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We study hidden-flavor pentaquarks, QQ̄qqq, based on a constituent quark-model with a standard
quark-quark interaction that reproduces the low-energy meson and baryon spectra. We make use of
dynamical correlations between the heavy quarks arising from the Coulomb-like nature of the short-range
interaction. A detailed comparison is made with other results in the literature and with experimental data.
Our results show a different pattern for open-flavor and hidden-flavor pentaquarks, as suggested by the
data. Further implications about the existence of quarkonia bound to nuclei are discussed.
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I. INTRODUCTION

The last two decades have witnessed a significant
increase in the number of new experimental states discov-
ered in the heavy-hadron spectra. A number of reviews in
the recent literature [1–12] have summarized both exper-
imental and theoretical developments. As a general con-
clusion it has emerged the idea the heavy-hadron spectra
shows the contribution of states that do not belong to the
simplest quark-antiquark (meson) or three-quark (baryon)
structures proposed by Gell-Mann [13]. This is quite
evident by the recent discovery of double heavy tetraquarks
with manifestly exotic quantum numbers [14,15]. However,
most of the intriguing experimental states have ordinary
quantum numbers, which suggests that they could corre-
spond to more sophisticated quark structures allowed
by QCD.
The new experimental findings have given rise to a

substantial theoretical effort to understand the spectroscopy
and structure of these novel states. Different proposals have
been studied with their benefits but also drawbacks:
hadronic molecules, diquarks, hadroquarkonium, hybrids,
kinematical threshold effects—see the reviews above for a
detailed summary. No single theoretical model has emerged
to give the big picture. A full understanding might require
incorporating several relevant possibilities, perhaps with a
different mix for every state.
A major question lying behind the emerging pattern in

the heavy-hadron spectra is whether or not hadrons with a
more sophisticated quark substructure, the so-called

multiquarks, could be observed in nature.1 Multiquarks,
considered either as compact states or hadronic molecules,
have been the focus of much writing over the past two
decades.2 In atomic or nuclear physics the development of
bound states relies on the existence of attractive enough
interactions in channels without tight constraints imposed
by the Pauli principle. In contrast, dealing with the quark
substructure the color degree of freedom comes to play a
key role to yield bound states. Multiquarks (tetraquarks,
pentaquarks and so on) do always contain substructures
made of color singlets but, in contrast to atomic and nuclear
physics, they could also be dominantly made of structures
that are not allowed to exist isolated in nature.
The simplest quark structures proposed by Gell-Mann

[13] could only decay strongly through the breaking of the
color flux tube generating other color singlet hadrons.
Regarding nonordinary hadrons (multiquarks) with stan-
dard quantum numbers the most salient feature is the
scarcity of bound states, restricted to very peculiar con-
figurations. This is concluded both in lattice QCD
approaches [18,19] and in constituent models [20,21]
provided that there are no restrictions other than those
imposed by the Pauli principle. The difficulty to encounter
multiquark hadrons that do not immediately break into their
fall-apart decay has suggested the use of correlations
among the constituents due to a more complex dynamics
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1In the case of hadrons with manifestly exotic quantum
numbers the recent experimental discoveries [14,15] deliver a
positive answer to this question. For hadrons with nonexotic
quantum numbers this is a long-standing open-ended question
[16,17].

2Broadly speaking, in a constituent quark language, hadronic
molecules are a particular case of multiquarks, those that are
composed of a certain number of conventional hadrons [13].
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that, for instance, might restrict the quantum numbers of the
internal substructures. In this line of thought have emerged,
among others, the so-called diquark models [22,23], where
the color degree of freedom of two quarks (antiquarks) is
frozen to a particular state.3 In contrast to uncorrelated
multiquark models, a larger number of theoretical non-
ordinary hadrons appears. We refer the reader to
Refs. [22,23] for advantages and/or disadvantages of the
so-called diquark approximation.
In this paper we explore a theoretical scenario where the

dynamics of a multiquark system remains marked by
correlations between heavy flavors dictated by QCD
[29]. For this reason we have chosen hidden-flavor penta-
quarks for our study, i.e., QQ̄qqq. The theoretical pattern
obtained will be an additional tool for analyzing the
growing number of states in the quarkonium-nucleon
energy region. As discussed below, the correlations
between the heavy flavors turn the five-body problem into
a more tractable three-body problem. Our study is based on
a constituent quark model that has often been used for
exploratory studies, whose results have been refined and
confirmed by more rigorous treatments of QCD. For
instance, the recently discovered flavor-exotic mesons,
Tþ
cc ≡ ccū d̄ [14,15], were first predicted by potential-

model calculations [30] and later reinforced by more
refined potential-model calculations, lattice simulations
and QCD sum rules [31–41].
The structure of the paper is the following. In the next

section we present the model. We will show the interacting
potential between quarks and the Hilbert space arising from
the correlations between the heavy flavors. Section III is
devoted to discuss the solution of the Faddeev equations for
the bound state three-body problem considering the cou-
pling among all two-body amplitudes. In Sec. IV we
present and discuss our results compared to those of other
constituent model studies and experimental data. Finally,
our conclusions are summarized in Sec. V.

II. DYNAMICAL MODEL

We study the hidden-flavor pentaquarks,QQ̄qqq, arising
from dynamical correlations between the heavy flavors.
Much has been learned about the outcome of the so-called
diquark picture [24–27]. In the case of tetraquarks, it means
to model the system as a bound color-3̄ diquark and a
bound color-3 antidiquark. In other words, the color 66̄
component is not considered. Possible pentaquarks with
configurations where the QQ̄ pair is a color octet have also
been explored [28]. Needless to say, if a multiquark

contains color configurations that are not present asymp-
totically in the thresholds, this could be a basic ingredient
which may lead to bound states.
The idea behind these approaches is to select the most

favorable configurations to generate stable multiquarks. For
example, the diquark models of Refs. [24–27] are based on
the fact that a color-3̄ qq state is an attractive channel
whereas the color-6 is repulsive. In the same vein, a color-
1qq̄ state is an attractive channel whereas the color-8 is
repulsive. Working at leading order with a QQ̄qqq penta-
quark, neglecting the spin-spin interaction, if a Qq color-3̄
diquark has a binding proportional to mq, in the same units
the QQ̄ color-1 system has a binding proportional to 2MQ.
Therefore, the color Coulomb-like interaction between the
components of a hidden-flavor pentaquark favors a QQ̄
color singlet instead of a color octet, as emphasized in
Ref. [29]. As a consequence, the color wave function of a
pentaquark would be uniquely determined, see Fig. 1, and
would be given by,

ΨColor
Pentaquark ¼ 3q ⊗ 1ðQQ̄Þ ⊗ 3̄ðqqÞ; ð1Þ

thus avoiding the repulsive component originating from the
color octet of the heavy quark-antiquark pair. It is worth
noting that the constraints imposed by the color Coulomb-
like nature of the short-range interaction between the heavy
flavors arise naturally in constituent quark-model based
studies of double heavy tetraquarks [42,43].
Taking into account that the heavy quarks have isospin

zero and the antisymmetric character of the color-3̄ qq
wave function—what implies that its spin and isospin must
be identical—one can identify the different vectors that
contribute to any ðI; JÞ pentaquark for the lowest lying

FIG. 1. Color structure of a hidden-flavor pentaquark arising
from the color Coulomb-like correlations between the heavy
flavors. The large red circles stand for the heavy quark-antiquark
pair, the small green circles represent the light quarks. The
numbers between squared brackets denote the color wave
function.

3There are different alternatives for diquark structures in the
literature, but they all share constraints in the color quantum
numbers of pairs of the constituents. For instance, there are
studies where the color of a couple of quarks is restricted to a 3̄
state [24–27] or others where the color of a quark-antiquark pair
is taken to be only a 8 state [28].
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states, i.e., in the case of a fully symmetric radial wave
function,

ΨðI;JÞ
Pentaquark ¼ f3c; i1 ¼ 1=2; s1 ¼ 1=2gq

⊗ f1c; i2 ¼ 0; s2gðQQ̄Þ ⊗ f3̄c; i3 ¼ s3; s3gðqqÞ:
ð2Þ

We summarize in Table I the possible value of the quantum
numbers leading to an allowed ðI; JÞ hidden-flavor penta-
quark. s1 stands for the spin of the single light quark (with
isospin 1=2), s2 denotes the spin of the heavy quark-
antiquark pair (with isospin zero) and finally s3 represents
the spin of the light quark pair (with the restrictions
imposed by the Pauli principle such that s3 ¼ i3). The
notation in the last column will be used in the next sections
to identify the wave function of the different pentaquarks.
Once the Hilbert space arising from the correlation

between the heavy flavors has been delimited, the only
ingredient left for our study is a realistic interaction
between the quarks. In this paper we adopt a generic
constituent model, containing chromoelectric and chromo-
magnetic contributions, tuned to reproduce the masses of
the mesons and baryons entering the various vectors
shown in Table I. We adopt the so-called AL1 model
by Semay and Silvestre-Brac [44], widely used in a
number of exploratory studies of multiquark systems
[20,21,41,42,45–47]. It includes a standard Coulomb-
plus-linear central potential, supplemented by a smeared
version of the chromomagnetic interaction,

VðrÞ¼−
3

16
λ̃i:λ̃j

�
λr−

κ

r
−ΛþVSSðrÞ

mimj
σ⃗i · σ⃗j

�
;

VSS¼
2πκ0

3π3=2r30
exp

�
−
r2

r20

�
; r0¼A

�
2mimj

miþmj

�
−B
; ð3Þ

where λ ¼ 0.1653 GeV2, Λ ¼ 0.8321 GeV, κ ¼ 0.5069,
κ0 ¼ 1.8609, A ¼ 1.6553 GeVB−1, B ¼ 0.2204, mu ¼
md ¼ 0.315 GeV, ms ¼ 0.577 GeV, mc ¼ 1.836 GeV
and mb ¼ 5.227 GeV. Here, λ̃i:λ̃j is a color factor, suitably
modified for the quark-antiquark pairs. Note that the
smearing parameter of the spin-spin term is adapted to
the masses involved in the quark-quark or quark-antiquark
pairs. The parameters of the AL1 potential are constrained
in a simultaneous fit of 36 well-established mesons and 53
baryons, with a remarkable agreement with data, as could
be seen in Table 2 of Ref. [44]. It is worth to note that
although the χ2 obtained in Ref. [44] with the AL1 potential
is slightly larger than the one obtained with other models,
this is essentially because a number of resonances with high
angular momenta were considered. The AL1 model is very
well suited to study the low-energy hadron spectra [48].
The spin-color algebra of the five-quark system has been
worked elsewhere [45,49]. The capability of the model to
describe relevant ordinary hadrons: QQ̄, qQ̄, qqq, and
Qqq, is illustrated in Table II for Q ¼ c.
The bound nature of a multiquark could arise from an

attractive medium-long range interaction generated by the
exchange of color-singlet Goldstone bosons [50–52].4 In
addition, it is known that the short-range one-gluon
exchange interaction generates a strong repulsive force
in the NN S-wave partial waves. This feature is not
universal for a hadron-hadron interaction in general.
Indeed, it disappears for some channels of, among others,
the ΔΔ and NΔ systems, generating a positive phase shift
at low energies [53].5 This attractive short-range behavior
was the basis of resonances predicted in the ΔΔ and NΔ
systems [54–57], some of which have been established
experimentally [58]. Thus, the short-range quark-gluon
dynamics of multiquark systems may also induce stability.
Let us finally note that once the color wave function is

frozen by the dynamical correlations between the heavy
flavors and being all the constituents spin 1=2 particles, the
flavor-independence of the interacting potential makes the
five-body problem to factorize into the three-body problem
shown in Fig. 1. The existence of correlated substructures
in a many-quark system leads, in general, to more tractable
technical problems. This is for instance the case of
tetraquark studies under the diquark hypothesis [32,33],
where the four-body problem is reduced to a two-body
problem of effective diquarks with a mass fixed in other
known hadron sectors. In the problem addressed in this
manuscript, the correlations between the heavy flavors

TABLE I. Quantum numbers of the different channels contrib-
uting to a given ðI; JÞ hidden-flavor pentaquark according to
Eq. (2). See text for details.

I J s1 s2 s3 Vector

1=2 1=2 1=2 0 0 v1
1=2 1 0 v2
1=2 0 1 v3
1=2 1 1 v4
3=2 1 0 w1

3=2 1 1 w2

5=2 1 1 y1
3=2 1=2 1=2 1 1 v4

3=2 0 1 w3

3=2 1 1 w2

5=2 1 1 y1

4A detailed discussion of the relative role played by the one-
gluon exchange with respect to the Goldstone boson exchanges in
a hybrid constituent quark model to lead to stable tetraquarks can
be found in Ref. [50].

5A positive phase shift is an indication of an attractive
interaction. If it goes above π=2 degrees and returns to zero is
a sign of a resonance and if it goes to π degrees at zero energy it
shows the existence of a bound state.
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leads to a three-body problem that can be exactly solved by
means of the Faddeev equations. This also allows us to
overcome the difficulties associated to the minimization
procedure inherent to variational methods for getting fully
converged results. This is particularly relevant working
close to open thresholds. We discuss in the next section the
solution of the Faddeev equations for the bound state
problem of a three-body system.

III. THE THREE-BODY PROBLEM

The freezing of the color wave function described in the
previous section leads to the effective three-body problem
shown in Fig. 1 and summarized in the wave function of
Eq. (2). The allowed spin and isospin values of the different
particles—1: light quark, 2: heavy quark-antiquark pair, 3:
two light-quark pair—are indicated in Table I.
Three-body states in which a particle has a given spin can

only couple to other three-body states in which that particle
has the same spin, since the spinors corresponding to
different eigenvalues are orthogonal. This is shown in detail
in the Appendix. The same applies for isospin. This leads to
a decoupling of the integral equations in various sets in
which the spin and isospin of each particle remains the
same. We show the different sets contributing to J ¼ 1=2,
3=2, and 5=2 in Tables III, IV, and V, respectively. Besides
the notation introduced in Table I, we denote by Si and Ii
the spin and isospin of the pair jk. As discussed above, the
isospin of each particle is determined once the spin is given,
so it is not shown in the tables. Finally, F is the expectation
value of the σ⃗i · σ⃗j operator, responsible for the coupling of
different two-body amplitudes as explained below.
To solve the Faddeev equations in momentum space for

the case of confining potentials we follow the method
developed in Ref. [59], that it is described below for S- and
P-wave states.

A. S-wave states

We restrict ourselves to the configurations where all
three particles are in S-wave states so that the Faddeev
equations for the bound-state problem with total isospin I
and total spin J are,

TABLE II. Masses (in MeV) of ordinary hadrons calculated
with the AL1 potential of Eq. (3), compared to the experimental
values.

Baryons Mesons

State AL1 Exp. State AL1 Exp.

N 996 940 D 1862 1868
Δ 1307 1232 D� 2016 2008
Λc 2292 2286 ηc 3005 2989
Σc 2467 2455 J=ψ 3101 3097
Σ�
c 2546 2518

TABLE III. Channels that are coupled together for the different
J ¼ 1=2 states, vi in Table I. See text for details.

s1 s2 S3 s3 I F

v1 1=2 0 1=2 0 1=2 9=8
v2 1=2 1 1=2 0 1=2 3=8
v3 1=2 0 1=2 1 1=2 9=8
v4 1=2 1 1=2 1 1=2; 3=2 3=8

1=2 1 3=2 1 1=2; 3=2 3=2
ffiffiffi
2

p

s2 s3 S1 s1

v1 0 0 0 1=2 1=2 0
v2 1 0 1 1=2 1=2 0
v3 0 1 1 1=2 1=2 0
v4 1 1 0 1=2 1=2; 3=2 −4=3

1 1 1 1=2 1=2; 3=2 −5=3

s3 s1 S2 s2

v1 0 1=2 1=2 0 1=2 9=8
v2 0 1=2 1=2 1 1=2 9=8
v3 1 1=2 1=2 0 1=2 3=8
v4 1 1=2 1=2 1 1=2; 3=2 3=8

1 1=2 3=2 1 1=2; 3=2 3=2
ffiffiffi
2

p

TABLE IV. Same as Table III for J ¼ 3=2 states, wi in Table I.

s1 s2 S3 s3 I F

w1 1=2 1 3=2 0 1=2 3=2
ffiffiffi
2

p
w2 1=2 1 1=2 1 1=2; 3=2 3=8

1=2 1 3=2 1 1=2; 3=2 3=2
ffiffiffi
2

p
w3 1=2 0 1=2 1 3=2 9=8

s2 s3 S1 s1

w1 1 0 1 1=2 1=2 0
w2 1 1 1 1=2 1=2; 3=2 2=3

1 1 2 1=2 1=2; 3=2 −2=3
w3 0 1 1 1=2 3=2 0

s3 s1 S2 s2

w1 0 1=2 1=2 1 1=2 9=8
w2 1 1=2 1=2 1 1=2; 3=2 3=8

1 1=2 3=2 1 1=2; 3=2 3=2
ffiffiffi
2

p
w3 1 1=2 3=2 0 3=2 3=2

ffiffiffi
2

p

TABLE V. Same as Table III for J ¼ 5=2 states, yi in Table I.

s1 s2 S3 s3 I F

y1 1=2 1 3=2 1 1=2; 3=2 3=2
ffiffiffi
2

p

s2 s3 S1 s1

y1 1 1 2 1=2 1=2; 3=2 1

s3 s1 S2 s2

y1 1 1=2 3=2 1 1=2; 3=2 3=2
ffiffiffi
2

p
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TIiSi
i;IJðpiqiÞ ¼

X
j≠i

X
IjSj

1

2

Z
∞

0

q2jdqj

Z
1

−1
d cos θ

× ti;IiSiðpi; p0
i;E − q2i =2νiÞhIiSi;IjSjij;IJ

×
1

E − p2
j=2ηj − q2j=2νj

T
IjSj
j;IJ ðpjqjÞ; ð4Þ

where ti;IiSi stands for the two-body amplitudes with
isospin Ii and spin Si and ηi and νi are the corresponding
reduced masses,

ηi ¼
mjmk

mj þmk
;

νi ¼
miðmj þmkÞ
mi þmj þmk

; ð5Þ

p⃗0
i is the momentum of the pair jk (with ijk an even

permutation of 123) and p⃗j is the momentum of the pair ki
which are given by,

p⃗0
i ¼ −q⃗j − αijq⃗i;

p⃗j ¼ q⃗i þ αjiq⃗j; ð6Þ

where,

αij ¼
ηi
mk

;

αji ¼
ηj
mk

; ð7Þ

so that,

p0
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2j þ α2ijq

2
i þ 2αijqiqj cos θ

q
;

pj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2i þ α2jiq

2
j þ 2αjiqiqj cos θ

q
: ð8Þ

h
IiSi;IjSj
ij;IJ are the spin-isospin coefficients,

h
IiSi;IjSj
ij;IJ ¼ð−ÞIjþij−I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Iiþ1Þð2Ijþ1Þ

q
WðijikIii;IiIjÞ

×ð−ÞSjþsj−J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Siþ1Þð2Sjþ1Þ

q
WðsjskJsi;SiSjÞ;

ð9Þ

where W is a Racah coefficient and ii, Ii, and I (si, Si,
and J) are the isospins (spins) of particle i, of the pair jk,
and of the three-body system.
In Eq. (4) the variable pi runs from 0 to ∞. Thus, it is

convenient to make the transformation,

xi ¼
pi − b
pi þ b

; ð10Þ

where the new variable xi runs from−1 to 1, and b is a scale
parameter that has no effect on the solution. With this
transformation Eq. (4) takes the form,

TIiSi
i;IJðxiqiÞ ¼

X
j≠i

X
IjSj

1

2

Z
∞

0

q2jdqj

Z
1

−1
d cos θ

× ti;IiSiðxi; x0i;E − q2i =2νiÞhIiSi;IjSjij;IJ

×
1

E − p2
j=2ηj − q2j=2νj

T
IjSj
j;IJðxjqjÞ: ð11Þ

Since the variables xi and x0i run from −1 to 1, one can
expand the amplitude ti;IiSiðxi; x0i; eÞ in terms of Legendre
polynomials as,

ti;IiSiðxi; x0i; eÞ ¼
X
nr

PnðxiÞτnri;IiSiðeÞPrðx0iÞ; ð12Þ

where the expansion coefficients are given by,

τnri;IiSiðeÞ ¼
2nþ 1

2

2rþ 1

2

Z
1

−1
dxi

Z
1

−1
dx0i

× PnðxiÞti;IiSiðxi; x0i; eÞPrðx0iÞ: ð13Þ

Applying expansion (12) in Eq. (11) one gets,

TIiSi
i;IJðxiqiÞ ¼

X
n

PnðxiÞTnIiSi
i;IJ ðqiÞ; ð14Þ

where TnIiSi
i;IJ ðqiÞ satisfies the one-dimensional integral

equation,

TnIiSi
i;IJ ðqiÞ¼

X
j≠i

X
mIjSj

Z
∞

0

dqjK
nIiSi;mIjSj
ij;IJ ðqi;qj;EÞTmIjSj

j;IJ ðqjÞ;

ð15Þ

with

K
nIiSi;mIjSj
ij;IJ ðqi; qj;EÞ ¼

X
r

τnri;IiSiðE − q2i =2νiÞ
q2j
2

×
Z

1

−1
d cos θ h

IiSi;IjSj
ij;IJ

×
Prðx0iÞPmðxjÞ

E − p2
j=2ηj − q2j=2νj

: ð16Þ

The three amplitudes TrI1S1
1;IJ ðq1Þ, TmI2S2

2;IJ ðq2Þ, and TnI3S3
3;IJ ðq3Þ

in Eq. (15) are coupled together.
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B. P-wave states

In all the previous sets of coupled equations we have
assumed only S-wave states. We thought interesting,
however, to look into excited states containing one unit
of orbital angular momentum. For that purpose we have
chosen the state v1 in Table I, where s2 ¼ s3 ¼ 0. We show
in Table VI the two-body channels that are coupled together
in this case. li is the relative orbital angular momentum of
the pair jk and λi is the relative orbital angular momentum
between particle i and the pair jk.
To solve the integral equations (4) with one unit of

orbital angular momentum we write them symbolically as,

Ti ¼ tihijG0Tj; ð17Þ

that has to be generalized to a matrix equation,

�
T01
i

T10
i

�
¼

�
t0i
t1i

�
hijG0

�
q̂i · q̂j q̂i · p̂j

p̂0
i · q̂j p̂0

i · p̂j

��T01
j

T10
j

�
; ð18Þ

where, from Eq. (6),

q̂i · q̂j ¼ cos θ;

q̂i · p̂j ¼
q2i þ αjiqiqj cos θ

qipj
;

p̂0
i · q̂j ¼

−q2j − αijqiqj cos θ

p0
iqj

;

p̂0
i · p̂j ¼

−ð1þ αijαjiÞqiqj cos θ − αjiq2j − αijq2i
p0
ipj

; ð19Þ

and p0
i and pj are gi ven by Eq. (8).

C. Coupling between two-body amplitudes

In general, the two-body amplitudes that appear in
Tables III, IV, V, and VI are obtained by solving the
Lippmann-Schwinger equation,

t ¼ V þ VG0t; ð20Þ

where V is the interaction given by Eq. (3). Due to the
reduction from five to three particles, some pairs of two-
body amplitudes are coupled together. Such is the case of
the S1 ¼ 0 and S1 ¼ 1 amplitudes of the v4 vector in
Table III, which are coupled by the chromomagnetic term
of the interacting potential. Therefore, in this case one has
to solve the coupled equations,

t11 ¼ V11 þ V11G0t11 þ V12G0t21;

t21 ¼ V21 þ V21G0t11 þ V22G0t21; ð21Þ

where the diagonal interactions V11 and V22 show con-
tributions from the chromoelectric and chromomagnetic
terms of the interaction, while the off-diagonal interactions
V12 and V21 contain only the contribution of the chromo-
magnetic part of the interacting potential. As expected, the
confinement and Coulomb terms are the dominant ones
such that the spin-spin term is just a small perturbation. The
effect of the nondiagonal terms is very small and it can be
safely neglected.

IV. RESULTS

We have solved the three-body problem for the different
ðI; JÞ states as discussed in Sec. III by taking m1 ¼ mu;d,
m2 ¼ 2mc and m3 ¼ 2mu;d.

6 We show in Fig. 2 the five-
quark states that are below threshold. Regarding the isospin
1=2 states, left panel, they are organized in two different
shells. The lowest band contains J ¼ 1=2 and 3=2 states
with the two-quark subclusters with maximum spin. It is
worthwhile to note that in the two-baryon system the one-
gluon exchange also generates the larger attraction for
parallel spin configurations [53–57]. Some states are rather
close in energy and therefore hard to distinguish exper-
imentally. In the upper shell there appear states with
J ¼ 1=2, 3=2 and 5=2. The J ¼ 5=2 state is at threshold.
Right panel on Fig. 2 shows the spectra of the isospin 3=2
states.
Let us first note the degeneracy existing between I ¼

1=2 and I ¼ 3=2 states, as could have been expected
a priori due to the isospin independence of the potential
model in Eq. (3), although the result is not trivial due to the
requirements of the Pauli principle. Second, it has been
checked that the conclusions dealing with stability or
instability of multiquarks survive variations of the param-
eters, we have specifically checked that the pattern remains
for different strengths of the spin-spin interaction by
modifying the regularization parameter, r0 in Eq. (3).

TABLE VI. Channels that are coupled together for the vector v1
in Table I with a unit of orbital angular momentum, such that
J ¼ 1=2 and 3=2.

s1 s2 S3 s3 l3 λ3 I F

v1 1=2 0 1=2 0 0 1 1=2 9=8
1=2 0 1=2 0 1 0 1=2 9=8

s2 s3 S1 s1 l1 λ1 I F

v1 0 0 0 1=2 0 1 1=2 0
0 0 0 1=2 1 0 1=2 0

s3 s1 S2 s2 l2 λ2 I F

v1 0 1=2 1=2 0 0 1 1=2 9=8
0 1=2 1=2 0 1 0 1=2 9=8

6It has been explicitly checked that the binding energy remains
almost constant, it varies less than 1.5 MeV, for small variations,
up to 10%, of m2 and m3 around its central value.
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There are additional quark correlations dominating the
QCD phenomena [29] that could hint to the most favorable
states that can be observed in nature. First, the very strong
quark-antiquark correlation in the color-, flavor-, and spin-
singlet channel f1c; 1f; 0sg which can be viewed as the
responsible for chiral symmetry breaking. The attractive
forces in this channel are so strong that condenses in the
vacuum, breaking SUðNfÞL × SUðNfÞR chiral symmetry.
The next most attractive channel in QCD seems to be the
color antitriplet, flavor antisymmetric, spin singlet
f3̄c; 3̄f; 0sg, that would select the qq configurations most
important spectroscopically. Thus, we show in Fig. 3 the
resulting spectrum by selecting those states that contain at
least one the most attractive QCD channels, i.e., a diquark
with spin zero. It is observed that the J ¼ 5=2 state at
threshold disappears as well as the pentaquarks of the
lowest shell.
The general properties of the multiquarks favored by the

quark correlations dominating the QCD phenomena shown
in Fig. 3 can be easily estimated. In the charmonium sector,
the mass difference between the QQ̄ f1c; 1f; 1sg and
f1c; 1f; 0sg correlated states could be assimilated to the
J=Ψ − ηc mass difference. The mass difference between the
qq f3̄c; 6f; 1sg and f3̄c; 3̄f; 0sg has been estimated from
full lattice QCD simulations to be in the range of 100–
200 MeV [60–62]. We have tuned the effective masses of
the correlated structures to the hidden-charm pentaquarks,
considering the following realistic values,

ΔMQQ̄ ¼ MQQ̄
f1c;1f;1sg −MQQ̄

f1c;1f;0sg ¼ 86 MeV;

ΔMqq ¼ Mqq
f3̄c;6f;1sg −Mqq

f3̄c;3̄f;0sg ¼ 146 MeV: ð22Þ

Thus, denoting byM0 the sum of the masses of a spin zero
QQ̄ diquark, a spin zero qq diquark and a light quark, the
mass of the states shown in Fig. 3 would be given by

Mi ¼ M0 − Bi þ ΔMQQ̄δs2;1 þ ΔMqqδs3;1; ð23Þ

where Bi is the binding energy calculated above. By taking
M0 ¼ 4321 MeV, one gets the results shown in Table VII.
As can be seen, there is a good agreement between
theoretical states showing the most important correlations
dictated by the QCD phenomena and the experimental data

FIG. 2. Binding energy, in MeV, for the different hidden-charm pentaquarks. Black lines stand for states containing a spin one heavy
quark-antiquark pair and purple lines denote states with a spin zero heavy quark-antiquark pair. The corresponding vector of Table I is
indicated in the figure. Left panel: I ¼ 1=2. Right panel: I ¼ 3=2.

FIG. 3. I ¼ 1=2 and 3=2 hidden-charm pentaquarks containing
substructures dictated by the quark correlations dominating the
QCD phenomena [29]. The notation is the same as in Fig. 2.
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[63,64]. Thus, Table VII presents a theoretical spin-parity
assignment for the existing hidden-charm pentaquarks.
The spin-parities of the hidden-charm pentaquarks are

not yet determined [12]. Nevertheless, there are predictions
based on different models that can be compared with.
Although there are different proposals about the Pcð4312Þþ
quantum numbers [65], there seems to be a general
preference for JP ¼ 1=2− [66–71], as it is found in our
model. The two narrow overlapping structures, Pcð4440Þþ
and Pcð4457Þþ [64], were originally reported as a single
state, Pcð4450Þþ [63]. There were earlier predictions of two
almost degenerate states with JP ¼ 1=2− and 3=2− at the
position of the Pcð4450Þþ pentaquark. These structures
corresponded to the JP ¼ 1=2− and 3=2− hidden-charm
states created dynamically by the ΣcD̄� charmed meson-
baryon interactions [66,70,72]. They were also predicted as
bound states of charmonium Ψð2SÞ and the nucleon [73].
In both cases the quantum numbers of the Pcð4440Þþ and
Pcð4457Þþ pentaquarks agree with our findings. Finally, in
our model there are two theoretical candidates, one with
J ¼ 1=2 and the other with J ¼ 3=2, for the Pcð4380Þþ, a
wide resonance whose nature is still an intriguing issue and
is an outstanding challenge for future experiments [74].
The preferred spin assignment for this state was J ¼ 3=2 or
5=2 [63]. A recent analysis of Bs → J=Ψpp̄ decays
supports a JP ¼ 3=2− assignment [75]. Thus, we could
assign the Pcð4380Þþ to the JP ¼ 3=2− state of our
model and therefore leaving open the existence of another
JP ¼ 1=2− pentaquark in the same energy region, with a
mass of about 4390 MeV.
Preliminary analysis of the experimental data suggested

the coexistence of negative and positive parity pentaquarks
in the same energy region [63]. We have studied such
possibility within our model. For this purpose, we have
calculated the mass of the lowest positive parity state, the
first orbital angular momentum excitation of the v1 state.
The technical details have been described in Sec. III B. We
chose this state because it is made up of the most strongly
correlated structures, QQ̄ f1c; 1f; 0sg and qq f3̄c; 3̄f; 0sg.
Then, it might have a similar mass to negative parity states
made up of spin 1 structures. We have obtained an energy
of 197 MeV above threshold. By using the values given in
Eq. (22) one obtains a mass of 4518 MeV for two

degenerate states with quantum numbers JP ¼ 1=2þ and
3=2þ. Therefore, positive parity pentaquark states would
appear above 4.5 GeV, a mass slightly larger than that of the
states measured so far. Similarly, most of the theoretical
works prefer to assign the lowest lying pentaquarks to
negative parity states. Almost degenerate negative and
positive parity states may occur for hidden-flavor penta-
quarks that have been detected in the same channel but that
were formed by different pairs of quarkonium-nucleon
states [73], one of them radially excited. Thus the negative
parity pentaquark of the ðQQ̄Þnþ1;SðqqqÞ7 system would
have a similar mass than the positive parity orbital angular
momentum excited state of the ðQQ̄Þn;SðqqqÞ system. The
assignment of negative and positive parity states to different
parity Born-Oppenheimer multiplets has already been
suggested as a plausible solution in the triquark-diquark
picture of Ref. [25]. Nevertheless, this issue remains one of
the most challenging problems in the pentaquark phenom-
enology that should be first confirmed experimentally.
Multiquark states would show very different decay

patterns regarding its internal structure [28]. The decays
of the pentaquarks in Table VII into an (anti)charmed
mesonþ charmed baryon are strongly suppressed since
decays into open charm channels can go only via t-channel
exchange by a heavy D meson. Due to the content of the
pentaquarks states they would follow the decays of char-
monium excited states, ΨðnSÞ and ηcðnSÞ. Thus, multi-
quarks containing a spin zero heavy quark-antiquark pair:
v1, v3 and w3 in Table VII, would be narrower than those
with a spin one heavy quark-antiquark pair: v2 and w1 in
Table VII. This corresponds nicely with the experimental
observations. However, besides the contribution to the
width of the substructures that form each pentaquark,
one should also consider the width due to the bound nature
of the system. At this point it is worth to mention that the
final width of a resonance does not come only determined
by its internal content, but there are significant corrections
due to an interplay between the phase space for its decay to
the detection channel and its mass with respect to the
hadrons generating the state [76].
The existence of hidden-flavor pentaquarks has been

concluded in various constituent quark-model studies. Let
us analyze our results compared to other related approaches
in the literature. Reference [51] studies hidden-charm
pentaquarks in a quark delocalization color screening
model, where besides the one-gluon exchange potential
quarks interact through the exchange of Goldstone bosons.
It presents results for I ¼ 1=2 pentaquarks concluding the
existence of several negative parity bound states with
J ¼ 1=2, 3=2, and 5=2. The lowest state corresponds to
J ¼ 1=2 and the J ¼ 5=2 state is at the edge of binding.
The deepest states with J ¼ 1=2 and J ¼ 3=2 are found in
the ðQQ̄ÞðqqqÞ configuration. This is the structure favored

TABLE VII. Properties of the hidden-charm pentaquarks of
Fig. 3.

Vector ðIÞJP MTh (MeV) State MExp (MeV)

v1 ð1=2Þ1=2− 4312 Pcð4312Þþ 4311.9� 0.7þ6.8
−0.6

v2 ð1=2Þ1=2− 4390 Pcð4380Þþ 4380� 8� 29
w1 ð1=2Þ3=2− 4395
v3 ð1=2Þ1=2− 4443 Pcð4440Þþ 4440.3� 1.3þ4.1

−4.7
w3 ð3=2Þ3=2− 4455 Pcð4457Þþ 4457.3� 0.6þ4.1

−1.7

7n stands for the radial quantum number of the QQ̄ system.
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by the color Coulomb-like short-range correlations
between the heavy flavors. In fact, the ðqQ̄ÞðQqqÞ con-
figuration only shows quasistable states that should be
confirmed by investigating the scattering process of other
open channels. The results are in good agreement with
the I ¼ 1=2 results of our model, the deepest state being
J ¼ 1=2 while the only J ¼ 5=2 state is at threshold. These
findings come to give support to the existence of a color-
singlet correlation between the heavy flavors within the
pentaquarks.
Reference [52] discusses results for I ¼ 1=2 states based

on a chiral-quark model. Several negative parity bound
states with J ¼ 1=2, 3=2, and 5=2 are reported. In contrast
to Ref. [51] the dominant configuration is found to be
ðqQ̄ÞðQqqÞ. It may be because in the ðQQ̄ÞðqqqÞ con-
figuration, quarkonium and baryons do not share light u
and d quarks and thus the OZI rule suppresses the
interactions mediated by the exchange of mesons made
of only light quarks [77].8 The exchange of D mesons is a
too short-range interaction to compete with the medium-
range attraction that can be generated by light-meson
exchanges arising in the ðqQ̄ÞðQqqÞ configuration. It is
also worth to note that hybrid models containing gluon and
meson exchanges at quark level show a reduced strength of
the one-gluon exchange potential [50]. This is because
pseudoscalar meson exchanges between quarks do also
contribute to the Δ − N mass difference. However, the
pseudoscalar spin-flavor interaction favors different color-
spin components than those favored by the one-gluon
exchange [82]. As a consequence, a distinct pattern of
multiquark states is found in hybrid or pure one-gluon
exchange approaches.
Different studies concluded the existence of I ¼ 3=2

pentaquarks. In the so-called hadroquarkonium approach,
Ref. [83] presents robust predictions of isospin 3=2 bound
states of Ψð2SÞ and Δ with masses around 4.5 GeV.
Looking back to constituent quark approaches, Ref. [45]
concluded the existence of I ¼ 3=2 hidden-flavor penta-
quarks. The pattern obtained is rather similar to our
calculation, with the J ¼ 5=2 state being almost at thresh-
old (note that we only consider relative S waves).
Regarding the I ¼ 1=2 states, it is the presence of the
ðqQ̄ÞðQqqÞ configuration, in other words repulsive color
octets in the ðQQ̄ÞðqqqÞ configuration, which rules out the
possibility of having bound states. Therefore, the dynami-
cal correlations arising among the heavy flavors are more
effective for isospin 1=2 states. This is easily understand-
able due to the fully symmetric nature of the isospin 3=2
wave function, which in itself reduces the allowed Hilbert
space vectors.

Reference [28] studies hidden-flavor pentaquarks using
the more repulsive color octet-color octet component,
8ðQQ̄Þ8ðqqqÞ. A set of negative parity states that would
remain bound only against the heavier ðqQ̄ÞðQqqÞ thresh-
old is reported. The most distinctive feature of this
approach lies in the fact that compact pentaquarks with
a colored qqq cluster have small branching ratios for the
hidden-flavor decay channels as compared to possible
baryon-meson molecules.
Reference [84] makes use of an extended chromomag-

netic model where besides the color-spin chromomagnetic
potential, effective quark-pair mass parameters accounting
for the effective quark masses and the color interaction
between two quarks are considered. These parameters are
fitted to the meson and baryon spectra. Ten I ¼ 1=2 and
seven I ¼ 3=2 hidden-flavor pentaquarks are found. All of
them are negative parity states and there appear J ¼ 1=2,
3=2 and 5=2 pentaquarks in both isospin channels. The
pattern of I ¼ 1=2 states shown in Fig. 1 of Ref. [84] is
similar to our results. However, the degeneracy between
I ¼ 1=2 and I ¼ 3=2 states is not observed in the spectra.
This could be due to the way the effective quark-pair mass
parameters are determined, because the interacting poten-
tial is isospin independent.
In addition to the models we have discussed with which

the comparison is meaningful since they follow a similar
constituent approach, as mentioned in the introduction,
there are different proposals used to study hidden-flavor
pentaquarks. The predictions of diquark models are very
varied [24–27], depending on the hypotheses used for the
diquark dynamics. Some further assumptions are some-
times made about the chromomagnetic interaction between
diquarks [85]. A similar general conclusion can be derived
from QCD sum rules studies, where one can find either
molecular approaches [86–89] or others based on hidden-
color components [90]. A recent review about the status of
heavy quark sum rules and the uses for exotic hadron
molecules can be found in Ref. [91]. Hadronic molecular
models based either on effective chiral Lagrangians or one-
boson exchange potentials rely on the determination of
unknown low-energy parameters and coupling constants,
the latter usually determined by quark-model relations
[66,92–95]. Predictions obtained under the hypothesis
about the structure of some of the novel states, used to
fix the unknown constants, are a nice tool to analyze
forthcoming states in the heavy-hadron spectra. Generally
speaking it can be said that in all approaches the resulting
spectra are very rich. For a more detailed analysis of the
particularities of each approach we refer the reader to the
aforementioned reviews [1–12] and references therein.
The model we explore has a well-defined asymptotic

threshold made of a light baryon, N or Δ depending on the
isospin, and a vector or a pseudoscalar quarkonium state,
depending on the spin component of the heavy quark-
antiquark pair. In contrast to molecular hadronic models

8This could also be the reason why the hadronic molecular
scenario prefers to describe hidden-flavor pentaquarks as bound
states of open-flavor hadrons. See Refs. [4,9,78–81].
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based on effective interactions between hadrons, the
approach we follow could be generalized to any other
hidden-flavor system without the need of additional ingre-
dients. Our study is just based on the correlations dictated by
the QCD dynamics on a realistic quark-quark interaction, see
Eq. (3), that describes the low-energy baryon and meson
spectra, see Table II. It is worth noting that the correlations
used do not lead to stable multiquarks for any quark
substructure, in the same way the NN short-range repulsion
induced by the one-gluon exchange dynamics is not uni-
versal and disappears for other two-hadron channels. Thus,
for example, the QCD correlations used in this work would
not constraint the color wave function of pentaquarks with
anticharm or beauty, Q̄qqqq. Therefore, such systems would
not present bound states, as recently discussed in Ref. [96],
due to a nonfavorable interplay between chromoelectric and
chromomagnetic effects.
Finally, the results we have presented could be further

used to study the possible existence of charmonium states
bound to atomic nuclei suggested by Brodsky [77] more than
three decades ago. As it has been mentioned above, since
charmonium and nucleons do not share light u and d quarks,
the OZI rule suppresses the interactions mediated by the
exchange of mesons made of only light quarks. Thus, if such
states are indeed bound to nuclei, it has been emphasized the
relevance to search for other sources of attraction [97]. A
charmonium-nucleon interaction which provides a binding
mechanism has been found, in the heavy-quark limit, in
terms of charmonium chromoelectric polarizabilities and
densities of the nucleon energy-momentum tensor
[73,83,98]. The existence of such bound states has also
been justified by changes of the internal structure of the
hadrons in the nuclear medium. Thus, for example, J=Ψ-
nuclei bound states were found in Ref. [99]. In a similar
model it has been recently concluded that the ηc meson
should form bound states with all the nuclei considered, from
4He to 208Pb [100]. Our model presents an alternative
mechanism based on the short-range one-gluon exchange
interaction between the constituents of charmonium and
nucleons. This mechanism has already been suggested to
lead to dibaryon resonances [53–58]. To our knowledge, this
result has never been obtained before based on pure quark-
gluon dynamics using a restricted Hilbert space.

V. SUMMARY

In short, we have studied hidden-flavor pentaquarks
imposing the dynamical correlations inherent to the color
Coulomb-like nature of the short-range one-gluon
exchange interaction. Such correlations lead to a frozen
color wave function of the five-body system, which allows
us to reduce the problem to a more tractable three-body
problem. The three-body problem has been exactly solved
by means of the Faddeev equations. To perform exploratory
studies of systems with more than three-quarks it is of basic
importance to work with models that correctly describe the

two- and three-quark problems of which thresholds are
made of. Thus, the interactions between the constituents are
deduced from a generic constituent model, the AL1 model,
that gives a nice description of the low-energy baryon and
meson spectra.
The dynamical correlations arising from the one-gluon

exchange interaction due to the presence of a heavy quark-
antiquark pair result in several bound states. The lightest
pentaquarks have J ¼ 1=2 and 3=2. J ¼ 5=2 states lie at
threshold. Under the assumption that nature favors multi-
quarks which are made up of correlated substructures
dictated by QCD, we have estimated the mass of the
lowest lying pentaquarks. We have considered realistic
values for the mass difference of the correlated quark pairs.
A good description of the experimental data has been
obtained. The tentative spin-parity assignment of the
different pentaquarks agrees well with other approaches
dedicated to study a particular set of states.
Our study is just based on the correlations dictated by the

QCD dynamics on a realistic quark-quark interaction. Thus,
it could be generalized to any other hidden-flavor system
without the need of additional ingredients. It is worth noting
that the correlations used do not lead to stable multiquarks
for any quark substructure. Thus, for example, the QCD
correlations used in this work would not constrain the color
wave function of pentaquarks with anticharm or beauty.
As a bonus of our calculation we have found a dynamical

model that would account for the existence of quarkonium
states bound to nuclei. The existence of such bound states
has been justified in the hadrocharmonium approach or by
changes of the internal structure of the hadrons in the
nuclear medium but, to our knowledge, it has never been
obtained before based on pure quark-gluon dynamics using
a restricted Hilbert space.
Bound states and resonances are usually very sensitive to

model details and therefore theoretical investigations with
different phenomenological models are highly desirable.
We have tried to minimize the influence of the interacting
potential by using a standard constituent model and we
have explored the consequences of dynamical correlations
arising from the Coulomb-like nature of the short-range
potential. Similar arguments were used in the past to select
dibaryon channels that might lodge resonances with suc-
cess. The pattern obtained could be scrutinized against the
future experimental results providing a great opportunity
for extending our knowledge to some unreached part of the
hadron spectra. More such exotic baryons are expected and
needed to make reliable hypotheses on the way the
interactions in the system are shaping the spectra.
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APPENDIX: COUPLING OF DIFFERENT FADDEEV AMPLITUDES

In the Faddeev formalism the amplitude Tα is coupled to the amplitudes Tβ, with β ≠ α, corresponding to different
coupling schemes. In the case of the spin part the wave functions are,

jαi ¼ j½ðsj; skÞSjk; si�Si ¼
X
μiμjμk

C
sjskSjk
μj;μk C

SjksiS
μjþμk;μi jsiμiijsjμjijskμki;

jβi ¼ j½ðs0k; siÞSki; sj�Si ¼
X
νiνjνk

C
s0ksiSki
νk;νi C

SkisjS
νkþνi;νj jsiνiijsjνjijs0kνki; ðA1Þ

so that the recoupling coefficients are

hαjβi ¼
X
μiμjμk
νiνjνk

C
sjskSjk
μj;μk C

SjksiS
μjþμk;μiC

s0ksiSki
νk;νi C

SkisjS
νkþνi;νjhsiμijsiνiihsjμjjsjνjihs0kμkjskνki; ðA2Þ

where,

hsiμijsiνii ¼ δμiνi ;

hsjμjjsjνji ¼ δμjνj ;

hs0kμkjskνki ¼ δs0kskδμkνk ; ðA3Þ

so that

hαjβi ¼ δsks0k

X
μiμjμk

C
sjskSjk
μj;μk C

SjksiS
μjþμk;μiC

sksiSki
μk;μi C

SkisjS
μkþμi;μj : ðA4Þ

Thus, the recoupling coefficient hαjβi ¼ 0 if sk ≠ s0k, which
leads to the decoupling of amplitudes when the spin of one
particle is different in the states jαi and jβi.
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