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We revisit the holographic description of strange baryons in the context of the Sakai-Sugimoto
construction, by considering the strange quark mass as heavy. Hyperons are described by a massive ðK;K�Þ
multiplet, bound to a light-flavor instanton in bulk, much in the spirit of the Callan-Klebanov construction.
The modular Hamiltonian maps onto the Landau problem, a charged particle in a two-dimensional external
magnetic field, induced by the bulk Chern-Simons interaction, plus spin-orbit coupling. The ensuing
holographic hyperon spectrum compares fairly with the empirical one. The holographic strange pentaquark
baryon Θþ

s is shown to be unbound.
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I. INTRODUCTION

The holographic principle in general [1,2], and the
D4-D8-D8̄ holographic setup in particular [3], provide a
framework for addressing QCD in the infrared in the
double limit of a large number of colors and strong
’t Hooft gauge coupling λ ¼ g2YMNc. It is confining and
exhibits spontaneous chiral symmetry breaking geometri-
cally. The light meson sector is well described by an
effective action with manifest chiral symmetry and very
few parameters, yet totally in line with more elaborate
effective theories of QCD [4]. The same setup can be
minimally modified to account for the description of heavy-
light mesons, with manifest heavy quark symmetry [5–9].
Light and heavy-light baryons are dual to instantons and

instanton-heavy meson bound states in bulk [10–15],
providing a robust geometrical approach to the multibody
bound state problem. The holographic construction pro-
vides a dual realization of the chiral soliton approach and its
bound state variants [16,17], without the shortcomings of

the derivative expansion. It is a geometrical realization of
the molecular approach [18,19], without the ambiguities
of the nature of the meson exchanges, and the arbitrariness
in the choice of the many couplings and form factors [20].
Alternative holographic models for the description of heavy
hadrons have been developed in [21,22].
Chiral symmetry constrains the light quark interactions,

while heavy quark symmetry restricts the spin interactions
between heavy quarks [23,24]. Both symmetries are inter-
twined by the phenomenon of chiral doubling [25–27] as
shown experimentally in [28,29]. A theoretical approach to
the multiquark states should have manifest chiral and heavy
quark symmetry, a clear organizational principle in the
confining regime, and should address concisely the multi-
body bound state problem. The holographic construction
provides this framework.
In [7] two of us have analyzed the holographic baryon

spectrum by considering three massless flavors u, d, s. The
strange quark mass was introduced through a bulk instan-
ton holonomy, assumed small and treated in perturbation
theory. However, the strange quark mass is intermediate
between heavy and light, and may require a treatment
beyond perturbation theory. In this work, we will propose
such a treatment.
We will consider the kaon mass as large, and identify the

strangeness brane as heavy in the formulation outlined in
[6,7,30]. Hyperons (baryons with strangeness −1) will be
sought as bound states of massive kaons, to a bulk flavor
instanton made of only the light u, d flavors. The ensuing
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modular Hamiltonian for the hyperons, will be diagonal-
ized without recourse to perturbation theory. This con-
struction bears much in common with the revised bound
state approach for hyperons in the Skyrme model [31,32].
The result is a much improved holographic hyperon
spectrum, in comparison to the one in [7].
The organization of the paper is as follows: In Sec. II, we

briefly review the holographic construction, and detail the
modular Lagrangian for hyperons (baryons with strange-
ness −1) in leading order in the heavy meson mass
expansion. We retain the exact kaon mass contribution,
and the nonlocal contributions stemming from the
Coulomb backreaction and the bulk form of Gauss law.
In Sec. III we show that the modular Hamiltonian maps
onto the Landau problem of a particle in a magnetic field in
two dimensions, plus spin-orbit coupling. In Sec. IV we
detail the hyperon spectra, including the strange pentaquark
exotic Θþ

s , for two different approximations of the Gauss
law contribution. Our conclusions are in Sec. V. A number
of Appendixes are added to complement the derivations in
the text.

II. THE MODULAR LAGRANGIAN

The modular Lagrangian for the holographic description
of heavy-light mesons bound to a bulk flavor instanton, has
been discussed in [6,7] for standard baryons, and for their
exotics in [30,33–35]. Here we propose to use it for kaons,
assuming the strangeness to be a heavy flavor.

A. Dirac-Born-Infeld (DBI) action

The holographic construction consists of ðNf − 1Þ-light
and 1-heavy probe branes. The light branes fuse in a
hyperbolic geometry characterized by a finite size RT and a
horizon at UKK. The DBI action characterizing the flavor
fields in leading order in 1=λ is

SDBI ≈ −κ
Z

d4xdzTrðfðzÞFμνFμν þ gðzÞFμzFνzÞ; ð1Þ

with the warpings

fðzÞ ¼ R3

4Uz
; gðzÞ ¼ 9

8

U3
z

UKK
; ð2Þ

and U3
z¼U3

KKþUKKz2, and κ≡ aλNc and a ¼ 1=ð216π3Þ
[3]. All dimensions are in units of MKK (Kaluza-Klein
scale). The effective fields in the field strengths are [5,6]

FMN ¼
� FMN −Φ½MΦ

†
N� ∂ ½MΦN� þ A½MΦN�

−∂ ½MΦ
†
N� −Φ†

½MAN� −Φ†
½MΦN�

�
: ð3Þ

The matrix valued 1-form gauge field is

A ¼
�

A Φ
−Φ† 0

�
: ð4Þ

For Nf ¼ 2, the naive Chern-Simons 5-form is

SCS ¼
iNc

24π2

Z
M5

Tr

�
AF2 −

1

2
A3F þ 1

10
A5

�
: ð5Þ

For Nf coincidental branes, the Φ multiplet is massless,
but for separated branes it is massive, with a generic mass
term

1

2
m2

HTrðΦ†
MΦMÞ: ð6Þ

The value of mH is related to the separation between the
light and heavy branes, which is about the length of the
heavy light (HL) string (see below).

B. Light and heavy fields

In the coincidental brane limit, light baryons are inter-
changeably described as a flavor instanton or a D4 brane
wrapping the S4, with mass M0 ¼ 8π2κ in units of MKK.
The bulk instanton is described by the O(4) gauge field

AMðyÞ ¼ −σ̄MN∂NFðyÞ: ð7Þ

The labels M, N run only over 1; 2; 3; z unless specified
otherwise. The instanton size is small with ρ ∼ 1=

ffiffiffi
λ

p
[3],

and it is natural to recast the DBI action using the
rescaling ðx0;xMÞ→ðx0;xM=

ffiffiffi
λ

p Þ, ffiffiffi
λ

p
ρ→ρ and ðA0; AMÞ →

ðA0;
ffiffiffi
λ

p
AMÞ. The rescaled fields satisfy the equations of

motion

DMFMN ¼ 0

∂2
MA0 ¼ −

1

32π2a
FaMN⋆FaMN: ð8Þ

For the heavy fields, we use the rescaling

ðΦ0;ΦMÞ → ðΦ0;
ffiffiffi
λ

p
ΦMÞ: ð9Þ

The interactions between the light gauge fields ðA0; AMÞ
and the heavy fields ðΦ0;ΦMÞ to quadratic order split to
several contributions [5,6]:

L ¼ aNcλL0 þ aNcL1 þ LCS: ð10Þ

We start by recalling the leading contributions in 1=mH
stemming from (10) as detailed in [6,7]. For that, we split
ΦM ¼ ϕMe−imHx0 for particles (mH → −mH for antipar-
ticles). The leading order contribution takes the form

LIU, NOWAK, and ZAHED PHYS. REV. D 105, 114021 (2022)

114021-2



L0 ¼ −
1

2
jfMN − ⋆fMN j2 þ 2ϕ†

MðFMN − ⋆FMNÞϕN; ð11Þ

subject to the constraint equation DMϕM ¼ 0 with

fMN ¼ ∂ ½MϕN� þ A½MϕN�; ð12Þ

while the subleading contributions in (10) to order λ0mH
simplify to

L1

aNc
→ 4mHϕ

†
MiD0ϕM

LCS →
mHNc

16π2
ϕ†
M⋆FMNϕN: ð13Þ

We identify the strange heavy-light flavor fieldΦ in bulk
with the ð0−; 1−Þ kaon multiplet as Φ ¼ ðK;K�Þ, and
proceed to bind it to a light flavor instanton as in [6,30].
The ensuing modular Lagrangian is composed of the
collective variables ðXi; aI; ρÞ for the instanton collective
position, SU(2) orientation and size.
In addition,when binding to the core instanton in bulk, the

kaon multiplet transmutes to a two-component complex
modular coordinate χ, via a zero mode. In the analysis to
follow for the hyperon spectrum, this coordinate will be
quantized as a boson, much in the spirit of the bound state
approach in the dual analysis in [31,32]. The fermionic
statistics was considered in [6,30], in the analysis of the
much heavier baryons and their exotics, as it captures the key
features of the heavier quark, and heavy quark symmetry.

C. Modular action

The modular action will be sought by restricting the
quantum and heavy fields to the quantum moduli. More
specifically, we choose to parametrize the fields using

AMðt; xÞ ¼ Acl
MðXðtÞ; ZðtÞÞ;

A0ðt; xÞ ¼ −iV∂tV−1 ≡Φ

ΦMðt; xÞ ¼ fðXðtÞ; ZðtÞÞσ̄MχðtÞ: ð14Þ

The Φ field is parametrized as

Φ ¼ − _XNAcl
N þ χaΦa; ð15Þ

where Φa diagonalizes Dcl
MD

cl
MΦa and where

χa ¼ trðτaa−1 _aÞ ð16Þ

are expressed in terms of the collective variables a ∈ SUð2Þ
for a rigid SU(2) rotation.
The full holographic modular Lagrangian for heavy-light

kaons bound to a bulk flavor instanton, follows by inserting
(14) and (15) and expanding in 1=mH, with the result [30]
[see Eq. (23)]

L ¼ þ 1

2
_χ† _χ þ 3i

ρ̃2
χ† _χ −

37þ 12 Z2

ρ2

192
χ†χ

þ 78i
5ρ̃2

χ†τaχχa −
12

5ρ̃4
ðχ†τaχÞ2

þ
�
1

4

_ρ2

ρ2
þ _a2I

4
þ

_X2

4ρ2

�
χ†χ −

1

2
m2

Hχ
†χ

þ LΦ0
½mH� þ LCoulomb; ð17Þ

with ρ̃ ¼ 16π2aNcρ. The rescaling χ → eimHt
ffiffiffiffiffiffiffi
mH

p
χ, with

the heavy and bare mass mH of the ðK;K�Þ multiplet, is
subsumed.
The first two lines are standard, with the first term in the

third line following from the coupling trΦ2χ†χ, and leading
to a nonvanishing correction to the metric in the space
yI ¼ ðρ; ρaIÞ.
The constraint field contribution LΦ0

½mH� in the last line
was analyzed in Appendixes A. 3 and A. 4 of Ref. [30], and
is given by

LΦ0
½mH� ¼ −

1

8
J†0

1

−D2
M þm2

H
J0; ð18Þ

with the nonlocal source J0 given in (A10). It follows from
the Gauss constraint on the flavor gauge field in bulk, and is
by far the most involved to unravel. For convenience, we
detail its analysis in Appendixes A and B. Aside from the
explicit mass dependence in (17), there is an implicit mass
dependence in LΦ0

½mH� which we have noted in the
argument. Since the strange mass is intermediate between
light u, d and heavy c, b, we will address the implicit mass
dependence in LΦ0

½mH� both in the light mH → 0, and
heavy mH → ∞.
The Coulomb contribution LCoulomb was originally

detailed in Appendix B in [30], and for convenience,
briefly reviewed in Appendix C, with the result

LCoulomb ¼ −J†C
1

2ð−aNc∇2 þ f2χ†χÞ JC: ð19Þ

The nonlocal source JC ¼ ðρcl þ ρÞ is given in (C2) and
(C3). Throughout, the Coulomb contribution which is small
will be mostly ignored. It is a correction to be added in
perturbation theory to the modular Hamiltonian, and
assessed only at the end.
The holographic heavy kaon mass in the large mass limit

is given by [5]

MK ¼ mH þMKK

2
ffiffiffi
2

p ; ð20Þ

with mH the bare mass of the kaon doublet, and the
Kaluza-Klein scale MKK ¼ 475 MeV. In what will follow,
mH ∼MK, unless specified otherwise.
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Note that a naive expansion of the Coulomb and Gauss
constraint contributions in (17), as shown in Appendix D,
leads to a degenerate but stable hyperon spectrum to order
m0

H, but unstable at subleading order. The unexpanded
constraints produce a stable hyperon spectrum as we
detail below.

D. LΦ0
½0� and no Coulomb

We start the analysis of (17) by considering the simple
case with mH ¼ 0 only in the Gauss constraint or LΦ0

½0�,
and no Coulomb backreaction. Both approximations will
be revisited below. With this in mind, the modular
Lagrangian simplifies

Lqua ¼
1

2
_χ† _χ þ 3i

ρ̃2
χ† _χ −

37þ 12 Z2

ρ2

192
χ†χ

þ 99i
40ρ̃2

χ†τaχχa −
75

8ρ̃4
χ†χ: ð21Þ

Note that without the spin-orbit coupling, we have

L0 ¼
1

2
_χ† _χ þ 3i

ρ̃2
χ† _χ −

37þ 12 Z2

ρ2

192
χ†χ −

75

8ρ̃4
χ†χ: ð22Þ

By setting the kaon modular variable χ as

χ ¼
�
x1 þ iy1
x2 þ iy2

�
; ð23Þ

(22) can be written as two harmonic oscillators coupled to
magnetic field

L0 ¼
1

2
ð _x⃗12 þ _x⃗2

2Þ þ ωcðy1 _x1 − x1 _y1 þ y2 _x2 − x2 _y2Þ

−
m2

H þ Ω2

2
ðx⃗12 þ x⃗22Þ; ð24Þ

where we have defined

Ω2 ¼ 75

4ρ̃4
þ
37þ 6

ffiffiffi
6

p
1
ρ̃2

96
; ωc ¼

3

ρ̃2
: ð25Þ

This observation will be exploited next.

III. HYPERON SPECTRUM

Following on the preceding arguments, we now analyze
the modular Hamiltonian stemming from (21). Without the
spin-orbit contributions as we noted in (24), it maps on the
well-known Landau problem in two dimensions. In this
regime, the hyperons are stable but degenerate. The spin-
orbit contribution modifies the potential in the holographic
ρ-direction, and lifts the hyperon degeneracy.

A. Landau problem

For the modular Lagrangian (24), the pertinent
Schrödinger equation reads

HϕnðxÞ ¼ Eϕn; ð26Þ

with the modular Hamiltonian

H ¼ 1

2
D†

i Di þ
ω2

2
zz; ð27Þ

with z ¼ xþ iy and ω2 ¼ Ω2 þm2
H. The long derivative is

Di ¼ ∂i − iAi, with the U(1) gauge field Ai ¼ ωcðy;−xÞ.
We now define the operators

a ¼ i
2

ffiffiffiffiffiffi
ωc

p ðDx − iDyÞ

¼ i
2

ffiffiffiffiffiffi
ωc

p ð∂x − i∂y þ ωcðx − iyÞÞ;

b ¼ −i
2

ffiffiffiffiffiffi
ωc

p ð−∂x − i∂y − ωcðxþ iyÞÞ; ð28Þ

which diagonalizes the kinetic contribution

1

2
D†

i Di ¼ ωcð2a†aþ 1Þ: ð29Þ

For the harmonic contribution, we note that

b† − a ¼ −i
ffiffiffiffiffiffi
ωc

p ðx − iyÞ; ð30Þ

hence the Hamiltonian can be written as

H ¼ ωcð2a†aþ 1Þ þ ω2

2ωc
ðb† − aÞðb − a†Þ: ð31Þ

The Hamiltonian (31) can then be diagonalized with the
help of the following Bogoliubov transformation:

a† ¼ cosh θA† þ sinh θB; ð32Þ

b† ¼ cosh θB† þ sinh θA: ð33Þ

Using ½A; A†� ¼ ½B;B†� ¼ 1 and ½A;B� ¼ ½A;B†� ¼ 0,
which preserves the commutation relations, we can fix
the value of θ as

tanh 2θ ¼ 2α

1þ 2α
; α ¼ ω2

4ω2
c
: ð34Þ

The modular Hamiltonian without spin-orbit coupling is
then diagonalized as
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H ¼ Ωþ þ Ω−

2
þ ΩþA†Aþ Ω−B†B; ð35Þ

with

Ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þΩ2 þ ω2
c

q
� ωc: ð36Þ

In the next subsection we will explore the spin-orbital
contribution.

B. Spin orbit

For fixed modular variable ρ̃, the holographic spectrum
without spin orbit following from (35) is harmonic. Since the
modular coordinate χ is quantized as a boson, the net spin and
isospin of the hyperon core is determined by the instanton
quantum moduli with ½IJP� ¼ ½1

2
1
2
þ� assignment, in the

absence of spin-orbit effects. With spin-orbit contributions,
the resulting hyperon states carry ½1

2
⊕ 1

2
; ð1

2
⊕ lÞþ� assign-

ments, for even l. We now proceed to analyze the dynamical
effects of the spin-spin and spin-orbit effects.

1. The l = 0 state

For l ¼ 0 and J ¼ 1
2
, the energy level with n B†

excitations is

En − E0 ¼ n

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þ 111

4ρ̃4
þ
37þ 12 Z2

ρ2

96

s
−

3

ρ̃2

1
CA; ð37Þ

and the lowest one is archived for n ¼ 1. To proceed we
need to fix the ρ wave function. For that, the induced
potential is given by Ω− to which we add the harmonic
oscillator potential term 1

2
ω2
ρρ̃

2, plus the quartic term
− 3i

5ρ̃4
χ†τa _χχ†τaχ as in Eq. (43) in [30]. The result is

Vðρ̃Þ ¼ 1

2
ω2
ρρ̃

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þ 111

4ρ̃4
þ
37þ 12 Z2

ρ2

96

s
−

3

ρ̃2

þ
9

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þ 111
4ρ̃4

þ 37þ12Z
2

ρ2

96

r
− 3

ρ̃2

�

5
�
m2

H þ 111
4ρ̃4

þ 37þ12Z̃
2

ρ̃2

96

�
ρ̃4

: ð38Þ

We note that (38) is stable for small ρ. The additional
parameter δ captures a spin-spin ordering ambiguity to be
discussed below. With this in mind, and using the estimate

Z2

ρ2
≈

ffiffiffi
3

2

r
1

ρ̃2
; ð39Þ

the splitting between Λ0 and nucleon can be solved
numerically for δ ¼ 1. The result is

MΛ0 −MN ¼ 0.237MKK: ð40Þ

For MKK ¼ 0.475 GeV, the splitting is about 112.7 MeV,
smaller than the empirical splitting of 177 MeV. This is
reasonable, since the omitted Coulomb backreaction is
positive (see below).

2. The l = 2 state

For the l ≠ 0 cases, the quantization needs to be
considered more carefully, as operator ordering issues
arise. Indeed, we note that the spin operator in the
Bogoliubov transformed basis, reads

χ†τaχ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þ Ω2 þ ω2
c

p ðA† − BÞiτaijðA − B†Þj: ð41Þ

The spin-spin and spin-orbit effects will be treated in first
order perturbation theory. When evaluating the average of
χ†τaχ, one recovers the standard Schwinger representation
of a 1

2
-spin,

Sa ¼ 1

2
B†
i τ

a
ijBj; ð42Þ

with A1, A2 constructed using ðx1; y1Þ and ðx2; y2Þ, respec-
tively. When evaluating ðχ†τaχÞ2, without normal ordering,
gives

h0jBiðA† − BÞτaðB† − A†Þ
× ðA† − BÞτaðB† − AÞB†

i j0i ¼ 12; ð43Þ

for i ¼ 1, 2. With normal ordering, the result is different:

h0jBi∶ðA† − BÞτaðB† − A†Þ
× ðA† − BÞτaðB† − AÞ∶B†

i j0i ¼ 6: ð44Þ

The normal ordering ambiguity is captured by a c-number
δ. The third and perhaps most physical choice, amounts
to dropping the antiparticle contribution to the spin
through A, A†,

h0jBiBτaB†BτaB†B†
i j0i ¼ 3;

which is ordering free. This choice corresponds to δ ¼ 1,
and will be subsumed throughout.
For l ¼ 2; 4;…, one has J ¼ ðl� 1Þ=2. We first con-

sider the J ¼ ðl − 1Þ=2 case. Following our recent argu-
ments in [30] [e.g., Eqs. (44) and (45)], the effective
potential reads
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V

�
J ¼ l − 1

2
; ρ̃

�
¼ 1

2ρ̃2

�
lðlþ 2Þ − ðlþ 2ÞαNcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
H þ Ω2 þ ω2

c

p
ρ̃2

þ 3α2N2
c

4ðm2
H þΩ2 þ ω2

cÞρ̃4
�

þ ω2
ρ

2
ρ̃2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þ Ω2 þ ω2
c

q
− ωc þ

9

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þ 111
4ρ̃4

þ 37þ12Z
2

ρ2

96

r
− 3

ρ̃2

�

5
�
m2

H þ 111
4ρ̃4

þ 37þ12Z
2

ρ2

96

�
ρ̃4

; ð45Þ

with α ¼ 33
10
. The 1=m2

H term due to the spin-orbit coupling is kept to maintain stability at small ρ. The change of the
potential as one increases mH tends to decrease for larger l. For l ¼ 2, the potentials at mH ¼ 2 and mH ¼ ∞ differ
moderately, but the net difference is small.
Similarly, in the J ¼ lþ1

2
case the effective potential is

V

�
J ¼ lþ 1

2
; ρ̃

�
¼ 1

2ρ̃2

�
lðlþ 2Þ þ lαNcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
H þ Ω2 þ ω2

c

p
ρ̃2

þ 3α2N2
c

4ðm2
H þΩ2 þ ω2

cÞρ̃4
�

þ ω2
ρ

2
ρ̃2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þ Ω2 þ ω2
c

q
− ωc þ

9

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þ 111
4ρ̃4

þ 37þ12Z
2

ρ2

96

r
− 3

ρ̃2

�

5
�
m2

H þ 111
4ρ̃4

þ 37þ12Z
2

ρ2

96

�
ρ̃4

: ð46Þ

For δ ¼ 1 and mH ¼ MKK, a numerical analysis for the
hyperon states gives

�
J ¼ 1

2
; l ¼ 2; I ¼ 1

�
∶ M

�
Σ
�
1
1

2

þ��
−MN ¼ 302 MeV�

J ¼ 3

2
; l ¼ 2; I ¼ 1

�
∶ M

�
Σ
�
1
3

2

þ��
−MN ¼ 501 MeV

ð47Þ

which are to be compared to the measured values of 254
and 444 MeV. The splitting between the centroid is much
more accurate:

M

�
Σ
�
1
3

2

þ��
−M

�
Σ
�
1
1

2

þ�� ¼ 199 MeV; ð48Þ

compared to 191 MeV, empirically.

IV. HYPERON SPECTRUM REVISITED

We now consider the hyperon spectrum with spin-orbit
effect, but with LΦ0

½mH� in the opposite limit of large mH
for comparison. The details of LΦ0

½mH� are presented in
Appendix A, including its closed form results in the heavy
mass limit.

A. Without Coulomb

In this case the potentials in the holographic ρ-direction
are modified as follows:

Vl¼0ðρ̃Þ ¼
1

2
ω2
ρρ̃

2 þ
�
m2

H þ 9

ρ̃4

�
1þ 4.11

m2
Hρ̃

2

�
þ
37þ 12 Z2

ρ2

96

�1
2

−
3

ρ̃2
þ
9
��

m2
H þ 9

ρ̃4
ð1þ 4.11

m2
H ρ̃

2Þ þ
37þ12Z

2

ρ2

96

�1
2 − 3

ρ̃2

�
5
�
m2

H þ 9
ρ̃4
ð1þ 4.11

m2
H ρ̃

2Þ þ
37þ12Z

2

ρ2

96

�
ρ̃4

ð49Þ

for l ¼ 0, and for l ¼ 2

Vl

�
J ¼ l − 1

2
; ρ̃
�

¼ Vl¼0ðρ̃Þ þ
1

2ð1þ 1
2mH ρ̃

2Þρ̃2
�
lðlþ 2Þ − ðlþ 2Þα̃Ncffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
H þ Ω̃2 þ ω2

c

q
ρ̃2

þ 3α̃2N2
c

4ðm2
H þ Ω̃2 þ ω2

cÞρ̃4
�

Vl

�
J ¼ lþ 1

2
; ρ̃

�
¼ Vl¼0ðρ̃Þ þ

1

2ð1þ 1
2mH ρ̃

2Þρ̃2
�
lðlþ 2Þ þ ðlÞα̃Ncffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
H þ Ω̃2 þ ω2

c

q
ρ̃2

þ 3α̃2N2
c

4ðm2
H þ Ω̃2 þ ω2

cÞρ̃4
�

ð50Þ
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with

α̃ ¼ 13

10
þ 162

35m̃2
Hρ̃

4
;

Ω̃2 ¼
37þ 6

ffiffiffi
6

p
1
ρ̃2

96
þ 9 � 4.11

m2
Hρ̃

2
: ð51Þ

Also, there is a modification to the curvature in the
ρ-direction. We should also include the leading warping
contribution at large mH, the details of which are identical
to those presented in [30]. With this in mind, the hyperon
spectrum is now given by

�
J ¼ 1

2
; l ¼ 0; I ¼ 0

�
∶ MðΛÞ −MN ¼ 68.1 MeV;�

J ¼ 1

2
; l ¼ 2; I ¼ 1

�
∶ M

�
Σ
�
1
1

2

þ��
−MN ¼ 289 MeV�

J ¼ 3

2
; l ¼ 2; I ¼ 1

�
∶ M

�
Σ
�
1
3

2

þ��
−MN ¼ 400 MeV

ð52Þ

The J ¼ 1
2
Σ state is pushed up, and the J ¼ 3

2
Σ state is

pushed down, with a split in the centroid

MΣð112þÞ þMΣð132þÞ
2

−MN ¼ 344 MeV; ð53Þ

which is close to the empirical value of 349 MeV.

B. With Coulomb

As we indicated earlier, throughout we assumed mH ∼
MKK in (20). Here we correct for this shortcoming, with

mH ¼ 0.68MKK ð54Þ

and MKK ¼ 475 MeV fixed by the light baryon spectrum
[14]. MKK is fixed in [30], and mH is fixed in a way to
minimize the Λ mass.
Also, the neglected Coulomb contribution can be esti-

mated in perturbation theory, and in the heavy meson mass
limit, it is about

VC ≈
83

30ρ̃2
: ð55Þ

To derive this result, one simply needs to notice that the
total potential in the heavy quark limit is V total ¼ Q

ρ2
¼

− 7
30ρ̃2

[see Eq. (40) in Ref. [6] for the definition of Q],

among them − 3
ρ̃2
is due to the −ωc contribution in Eq. (37),

and the remaining V total þ ωc is the Coulomb contribution
in the infinite heavy quark limit. This Coulomb potential
provides for an upper bound estimate.
With this in mind, the modified hyperon masses are�
J ¼ 1

2
; l ¼ 0; I ¼ 0

�
∶ MðΛÞ−MN ¼ 214 MeV;�

J ¼ 1

2
; l ¼ 2; I ¼ 1

�
∶ M

�
Σ
�
1
1

2

þ��
−MN ¼ 368 MeV�

J ¼ 3

2
; l ¼ 2; I ¼ 1

�
∶ M

�
Σ
�
1
3

2

þ��
−MN ¼ 460 MeV:

ð56Þ

The experimental values are 177, 254 and 440 MeV
respectively, with 37, 133 and 20 MeV differences.
Using the corrected value of mH above, and the upper

estimate for the Coulomb correction, in Table I, we collect
all hyperon masses for the three approximations presented
earlier. The chief observation is that the large mass analysis
without Coulomb corrections appears closer to the empiri-
cal values of the lowest three empirical hyperons, without
any adjustable parameter. These results are to be compared
to those reported by Callan and Klebanov using the Skyrme
model [31,32], with also no Coulomb corrections.
We recall that in the present holographic construction,

the relative splitting between the hyperons, and the splitting
of the hyperon centroid from the nucleon, which eliminate
much of the uncertainty in MKK, are in remarkable agree-
ment with the empirically reported splittings.

C. Exotics

This approach extends to light multiquark exotics with
open or hidden strangeness, much like the heavier multi-
quark exotics with open or hidden charm and bottom
discussed in [30,33–35]. In particular, an estimate of the
mass of the strange pentaquark Θþ

s (the exotic uudds̄) is

TABLE I. Hyperon and exotic spectrum.

B IJP l nρ nz Mass (small)
Mass (small with

Coulomb) Mass (large)
Mass (large with

Coulomb) Exp-MeV

Λ 01
2
þ 0 0 0 962 1182 974 1152 1115

Σ 11
2
þ 2 0 0 1134 1315 1149 1306 1192

13
2
þ 2 0 0 1346 1472 1254 1398 1387

Θþ
s 01

2
þ 0 0 0 � � � 1617 � � � 1599
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given in Table I. The mass of about 1600MeV stemsmainly
from theΩþ frequency (antiparticle) which is 6

ρ̃2
higher than

the Ω− (particle). (Recall that the effective magnetic field
induced by the bulk Chern-Simons interaction is repulsive
for particles, and attractive for antiparticles.) An additional
repulsion of about 3

ρ̃2
stems from the Coulomb backreaction

in the heavy mass estimate. A Θþ
s of about 1600 MeV lies

above the nKþ threshold of 1434 MeV, and is unstable
against strong decay. This result is consistent with the fact
that the proposed Θþ

s state [36–39] is insofar unaccounted
for experimentally.

V. CONCLUSIONS

In the holographic construction presented in [5–7], heavy
hadrons are described in bulk using a set of degenerate Nf

light D8-D8̄ branes plus one heavy probe brane in the cigar-
shaped geometry that spontaneously breaks chiral symmetry.
This construction enforces both chiral and heavy-quark
symmetry and describes well the low-lying heavy-light
mesons, baryons and multiparticle exotics [30,33–35].
Heavy hadrons whether standard or exotics, are composed
of heavy-light mesons bound to a core instanton in bulk.
In [7] the analysis of the hyperon spectrumwas carried to

order m0
H where spin effects are absent. In this analysis, we

have now carried the analysis at next to leading order in
1=mH where the spin-orbit and spin corrections are
manifest. In contrast to [7], the modular fields were
quantized as bosons and not fermions. The quantized
Hamiltonian describes a particle in an external two-
dimensional magnetic field, with spin-orbit coupling.
The hyperon spectrum with the Gauss constraint treated

in both the heavy and light kaon mass limit shows very
small changes. It is in overall agreement with the empirical
hyperon spectrum, and is much improved in comparison to
the analysis in [7], where the strange mass was analyzed
perturbatively. This construction allows for the description
of multiquark exotics with strangeness, and shows that the
contentious exotic Θþ

s is unbound. In a way, this con-
struction should be regarded as the dual of the improved
Callan-Klebanov construction for hyperons, as bound kaon
skyrmions [31,32].
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APPENDIX A: DERIVATION OF LΦ0
½mH�

For a generic kaon mass of ordermH, we must include its
contribution in the Gauss law constraint as captured by the

time component ΦM¼0 of the heavy-light vector field. This
is the most difficult term to unravel to order 1=mH. For that,
we recall from Appendix A. 3 in [30] that the constraint
equation for Φ0 is

ð−D2
M þm2

HÞΦ0 þ 2FM0ΦM

−
i

16π2a
FPQð∂P þ APÞΦQ ¼ 0; ðA1Þ

after using the self-dual condition for F. Using the standard
relations for σ̄MN, we have for the last two contributions
in (A1)

FPQ∂PΦQ ¼ 6ρ2

ðX2 þ ρ2Þ2
1

r
df
dr

σ̄ · Xχ;

FPQAPΦQ ¼ −
6ρ2

ðX2 þ ρ2Þ3 fσ̄ · Xχ: ðA2Þ

For the first contribution in (A1) we have

FM0ΦM ¼ 6f
ðX2 þ ρ2Þ2 ðρ

2σ̄ · _X þ σ̄ · Xρ_ρÞχ

þ χaDMΦaσ̄Mχf ðA3Þ
with

Φa ¼ 1

2ðX2 þ ρ2Þ σ̄ · Xτaσ · X; ðA4Þ

or more explicitly

χaDMΦaσ̄Mχf ¼ 3ρ2f
ðX2 þ ρ2Þ2 σ̄ · Xτaχχa: ðA5Þ

Inserting (A5) and (A6) into (A1) we have

ð−D2
M þm2

HÞΦ0 þ J0 ¼ 0; ðA6Þ

with

J0¼
12f

ðX2þρ2Þ2 ðρ
2σ̄ · _Xþ σ̄ ·Xρ_ρÞχþ 6fρ2

ðX2þρ2Þ2 σ̄ ·Xτ
aχχa

þ 3i
2π2a

ρ2f
ðX2þρ2Þ3 σ̄ ·Xχþ

2f
r
∂Â0

∂r σ̄ ·Xχ ðA7Þ

the source for Φ0

LΦ0
¼ 1

8

Z
d4XJ†0ðXÞΦ0ðXÞ: ðA8Þ

In this equation the Abelian part of FN0 has been included.
Since

1

r
∂Â0

∂r ¼ i
4π2a

1

ðX2 þ ρ2Þ2
�
1þ 2ρ2

X2 þ ρ2

�
ðA9Þ
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one finally has

J0¼
12f

ðX2þρ2Þ2 ðρ
2σ̄ · _Xþ σ̄ ·Xρ_ρÞχþ 6ρ2f

ðX2þρ2Þ2 σ̄ ·Xτ
aχχa

þ i
2π2a

f
ðX2þρ2Þ2

�
1þ 5ρ2

X2þρ2

�
σ̄ ·Xχ: ðA10Þ

To solve (A6), we need the massive spin-0 propagator in
the instanton background,

G2ðX; YÞ ¼ hXj 1

−D2
M þm2

H
jYi; ðA11Þ

in terms of which the Gauss law constraint yields the
modular Lagrangian contribution (A6) in the form

LΦ0
¼ −

1

8

Z
d4Xd4YJ†0ðXÞhXj

1

−D2
M þm2

H
jYiJ0ðYÞ:

ðA12Þ

APPENDIX B: EXPANSION OF LΦ0½mH�
The spin-0 Greens function (A11) is not known for

arbitrary mH, except for mH ¼ 0. Here, we provide a
general expression for the different modular contributions
in LΦ0½mH�, and then specialize to the two extreme cases of
mH ¼ 0 and largemH, for which analytical expressions can
be obtained. More specifically, we have

LΦ0
¼ −χ†χ

�
α

ρ2
_X2 þ β

ρ2
ð_ρ2 þ ρ2a2I Þ

�

þ iγ
ρ̃2

χ†τaχχa −
δ

ρ̃4
χ†χ; ðB1Þ

with the coefficients

α¼122

4

Z
d4Xd4Y

fðXÞg1ðX;YÞfðYÞ
ðX2þ1Þ2ðY2þ1Þ2 ;

β¼122

16

Z
d4Xd4Y

fðXÞg2ðX;YÞfðYÞ
ðX2þ1Þ2ðY2þ1Þ2 ;

γ¼48Nc

8

Z
d4Xd4Y

fðXÞ
ðX2þ1Þ2

�
1þ 5

X2þ1

�
g2ðX;YÞfðYÞ
ðY2þ1Þ2 ;

δ¼64N2
c

16

Z
d4Xd4Y

fðXÞ
ðX2þ1Þ2

�
1þ 5

X2þ1

�
g2ðX;YÞ

×
fðYÞ

ðY2þ1Þ2
�
1þ 5

Y2þ1

�
: ðB2Þ

Here the scalar functions trace over the spin-0 propagator

g1ðX; YÞ ¼ trG2ðX; YÞ;
g2ðX; YÞ ¼ trðσ · XG2ðX; YÞσ̄ · YÞ; ðB3Þ

after the rescaling ρ → 1 and mH → mHρ
2. For mH ¼ 0,

the expressions will be quoted explicitly below. For mH
large, the spin-0 propagator is zero-mode free, and can be
approximated by its free part,

G2ðX; YÞ →
Z

d4k
ð2πÞ4

eik·ðX−YÞ

k2 þm2
H
: ðB4Þ

Using the Fourier transforms

fðXÞ
ðX2 þ 1Þ2 ¼

Z
d4k
ð2πÞ4 g1ðkÞe

ik·X;

fðXÞ
ðX2 þ 1Þ2

�
1þ 5

X2 þ 1

�
¼

Z
d4k
ð2πÞ4 g2ðkÞe

ik·X; ðB5Þ

we have

g1ðkÞ ¼
4

ffiffiffi
2

p
π

15
e−jkjð1þ jkjÞ;

g2ðkÞ ¼
4

ffiffiffi
2

p
π

105
e−jkjð5jkj2 þ 22jkj þ 22Þ; ðB6Þ

so that

α ¼ 122

2

Z
d4k
ð2πÞ4

jg1ðkÞj2
k2 þ m̃2

H
;

β ¼ 122

8

Z
d4k
ð2πÞ4

j∇g1ðkÞj2
k2 þ m̃2

H
;

γ ¼ 48Nc

4

Z
d4k
ð2πÞ4

∇g1ðkÞ ·∇g2ðkÞ
k2 þ m̃2

H
;

δ ¼ 64N2
c

8

Z
d4k
ð2πÞ4

j∇g2ðkÞj2
k2 þ m̃2

H
: ðB7Þ

Large mH:

α ¼ 122

π2m̃2
H

Z
d4X

1

ðX2 þ 1Þ7 ¼
24

5m̃2
H
;

β ¼ 122

4π2m̃2
H

Z
d4X

X2

ðX2 þ 1Þ7 ¼
6

5m̃2
H
;

γ ¼ 48Nc

2π2m̃2
H

Z
d4X

X2

ðX2 þ 1Þ7
�
1þ 5

X2 þ 1

�
¼ 54Nc

35m̃2
H
;

δ ¼ 64N2
c

4π2m̃2
H

Z
d4X

X2

ðX2 þ 1Þ7
�
1þ 5

X2 þ 1

�
2

¼ 146N2
c

35m̃2
H
:

ðB8Þ

This will actually contribute to order 1
m3

H
after the rescaling

in χ.
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Zero mH:

α ¼ β ¼ 1

4
; γ ¼ Nc

2
; δ ¼ 25N2

c

24
: ðB9Þ

APPENDIX C: COULOMB CORRECTION

Here we provide a complete treatment of the Coulomb
backreaction contribution (with more details in Appendix B
in [30]). After rescaling the U(1) flavor gauge field in bulk
A0 → iA0, the Lagrangian for A0 reads

L½A0� ¼
aNc

2
ð∇⃗A0Þ2 þ

f2

2
χ†χA2

0 þ A0ðρcl þ ρÞ; ðC1Þ

where ρcl is the classical source (without the modular
field χ)

ρcl ¼ aNc∇2Acl
0 ¼ −

3Nc

π2
ρ4

ðx2 þ ρ2Þ4 ðC2Þ

and ρ the quantum source with the modular field

ρ ¼ f2

2
iðχ† _χ − _χ†χÞ þ 3

16π2a
2ρ2 − X2

ðX2 þ ρ2Þ2 f
2χ†χ: ðC3Þ

Note that the contribution

3

16π2a
2ρ2 − X2

ðX2 þ ρ2Þ2 f
2χ†χ

¼ 3

16π2a
f2ρ2

ðX2 þ ρ2Þ2 χ
†χ þ 3

64π2a
∂N

�
xNf2

ðx2 þ ρ2Þ
�
χ†χ

ðC4Þ

originates solely from the Chern-Simons term in bulk.
Given the action for A0, at the minimum we have

LCoulomb ¼ −JC
1

2ð−aNc∇2 þ f2χ†χÞ JC; ðC5Þ

with JC ¼ ðρcl þ ρÞ, which is a complicated function of the
scalar χ†χ. More importantly, it yields always a positive
mass correction. Note that the f2=mH term in the denom-
inator plays the role of a screening mass, which can be
made more manifest through a coordinate transformation.
For a general analysis of the Coulomb correction, we

need the Green’s function in the background field,

G1ðX; YÞ ¼ hXj 1

−aNc∇2 þ f2χ†χ
jYi: ðC6Þ

In the text, we provide an estimate of this contribution in
perturbation theory, with the replacement χ†χ → 1, for a
single bound kaon.

APPENDIX D: NAIVE 1=mH ANALYSIS

In (17) both the Gauss law constraint and the Coulomb
backreaction are complicated functions of the modular
coordinate χ and mH. Naively, a standard quantum analysis
would require expanding them in 1=mH. This expansion
leads to an unstable hyperon spectrum at next-to-leading
order, as we now demonstrate. In a way the charge
constraint and screening should not be expanded, to
guarantee quantum stability.
Consider (17) with all terms expanded to order

Oð1=m2
HÞ:

L ¼ Lquadratic þ Lint; ðD1Þ

where the quadratic part reads

Lquadratic ¼ iχ† _χ þ 1

2mH
_χ† _χ þ 9

2ρ̃2
χ†χ þ 9

2mHρ̃
2
j

þ 78

5mHρ̃
2
iχ†τaχχa þ 102

5mHρ̃
4
χ†χ

−
37þ 12 Z2

ρ2

192mH
χ†χ; ðD2Þ

and the “high-order contribution” Lint reads

Lint¼−
12

5mHρ̃
4
S⃗2−

2

3ρ̃2
n2þ 1

mHρ̃
4

�
−
56

5
n2þ4

3
n3−

4

3
jnρ̃2

�

þ 1

m2
Hρ̃

6

�
−
128n4

45
þ376n3

15
−
4017n2

70

−jnρ̃2
�
56

5
−
8

3
n

�
−
2

3
j2ρ̃4

�
; ðD3Þ

with

j ¼ i
2
ðχ† _χ − _χ†χÞ; n ¼ χ†χ: ðD4Þ

We now focus on the quadratic part, by replacing
χ → eimHt

ffiffiffiffiffiffiffi
mH

p
, so that

Lquadratic¼
1

2
_χ† _χþ 9i

2ρ̃2
χ† _χ−

m2
H

2
χ†χ

þ
�
102

5ρ̃4
−
37þ12Z2

ρ2

192

�
χ†χþ 78i

5ρ̃2
χ†τaχχa: ðD5Þ

Again, this can be interpreted as a system with two
harmonic oscillators in a ρ dependent background magnetic
field, coupled with each other by the spin-orbital term. In
terms of (23), we have
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L ¼ 1

2
ð _x⃗12 þ _x⃗2

2Þ þ 9

2ρ̃2
ðy1 _x1 − x1 _y1 þ y2 _x2 − x2 _y2Þ

−
m2

H þΩ2ðρÞ
2

ðx⃗12 þ x⃗22Þ þ spin orbit; ðD6Þ

with x⃗1 ¼ ðx1; y1Þ, x⃗2 ¼ ðx2; y2Þ and

Ω2ðρÞ ¼ −
204

5ρ̃4
þ
37þ 12 Z2

ρ2

96
: ðD7Þ

We proceed to quantize (D6) in the Born-Oppenheimer
approximation. We fix yI and Z and first quantize x⃗1 and x⃗2.
This is justified in the large mH limit, where χ is fast
moving at frequency mH, while the other degrees of
freedom are slow moving with a typical frequency
ωy ¼ 1ffiffi

6
p MKK.

We first look at the l ¼ 0 state where the spin-orbit
coupling vanishes. In this case x⃗1 and x⃗2 decouple, and we
have two identical harmonic oscillators in the background
field:

A⃗ ¼ ωcðy;−xÞ; ωc ¼
9

2ρ̃2
: ðD8Þ

This is the famed Landau problem, with a spectrum

E ¼
�
nþ þ 1

2

�
Ωþ þ

�
n− þ 1

2

�
Ω−; ðD9Þ

with

Ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þΩ2 þ ω2
c

q
� ωc: ðD10Þ

At large mH, one has

Ω� ¼ mH � ωc þ
Ω2ðρÞ þ ω2

c

2mH
þO

�
1

m2
H

�
: ðD11Þ

Clearly, the � solutions can be interpreted as particle/
antiparticles. To leading order in Oð1=mHÞ, the two
frequencies agree with the case where χ is quantized as
a fermion. Unfortunately,

Ω2ðρÞ þ ω2
c ¼

81

4ρ̃4
−
204

5ρ̃4
< 0; ðD12Þ

indicating an instability at the quadratic order. We conclude
that the screening effect in the Coulomb part should not be
expanded, as it causes a charge instability.
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