∞, and with the identification

x ¼ pþ1
2

Λ− and y ¼ lþ1
2

Λ− , (11) reduces to the ’t Hooft integral
equation [21] in the continuum

m2
R

xx̄
φnðxÞ þ

g21þ1Nc

π
PV

Z
1

0

dy
φnðxÞ − φnðyÞ

ðx − yÞ2 ¼ M2
nφðxÞ:

ð12Þ

The gauge coupling is related to the string tension
g21þ1Nc=2 ¼ σT (see below). The renormalized quark mass
is m2

R ¼ m2
Q − 2σT=π. The ensuing spectrum is discrete,

with eigenvalues and eigenvectors labeled by M2
n and

φnðxÞ, respectively. They form a complete set of states
in L2½0; 1�,

X
n

φ†
nðxÞφnðx0Þ ¼ δðx − x0Þ: ð13Þ

Their semiclassical and asymptotic behaviors are briefly
reviewed in Appendix A.

III. ENTANGLEMENT ENTROPY IN 2D QCD

We now consider how different parts of a meson light-
front wave function as a bound quark-antiquark state are
entangled in the quark longitudinal momentum kþ ¼ xPþ
[13–15,27]. In particular, we will focus on the entangle-
ment on a single asymmetric cut in longitudinal momen-
tum, by analogy with a DIS experiment where a single
parton-x is singled out, say in the segment x0 ≤ 1

2
, including

the low-x region. We start by carefully reviewing the
structure of the Hilbert space, and then define the pertinent
single cut entanglement entropy.

A. Density matrix in longitudinal momentum

Since the color will be always traced out, here we simply
omit the color factor. This will not modify our calculation
of the entanglement entropy for two-body states. With this

in mind, for each x we have the quark and antiquark
operators ax, bx, and their corresponding 2D Fock space.
The total unconstrained Hilbert space is their tensor product

H ¼ ⊗
0<x<1

Hx ⊗ H̄x; ð14Þ

where

Hx¼Spanðj0ix;a†xj0ixÞ; H̄x¼Spanðj0̄ix;b†xj0̄ixÞ: ð15Þ

The total dimension of the Hilbert space is then
2½Λ−−1

2
�þ1 × 2½Λ−−1

2
�þ1, spanned by quark and antiquarks.

In a confining theory, however, not all of the states in
the above Hilbert space are physical. In the 2D QCD, it can
be shown that in the large Nc limit, the physical spectrum
consists of bound states formed by quarks and antiquarks,
more precisely, the meson wave function reads

jni ¼ 1ffiffiffiffiffiffi
Λ−

p
X
0<x<1

φnðxÞjx; x̄i; ð16Þ

where the basis jx; x̄i can be written in full tensorial form as

jx; x̄i ¼ a†xj0ix ⊗ b†x̄j0̄ix̄ ⊗y≠x j0iy ⊗ j0̄jiȳ: ð17Þ

For finite Λ−, φnðx;Λ−Þ satisfies a discrete version of the
’t Hooft equation, but as Λ− → ∞φnðx;Λ−Þ should con-
verge to its continuum version given above. Below we will
always use the continuum version of the wave function.
Unlike the free-quark and antiquark states, the total
dimension of the Hilbert space spanned by the ’t Hooft
wave functions is not H, but only the two-quark states
spanned by the set of bases jx; x̄i defined above. Indeed,
using the completeness equation of the ’t Hooft equation
one can show that

X
n

jnihnj ¼
X
0<x<1

jx; x̄ihx; x̄j; ð18Þ

which is nothing but the projection operator into these
quark-antiquark two-body states. The total dimension of
these states is only Λ−, but not 4Λ

−
.

Given the above meson state, one can construct its
density matrix as

ρn ¼
1

Λ−

X
x;x0

φ†
nðx0ÞφnðxÞjx; x̄ihx0; x̄0j: ð19Þ

Below we investigate its entanglement entropy with respect
to the tensor product structure in Eq. (14).

B. Reduced density matrix

The entanglement in longitudinal space is captured by
the reduced matrix
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ρnðx; x0Þ ¼ trAρnðx; x0Þ; ð20Þ

where A denotes the part of the Hilbert space spanned by
ax, bx, with x lying in one or more subintervals of [0, 1].
How to choose A depends on the probe experiment of
interest. For instance, when probing a hadron in a DIS
experiment via hard scattering, the virtual photon selects a
quark or antiquark with fixed parton-x, say x0 <

1
2
in the

range Ā ¼ ½0; x0�. The DIS event traces the hadron density
matrix over the remaining and unobserved longitudinal
momentum range A ¼ ½x0; 1�. This is particularly clear,
when probing a hadron using semi-inclusive DIS produc-
tion of heavy mesons. In the large Nc or planar approxi-
mation, the process is dominated by Reggeon exchange,
with the measured parton x, kinematically limited to small
x0 ≪ 1. This reduction of the density matrix is asymmetric
in parton x. A more symmetric but rather academic
reduction is discussed in Appendix B.
With this in mind, we now perform the partial trace in the

tensor product in Eq. (14), over all the Hx and H̄x where
x > x0 with x0 <

1
2
. To carry out the partial trace, it is clear

that for x < x0 and x0 < x0, we are left with the quark
contribution

1

Λ−

X
x<x0

jφnðxÞj2a†xj0ixh0jxax ⊗
y<x0;y0<x0;y≠x

j0iyj0̄iy0 h0̄jy0 h0jy:

ð21Þ

Similarly, for x > 1 − x0 and x0 > 1 − x0, we have the
antiquark contribution

1

Λ−

X
x<x0

jφnðx̄Þj2b†xj0̄ixh0̄jxbx ⊗
y<x0;y0<x0;y0≠x

j0iyj0̄iy0 h0̄jy0 h0jy:

ð22Þ

It is easy to see that in the cases where x < x0; x0 > 1 − x0
or x > 1 − x0; x0 < x0, there are no partial traces that can be
formed since in both of these two cases there will be
one quark below x0 and another quark above x0. The case
x0 < x < 1 − x0 and x0 < x0 < 1 − x0 should be consid-
ered, since in this case both the quark and antiquark are
above x0, and should be traced out. This leads to the
contribution

1

Λ−

X
x0<x<1−x0

jφnðx̄Þj2 ⊗
y<x0;y0<x0

j0iyj0̄iy0 h0̄jy0 h0jy: ð23Þ

The contribution is proportional to the vacuum contribution
j0ih0j for all the momentum modes below x0 since they
should not be traced over. Summing over the above, we
found that for the two-body LF wave functions of a meson
state, the reduced density matrix is diagonal and can be
written schematically as

ρ̂nðx0Þ ¼
1

Λ−

X
x<x0

½jφnðxÞj2jxiqhxjq þ jφnðx̄Þj2jxiq̄hxjq̄�

þ 1

Λ−

X
x0<x<1−x0

jφnðxÞj2j0ih0j: ð24Þ

The first contribution in (24) stems from the valence
quark-antiquark pair in an n-meson state, and is expected.
The second contribution stems from the vacuum state
(zero modes) assumed normalizable, and is unexpected.
The trace of the reduced density matrix is 1, using the
normalization condition of the wave function

X
0<x<1

hxjxi
Λ− jφnðxÞj2 ¼ 1: ð25Þ

with the lightlike cutoff Λ−

hxjxi ¼ 2πδð0xÞ ¼ 2πPþδð0kþÞ ¼
Pþ

0kþ
≡ Λ−: ð26Þ

From the light cone discretization of 2D QCD, we identify
0kþ ¼ 1=L− as the lowest resolved longitudinal momen-
tum, for a meson with total longitudinal momentum Pþ. In
the parton model, N ¼ Pþ=0kþ counts the number of wee
partons, with the larger the momentum, the larger N (see
also below). We identify χ ¼ ln Λ− with the rapidity, which
is fixed by DIS kinematics as χ ∼ lnðQ2=xÞ at low x.

C. Von Neumann entropy

Given the reduced density matrix, the corresponding von
Neumann entanglement entropy is given by

Snðx0Þ ¼ −trρ̂nðx0Þ ln ρ̂nðx0Þ ¼ lnΛ−
Z

x0

0

dx½jφnðxÞj2 þ jφnðx̄Þj2�

−
Z

x0

0

dx½jφnðxÞj2 ln jφnðxÞj2 þ jφnðx̄Þj2 ln jφnðx̄Þj2� −
Z

1−x0

x0

dxjφnðxÞj2 ln
Z

1−x0

x0

dxjφnðxÞj2: ð27Þ

Since the n-state quark and antiquark PDF for a meson is given by

qnðxÞ ¼ φ2
nðxÞ; q̄nðxÞ ¼ φ2

nðx̄Þ; ð28Þ
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the entanglement entropy is specifically

Snðx0Þ ¼ lnΛ−
Z

x0

0

dx½qnðxÞ þ q̄nðxÞ�

−
Z

x0

0

dx½qnðxÞ ln qnðxÞ þ q̄nðxÞ ln q̄nðxÞ�

−
Z

1
2

x0

dx½qnðxÞ þ q̄nðxÞ� ln
Z

1
2

x0

dx½qnðxÞ þ q̄nðxÞ�;

ð29Þ

which is symmetric under the exchange of a quark to an
antiquark. Note that for x0 ¼ 1

2
, the result simplifies

Sn

�
1

2

�
¼ lnΛ− −

Z
1

0

dxqnðxÞ ln qnðxÞ

→ lnΛ− − ð1 − ln 2Þ; ð30Þ

with the rightmost result following from the Wentzel–
Kramers–Brillouin (WKB) approximation approximation.
We have checked that for other hadrons (nucleons, exotics),
the extensive part in (29) with the rapidity is also multiplied
by the cumulative probabilities of each parton in that state.
Equation (29) is the first major result of this paper.

1. Area law and Kolmogorov-Sinai bound [23]

Since the entanglement entropy depends on the length
of the interval x0Λ− only through logs, it trivially satisfies
an area law. Similarly to the spatial entanglement in a 2D
gapped system [1], the entanglement contains a log-
divergent term ∝ lnΛ− and a finite term. However, unlike
the spatial entanglement entropy, the coefficient of the
log term depends also on the length of the interval. The
logarithmic dependence leads to an evolution in rapidity,
and is bounded from above as

dSnðx0Þ
dχ

¼
Z

x0

0

dx½qnðxÞ þ q̄nðxÞ�≡ Cðx0Þ ≤ 1: ð31Þ

In a way, the analog of the central charge is played by the
cumulative parton probability Cðx0Þ, with Cð1

2
Þ ¼ 1 satu-

rating the bound.
If we identify the logarithmic dependence on Pþ as an

evolution in rapidity, then (31) can be viewed as the
Kolmogorov-Sinai bound for the entanglement entropy
for an n meson in two-dimensional QCD, and we identify
the Kolmogorov-Sinai entropy SKS ¼ 1 (sum of the pos-
itive Lyapunov exponents).
The bound (31) can be understood in the following way.

For the ’t Hooft wave functions, the reduced density matrix
contains only one-body and zero-body (vacuum) terms;
therefore, its Schmidt decomposition allows at most 2x0Λ−

terms, which implies an upper-bound Sn ≤ lnΛ− þ ln 2x0.
However, our result shows that this is an overestimate.

For the two-body wave function, it is the finite probability
of the zero-mode contribution (vacuum state) that reduces
the overestimation. For three- and higher-body wave
functions, we show in Appendix D that the naive upper
bound ∝ ðk − 1Þ lnΛ− for a generic state where k is the
maximal number of partons is also an overestimate.

2. Structure function

At low x, (31) is the n-meson Fn
2 structure function

dSnðx0 ∼ 0Þ
dχ

∼ x0ðqnðx0Þ þ q̄nðx0ÞÞ ¼ Fn
2ðx0 ∼ 0Þ; ð32Þ

in agreement with the analysis in higher dimensions
[12–15]. In 2D (32) measures the low-x partons in the
n-meson state

dSnðx0 ∼ 0Þ
dχ

∼ 2C2
n
x2βþ1
0

2β þ 1
; ð33Þ

where we used that at the edges x ¼ 0 and x ¼ 1. The
’t Hooft wave function has an asymptotic expansion in
terms of the dynamically generated coefficient β as

φnðxÞ ¼ Cnxβ; πβ cot πβ ¼ −
πm2

Q

2σT
þ 1: ð34Þ

A more refined analysis detailed in Appendix E gives

Snðx0Þ ¼ 2C2
n
x2βþ1
0

2β þ 1

�
lnðeΛ−Þ

þ 2β
1þ ð2β þ 1Þ ln 1

x0

ð2β þ 1Þ þOðx20Þ
�

ð35Þ

for β > 0. The result is consistent with (32), if we note that
the second contribution in (E2) is suppressed in the chiral
limit, i.e., β ∼mQ=

ffiffiffiffiffi
σT

p
. In passing, we also note the

noncommutativity of the chiral limit with the low-x limit
in 2D QCD.
For theories in which there are nontrivial logarithms

running in rapidity, for example four-dimensional QCD,
(32) measures the growth of low-x partons carried by the
quark sea. This is consistent with the forward meson-meson
(elastic n − n → n − n) scattering amplitude in the Regge
limit in 2D [28]

σnðsÞ ∼
1

s
ImAnðs; 0Þ ∼ s−ð2βþ1Þ ∼ Fn

2ðx0 ∼ 0Þ; ð36Þ

with a negative Reggeon intercept αR ¼ −2β. (In 4D the
forward limit is dominated by the pomeron with positive
intercept αP > 0, with the stringy relation αR þ 1 ¼ αP.)
The forward elastic cross section is a measure of the
n-meson Fn

2 structure function. It is also consistent with the
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elastic 2D n-meson form factor Fnð−q2Þ ∼ 1=ð−q2Þβþ1,
both of which are dominated by the t-channel single
Reggeon exchange, which amounts to a full quantum open
string exchange after resummation, as we show below.

3. Valence PDF

The longitudinal evolution of the entanglement entropy
(29) with parton x is highly nonlinear

dSnðx0Þ
dx0

¼−ðqnðx0Þlnqnðx0Þþ q̄nðx0Þ ln q̄nðx0ÞÞ

þðqnðx0Þþ q̄nðx0ÞÞ ln
�

Λ−

e
R 1

2
x0 dxðqnðxÞþ q̄nðxÞÞ

�
;

ð37Þ

with most of the nonlinearity arising from the entanglement
with the vacuum contribution in (24). For large rapidities χ,
the longitudinal growth per unit rapidity is linear, and is a
direct measure of the n-meson valence PDF

d2Snðx0Þ
dχdx0

¼ qnðx0Þ þ q̄nðx0Þ: ð38Þ

We expect a similar relation to hold for more general wave
functions, e.g., baryons and exotics.

4. Scaling limit

Another interesting limit is the so-called scaling limit,
which consists of closing up on the large n-meson states
to exhibit the scale invariance of 2D QCD [28,29]. More
specifically, consider the limit μ2n ¼ M2

n=m2
0 → ∞ with

fixed ratio ξ ¼ xμ2n, where m2
0 ¼ 2σT=π. In this limit, the

wave function approaches a universal function ϕðξÞ:

φn

�
ξ

μ2n

�
→ ϕðξÞ: ð39Þ

In this case, if we set x0 ¼ ξ0
μ2n
, then the cumulative parton

distribution reads

Z
x0

0

dxðqn þ q̄nÞ ¼
2

μ2n

Z
ξ0

0

dξϕ2ðξÞ; ð40Þ

and

Z
x0

0

dxqn ln qn ¼
Z

x0

0

dxq̄n ln q̄n

¼ 1

μ2n

Z
ξ0

0

dξϕ2ðξÞ lnϕ2ðξÞ: ð41Þ

The leading Oð1=μ2nÞ entanglement entropy in this case is
therefore purely expressed in terms of the universal
function

μ2nSn

�
ξ0
μ2n

�
→ 2 ln eΛ−

Z
ξ0

0

dξϕ2ðξÞ

− 2

Z
ξ0

0

dξϕ2ðξÞ lnϕ2ðξÞ: ð42Þ

For large ξ0, the first term diverges linearly in ξ0, while the
second term diverges logarithmically.

5. Goldstone-like state

In the limit m2
Q=2σT ≪ 1, 2D QCD admits a massless

Goldstone-like mode, with a light-front wave function
φ0ðxÞ ¼ θðxx̄Þ (modulo the end points). This massless
state is not a true Goldstone mode but will kill the chiral
condensate in a way similar to the Berezinski-Kosterlitz-
Thouless mechanism [30–32], as explained in [33]. In 4D
QCD, the pion is a true Goldstone mode, and massless even
for a fixed and large constituent mass mQ. Yet, the pion
longitudinal wave function is also totally delocalized in x
Bjorken with φπðxÞ ≈ θðxx̄Þ in the chiral limit, and for
pointlike interactions [34] (and references therein).
With this in mind, the density matrix for the Godstone-

like state reads

ρ̂π ¼
1

Λ−

X
x;x0

θðxx̄Þθðx0x̄0Þjx; x̄ihx0; x̄0j; ð43Þ

modulo the endpoints. When traced over the interval
x̄0 ¼ 1 − x0, the entanglement entropy is

Sπðx0Þ ¼ 2x0 lnΛ− − ðx̄0 − x0Þ lnðx̄0 − x0Þ; ð44Þ

which is considerably simpler than (29). The change in
rapidity of the pion entanglement entropy reads

dSπðx0Þ
dχ

¼ 2x0:

This result is similar to the one we derive below for the
entanglement entropy summed over the full Regge trajec-
tory. This is perhaps the signature of the collective nature of
the pseudo-Goldstone mode, on the light front. We note that
in the massless Schwinger model, the light-front wave
function of the “meson” state with mass m2 ¼ g2=π is

jγi ¼ 1ffiffiffiffiffiffi
Λ−

p
X
0<x<1

jx; x̄i ð45Þ

with the same entanglement entropy (44) as in the pseudo-
Goldstone state.
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IV. 2D QCD AS A STRING ON THE LIGHT FRONT

Two-dimensional QCD is nonconformal but solvable in
the large number of colors limit [21], as we discussed using
the discretized light-front quantization earlier. Remarkably,
the solution in this limit is identical to that following from
a two-dimensional relativistic string with massive end-
points [22]. To show this, we recall that the 2D light-front
Hamiltonian (squared mass) for a string with massive
ends is [22]

HLF ¼
m2

Q

xx̄
þ 2PþσT jr−j →

m2
Q

xx̄
þ 2σT

���� iddx
����; ð46Þ

with 0 ≤ x ¼ kþ=Pþ ≤ 1 the momentum fraction of the
quark (x̄ ¼ 1 − x is that of the antiquark) in a meson with
longitudinal momentum Pþ. The relative light-front dis-
tance Pþr− → id=dx is conjugate to x. The string tension
is σT . The eigenstates of (46) solve

HLFφnðxÞ ¼
�
m2

Q

xx̄
þ 2σT

���� iddx
����
�
φnðxÞ ¼ M2

nφnðxÞ; ð47Þ

with squared radial meson masses as eigenvalues. The
confining potential in the Bjorken-x representation is given
by the Fourier transform

hxjPþjr−jjyi ¼
Z þ∞

−∞

dq
2π

eiqðx−yÞjqj→ PV
−1

πðx− yÞ2 þ
−1
πxx̄

;

ð48Þ

with the principal value prescription. Using (48) in (47)
yields ’t Hooft Eq. (12) with the gauge coupling identified
through σT ¼ g21þ1Nc=2. A brief semiclassical analysis of
the string states is given in Appendix A. In sum, we can
regard the even and odd solutions of the ’t Hooft equation
as the even and odd standing waves of a meson as a string,
flying on the light front with either Dirichlet or Neumann
boundary conditions modulo the small mass corrections at
the edges.

A. Stringy entanglement: Resummed Regge trajectory

In the eikonalized approximation, dipole-dipole (open
string) scattering in 2D QCD, sums over all n-meson
(Reggeons) exchanges in the t channel. This resummed
exchange is stringlike. To describe it, we need to resum
over the full meson Regge trajectory in 2D QCD. However,
this is not needed as we now show.
Indeed, the full density matrix of the string ρ̂string can be

reconstructed from the n-meson density matrix ρn by
noting that each of the meson states on the Regge trajectory
maps onto a stationary state of the open string with massive
endpoints. The orthonormality and completeness of these

states implies that the full string density matrix is diagonal
in n,

ρ̂string ¼
1

Λ−

X∞
n¼1

X
x;x0

φ†
nðx0ÞφnðxÞjx; x̄ihx0; x̄0j: ð49Þ

Using the completeness relation,

X
n

φ†
nðxÞφnðx0Þ ¼ δðx − x0Þ; ð50Þ

(49) is the projection operator onto the two-body states

ρ̂string ¼
1

Λ−

X
0<x<1

jx; x̄ihx; x̄j: ð51Þ

The reduced density matrix, followed by tracing over the
segment x̄0 ¼ 1 − x0, yields the entanglement entropy

Sðx0Þ ¼ 2x0 lnΛ− − ðx̄0 − x0Þ lnðx̄0 − x0Þ; ð52Þ

which is independent of the mass at the endpoints of the
string. It is surprisingly similar to (44) for the pseudo-
Goldstone mode, even though the string density matrix (49)
is diagonal in longitudinal space, while the one associated
to the pseudo-Goldstone mode (43) is off-diagonal.

B. Stringy entanglement: Multimeson state

The above density matrix takes into account only single
meson states. As we argued earlier, this entangled density
matrix captures a DIS measurement of the quark distribu-
tion in a meson state, in the interval of length x0 in parton x.
Suppose that we want to use a DIS measurement of the
quark distribution for the same x0 interval, in a state
composed of many identical hadrons flying on the light
front (a 2D nucleus, or a 4D nucleus reduced to its
longitudinal components). For that, we extend our analysis
to multimeson states, with the corresponding Fock space
spanned by all the mesons. Using the completeness
relation, it is clear that the corresponding density matrix
is now given by

ρ ¼ 1

Dim

X
k

Dimkρk; ð53Þ

where

ρk ¼
1

Dimk

X
0<x1<x2::<xk<1

jx1; x2;…xkihx1;…xkj ð54Þ

are spanned by all k-particle tensor products of the
fundamental basis, under the constraint that the same
jx; x̄i appears at most Nc times. For large Nc, each can
appear infinitely many times.
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1. Nc = 1 case

To help understand the bookkeeping for general Nc,
let us first consider the case with Nc ¼ 1, with no 2 mesons
allowed to occupy the same longitudinal phase space
region. In this case Dim ¼ 2Λ

−
. After tracing over the

segment ð1 − x0Þ, the reduced density matrix for this case is

1

2Λ
−

X
k−ðΛ−−N1Þ<i<minðk;N1Þ

Ci
N1
jx1; x2;…xk−iihx1……xk−ij;

ð55Þ

where N1 ¼ ð1 − x0ÞΛ−. After summing over all k with the
help of the binomial theorem, and replacing k − i by k̃, the
result is

ρðx0Þ ¼
1

2Λ
−

X
0≤k̃≤x0Λ−

XN1þk̃

k¼k̃

Ck−k̃
N1

×
X

0≤x1<x2…:<xk̃<x0

jx1; ::xk̃ihx1;…:xk̃j; ð56Þ

≡ 1

2x0Λ
−

X
0≤k̃≤x0Λ−

X
0≤x1<x2…:<xk̃<x0

jx1; ::xk̃ihx1;…:xk̃j:

ð57Þ

This is simply the projection operator onto the subspace
with x0Λ− digits, corresponding to the part of the Hilbert
space kept. The dimension of the space is Dimðx0Þ ¼ 2x0Λ

−
,

and the corresponding entanglement entropy is now

SE ¼ ln Dimðx0Þ ¼ ln 2 × x0Λ−: ð58Þ

This is the maximal entropy, following from the reduction
of any density matrix to the small-x interval.

2. General Nc case

For general Nc, and after tracing over the ð1 − x0Þ, we
clearly get again the projection operator onto the subspace
spanned by all the jx1;…xki, with the constraint that
xk ≤ x0 and that each xi appears at most Nc times, due
to the fermionic character of the underlying quark con-
stituents in any of the colorless meson. The dimension of
this Hilbert space is simply ðNc þ 1Þx0Λ−

, hence

SE ¼ lnðNc þ 1Þ × x0Λ−: ð59Þ

The rate of change with rapidity of the string entangle-
ment entropy SEðx0Þ, the sum total of all entanglements
along each of the exchanged Regge trajectories for fixed
x0 ≤ 1

2
, is extensive in Λ−

dSEðx0Þ
dχ

¼ lnðNc þ 1Þx0Λ−: ð60Þ

In the low-x regime, dominated by the vacuum zero modes
on the light front, (60) simplifies to

dSEðx0 ∼ 0Þ
dχ

¼ lnðNc þ 1Þ 1
2
e−χeχ ¼ 1

2
lnðNc þ 1Þ; ð61Þ

using the DIS identification x0 ¼ 1
2
e−χ .

3. Kolmogorov-Sinai bound [23]

The rate of increase of SEðx0 ∼ 0Þ with the rapidity χ
saturates the Kolmogorov-Sinai bound at low x, with
SKS ¼ 1

2
lnðNc þ 1Þ. The longitudinal quantum entangle-

ment for the resummed mesons (Reggeon) as open strings
in 2D is to be compared to the transverse quantum
entanglement of D⊥

6
for the resummed glueballs (pomeron)

as a closed string exchange in 2þD⊥ dimensions [12–14].
At low x, the entanglement is fixed by the D⊥ transverse
quantum vibrations of the string lightlike (analog of
Luscher term spacelike).

4. Classical string entropy

Away from low x, the change in SEðx0Þ is extensive in
the invariant cutoff Λ−, e.g.,

dSEðx0Þ
dχ

¼ lnðNc þ 1Þx0Λ−:

This scaling is commensurate with the growth of the
string entropy SS under large boosts. Indeed, a free string
as a chain undergoing random walks in 1D generates
NS ¼ 2L=lS states (for a free string backtracking is allowed).
The corresponding string entropy SS ¼ lnNS ¼ ln 2L=lS.
Under large longitudinal boosts Pþ, the longitudinal length
of the string expands (recall that the string bits are
considered wee [19,35], they carry low momentum,
and are oblivious to large boosts). As a result, L=lS ¼
Pþ=0kþ ¼ x0Λ− counts the number of string bits or wee
partons, and the string entropy is SS ¼ ln 2x0Λ−, which is
seen to scale similarly to (60), in particular

dSEðx0Þ
dχ

¼ lnðNc þ 1Þ
ln 2

SS: ð62Þ

This large and quantum wee entropy stored in the longi-
tudinal evolution in rapidity of open strings (Reggeons),
when released in a collision, may contribute to the fast
scrambling of information in hadronic collisions at ultra-
relativistic energies. Perhaps more so, then the quantum
wee entropy released from the evolution in rapidity of
closed strings (pomerons) [12], provided that x0 is not
asymptotically small as in (61). We note that the string bits
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interactions may hamper the backtracking, and somehow
reduce the entanglement rate in (62).

5. Bekenstein-Bremermann bound [6,7]

Quantum information theory sets a bound on the
maximum rate of flow of information I in physical systems,
as first noted by Bremermann for single channel systems,
based on an argument using Shannon entropy and the
quantum uncertainty principle [6]. The bound was revisited
by Bekenstein on general grounds, using the maximum
entropy storage in a black hole and causality [7]

dSmax

dt
≤ 2πE → 2πTS: ð63Þ

The rightmost equality follows from the second law. (Here
information I is interpreted as entropy in bits units or
I=S ¼ ln2 e.) If we recall that the rapidity χ relates to the
Gribov time tχ ¼

ffiffiffiffi
α0

p
χ with α0 ¼ l2S the open string Regge

slope [14,36], then a comparison of (62) with (63) shows
that for Nc ¼ 1, the Bekenstein-Bremermann bound is
saturated, with T ¼ TH ¼ 1=ð2πlSÞ the Hagedorn temper-
ature (equivalently, the temperature at the Rindler horizon
of a black hole). Remarkably, for the multimeson state
result with Nc > 1 in (62), the bound is still maintained,
provided that the temperature exceeds (logarithmically) the
Hagedorn temperature.

V. CONCLUSIONS

In the large number of colors, the 2-particle sector of 2D
QCD on the light front decouples. The eigenmodes in this
sector have a dual description in terms of partons or string
modes. We have shown that in the partonic language, the
entanglement in longitudinal momentum is captured by
an exact reduced density matrix that is a tensor product of
both the valence and vacuum states. The entanglement
entropy for a single meson with a single cut in parton x, as
probed by DIS kinematics, is a nonlinear function of the
meson PDF.
For fixed parton x, the evolution in rapidity of the single

meson entanglement entropy is the cumulative quark single
PDF. It is bound by a Kolmogorov-Sinai entropy of 1.
At low parton x, it reduces to the longitudinal structure
function, as measured in DIS scattering. It is in agreement
with the Regge behavior of the pertinent meson-meson
scattering in 2D QCD. Alternatively, for fixed rapidity, the
evolution in parton x is shown to probe directly the meson
singlet PDF.
The sum total of the entanglement entropies for a fixed

Regge trajectory is stringlike and extensive with the
rapidity, as noted in 4D. We have suggested that DIS
scattering on a nucleus in 2D can be modeled by DIS
scattering on a multihadron state composed of 2D mesons,
modulo Fermi statistics (amusingly shared by mesons

through longitudinal space exclusion for Nc ¼ 1). The
evolution in rapidity of the ensuing entanglement entropy is
found to be extensive in the longitudinal string entropy
in 2D. The rate of change of this entropy matches the
maximum rate of quantum information flow, as given by
the Bekenstein-Bremermann bound.
A highly boosted multimeson state in 2D (a sort of 2D

nucleus as all hadrons are similar on the light front) exhibits
a growth rate in its wee parton entanglement entropy, that is
only matched by the largest information rate flow allowed
by the quantum laws of physics, a fit only exhibited by
gravitational black holes. Remarkably, this flow exhibits an
energy cost which is fixed by the Hagedorn temperature of
the underlying longitudinal string.
The highly entangled wee partons in a boosted string as a

mock nucleus carry an entanglement entropy that is
commensurate with the classical string entropy SS. Their
prompt release by smashing, in current colliders at large
rapidities χ ¼ ln s, may explain why a large quantum
entanglement entropy of about χSS is promptly released,
over a short time scale 1=lS, and at temperatures in (slight)
excess of the Hagedorn temperature TH ¼ 1=ð2πlSÞ.
Finally, we note that the t’Hooft model is subcritical in

terms of rapidity evolution, with no increase in parton
densities for a large rapidity gap. In particular, the linear
growth of the entanglement entropy noted here should hold
for any general QFT, with subcritical parton evolution in
rapidity. In 4D gauge theories with nontrivial parton
evolution in rapidity, there are qualitative changes in the
evolution of the entanglement in rapidity, and its corre-
sponding entropy [37].
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APPENDIX A: WKB ANALYSIS
OF THE STRING STATES

In this appendix, we qualitatively review the semi-
classical solutions to 2D QCD, using the dual string form.
In particular, the masses are given by the WKB quantiza-
tion condition
Z

xþ

x−

dx

�
M2

n −
m2

Q

xx̄

�
¼ M2

n −m2
Q ln

�
xþx̄−
x−x̄þ

�
¼ 2πσTn;

ðA1Þ
with the turning points

x� ¼ 1

2

�
1�

�
1 −

4m2
Q

M2
n

�1
2

�
; ðA2Þ
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and with Mn ≥ 2mQ. The mass gap vanishes for mQ → 0

with a radial Regge trajectory M2
n ¼ n=α0, and α0 ¼

1=2πσT the slope of the open bosonic string.
A simple understanding of the light-front wave functions

can be obtained directly from (47) by noting that for
m2

Q=2σT ≫ 1, the mass contribution acts as a confining
potential at the endpoints x ¼ 0, 1, with φnðxÞ standing
waves solutions to

���� iddx
����φnðxÞ ≈

M2
n

2σT
φnðxÞ; ðA3Þ

with Dirichlet boundary conditions. The normalized sol-
utions are φnðxÞ ≈

ffiffiffi
2

p
sinððnþ 1ÞπxÞ. A simple estimate

of the mass correction for large n follows from first order
perturbation theory M2

n ≈ n=α0 þ 2m2
Q ln n. In the opposite

limit of m2
Q=2σT ≪ 1, the confining potential can be

ignored to first approximation, in which case the standing
waves follow from Neumann boundary conditions, with
φnðxÞ ≈

ffiffiffi
2

p
cosðnπxÞ, with an identical Reggeized semi-

classical spectrum. The effect of the mass is to cause a rapid
distortion of the light-front wave function in a narrow
region of x near the endpoints (see below).

APPENDIX B: SYMMETRIC INTERVAL

The reduced density matrix in parton x, was defined by
tracing over the length x̄0 ¼ 1 − x0 for fixed x0 ≤ 1

2
, as

motivated by a DIS measurement. This reduction is
asymmetric with respect to the quark-antiquark content
of the light-front meson wave function. A more symmetric
but academic reduction is to trace over the symmetric
length x0 < x < x̄0. The reduced density matrix is then

ρ̂SðnÞ ¼
Z

x̄0

x0

qnðxÞj0iSh0jS þ jΦ̃ihΦ̃j; ðB1Þ

where one has

jΦ̃i ¼ 1ffiffiffiffiffiffi
Λ−

p
� X

0<x<x0

þ
X

x̄0<x<1

�
φnðxÞjx; x̄i: ðB2Þ

The above density matrix represents a binomial distribu-
tion, with the independent pair of eigenvalues ðpnðx0Þ;
1 − pnðx0ÞÞ where

pnðx0Þ ¼
Z

x0

0

dxðqnðxÞ þ q̄nðxÞÞ: ðB3Þ

The corresponding entanglement entropy is therefore

SSðn; x0Þ ¼ −pnðx0Þ lnpnðx0Þ
− ð1 − pnðx0ÞÞ lnð1 − pnðx0ÞÞ ðB4Þ

and is independent of Λ−. As x0 → 0, one has

pnðx0Þ →
2C2

nx
2βþ1
0

2β þ 1
; ðB5Þ

thus

SSðn; x0Þ ¼ 2C2
nx

2βþ1
0 ln

1

x0
−
2C2

nx
2βþ1
0

2β þ 1
ln

2C2
n

eð2β þ 1Þ
þOðx4βþ2

0 Þ: ðB6Þ

The leading contribution is also proportional to x2βþ1
0 ln 1

x0
.

APPENDIX C: GENERAL INTERPOLATING
INTERVAL

In this appendix, we trace over an asymmetric interval
centered around 1

2
, that interpolates between the symmetric

and asymmetric reduction discussed above. In this case,
the reduced density matrix traced over ½x0; x̄0 þ δ� with
0 < δ < x0 is now

ρ̂ ¼ 1

Λ−

X
x0<x<1−x0

jφnðxÞj2j0i½x0;1−x0�h0j½x0;1−x0�

þ 1

Λ−

X
x0−δ<x<x0

jφnðxÞj2jxihxj

þ 1

Λ−

X
1−x0<x<1−x0þδ

jφnðxÞj2jx̄ihx̄j þ jΦ̃ihΦ̃j; ðC1Þ

where the state jΦ̃i reads

jΦ̃i ¼ 1

Λ−

� X
0<x<x0−δ

þ
X

1−x0þδ<x<1

�
φnðxÞjx; x̄i: ðC2Þ

The entanglement entropy is therefore given by

Snðx0; δÞ ¼ lnΛ−
Z

x0

x0−δ
dxðqnðxÞ þ q̄nðxÞÞ

−
Z

x0

x0−δ
dxðqn ln qn þ q̄n ln q̄nÞ

− ln
Z 1

2

x0

dxðqn þ q̄nÞ
Z 1

2

x0

dxðqn þ q̄nÞ

− ln
Z

x0−δ

0

dxðqn þ q̄nÞ
Z

x0−δ

0

dxðqn þ q̄nÞ:

ðC3Þ

Clearly, it interpolates between the two special cases
considered above. When δ ¼ x0, it reduces to the totally
asymmetric case, while for δ ¼ 0, it reduces to the
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symmetric case. The coefficient of the Λ− measures this
asymmetry

dSnðx0; δÞ
d lnΛ− ¼

Z
x0

x0−δ
dxðqnðxÞ þ q̄nðxÞÞ; ðC4Þ

which is always less or equal to 1 but non-negative.
It vanishes only for δ ¼ 0.

APPENDIX D: NAIVE BOUND
FOR AN n-PARTON STATE

Consider a generic wave function with maximally n
partons

jΦi ¼
Xn
i¼1

1ffiffiffiffiffiffi
Λ−

p
i

X
x1;…xi

φiðx1;…:xiÞjx1;…:xii: ðD1Þ

After tracing over A ¼ ½x0; 1 − x0�, the reduced density
matrix has the form

ρ̂A ¼
X
i;j

ρijjiihjj; ðD2Þ

with jii a generic state with i particles. It is important to
observe that the diagonal terms follow from tracing jiihij,
since partial tracing cannot change the difference in particle
numbers. Therefore, the diagonal terms form a reduced
density matrix ρ̂Adia, which contains more entropy com-
pared to the full reduced density matrix, in general. They
could be used to derive a superbound. Specifically, if
we retain only the diagonal terms, the reduced density
matrix reads

ρ̂Adia ¼
Xn−1
i¼0

1

ðΛ−Þi−1 jx1; x2;…:xiihx01; x02;…x0ij
Xn
j¼iþ1

Z
y∈Ej

i ðx;x0Þ
dyφ†

jðx1;…xi; yiþ1;…yjÞφjðx01;…x0i; yiþ1; ::yjÞ; ðD3Þ

with Ej
iðx; x0Þ the region of the j-particle phase space which

should be traced over, for a reduction to the i-body phase
spaces. Performing another diagonal approximation, the
entanglement entropy is bounded by

SEðx0Þ ≤ lnΛ−
Xn−1
i¼0

ipiðx0Þ þ C: ðD4Þ

Here, piðx0Þ is the sum of the cumulative probabilities

piðx0Þ ¼
Xn
j¼iþ1

Z
x∈Aj

i ðx0Þ
dx1;…xjjφjðx1;…xjÞj2; ðD5Þ

where Aj
iðx0Þ is the part of the j-body phase space that after

tracing, reduces to the i-body state. While the sum over all
the probabilities is less then 1, the sum over the i-weighted
probabilities is not a priori less than 1.

APPENDIX E: LOW-X ANALYSIS IN 2D QCD

The low-x analysis of the entanglement entropy in the
single and asymmetric cut interval A ¼ ½0; x0 ≤ 1

2
� can be

carried out exactly for x0 → 0, in 2D QCD. More specifi-
cally, using (34) allows one to unwind each contribution
in (29) as

Z
x0

0

dx½qnðxÞ þ q̄nðxÞ� ¼ 2C2
n
x2βþ1
0

2β þ 1
þOðx20Þ;

−
Z

x0

0

dx½qnðxÞ ln qnðxÞ þ q̄nðxÞ ln q̄nðxÞ� ¼ 4βC2
n

1þ ð2β þ 1Þ ln 1
x0

ð2β þ 1Þ2 x2βþ1
0 þOðx20Þ;

−
Z

1
2

x0

dx½qnðxÞ þ q̄nðxÞ� ln
Z

1
2

x0

dx½qnðxÞ þ q̄nðxÞ� ¼ 2C2
n
x2βþ1
0

2β þ 1
þOðx20Þ; ðE1Þ

and therefore, for β > 0

Snðx0Þ ¼ 2C2
n
x2βþ1
0

2β þ 1

�
lnðeΛ−Þ þ 2β

1þ ð2β þ 1Þ ln 1
x0

ð2β þ 1Þ þOðx20Þ
�
; ðE2Þ

which is the result quoted in the text.
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