PHYSICAL REVIEW D 105, 114021 (2022)

Hyperons and @, in holographic QCD

Yizhuang Liu :
Institute of Theoretical Physics, Jagiellonian University, 30-348 Krakw, Poland

Maciej A. Nowak'

Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research,
Jagiellonian University, 30-348 Krakw, Poland

Ismail Zahed"

Center for Nuclear Theory, Department of Physics and Astronomy, Stony Brook University,
Stony Brook, New York 11794-3800, USA

® (Received 19 January 2022; accepted 9 May 2022; published 16 June 2022)

We revisit the holographic description of strange baryons in the context of the Sakai-Sugimoto
construction, by considering the strange quark mass as heavy. Hyperons are described by a massive (K, K*)
multiplet, bound to a light-flavor instanton in bulk, much in the spirit of the Callan-Klebanov construction.
The modular Hamiltonian maps onto the Landau problem, a charged particle in a two-dimensional external
magnetic field, induced by the bulk Chern-Simons interaction, plus spin-orbit coupling. The ensuing
holographic hyperon spectrum compares fairly with the empirical one. The holographic strange pentaquark

baryon @] is shown to be unbound.
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I. INTRODUCTION

The holographic principle in general [1,2], and the
D4-D8-D8 holographic setup in particular [3], provide a
framework for addressing QCD in the infrared in the
double limit of a large number of colors and strong
't Hooft gauge coupling A = g3\ N.. It is confining and
exhibits spontaneous chiral symmetry breaking geometri-
cally. The light meson sector is well described by an
effective action with manifest chiral symmetry and very
few parameters, yet totally in line with more elaborate
effective theories of QCD [4]. The same setup can be
minimally modified to account for the description of heavy-
light mesons, with manifest heavy quark symmetry [5-9].

Light and heavy-light baryons are dual to instantons and
instanton-heavy meson bound states in bulk [10-15],
providing a robust geometrical approach to the multibody
bound state problem. The holographic construction pro-
vides a dual realization of the chiral soliton approach and its
bound state variants [16,17], without the shortcomings of
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the derivative expansion. It is a geometrical realization of
the molecular approach [18,19], without the ambiguities
of the nature of the meson exchanges, and the arbitrariness
in the choice of the many couplings and form factors [20].
Alternative holographic models for the description of heavy
hadrons have been developed in [21,22].

Chiral symmetry constrains the light quark interactions,
while heavy quark symmetry restricts the spin interactions
between heavy quarks [23,24]. Both symmetries are inter-
twined by the phenomenon of chiral doubling [25-27] as
shown experimentally in [28,29]. A theoretical approach to
the multiquark states should have manifest chiral and heavy
quark symmetry, a clear organizational principle in the
confining regime, and should address concisely the multi-
body bound state problem. The holographic construction
provides this framework.

In [7] two of us have analyzed the holographic baryon
spectrum by considering three massless flavors u, d, s. The
strange quark mass was introduced through a bulk instan-
ton holonomy, assumed small and treated in perturbation
theory. However, the strange quark mass is intermediate
between heavy and light, and may require a treatment
beyond perturbation theory. In this work, we will propose
such a treatment.

We will consider the kaon mass as large, and identify the
strangeness brane as heavy in the formulation outlined in
[6,7,30]. Hyperons (baryons with strangeness —1) will be
sought as bound states of massive kaons, to a bulk flavor
instanton made of only the light u, d flavors. The ensuing
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modular Hamiltonian for the hyperons, will be diagonal-
ized without recourse to perturbation theory. This con-
struction bears much in common with the revised bound
state approach for hyperons in the Skyrme model [31,32].
The result is a much improved holographic hyperon
spectrum, in comparison to the one in [7].

The organization of the paper is as follows: In Sec. I, we
briefly review the holographic construction, and detail the
modular Lagrangian for hyperons (baryons with strange-
ness —1) in leading order in the heavy meson mass
expansion. We retain the exact kaon mass contribution,
and the nonlocal contributions stemming from the
Coulomb backreaction and the bulk form of Gauss law.
In Sec. Il we show that the modular Hamiltonian maps
onto the Landau problem of a particle in a magnetic field in
two dimensions, plus spin-orbit coupling. In Sec. IV we
detail the hyperon spectra, including the strange pentaquark
exotic @7, for two different approximations of the Gauss
law contribution. Our conclusions are in Sec. V. A number
of Appendixes are added to complement the derivations in
the text.

II. THE MODULAR LAGRANGIAN

The modular Lagrangian for the holographic description
of heavy-light mesons bound to a bulk flavor instanton, has
been discussed in [6,7] for standard baryons, and for their
exotics in [30,33-35]. Here we propose to use it for kaons,
assuming the strangeness to be a heavy flavor.

A. Dirac-Born-Infeld (DBI) action

The holographic construction consists of (N, — 1)-light
and 1-heavy probe branes. The light branes fuse in a
hyperbolic geometry characterized by a finite size RT and a
horizon at Ugyk. The DBI action characterizing the flavor
fields in leading order in 1/4 is

St ~ —x / dxdzTr(f(2)F, P + g(o)F, F<), (1)

with the warpings

R} 9 U3
wo o BT Ru
z KK

f(z) = (2)

and U3 = Ui + Uggz?, and k = AN, and a = 1/(21673)
[3]. All dimensions are in units of Mgx (Kaluza-Klein
scale). The effective fields in the field strengths are [5,6]

Fiuy = ( ) 3)

¥ ¥ ¥
a[M(I)N] - q)[MAN] _q)[Mq)N]

The matrix valued 1-form gauge field is

S I

For N, = 2, the naive Chern-Simons 5-form is

iN,

cS —
247172 Ms

1 1
2 143 5
Tr(AF 2AF+10A). (5)

For N coincidental branes, the ® multiplet is massless,
but for separated branes it is massive, with a generic mass
term

1
5 My TH(@Dyy). (6)

The value of my is related to the separation between the
light and heavy branes, which is about the length of the
heavy light (HL) string (see below).

B. Light and heavy fields

In the coincidental brane limit, light baryons are inter-
changeably described as a flavor instanton or a D4 brane
wrapping the S*, with mass M, = 8%k in units of M.
The bulk instanton is described by the O(4) gauge field

Ay(y) = =GpunONF(y). (7)

The labels M, N run only over 1,2,3,z unless specified

otherwise. The instanton size is small with p ~ 1/ V2 [3],
and it is natural to recast the DBI action using the

rescaling (x,xy) = (X0, X4/ V), VAp—p and (Ag, Ay) =
(Ag, V/AAy). The rescaled fields satisfy the equations of
motion

DMFMN :O
1

MyAy = _mFaMN*FaMN- (8)
For the heavy fields, we use the rescaling

(@, Duy) = (P, VAD). ©)

The interactions between the light gauge fields (Aq, Ay)
and the heavy fields (@, ®,,) to quadratic order split to
several contributions [5,6]:

L= LINC/LCO + (lNC£1 + ‘CCS- (10)

We start by recalling the leading contributions in 1/my
stemming from (10) as detailed in [6,7]. For that, we split
®,, = ¢y e~ ™% for particles (my — —my for antipar-
ticles). The leading order contribution takes the form
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1
Ly = 5 faaw = *faun? + 20 (Fuy — *Fan) . (1)
subject to the constraint equation D¢y, = 0 with
fun = Omdn) + Apdn, (12)

while the subleading contributions in (10) to order A%my,
simplify to

Ly
aN,

mgN, .
Leg — #¢£4*FMN¢N- (13)

— dmydh,iDody

We identify the strange heavy-light flavor field @ in bulk
with the (07,17) kaon multiplet as ® = (K, K*), and
proceed to bind it to a light flavor instanton as in [6,30].
The ensuing modular Lagrangian is composed of the
collective variables (X, a;,p) for the instanton collective
position, SU(2) orientation and size.

In addition, when binding to the core instanton in bulk, the
kaon multiplet transmutes to a two-component complex
modular coordinate y, via a zero mode. In the analysis to
follow for the hyperon spectrum, this coordinate will be
quantized as a boson, much in the spirit of the bound state
approach in the dual analysis in [31,32]. The fermionic
statistics was considered in [6,30], in the analysis of the
much heavier baryons and their exotics, as it captures the key
features of the heavier quark, and heavy quark symmetry.

C. Modular action

The modular action will be sought by restricting the
quantum and heavy fields to the quantum moduli. More
specifically, we choose to parametrize the fields using

Ay (t.x) = Ag (X(1). Z2(1)).
A(t,x) = =iVo,Vl =0
Dy (2, x) = f(X (1), Z(1))opx (1) (14)

The @ field is parametrized as
D = —XyA§ + 14D, (15)
where ®, diagonalizes D§; DS, ®, and where
7 = tr(r“a'a) (16)

are expressed in terms of the collective variables a € SU(2)
for a rigid SU(2) rotation.

The full holographic modular Lagrangian for heavy-light
kaons bound to a bulk flavor instanton, follows by inserting
(14) and (15) and expanding in 1/my, with the result [30]
[see Eq. (23)]

3 37+ 124

1
£: _--‘-- - T._
ML 193

78i

12 .
SﬁleT)()( —5—'54()(72()2

12 & XN\, 1.,
ISRy SR V4 Py T
+(4p2+4+4p2 x'x 2’”11)()(

+ ECDO [mH] + ‘CCoulombv (17)

yars

_I_

with p = 1672aN .p. The rescaling y — e’ /myy, with
the heavy and bare mass my of the (K, K*) multiplet, is
subsumed.

The first two lines are standard, with the first term in the
third line following from the coupling trd®?y "y, and leading
to a nonvanishing correction to the metric in the space
yr = (p.pay).

The constraint field contribution Lg, [m] in the last line
was analyzed in Appendixes A. 3 and A. 4 of Ref. [30], and
is given by

Lo, [my = - Jo. (18)

with the nonlocal source J, given in (A10). It follows from
the Gauss constraint on the flavor gauge field in bulk, and is
by far the most involved to unravel. For convenience, we
detail its analysis in Appendixes A and B. Aside from the
explicit mass dependence in (17), there is an implicit mass
dependence in Lg [my] which we have noted in the
argument. Since the strange mass is intermediate between
light u, d and heavy c, b, we will address the implicit mass
dependence in Lq, [my] both in the light my — 0, and
heavy mpy — oo.

The Coulomb contribution Lcgyomp, Was originally
detailed in Appendix B in [30], and for convenience,
briefly reviewed in Appendix C, with the result

1
L =-J]
Coulomb C 2(_(1ch2 4 fZIT)()

Je.  (19)

The nonlocal source Jo = (p' + p) is given in (C2) and
(C3). Throughout, the Coulomb contribution which is small
will be mostly ignored. It is a correction to be added in
perturbation theory to the modular Hamiltonian, and
assessed only at the end.

The holographic heavy kaon mass in the large mass limit
is given by [5]

Mgk

M =m + =
K H ) \/§
with my the bare mass of the kaon doublet, and the

Kaluza-Klein scale Mg = 475 MeV. In what will follow,
myg ~ Mg, unless specified otherwise.

(20)

114021-3



LIU, NOWAK, and ZAHED

PHYS. REV. D 105, 114021 (2022)

Note that a naive expansion of the Coulomb and Gauss
constraint contributions in (17), as shown in Appendix D,
leads to a degenerate but stable hyperon spectrum to order
mY, but unstable at subleading order. The unexpanded
constraints produce a stable hyperon spectrum as we
detail below.

D. L4,[0] and no Coulomb

We start the analysis of (17) by considering the simple
case with my = 0 only in the Gauss constraint or Lg, [0],
and no Coulomb backreaction. Both approximations will
be revisited below. With this in mind, the modular
Lagrangian simplifies

2
1 3i 37 +12%
E = --‘- . - T . _ p +
an = 541+ 532 oy XX
99; 75
+ 4052)(”“)0(” - 8—54)(*)(' (21)

Note that without the spin-orbit coupling, we have

3 37+ 124

1
Lo— oty 2b s
0= AF AL TP

75
5 Xx——x'r. (22)

8p*
By setting the kaon modular variable y as
X1 + l)’1
X = < . ) (23)
Xy +1ys
(22) can be written as two harmonic oscillators coupled to
magnetic field

L2 52 . . ) .
Lo=7x"4+X57) + o (yi1X) = X191 + Y2k — X202)

N[ =

mz + Q% .
—%(X]Z +X22), (24)
where we have defined

o 75 37-1-6\/6[% 3
T 7

This observation will be exploited next.

III. HYPERON SPECTRUM

Following on the preceding arguments, we now analyze
the modular Hamiltonian stemming from (21). Without the
spin-orbit contributions as we noted in (24), it maps on the
well-known Landau problem in two dimensions. In this
regime, the hyperons are stable but degenerate. The spin-
orbit contribution modifies the potential in the holographic
p-direction, and lifts the hyperon degeneracy.

A. Landau problem

For the modular Lagrangian (24),
Schrodinger equation reads

the pertinent

Ho,(x) = E¢,, (26)
with the modular Hamiltonian

2

1 0]
H=-DD; +—7z, 27
5 DiDi+—-zz (27)

with z = x + iy and w?> = Q? + m2,. The long derivative is
D; = 0; — iA;, with the U(1) gauge field A; = @.(y, —x).

We now define the operators

i

a = Z—Q%(Dx — l.Dy>
i . ;
=5 o (0y —i0y + @ (x — iy)),
b= 2\;70 (=0 — i0y — w (x+iy)),  (28)
which diagonalizes the kinetic contribution
-
5DiDi = w.(2a’a+1). (29)

For the harmonic contribution, we note that

bt —a = —i\/o.(x - iy), (30)
hence the Hamiltonian can be written as

2

H=w,da+1)+ 2“’ (b —a)(b—a'). (31)

Cc

The Hamiltonian (31) can then be diagonalized with the
help of the following Bogoliubov transformation:

a’ = cosh@A" + sinh OB, (32)
b = cosh@B" + sinh OA. (33)

Using [A,AT] = [B,BT] =1 and [A,B]= [A,BT] =0,
which preserves the commutation relations, we can fix
the value of @ as

20 ®?
a =

tanh 26 = .
a 1+2a° 402

(34)

The modular Hamiltonian without spin-orbit coupling is
then diagonalized as

114021-4
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Q, +Q

—+ Q.ATA+Q_B'B, (35)

with

Q, =\/m4 +Q + !+ w,. (36)

In the next subsection we will explore the spin-orbital
contribution.

B. Spin orbit

For fixed modular variable p, the holographic spectrum
without spin orbit following from (35) is harmonic. Since the
modular coordinate y is quantized as a boson, the net spin and
isospin of the hyperon core is determined by the instanton
quantum moduli with [/J7] = [}1*] assignment, in the
absence of spin-orbit effects. With spin-orbit contributions,
the resulting hyperon states carry [5 @ 1, (5 @ [)"] assign-
ments, for even /. We now proceed to analyze the dynamical
effects of the spin-spin and spin-orbit effects.

1. The =0 state

For [ =0 and J:%,
excitations is

111 37+ 124 3
E, - Ey = AU ) Y
n 0 n \/mH+4ﬁ4+ 926 f)z ( )

the energy level with n Bf

and the lowest one is archived for n = 1. To proceed we
need to fix the p wave function. For that, the induced
potential is given by Q_ to which we add the harmonic
oscﬂlator potential term 20) 252 plus the quartic term

5,3 2y %y 1% as in Eq. (43) in [30]. The result is

1 111 37+122—§
V(D 52 2 4Ly
(p) = 5w} +\/ TR

374125
111 2 _ 3
9 (\/ + 4p* 7+ 96 [)2>

37+122 )

_|_

(3, + 4+ p

We note that (38) is stable for small p. The additional
parameter o captures a spin-spin ordering ambiguity to be
discussed below. With this in mind, and using the estimate

z2 31
S \/2 (39)
P P
the splitting between A’ and nucleon can be solved
numerically for 6§ = 1. The result is

MAO - MN - 0237MKK (40)

For Mg = 0.475 GeV, the splitting is about 112.7 MeV,
smaller than the empirical splitting of 177 MeV. This is
reasonable, since the omitted Coulomb backreaction is
positive (see below).

2. The l=2 state

For the [ #0 cases, the quantization needs to be
considered more carefully, as operator ordering issues
arise. Indeed, we note that the spin operator in the
Bogoliubov transformed basis, reads

1

\/m%,%—QQ—l-w%(

The spin-spin and spin-orbit effects will be treated in first
order perturbation theory. When evaluating the average of
x"1%, one recovers the standard Schwinger representation
of a %—Spin,

xity = AT —B)z(A-B");.  (41)

1
g4 2Bj B, (42)

with A, A, constructed using (x;,y;) and (x,, y,), respec-
tively. When evaluating (y'7%y)?, without normal ordering,
gives

(0[B; (AT
x (A" — B)z(B

— B)*(B' — AY)
— A)B[|0) = 12, (43)

for i = 1, 2. With normal ordering, the result is different:

(0|B;: (AT — B)z%(B" — AT)
x (A" = B)t?(Bt — A): B[|0) = 6. (44)

The normal ordering ambiguity is captured by a c-number
0. The third and perhaps most physical choice, amounts
to dropping the antiparticle contribution to the spin
through A, AT,

0|B;Bt“BtBt*B'B}|0) = 3,
1

which is ordering free. This choice corresponds to 6 = 1,
and will be subsumed throughout.

For [ =2,4,..., one has J = (I +1)/2. We first con-
sider the J = (I —1)/2 case. Following our recent argu-
ments in [30] [e.g., Egs. (44) and (45)], the effective
potential reads

114021-5
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(I+2)aN.

PRI

(l(l +2) -

2
w
+7pf)2+\/m%,+§22+wg—wc+

with a = ?—

mpy + Q& + wep?

3a’N? )
A(my + Q@ + w?)p*

2
37+12%
2 111 P2 _ 3
9<\/mH + T % ﬁz>

37+122
4
=)p

, (45)

5 (1, + 14+ 55

(3). The 1/m2, term due to the spin-orbit coupling is kept to maintain stability at small p. The change of the

potential as one increases mpy tends to decrease for larger /. For [ = 2, the potentials at my = 2 and my = oo differ

moderately, but the net difference is small.
Similarly, in the J = l“ case the effective potential is

laN,

I+1 1
=—.p 2
(=50 0) = b

For 6 =1 and my = Mg, a numerical analysis for the
hyperon states gives

1+
JA=2,1= 1]: M(E(lz >> — My =302 MeV

1
2
3 3+

(47)

which are to be compared to the measured values of 254
and 444 MeV. The splitting between the centroid is much
more accurate:

+ =
my + Q2+ w2p? Amp + Q7+ w%)ﬂ“)

9
i
R VR R

(46)

2
1 9 411\ 37+12%
Vieolp) = o + (o +(1+ ) + g
for / =0, and for [ =2

v<J =1 > Vio(p) + <1(z+z

l = = Vi=o\pP ”

2 2(1+2m2ﬁ2)p

[+1
VilJ=— =Vio(@) +——=(1({+2)
l( ) > lfo(p)—'_z(l_'_zmip) (( +

>% 3 O( (i + 3 (1 + k) + 2

(o(3)) H(a() e o

compared to 191 MeV, empirically.

IV. HYPERON SPECTRUM REVISITED

We now consider the hyperon spectrum with spin-orbit
effect, but with Lq, [my] in the opposite limit of large m
for comparison. The details of Lq, [my] are presented in
Appendix A, including its closed form results in the heavy
mass limit.

A. Without Coulomb

In this case the potentials in the holographic p-direction
are modified as follows:

2
37+12 2>% B

374122
5<m%, 2 (145 + — "2)/34

(I +2)aN, 3a°N? )
/m2, +Q2+w2p2 4(my + Q% + w2)p*
()an 3N ) (50)
/m +92+w2p2 4(my + Q% + w2)p*

114021-6
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with
13162
"= 10" S
myp
Q2_37+6\/5,3‘—2+9*4.11 )
96 m%p?

Also, there is a modification to the curvature in the
p-direction. We should also include the leading warping
contribution at large my, the details of which are identical
to those presented in [30]. With this in mind, the hyperon
spectrum is now given by

- | -
J=3.0=0.1=0|: M(A) =My = 68.1 MeV.
1 ] 1+

3 ] 3+

JIE,IZZ,I:] M Z ]5 — My =400 MeV

(52)

The J :% X state is pushed up, and the J :% X state is
pushed down, with a split in the centroid

My (15") + Mx(13)
2

— My =344 MeV, (53)

which is close to the empirical value of 349 MeV.

B. With Coulomb

As we indicated earlier, throughout we assumed myg ~
Mgy in (20). Here we correct for this shortcoming, with

my = 0.68Myy (54)
and Myx = 475 MeV fixed by the light baryon spectrum
[14]. Mgy is fixed in [30], and my is fixed in a way to
minimize the A mass.

Also, the neglected Coulomb contribution can be esti-
mated in perturbation theory, and in the heavy meson mass
limit, it is about

TABLE I. Hyperon and exotic spectrum.

83
Vern—. 55
C 30ﬁ2 ( )
To derive this result, one simply needs to notice that the
total potential in the heavy quark limit is Vi, = /% =
—%ﬁz [see Eq. (40) in Ref. [6] for the definition of Q],
among them — ;—2 is due to the —w, contribution in Eq. (37),

and the remaining V., + @, is the Coulomb contribution
in the infinite heavy quark limit. This Coulomb potential
provides for an upper bound estimate.

With this in mind, the modified hyperon masses are

- 1 -
J=3.0=0.0=0{: M(A) =My =214 MeV.

1 ] 1+
J=gd=21=1]:M(Z(15 )] -My=368 MeV
3 ] 3+

(56)

The experimental values are 177, 254 and 440 MeV
respectively, with 37, 133 and 20 MeV differences.

Using the corrected value of my above, and the upper
estimate for the Coulomb correction, in Table I, we collect
all hyperon masses for the three approximations presented
earlier. The chief observation is that the large mass analysis
without Coulomb corrections appears closer to the empiri-
cal values of the lowest three empirical hyperons, without
any adjustable parameter. These results are to be compared
to those reported by Callan and Klebanov using the Skyrme
model [31,32], with also no Coulomb corrections.

We recall that in the present holographic construction,
the relative splitting between the hyperons, and the splitting
of the hyperon centroid from the nucleon, which eliminate
much of the uncertainty in My, are in remarkable agree-
ment with the empirically reported splittings.

C. Exotics

This approach extends to light multiquark exotics with
open or hidden strangeness, much like the heavier multi-
quark exotics with open or hidden charm and bottom
discussed in [30,33-35]. In particular, an estimate of the
mass of the strange pentaquark @7 (the exotic uudds) is

Mass (small with

Mass (large with

B I n, n, Mass (small) Coulomb) Mass (large) Coulomb) Exp-MeV
A O%* 0 0 0 962 1182 974 1152 1115
z 1%* 2 0 0 1134 1315 1149 1306 1192

1%+ 2 0 0 1346 1472 1254 1398 1387
e ot 0 0 0 1617 1599

114021-7
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given in Table I. The mass of about 1600 MeV stems mainly
from the Q frequency (antiparticle) which is [.% higher than

the Q_ (particle). (Recall that the effective magnetic field
induced by the bulk Chern-Simons interaction is repulsive
for particles, and attractive for antiparticles.) An additional
repulsion of about ﬁ% stems from the Coulomb backreaction

in the heavy mass estimate. A @] of about 1600 MeV lies
above the nK* threshold of 1434 MeV, and is unstable
against strong decay. This result is consistent with the fact
that the proposed ®; state [36-39] is insofar unaccounted
for experimentally.

V. CONCLUSIONS

In the holographic construction presented in [5—7], heavy
hadrons are described in bulk using a set of degenerate N,
light D8-DS branes plus one heavy probe brane in the cigar-
shaped geometry that spontaneously breaks chiral symmetry.
This construction enforces both chiral and heavy-quark
symmetry and describes well the low-lying heavy-light
mesons, baryons and multiparticle exotics [30,33-35].
Heavy hadrons whether standard or exotics, are composed
of heavy-light mesons bound to a core instanton in bulk.

In [7] the analysis of the hyperon spectrum was carried to
order mY, where spin effects are absent. In this analysis, we
have now carried the analysis at next to leading order in
1/my where the spin-orbit and spin corrections are
manifest. In contrast to [7], the modular fields were
quantized as bosons and not fermions. The quantized
Hamiltonian describes a particle in an external two-
dimensional magnetic field, with spin-orbit coupling.

The hyperon spectrum with the Gauss constraint treated
in both the heavy and light kaon mass limit shows very
small changes. It is in overall agreement with the empirical
hyperon spectrum, and is much improved in comparison to
the analysis in [7], where the strange mass was analyzed
perturbatively. This construction allows for the description
of multiquark exotics with strangeness, and shows that the
contentious exotic O/ is unbound. In a way, this con-
struction should be regarded as the dual of the improved
Callan-Klebanov construction for hyperons, as bound kaon
skyrmions [31,32].
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APPENDIX A: DERIVATION OF L, [my]

For a generic kaon mass of order my, we must include its
contribution in the Gauss law constraint as captured by the

time component ®@,,_ of the heavy-light vector field. This
is the most difficult term to unravel to order 1/my. For that,
we recall from Appendix A.3 in [30] that the constraint
equation for @ is

(=D3; + m3;) D + 2F 0Dy

l
—7FPQ(ap +Ap)cDQ == 0,

Al
167%a (A1)

after using the self-dual condition for F. Using the standard
relations for &,/y, we have for the last two contributions
in (Al)

6p> 1df
Fpp0p®p = ——-5——05"- Xy,
P¥PTQ (X2+,02)2rdr6 d
FroAp® 6" 15X, (A2)
=————=f0-Xy.
PorPo (X2 1 p2)3 X
For the first contribution in (A1) we have
6f .
Fro®y = ————(p?6- X +6-Xpp
MO M (X2+/)2)2 (p o +o0 ﬂﬂ)}(
+x'Du@ouxf (A3)
with
P = ! o-Xt'0-X (A4)
2(X* +p?) ’
or more explicitly
1Dy Gy f 3 G- Xty (AS)
u®P oy, .
(X2 + p?)?

Inserting (AS) and (A6) into (Al) we have

(=Diy + my)®g + Jo = 0. (A6)
with
12f o=y ofP o
Jozm(pzd)('f'Upr))("‘mGXT XX
3 pf 2f A,
— 50 Xy +——F—06-X A7
Zﬂza(X2+p2)36 X+ roor X (A7)
the source for @
1
Lo, =3 / d*XT(X) Dy (X). (A8)

In this equation the Abelian part of Fy has been included.
Since

104, i 1 N 2p*
ror  4rta(X* 4 p?)? X? + p?

) )
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one finally has

12f oo 0°f  _ yaa
Jozm(p O"X‘FG'XﬂP)}(‘FmG‘XT}{){
i f P\
——— —— |6-Xx. Al10
27r2a(X2+p2)2( +X2—|—p2>6 d (A10)

To solve (A6), we need the massive spin-0 propagator in
the instanton background,

1
5 |Y).

Gy (X.Y) = (ﬂm
M H

(A11)
in terms of which the Gauss law constraint yields the
modular Lagrangian contribution (A6) in the form

1

WWWO(Y)-

(A12)

1
Lo, =~ [ #xaVI0

APPENDIX B: EXPANSION OF Lg[my]

The spin-0 Greens function (All) is not known for
arbitrary my, except for my = 0. Here, we provide a
general expression for the different modular contributions
in Lgg[my], and then specialize to the two extreme cases of
my = 0 and large my, for which analytical expressions can
be obtained. More specifically, we have

a - g
Lo, = —)(U(Q?XZ +; (p* +p2a?)>

+%ﬂf T - ﬁ%)ﬂx, (B1)
with the coefficients
a= 1iz/d4Xd4Y(( )gg (’;?Jr( ))
Pt [ e G
o0
5_6116\’2/‘14“4 (X2( i) <1+X25+1>92(X,Y)
< () (B2)

Here the scalar functions trace over the spin-0 propagator

a1 (X, Y) = ter(X, Y),

(X, Y) =tr(c- XGo(X. Y)5 - Y), (B3)

after the rescaling p — 1 and my — myp>. For my = 0,
the expressions will be quoted explicitly below. For my
large, the spin-0 propagator is zero-mode free, and can be
approximated by its free part,

d*k eik-(X—Y)
G, (X, Y — a5 - B4
o )_)/(27:)4k2+m%, (B4)
Using the Fourier transforms
GO / d'k ox
wrip ) aap
f(X) 5 LI
e\ Ter1) T e e (BY)
we have
4\/§7t
g1(k) = e M1+ k),
4\/§n'
92(k) = =55 e M (5|k[> +22|k| +22),  (B6)
so that
_122/ d*k g1 (k)]?
2 (2n)* k> + w3’
ﬂ_1_22/ d'k |Vg (k)]
-8 ) (2n)* k2+m%,’
48N d4k Vg, (k ng( )
4 k2+ ’
-8 (27)* k2+m2
Large my:
122 1 24
a—zz/d4X2 =7
Ty, (X*+1)" Sy
122 X2
p= 2~2/d4X 2 7 ?2’
dring, (X*+1)"  Smy
48N, X? 5 54N,
= [ d*X 1 = =
Yo (X2+1)7< +X2+1> 352,
5 64N? /d4X X2 1y 2 146N
- 4ntind, (X>+ 1) X2+1)  35my
(B8)

This will actually contribute to order

in y.

after the rescaling
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(B9)

APPENDIX C: COULOMB CORRECTION

Here we provide a complete treatment of the Coulomb
backreaction contribution (with more details in Appendix B
in [30]). After rescaling the U(1) flavor gauge field in bulk
Ay — iA,, the Lagrangian for A° reads

aNe s, v 2o o cl
> (VAy) +7)H(Ao + Ao(p +p),

L]A] = (C1)

where p¢! is the classical source (without the modular
field y)

3N. p*
/= aN V?AS = - =3¢ Cc2
P aiv. 0 (2 +p2) (€2)
and p the quantum source with the modular field
2 3 2,02 _ XZ
=iy =i 2X'x. (C3
p="il'x Z)()+16”2Q(X2+p2)2f)“( (€3)

Note that the contribution

3 207 -X?
167%a (X + p?)

_ 3 f2p2 t + 3 9 fo2 +
T1622a (X2 1 22 F T anza N\ £ ) )F X

s x

(C4)

originates solely from the Chern-Simons term in bulk.
Given the action for A, at the minimum we have

1
_ach2 + fz)(T)()

L =-J Je, C5
Coulomb C 2( C ( )

with J¢ = (p! + p), which is a complicated function of the
scalar y'y. More importantly, it yields always a positive
mass correction. Note that the f2/my term in the denom-
inator plays the role of a screening mass, which can be
made more manifest through a coordinate transformation.

For a general analysis of the Coulomb correction, we
need the Green’s function in the background field,

1

G (X,Y)=(X -
1( ) < |—aNCV2+f2;(U(

Y).  (Co)

In the text, we provide an estimate of this contribution in
perturbation theory, with the replacement 'y — 1, for a
single bound kaon.

APPENDIX D: NAIVE 1/my ANALYSIS

In (17) both the Gauss law constraint and the Coulomb
backreaction are complicated functions of the modular
coordinate y and my. Naively, a standard quantum analysis
would require expanding them in 1/my. This expansion
leads to an unstable hyperon spectrum at next-to-leading
order, as we now demonstrate. In a way the charge
constraint and screening should not be expanded, to
guarantee quantum stability.

Consider (17) with all terms expanded to order
O(1/m%):

L= Lquadratic + 'C'intv (Dl)

where the quadratic part reads

L guadratic = i¢'x + m)( X+ Zﬁgl X+ W]
102

Smyp*

8 .
+ ——= i + X'y

Smyp
37 + 12§—§

192my, (D2)

XX

and the “high-order contribution” L;,, reads

12 5 2 1 (56, 4. 4
- P A S B
Smgpt 32 T ~4< 5 TR

myp
n 1 128n4_'_376n3 4017n?
m%,p° 45 15 70

‘Cint =

(D3)
with

L ..
i=5 Ux-x2. n=xr (D4)

We now focus on the quadratic part, by replacing
x — et /my, so that

9i m2
Ty UH
2/32)( X 2 XX

102 37+12%\ 78
—_ T 794 D5
<5ﬁ4 53 )x x+ st T (Ds)

I...
‘Cquadratic = 5)( 1)( +

Again, this can be interpreted as a system with two
harmonic oscillators in a p dependent background magnetic
field, coupled with each other by the spin-orbital term. In
terms of (23), we have
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1 ) ) 9 . . . .
L==(x"4+x) +Tz(y1x1 — X1V + Yaky = X33)
2 2p
2 Q2
_ %('D) (X1 + X3%) + spin orbit, (D6)
with )_C)l = (-xl,yl), 22 = (x2,y2) and
2
204 37+ 12%
@ (p) = —c (D7)

T4 T 06

We proceed to quantize (D6) in the Born-Oppenheimer
approximation. We fix y; and Z and first quantize X, and X,.
This is justified in the large my limit, where y is fast
moving at frequency my, while the other degrees of
freedom are slow moving with a typical frequency
o, = %M KK-

We first look at the / =0 state where the spin-orbit
coupling vanishes. In this case X; and X, decouple, and we
have two identical harmonic oscillators in the background
field:

A=awy,—x), (D8)

:2'52‘

This is the famed Landau problem, with a spectrum

1 1
E= <n+—|—§>9++ (n_+§>9_, (D9)
with
Q. =\/mj + Q> + 0 Lo, (D10)

At large my, one has

oy 2 |
Q. :mHiwc+M+(’)<—2>. (DI1)

2my my

Clearly, the + solutions can be interpreted as particle/
antiparticles. To leading order in O(1/my), the two
frequencies agree with the case where y is quantized as
a fermion. Unfortunately,

81 204
Q*(p) + ? Irﬁ;—?<

0, (D12)
indicating an instability at the quadratic order. We conclude
that the screening effect in the Coulomb part should not be
expanded, as it causes a charge instability.
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