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Machine learning techniques have been employed for the high energy physics community since the early
80s to deal with a broad spectrum of problems. This work explores the prospects of using deep learning
techniques to estimate elliptic flow (v2) in heavy-ion collisions at the RHIC and LHC energies. A novel
method is developed to process the input observables from particle kinematic information. The proposed
deep neural network (DNN) model is trained with Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV minimum bias
events simulated with a multiphase transport model. The predictions from the machine learning technique
are compared to both simulation and experiment. The deep learning model seems to preserve the centrality
and energy dependence of v2 for the LHC and RHIC energies. The DNN model is also quite successful in
predicting the pT dependence of v2. When subjected to event simulation with additional noise, the
proposed DNN model still keeps the robustness and prediction accuracy intact up to a reasonable extent.

DOI: 10.1103/PhysRevD.105.114022

I. INTRODUCTION

Extremely hot and dense state of the strongly interacting
matter is being investigated in collisions of heavy nuclei
at ultrarelativistic energies for decades. In high-energy
particle colliders, it is believed that the state of the early
Universe can be recreated in tiny volumes of the order of a
few cubic fermi (fm3). This state of the deconfined color
partons is called as quark-gluon plasma (QGP). Due to the
very short duration of its existence, direct observation of
QGP is not possible, however, signatures of the evidence
can be measured.
The presence of transverse collective expansion (i.e.,

transverse flow) in strongly coupled dense nuclear matter
formed in relativistic heavy-ion collisions serves as an
important signature for QGP [1]. In particular, the transverse
flow is anisotropic in nature meaning particle emission is
anisotropic in the momentum space. Anisotropic flow of
different order could be expressed as Fourier expansion
coefficients of produced particles’ azimuthal distribution in
the momentum space. Experiments observe the existence of
finite anisotropic flow, mainly the elliptic flow (v2) in heavy-
ion collisions [2–5]. For decades, investigations are being

performed to solve the equations of relativistic fluid dynam-
ics to theoretically model the elliptic flow. Although, these
theoretical models based on relativistic fluid dynamics were
successful in presenting some of the low-pT phenomena, it
overpredicted the observed elliptic flow [6,7]. The solution
appeared in the form of hybrid models that couple both
(ideal) fluid dynamics applied to the QGP phase and kinetic
descriptions applied to microscopic hadron cascade phase
[8–11]. In intermediate to high-pT, elliptic flow suffers
combined consequences from jet quenching and parton
energy loss due to the dense medium, and thus simple
hydro models fail to explain the data [7,12]. A recent study
has presented the implementation of hydro freeze-out at
low-pT, parton coalescence at intermediate-pT, and frag-
mentation at high-pT along with coupled linear Boltzmann
transport-hydro model [13]. This could explain both RAA
and v2 simultaneously from low to intermediate and high-pT
in high-energy heavy-ion collisions.
Apart from understanding various theoretical aspects

of elliptic flow, there are challenges in estimating v2 in
experiments. By definition, v2 requires the information of
the reaction plane angle on an event-by-event basis, whose
measurement is nontrivial in experiments. There are a
couple of methods that offer the solution such as the
complex reaction plane identification method [14], the
cumulant method [15], and the Lee-Yang zeroes method
[16]. There are even attempts to implement the principal
component analysis methods to estimate v2 as well
[17–20]. For the first time, we propose a deep learning
method in the machine learning framework to estimate v2.
Machine learning (ML) techniques have been employed for
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the high energy physics community since the early 1980s to
deal with a broad spectrum of problems [21–24]. With the
advancement of superior hardware and smart algorithms,
ML has become the most popular tool for statistical, data-
driven, and prediction-based applications. It has the ability
to perceive unique features and patterns in data to solve
unconventional problems such as classification, regression,
and clustering, just to name a few.
The motivation of this study is to explore the prospects of

using deep learning techniques to estimate elliptic flow. We
also proceed to show that the model is capable of learning
centrality and transverse momentum dependence of v2 as
well. A simple attempt is made in this paper to estimate
elliptic flow in heavy-ion collisions event by event from
various particle kinematic information using a feed forward
deep neural network (DNN). The proposed DNN model is
trained with minimum bias Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼
5.02 TeV simulated with a multiphase transport model
(AMPT). The predictions of the machine are compared to
both simulation and experiment. Although, the training of
the model is a bit CPU expensive, the trained model could
be applied independently to estimate v2, which is faster and
economical.
This paper is organized as follows. We begin with a brief

introduction to event generation using AMPTand the target
observable in Sec. II. In Sec. III, we describe the proposed
ML regression model based on deep learning in detail and
provide some quality assurance plots along with estimation
of systematic uncertainties. Finally, the results are pre-
sented in Sec. IV, and we summarize our findings in Sec. V.

II. EVENT GENERATION AND TARGET
OBSERVABLE

In this section, we describe briefly the event generation
using a multiphase transport model and then define the
target observable the elliptic flow.

A. AMPT

AMPT is a Monte Carlo event generator for simulating
p-A and A-A collisions from RHIC to LHC energies to
study the properties of hot and dense nuclear matter [25].
It has four main components, namely, the fluctuating initial
conditions, followed by the parton cascade, hadronization
mechanism, and hadron cascade. These are discussed
below.

(i) Initialization of collision is done by obtaining the
spatial and momentum distributions of the hard
minijet partons and soft string excitations from
the HIJING model [26]. The in-built Glauber model
is used to calculate and convert the cross section of
the produced minijets in pp collisions to heavy-ion
collisions.

(ii) Zhang’s parton cascade model is used to perform
the partonic interactions and parton cascade which

currently includes the two-body scatterings with
cross sections obtained from the perturbative
QCD with screening masses [27].

(iii) Hadronization mechanism includes the default mode
where the Lund string fragmentation model is used
to recombine the partons with their parent strings
and then the strings are converted to hadrons,
whereas, in the string melting mode, the transported
partons are hadronized using a quark coalescence
mechanism [28,29].

(iv) Finally, the scattering among the produced hadrons
are performed using a relativistic transport model by
meson-meson, meson-baryon and baryon-baryon
interactions [30,31].

We have used AMPT string melting mode (AMPT
version 2.26t9b) for event generation as the anisotropic
flow and particle spectra in intermediate-pT region is well
explained by the quark coalescence mechanism for hadro-
nization [32–34]. AMPT settings in the current work are
the same as those reported in Refs. [35–37] for heavy-ion
collisions at the LHC energies. For the definition of
centrality of collisions, we have followed Ref. [38]. We
have simulated minimum bias 200K events for Pb-Pb
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, 100K events for Pb-Pb
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV, and 100K events for
Au-Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV using the same
settings in AMPT.

B. Elliptic flow

In noncentral heavy-ion collisions, finite azimuthal
momentum space anisotropy is observed which could be
expressed as the Fourier decomposition of azimuthal
momentum distribution of particles in an event as

dN
dϕ

¼ 1

2π

�
1þ

X∞
n¼1

2vn cos ðnðϕ − ψnÞÞ
�
: ð1Þ

Here, vn ¼ hcos ½nðϕ − ψnÞ�i is the nth order harmonic
flow coefficient, ϕ is the azimuthal angle, and ψn is the nth
harmonic symmetry plane angle [39]. Anisotropic flow
may be a combined outcome of initial spatial anisotropy of
the nuclear overlap region, the transport properties and the
equation of states of the produced system [40,41]. Due to
the almond-shaped ellipsoidal nuclear overlap region, the
dominant contribution to anisotropic flow comes from
the elliptic flow, i.e., the second order coefficient (v2) in
Eq. (1). To calculate the elliptic flow coefficients event by
event, we have followed the event plane method [42]. In
AMPT simulation, there is a provision of making the
reaction plane angle ψn ¼ 0, although it is nontrivial in
experiments. From this, one can obtain the elliptic flow
coefficients as vn ¼ hcos ½nðϕÞ�i. The average is taken over
all the chosen charged particle tracks for an event. For this
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study, we have used a fixed reaction plane angle, i.e.,
ψn ¼ 0 for both training and testing datasets.

III. MACHINE LEARNING BASED REGRESSION

In this section, we discuss the detailed analysis pro-
cedure including the input and output observables, the
DNN architecture, training, evaluation, and quality assur-
ance. The estimation of systematic uncertainties is also
covered.
Computers require a specific algorithm to perform a

task in which the solution to the problem is written in a top-
to-down approach and the control flows accordingly
resulting an outcome. Yet, most of the problems come
with no standard predefined set of rules to develop the
algorithm that can solve them. Another direction is the
high-complexity nonlinear problems, where linear-based
numerical methods usually fail. In such cases, machine
learning with smart algorithms such as the boosted decision
trees, DNN, generative adversarial network etc. could help
the machine learn from the data through a process called
training. ML is the branch of artificial intelligence that
gives the ability to the computers to learn correlations from
data components. In the field of astronomy, DNN models
have been used to map complex non-linear functions by
using simulated data [43]. This ability could be exploited to
train ML models to look for the hidden physics laws that
govern particle production, anisotropic flow, spectra etc.
in heavy-ion collisions. A small attempt is made here to
estimate the elliptic flow, v2, by using powerful statistical
tools implemented in DL algorithms to reproduce the
observable of interest. For this purpose, we suggest the
implementation of a feed forward DNN in ML framework
similarly as in Refs. [44–46]. Generally, a heavy-ion
collision event produces multitude of particles in the final
state. Each particle interacts with designated detectors to
leave a track. These detectors can gather track information
such as the phase space observables, i.e., pT; η;ϕ, charge
etc. and help in identifying the particles. To estimate the
elliptic flow coefficient (v2) on an event-by-event basis, we
propose to train the machine with various particle kinematic

properties. As the number of tracks varies from event to
event, it makes it a bit tricky for the case to follow the
conventional matrix-based input space of a fixed order in a
feed forward DNN model to map the single output
observable; here v2 and the energy or multiplicity scaling
of v2. We propose an alternative yet convincing way to deal
with this problem which is described below.

A. Input to the machine

In this study, to train a DNN based ML-regression model
for the target (output) variable v2, binned ðη − ϕÞ coor-
dinate space for all charged hadrons in an event, has been
taken as the primary input space. Here, η ∈ ½−0.8; 0.8� and
ϕ ∈ ½0; 2π�. The bin number is chosen through a proper
evaluation, which is discussed in the upcoming Sec. III C.
To add further kinematic information necessary for esti-
mation of v2, we have included three secondary layers to
the ðη − ϕÞ space. The three different layers carry different
weights as additional input for the ML model. These three
layers are weighted by the transverse momentum (pT),
mass of the charged particle and logð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sNN=s0
p Þ, a term

related to the center-of-mass energy, where
ffiffiffiffiffi
s0

p ¼ 1 GeV

makes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sNN=s0

p
unitless. Figure 1 shows the three layers of

the weighted ðη − ϕÞ space having 32 × 32 bins each for a
single minimum bias Pb-Pb collision at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV
from AMPT simulation. Different colors are used to
represent the different layers. The pT, mass, and energy
weighted plots are shown in blue, red, and green colors,
respectively. The number of features, thus, would be
32 × 32 × 3 ¼ 3072. These feature values for an event
could be extracted as the bin content after filling the
respective two-dimensional histograms with the tracks as
shown in Fig. 1. Thus, all the kinematic information from
an event is mapped to these 3072 features that serve as the
input neurons to DNN. Now, the input space with a fixed
feature set (matrix of dimension 1 × 3072) is ready to be
used for training. We have considered all charged particles
with transverse momentum cut 0.2 < pT < 5.0 GeV=c in
pseudorapidity, jηj < 0.8 for the training of the minimum

FIG. 1. The ðη − ϕÞ space with 32 × 32 bins showing the three layers of information for a single minimum bias Pb-Pb collision atffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV from AMPT. The pT, mass, and logð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sNN=s0

p Þweighted plots are shown in blue, red, and green colors, respectively.
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bias ML-regression model. Before moving to the next step,
which is the model design and training, the input array is
normalized using the L2 norm, which makes the square
root of sum of squares of the elements in the array equals to
one. This way, the raw feature vectors are transformed into
a more machine friendly representation by standardization
of the data. It helps in faster convergence of the regression
estimators. This step also ensures that the coefficients of the
model are small and in return, the model is less complex.

B. Deep neural network

Once being said about the input and output observables,
now it is time to discuss the ML-regression algorithm. In
high energy nuclear and particle physics, two of the most
preferred ML algorithms are boosted decision trees and
DNN. The DNN is a powerful tool in machine learning
and has been applied to numerous problems in high-energy
physics such as classical papers [47,48], jet tagging
[49–51], particle identification (PID) and track
reconstruction [52–54], and heavy-ion physics
[45,46,55,56]. The interested readers may refer to [57],
which contains an excellent collection of ML papers in
particle physics, cosmology, and beyond. A neural network
is inspired from the biological neurons in animal brains
where information is processed and communicated as
signals through a proper pathway of neurons to realize
an action or take a decision. DNN has several components:
starting from the input layer, where all the features are
present and need to be mapped to the output layer. The
exact mapping function is not known and DNN is trained to
learn the mapping by itself. The network consists of further
intermediate (hidden) layers with different sets of nodes
and finally the output layer. Each of the layers consisting of
several nodes are connected to a subset of nodes in the next
layer. If all the nodes of the previous layer connects each of
the nodes of the present layer, then it is called a dense layer.
A network consisting of several hidden dense layers is
called a deep network. The connection between two nodes
in any adjacent layer is made mathematically with some
weights and biases.
The existing problem of estimating v2 from particle

kinematic properties is of supervised regression kind. To
learn the mapping function from the data, the neural
network is shown with many events consisting of input
(3072 features) and the corresponding true value of the
output (v2) for that event. A loss function evaluates the
difference between the true value from simulation and
the network output. The minimization of the loss function
is performed through an optimizer algorithm that basically
updates the weights and biases at each node at every
stage of the training. An activation function is used to
introduce nonlinearity into the model. This step is one of
the crucial aspects of the network. Together with the linear
transformations carried by the well-optimized weights and
biases, and the nonlinear effect of activation function, a

DNN can approximate solutions to complex nonlinear
mapping functions.
The deep neural network used in this regression problem

is shown pictorially in Fig. 2. The network begins with the
input feature layer which is mapped to the first dense layer
with 128 nodes. It has further three hidden dense layers,
namely dense_1, dense_2, and dense_3, each having 256
nodes. For the input and hidden layers, rectified linear unit
activation function is used [58], which is of the form
ReLUðxÞ ¼ maxf0; xg. The output dense layer named as
dense_4 consists of a single node as the v2 and the linear
activation function is used for this layer. The network is
trained with the adam algorithm [59] as the optimizer with
mean squared error loss function. All the layers are dense
layers.
Deep neural network also faces the standard overfitting

issue like every other ML algorithm. Overfitting is the
scenario where the model picks up superfine details of the
training dataset but performs poorly with the validation set.
A properly trained model should be stable over a large
set of the training data and achieve minimum difference
between the training and validation loss without compro-
mising the accuracy of the prediction. To tackle the over-
fitting issue, we have tried (i) a dropout technique [60] and
(ii) L2 regularization [61]. These methods, although helped
in mitigating the overfitting issue, yet drove the network far
from accurate prediction, and hence were not used. Finally,
a simple early stopping mechanism is used to solve this

dense_input: InputLayer
input:

output:

[(None, 3072)]

[(None, 3072)]

dense: Dense
input:

output:

(None, 3072)

(None, 128)

dense_1: Dense
input:

output:

(None, 128)

(None, 256)

dense_2: Dense
input:

output:

(None, 256)

(None, 256)

dense_3: Dense
input:

output:

(None, 256)

(None, 256)

dense_4: Dense
input:

output:

(None, 256)

(None, 1)

FIG. 2. Schematic diagram depicting the DNN architecture
used in this work.
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problem. The training is stopped if overfitting is observed
over a specified patience level. In this case, we have used a
maximum of 60 epochs with 32 batch size and an early
stopping patience level of maximum 10 epochs. The
training is done with around 200K minimum bias events
of Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV and 20% events
are used for validation. In the text, hereafter, the proposed
DNNmodel refers to this model trained with minimum bias
collision data only.
Figure 3, shows the training and validation performance

of the DNN model by evaluating the mean squared loss as
the function of epoch size. The training and validation
curves show sharp decrease with an increase in epoch. The
interesting thing here is to note that, after a certain epoch
size, the training is stopped with the early stopping callback
to ensure there is minimal overfitting. The difference
between the validation and training loss is of the order
of 10−4 which can be taken as a reasonably good training.
The DNN model is now frozen and used for predictions.
Figure 4 shows the predictions of v2 from the model versus
the true values from the simulation for 10K minimum bias
Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV from AMPT. The
mean absolute error (MAE) for v2, which is defined in
Eq. (2), is found to be Δv2 ¼ 0.0073. The predicted v2 has
a very good agreement with the true v2 as the vtrue2 ¼ vpred2

straight line shown in dashed black line is seen to be nicely
populated in Fig. 4.

Δv2 ¼
1

Nevents

XNevents

n¼1

jvtrue2n
− vpred2n

j: ð2Þ

C. Quality assurance

The selection of a bin number (grid dimension in
Fig. 1) for the two-dimensional ðη − ϕÞ space is done by
training the model with input of varying bin numbers.

The performance of the DNN with different number of bins
in the input space has been listed in Table I. With 8 × 8,
16 × 16, 32 × 32, and 64 × 64 bins, the model is evaluated
with 50K training events and 5K testing events with the
exact settings for the DNN mentioned in Sec. III B. From
the performance of the model, it is seen that input space
with both 8 × 8 and 16 × 16 number of bins perform poorly
with testing MAE being 0.0292 and 0.0171, respectively.
For 32 × 32 bins, the model performed decently with
testing MAE ¼ 0.0102. Training with even higher bins
in the input space; i.e., 64 × 64 not only renders the training
slower as seen from the very high CPU time

epoch ≈ 6 sec but it
also gives even worse testing MAE ¼ 0.0113. In this case,
the number of trainable parameters of the DNN becomes
too high (≈1.7 M), which naturally slows down the training
process. Evidently, 32 × 32 number of bins is taken as an
ideal input size with respect to prediction accuracy and
efficient training time. The specifications of the CPU used
for the performance are as follows. The CPU type is Intel
(R) Core(TM) i5-8279U (released Q2’19), which has four
cores (eight threads) clocked at base frequency 2.40 GHz
and has a max turbo boost frequency of 4.10 GHz [62]. The
system has 8 GB of LPDDR3 RAM clocked at 2133 MHz.
The training is done with batch size fixed at 32. It could be

FIG. 3. Evaluation of mean squared loss using the adam
optimizer as a function of epoch size in the DNN during the
training and validation for Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV
(min. bias) collisions from AMPT.
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| < 0.8η|

 = 0.00732vΔ

FIG. 4. DNN predictions versus the true values of elliptic flow
coefficient (v2) for 10K minimum bias events of Pb-Pb collisions
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV from AMPT.

TABLE I. Performance of the DNN model with different bin
numbers in the (η − ϕ) space for training with 50K events and
testing with 5K events.

Bin
size

Input
neurons MAE Epoch Time ðsecÞ

Epoch

Trainable
parameters

8 × 8 192 0.0292 18 1.679 189,569
16 × 16 768 0.0171 28 1.909 263,297
32 × 32 3072 0.0102 30 2.684 558,209
64 × 64 12288 0.0113 60 6.001 1,737,857
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noted here, due to the stochastic nature of the training
process and type of CPU used, slight discrepancy in the
performance of the DNN is expected.
Deep neural networks are known to be quite stable and

robust to random noise or fluctuations in the data [50]. To
check the noise sensitivity of prediction of our working
DNNmodel, we proceed with this simple test. In this study,
there are 3072 input features (Fi;j) for each event, i is the
ith event and j is the jth feature. To introduce noise to each
of these features, one must need to evaluate the standard
deviation (σj) associated with each of these features (j).
Following the central limit theorem, each of these features
must describe a Gaussian density function. We assume that
the noise (Xi;j) introduced to each feature value (Fi;j)
should be proportional to a random number between
ð−σj; σjÞ. Hence, we randomly select a number Xi;j, such
that Xi;j ∈ ð−σj; σjÞ. Now, we introduce w, which is the
weight factor. The weight factor helps to define the
magnitude of the noise. For each feature value Fi;j, we
then add the noise Xi;j=w, such that Fi;j ¼ Fi;j þ Xi;j=w.
A higher value of w would correspond to lower noise and
vice versa. Again, a smaller value of w would broaden the
width of the feature distribution and hence changing its true
shape and evidently affecting the DNN input. This can be
treated as an imperfect simulation dataset. In Fig. 5, we
have evaluated the noise sensitivity of the DNN model by
taking different weights. The ratio of DNN to AMPT shows
the degree of agreement between the simulation and the
machine prediction. For perfect prediction, the ratio should
be exactly equal to one. The width of each band shows the
statistical uncertainty associated with it for each centrality
class. As we can clearly observe, the smaller value of w
gives larger noise to the dataset, resulting in a greater
deviation from the true value. Whereas a reasonable
amount of noise in the dataset does not affect the prediction

of the DNN much. This test helps us understand the noise
sensitivity of the DNN model. We can conclude that the
DNN model is not that sensitive to random noise and hence
pretty stable and accurate. The deviation between the model
prediction for a fair simulation and a noisy simulation with
a certain w could constitute the systematic uncertainty of
the method. We consider w ¼ 0.5, which is reasonable for
estimation of the systematic uncertainties that are included
in the centrality-wise predictions.
Note, similar supervised regression problems on estima-

tion of impact parameter in high-energy heavy-ion collisions
have been investigated with convolutional neural network
(CNN) based [56,63] and PointNet models [64], where
authors use imagelike inputs for RHIC and lower energies.
For our case, we have used a matrix based input derived from
the imagelike histograms, and it is found that the proposed
DNN model is quite efficient in this study. We also
recommend to try CNN- and PointNet-model-based
approaches, which are specialized algorithms for handling
imagelike inputs directly for mapping the flow coefficients.
It can be taken as an outlook for the present work, and it is
not covered here.

IV. RESULTS AND DISCUSSIONS

We have made an attempt to implement the DNN in the
ML framework in heavy-ion collisions using a novel
technique to include the particle kinematic properties to
estimate the elliptic flow coefficient, v2. The training is
done with minimum bias Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼
5.02 TeV generated from AMPT and the model is applied
to successfully predict centrality-wise v2 for Pb-Pb colli-
sions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02, 2.76 TeV and Au-Au collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, shown in Fig. 6. We have compared
DNN predicted v2 values with the experimental observa-
tions at the LHC (left and middle) [41] and the RHIC
(right) [65].
One can clearly see from AMPT to data ratio plots for the

LHC energies that, with the current settings, AMPT repro-
duces the data very nicely. However, there are some level of
discrepancies for the most central (peripheral) cases. It
should also be noted here that the estimation of v2 by
ALICE using jΔηj > 1 could have some level of nonflow
effects. In addition, different method of flow estimations
also introduce a degree of uncertainty/mismatch. For RHIC
energy, the current settings overestimate v2 as compared to
the PHENIX result. This could be avoided using a specific
tune valid for the top RHIC energies as proposed by the
authors of AMPT [66]. Here, we stick to the LHC tunes of
AMPT mentioned in Sec. II A, as the primary focus of the
paper is towards the study of DNN implementation in heavy-
ion collision system.
We find a very good agreement between the v2 values

predicted from the proposed DNN based model and the
true v2 values calculated from AMPT for all centrality
classes for Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02, 2.76 TeV and

0 10 20 30 40 50 60 70
Centrality (%)

1

1.5

2
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N
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T

AMPT w = 0.1
w = 0.5 w = 0.8
w = 1.0 w = 1.5
w = 2.0

 = 5.02 TeVNNsPb-Pb,

FIG. 5. Noise sensitivity test of the DNN model with respect to
simulated values from AMPT. Smaller value of w defines greater
amount of noise in the dataset.
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Au-Au collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The agreement can
be seen in the DNN to AMPT ratio plot. The estimation of
systematic uncertainty is already discussed in the earlier
section. As one can see in the top panel of Fig. 6, i.e., v2 vs
centrality plots, the quadratic sum of statistical and sys-
tematic uncertainty are shown in the red solid band.
However, in the lower bottom panel, i.e., DNN to
AMPT ratio plots, the statistical uncertainty is shown in
a solid red band and the systematic uncertainty is shown in
a dashed red band.
By training the DNN model with minimum bias Pb-Pb

collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, we allow the machine to
learn physics for a larger and complex system. The striking
feature of the model is that, with the minimum bias training,
it is perfectly capable of reproducing the centrality-wise v2
values not only for the trained energy but also for lower
energies, i.e., Pb-Pb collisions,

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV and Au-
Au collisions,

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. This is well understood
from the bottom ratio plots. One can interpret these results
as the fact that the proposed DNN model with the selected
input parameters learns and preserves the centrality and
energy dependence of elliptic flow.
Variation of MAE, Δv2, is shown for different regions

of vtrue2 in Fig. 7. This plot is a visual representation of
performance of the proposed DNN model trained on
minimum bias Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV,
which predicts the v2 values for various collision energies
at RHIC and LHC for different regions of vtrue2 . For the
region vtrue2 < 0.2, variation in Δv2 is negligible at LHC
energies. However, a small rise in Δv2 with increasing vtrue2

is observed at RHIC energy. The maximum relative error
(Δv2=vtrue2 ), in this case, is less than 6.0%. For the region
vtrue2 > 0.2, Δv2 seems to increase sharply for both RHIC
and LHC energies. This could be due to the fact that event
statistics for higher elliptic flow values (vtrue2 > 0.2) are

naturally less and the model sees less examples for this
region in an inclusive and unbiased training dataset.
However, the maximum relative error in this region is
found to be between (6–10)% only, which reflects the
overall satisfactory performance of the proposed DNN
model in a wide range of vtrue2 .
Finally, Fig. 8 shows the v2ðpTÞ for (30–40)% central

Pb-Pb collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV predicted from the
DNN model. For comparison, we present ALICE meas-
urement [41] and vtrue2 calculated from AMPT simulations
for the same centrality class. The DNN prediction has a
similar trend of v2ðpTÞ but it overpredicts the ALICE data
in intermediate pT , while it explains the data at low and
high pT . On the other hand, the predicted v2 has a very
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FIG. 6. Estimation of v2 for different centrality classes in Pb-Pb collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, 2.76 TeV and Au-Au collisions atffiffiffiffiffiffiffiffi
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p ¼ 200 GeV from AMPT using DNN. Data from ALICE and PHENIX for comparison.
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FIG. 7. Performance of the DNN model trained on Pb-Pb
collisions,

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV (min. bias) applied to different
collision energies for different regions of vtrue2 . Δv2 is the MAE
for the given bin of vtrue2 .
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good agreement with the vtrue2 from AMPT for the full range
of pT. This could be seen from the DNN to AMPT ratio plot
on the bottom panel which stays almost close to unity. The
quadratic sum of systematic and statistical uncertainty is
shown in the solid red band on the upper panel v2ðpTÞ plot.
On the bottom panel, in DNN to AMPT ratio plot, the red
band shows the statistical uncertainty and the dashed band
shows the systematic uncertainty for this centrality class.

V. SUMMARY

In summary, we report the implementation of DNN
model in ML framework with a novel technique to include
particle kinematic properties in heavy-ion collisions
and estimate the elliptic flow. The proposed DNN model
uses the kinematic properties such as pT, mass and
logð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sNN=s0
p Þ—a term related to center-of-mass energy

as model input. These information are encoded as the
secondary layers in (η − ϕ) primary input space. The model
is trained with minimum bias Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼
5.02 TeV from AMPT simulations. The performance of the
model is tested under random fluctuations in data and the
systematic uncertainties are calculated. Further, the trained
model is applied to predict centrality-wise evolution of v2

for Pb-Pb collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02, 2.76 TeV and Au-Au
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. From the results, a very
good agreement is observed between the model prediction
and simulated true value. The proposed DNN model seems
to learn and preserve the centrality and energy dependence
of elliptic flow pretty nicely. On top of that, the same model
is successfully applied to study the pT dependence of v2.
From the results, the proposed DNN model seems to
preserve the pT dependence of v2 in heavy-ion collisions
as well.
It should be noted here that the machine learning-based

model, specially used for high-energy physics, becomes
more useful when the Monte Carlo simulations explain
experimental data as closely as possible. The ML-based
model could be more realistic by taking into account the
detector resolution and noise during training, which hope-
fully contain both the correlated and uncorrelated noises.
Authors are planning to investigate these issues in a
future study.
Software.—Although there are plenty of software

available for implementing a DNN model, we have
specifically used KERAS v2.6.0 deep learning API [67] with
TENSORFLOW v2.6.0 [68] backend in PYTHON, to implement
the DNNmodel used in this work. We also found the scikit-
learn ML framework very helpful [69].
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